
UBIT: Version A CSE 250 — Fall 2024

Part a: Bounds

For each question in this section, give the unqualified big-O, big-Ω, and big-Θ bounds for the specified function. If the
big-Θ bound does not exist, write DNE. For this section you are not required to show any work or give a proof unless
stated otherwise.

Question 1 [3 points]

f1(n) =

n3∑
i=1

(20n2 + 5i)

Answer

Variant A: n6 for all
Variant B: n4 for all
Variant C: n6 for all
Variant D: n4 for all

Point Breakdown

• (+1 pt) For correct O
• (+1 pt) For correct Omega
• (+1 pt) For a consistent Theta

Question 2 [3 points]

f2(n) =

log(n5)∑
i=0

i−1∑
j=0

2j

Answer

Variant A: n5 for all
Variant B: n3 for all
Variant C: n2 for all
Variant D: n6 for all

Point Breakdown

• (+1 pt) For correct O
• (+1 pt) For correct Omega
• (+1 pt) For a consistent Theta

1

UBIT: Version A CSE 250 — Fall 2024

Question 3 [3 points]

f3(n) =

{
log(n) + 9n log(n) + n2 if n is odd

n log(n) + 5 log(n) if n is even

Answer

Variant A: O(n2), Ω(n log(n)), Θ DNE
Variant B: O(n4), Ω(n log(n)), Θ DNE
Variant C: O(n log(n)), Ω(n log(n)), Θ(n log(n))
Variant D: O(n3), Ω(n), Θ DNE

Point Breakdown

• (+1 pt) For correct O
• (+1 pt) For correct Omega
• (+1 pt) For a consistent Theta

Question 4 [6 points]

Prove that the following function is in O(n4):

f4(n) = 39n2 + 10 + 5n4

Answer

Break into terms
39n ≤ c · n4 is true when c = 39, n ≥ 0
10 ≤ c · n4 is true when c = 10, n ≥ 1
5n4 ≤ c · n4 is true when c = 5, n ≥ 0
Therefore if c = 54 and n ≥ 1, 39n2 + 10 + 5n4 ≤ c · n4 which means f4 ∈ O(n4)

Point Breakdown

• (+1 pt) For including each term in the proof in some way
• (+1 pt) For a valid choice for c
• (+1 pt) For a valid choice for n0

• (+1 pt) For at some point having the definition of big-O

2

UBIT: Version A CSE 250 — Fall 2024

Part b: Hash Table Concepts

Question 1 [12 points]

Consider a Hash Table that uses chaining to resolve collisions, but instead of each bucket being a LinkedList, each
bucket is a Sorted ArrayList. State the expected and tight unqualified runtime for each Hash Table operation
discussed in class.

insert(T elem) contains(T elem) remove(T elem)

Expected: Expected: Expected:

Unqualified: Unqualified: Unqualified:

Answer

Expected: O(1), O(1), O(1)
Unqualified: O(n), O(log(n)), O(n)

Point Breakdown

• (+2 pt) per correct answer

Question 2 [8 points]

In class we described an implementation of the Set ADT using a Hash Table. In at most a few sentences, describe
what concrete changes we would need to make in order to implement the Bag ADT using a Hash Table. As a
reminder, the Bag ADT is unordered (like a Set), but allows for duplicate elements.

Answer

Any of the following would be a valid answer:
- Instead of just storing the element, store an object holding the element and a count (like we did for PA1)
- Treat it like a map, where the keys are the elements and the values are the counts
- When using chaining, just allow multiples of the same element in each bucket
- If using open addressing, allow for multiple of the same value to be inserted

Point Breakdown

• (8 pt) For a correct answer matching one of the above

3

UBIT: Version A CSE 250 — Fall 2024

Part c: Hash Table Implementation

For all questions in this section, you may assume that hash1 and hash2 are hash functions that return the following values
for keys A through F:

A B C D E F
hash1 37 13 93 24 64 58
hash2 60 86 27 81 38 57

Question 1 [6 points]

Consider a Hash Table that has 10 buckets, uses hash1 as its hash function, and resolves collisions using chaining.
You may assume no rehash is required. State which bucket each element will end up in if elements A through F
are inserted in alphabetical order.

A: B: C: D: E: F:

Answer

Variant A: 7, 3, 3, 4, 4, 8
Variant B: 0, 4, 4, 1, 1, 5
Variant C: 1, 5, 5, 6, 6, 0
Variant D: 0, 9, 9, 7, 7, 1

Point Breakdown

• (+1 pt) For each element in the correct bucket

4

UBIT: Version A CSE 250 — Fall 2024

Question 2 [6 points]

Consider a Hash Table that has 10 buckets, uses hash1 as its hash function, and resolves collisions using open
addressing. You may assume no rehash is required. State which bucket each element will end up in if elements
A through F are inserted in alphabetical order.

A: B: C: D: E: F:

Answer

Variant A: 7, 3, 4, 5, 6, 8
Variant B: 0, 4, 5, 1, 2, 6
Variant C: 1, 5, 6, 7, 8, 0
Variant D: 0, 9, 1, 7, 8, 2

Point Breakdown

• (+1 pt) For each element in the correct bucket

Question 3 [6 points]

Consider a Hash Table that has 10 buckets, uses hash1 and hash2 as its hash functions, and resolves collisions
using cuckoo hashing exactly as you did in PA3. You may assume no rehash is required. State which bucket
each element will end up in if elements A through F are inserted in alphabetical order.

A: B: C: D: E: F:

Answer

Variant A: 7, 6, 3, 1, 4, 8
Variant B: 0, 8, 4, 3, 1, 5
Variant C: 1, 3, 5, 8, 6, 0
Variant D: 0, 4, 9, 6, 7, 1

Point Breakdown

• (+1 pt) For each element in the correct bucket (based on their number of buckets)

5

UBIT: Version A CSE 250 — Fall 2024

Question 4 [2 points]

If the Hash Table with chaining described in Question 1 was given a maximum load factor of 0.3 which element
would trigger a rehash upon being inserted? If no element would trigger a rehash write “None”.

Answer

Variant A: D
Variant B: E
Variant C: F
Variant D: E

Point Breakdown

• (2 pt) For the correct answer

6

UBIT: Version A CSE 250 — Fall 2024

Part d: Code Runtime

This part of the exam pertains to the following function and labeled boxes. For several questions, you will be asked to
provide summations of runtimes labeled with line numbers. See below for an example of a summation for lines 11-13.

1 public Integer MyFunction(List <RecordA > recordsN ,

2 List <RecordB > recordsM)

3 {

4 Accumulator accumulator =

5 InitAccumulator(recordsN.size(), recordsM.size());

6

7 for(i : recordsN) {

8 InsertIntoAccumulator(accumulator , i);

9 }

10

11 CleanupAccumulator(accumulator);

12

13 Integer result = 0;

14

15 for(j : recordsM) {

16

17 if(IsValid(j)) {

18 result += RetrieveFromAccumulator(accumulator , j);

19 } else {

20 result += 1;

21 }

22

23 }

24

25 return result;

26 }

A (lines 7-9) B (lines 4-9)

C (lines 17-21)

D (lines 15-23)

E (lines 11-25)

Example

O(1) + O(1)

Line 11 Line 13

The table below presents tight bounds on the runtime of the functions called by MyFunction. The letters N and M
indicate the exact values of recordsN.size() and recordsM.size() respectively. The expression |A| means the number
of times that InsertIntoAccumulator has previously been called on A (i.e., the size of A). You may assume that iterating
over a list is constant-time per element. All bounds are unqualified.

Function Big-O Big-Ω
InitAccumulator(N, M) O(N +M) Ω(N)
InsertIntoAccumulator(A, i) O(|A|) Ω(|A|)
CleanupAccumulator(A, i) O(1) Ω(1)
IsValid(j) O(1) Ω(1)
RetrieveFromAccumulator(A, i) O(|A|2) Ω(|A|)

7

UBIT: Version A CSE 250 — Fall 2024

8

UBIT: Version A CSE 250 — Fall 2024

9

UBIT: Version A CSE 250 — Fall 2024

Question 1 [5 points]

For the blocks of code labeled A and B, respectively, do each of the following:
1. Provide a tight upper (Big-O) bound on the runtime of the code in the rectangle as a summation.
2. Label the components of your summation that correspond to lines (i) 5, (ii) 7-9, and (iii) 8.
3. Expand the summation and simplify the resulting bound.

Answer

see above

Point Breakdown

• (+1 pt) The summation provided for Block A is correct.
• (+1 pt) The simplified runtime for Block A is exactly correct.
• (+1 pt) The provided summation for Block B correctly includes the InitAccumulator runtime (line
5).

• (+1 pt) The simplified runtime for Block B is exactly correct.
• (+1 pt) The answer’s labels for code lines are sensible.

Question 2 [5 points]

For the blocks of code labeled C, D, and E, respectively, do each of the following:
1. Provide a tight upper (Big-O) bound on the runtime of the code in the rectangle as a summation.
2. Label the components of your summation that correspond to lines (i) 11, (ii) 15-21, (iii) 17-21, (iv) 17, and

(v) 18, and (vi) 20.
3. Expand the summation and simplify the resulting bound.

Answer

see above

Point Breakdown

• (+1 pt) The summation for Block C is provided piecewise, or otherwise indicates that there are two
possible runtimes.

• (+1 pt) The Big-O runtime of block C correctly includes only the greater term in the cases block.
• (+1 pt) The summation provided for Block D sets up the summation (relative to the Block C
answer) correctly.

• (+1 pt) The simplified runtime for Blocks C, D, and E are correct.
• (+1 pt) The answer’s labels for code lines are sensible.

10

UBIT: Version A CSE 250 — Fall 2024

Question 3 [5 points]

For the blocks of code labeled A and B, respectively, do each of the following:
1. Provide a tight lower (Big-Ω) bound on the runtime of the code in the rectangle as a summation.
2. Label the components of your summation that correspond to lines (i) 5, (ii) 7-9, and (iii) 8.
3. Expand the summation and simplify the resulting bound.

Answer

see above

Point Breakdown

• (+1 pt) The summation provided for Block A is correct.
• (+1 pt) The simplified runtime for Block A is exactly correct.
• (+1 pt) The provided summation for Block B correctly includes the InitAccumulator runtime (line
5).

• (+1 pt) The simplified runtime for Block B is exactly correct.
• (+1 pt) The answer’s labels for code lines are sensible.

Question 4 [5 points]

For the blocks of code labeled C, D, and E, respectively, do each of the following:
1. Provide a tight lower (Big-Ω) bound on the runtime of the code in the rectangle as a summation.
2. Label the components of your summation that correspond to lines (i) 11, (ii) 15-21, (iii) 17-21, (iv) 17, and

(v) 18, and (vi) 20.
3. Expand the summation and simplify the resulting bound.

Answer

see above

Point Breakdown

• (+1 pt) The summation for Block C is provided piecewise, or otherwise indicates that there are two
possible runtimes.

• (+1 pt) The Big-Ω runtime of block C correctly includes only the lesser term in the cases block.
• (+1 pt) The summation provided for Block D sets up the summation (relative to the Block C
answer) correctly.

• (+1 pt) The simplified runtime for Blocks C, D, and E are correct.
• (+1 pt) The answer’s labels for code lines are sensible.

11

UBIT: Version A CSE 250 — Fall 2024

Question 5 [5 points]

Provide the simplified, tight asymptotic upper (Big-O) and lower (Big-Ω) bounds on the runtime of MyFunction
in terms of the sizes of its two inputs (recordsN.size() = N ; recordsM.size() = M).

Answer

Var A: O(N2M), Ω(N2)
Var B: O(N2 +N log(N)M), Ω(N)
Var C: O(MN +N2), Ω(M +N)
Var D: O(MN +N2), Ω(N)

Point Breakdown

• (3 pt) For having at least one bound that is consistent with the student’s answers to Q1-2 (Big-O)
or Q3-4 (Big-Ω).

• (5 pt) For having the other bound consistent with the student’s prior answers.
• (+1 pt) Partial credit per bound provided for simply demonstrating the need to sum up blocks B
and E (but e.g., not simplifying correctly).

Question 6 [5 points]

Provide the simplified tight, unqualified simplified asymptotic upper (Big-O) bound on Block D, if we additionally
provide you with the following two facts:

• M ≫ N (M is guaranteed to be much bigger than N , i.e., N ∈ O(M))
• The amortized runtime of RetrieveFromAccumulator(A, j) is O(|A|).

Answer

For each question, the amortized runtime is exactly a factor of N lower than the block D runtime in Q2.

Point Breakdown

• (2 pt) for any answer that is strictly lower than the student’s Block D runtime in Q2.
• (3 pt) for any answer that is correct (as below), but not fully simplified.
• (5 pt) for any answer that is exactly a factor of N (Variants A, B, D) or log(N) (Variant C) than
the student’s Block D runtime in Q2. Answers in terms of |A| are acceptable if this is how they are
presented in Q2.

12

UBIT: Version A CSE 250 — Fall 2024

Part e: Data Structure Design

For each of the following questions, circle the abstract data type and the data structure that best fits the requirements
of the collection described in the question.

Question 1 [5 points]

The streets and intersections of a city for use in a route-finding application.

ADT: List Stack Queue Priority Queue Graph Set Map

Data Structure: Array LinkedList ArrayList Ring Buffer Binary Heap

Edge List Adjacency List Adjacency Matrix AVL Tree

Red-Black Tree Hash Table

Answer

Var A: Graph, Adjacency List
Var B: Stack, ArrayList or LinkedList
Var C: PriorityQueue, BinaryHeap
Var D: PriorityQueue, Binary Heap

Point Breakdown

• (+2 pt) If one selection is correct
• (+5 pt) If both selections are correct

Question 2 [5 points]

The waiting list for a class, where students are admitted in the order they joined the waiting list.

ADT: List Stack Queue Priority Queue Graph Set Map

Data Structure: Array LinkedList ArrayList Ring Buffer Binary Heap

Edge List Adjacency List Adjacency Matrix AVL Tree

Red-Black Tree Hash Table

Answer

Var A: Queue, LinkedList or RingBuffer
Var B: Map, HashTable
Var C: Graph, AdjacencyList
Var D: Queue, LinkedList or RingBuffer

Point Breakdown

• (+2 pt) If one selection is correct
• (+5 pt) If both selections are correct

13

UBIT: Version A CSE 250 — Fall 2024

Question 3 [5 points]

The character’s inventory in a game. For each item, identified by its name, you need to keep track of how many
copies of the item you have.

ADT: List Stack Queue Priority Queue Graph Set Map

Data Structure: Array LinkedList ArrayList Ring Buffer Binary Heap

Edge List Adjacency List Adjacency Matrix AVL Tree

Red-Black Tree Hash Table

Answer

Var A: Map, HashTable
Var B:Var C: List, LinkedList
Var D: Graph, AdjacencyList

Point Breakdown

• (+2 pt) If one selection is correct
• (+5 pt) If both selections are correct

Question 4 [5 points]

A checklist of every quest the story’s protagonist needs to complete to succeed. We only care about a quest until
it is checked off, and so we want to be able to quickly remove tasks from the checklist. Every quest is identified
by a magical reference to the quest’s entry in the checklist, and may be completed in any order.

ADT: List Stack Queue Priority Queue Graph Set Map

Data Structure: Array LinkedList ArrayList Ring Buffer Binary Heap

Edge List Adjacency List Adjacency Matrix AVL Tree

Red-Black Tree Hash Table

Answer

Var A: List, LinkedList
Var B: Graph, Adjacency List
Var C: Map, HashTable
Var D: Stack, ArrayList or LinkedList

Point Breakdown

• (+2 pt) If one selection is correct
• (+5 pt) If both selections are correct

14

UBIT: Version A CSE 250 — Fall 2024

Part f: Heaps and Binary Search Trees

Question 1 [20 points]

For each node in the tree provided below, mark down (i) the height of the node, (ii) the balance factor of
the node, (iii) whether the node satisfies the BST ordering property, and (iv) whether the node satisfies the
min-heap ordering property. Give your answer for each node as if it were the root of the tree.

Answer

Var A:
Node 23: Height 2, BF -1, BST No, Heap Yes
Node 27: Height 1, BF -1, BST No, Heap Yes
Node 29: Height 0, BF 0, BST Yes, Heap Yes
Node 31: Height 0, BF 0, BST Yes, Heap Yes

Var B:
Node 23: Height 2, BF 1, BST No, Heap Yes
Node 27: Height 0, BF 0, BST Yes, Heap Yes
Node 29: Height 1, BF -1, BST No, Heap Yes
Node 31: Height 0, BF 0, BST Yes, Heap Yes

Var C:
Node 23: Height 2, BF -1, BST No, Heap Yes
Node 27: Height 1, BF 1, BST Yes, Heap Yes
Node 29: Height 0, BF 0, BST Yes, Heap Yes
Node 31: Height 0, BF 0, BST Yes, Heap Yes

Var D:
Node 23: Height 2, BF 1, BST Yes, Heap No
Node 19: Height 0, BF 0, BST Yes, Heap Yes
Node 29: Height 1, BF 1, BST Yes, Heap Yes
Node 31: Height 0, BF 0, BST Yes, Heap Yes

Point Breakdown

• (+1 pt) For each correct field
• (+1 pt) For each fully correct node

15

UBIT: Version A CSE 250 — Fall 2024

Part g: Class Participation [Bonus]

Question 1 [5 points]

Name any two of the undergraduate TAs for this course (first name only is fine).

Answer

Derek, Brendan, Doniyor, Ethan, Evan, Joy, Marian, Jordan, Chris, Ronan, Alex, Shreyas, Wonwoo,
Jonathan, Milos, Eric, Isabel, Julia, Robby, Jenn, Emilie, Vipassana, Alex, Gina, Matthew, Faizaan,
Vrushaali

Point Breakdown

• (+2.5 pt) Per correct answer (only count the first two names they wrote if they write a bunch)

16

