
CSE 331:
Algorithms & Complexity

Prof. Charlie Anne Carlson (She/Her)
Lecture 10

Friday September 19th, 2025

“Graph Theory”

Schedule

1.Course Updates
2.Finish GS Analysis
3.Graphs

1.Connectivity
2.Trees
3.Traversal

Course Updates

• HW 1 Solutions Out
• HW 2 Out
• Project Signup end of day
• First Quiz Monday Sept 29

• In class
• Check Piazza for practice

problems

Student’s Current State

• H[i,j] is hospital i’s jth
preferered student.

• S[i,j] is student i’s jth preferred
hospital.

• Unmatched Hospitals stored in a
linked list called H_unmatched.

• Next[i] is hospital i’s “next
preference” to ask.

• Current[i] is student i’s
current “matched preference.”

These are not the indices of
hospitals or students but
preferences.

Student’s Current State

• How do we do this check?

Student’s Current State

• Create an array of arrays,
Ranking such that for student 𝑖
and hospital 𝑗, Ranking[i,j]is
the rank of j for i.
• Not the same as S but

similar.
• We can can construct this for all

students in O(n^2) time before the
loop.

Student’s Current State

• Create an array of arrays,
Ranking such that for student 𝑖
and hospital 𝑗, Ranking[i,j]is
the rank of j for i.

• We can then in O(1) time compare
Ranking[s,h] and
Ranking[s,Current[s]].

Returning Matching

• Where is our matching?

Returning Matching

• The matching is stored in
Current

• You can convert this into a list of
pairs by looping over all students,
finding the current match and
adding the pair to M.

• This takes O(n) time.

A: … ≤ 𝑂 𝑛2 + 𝑛2 ⋅ 𝑂 1 + 𝑂 𝑛2 ≤ 𝑂 𝑛2

𝑇0 ∈ 𝑂(𝑛2) Computations

𝑇1 ≤ 𝑛2 Number Loops

𝑇2 ∈ 𝑂 1 Computations

𝑇3 ∈ 𝑂(𝑛2) Computations

Graph G = (V,E)

• A graph is a way of encoding
pairwise relationships on a
set of objects.

• You have a collection 𝑉 of
vertices or nodes and

• a collection 𝐸 edges that
“connect” two nodes.

• We often define 𝑛 = |𝑉|
and 𝑚 = |𝐸|.

Graph G = (V,E)

• 𝑉 = {1,2,3,4,5,6,7,8}

• 𝐸 = { 1,2 , 1,3 , 2,3 , 2,4 , 2,5 ,

3,5 , 3,7 , 3,8 , 4,5 , 5,6 , {7,8}}

• 𝑛 = 8

• 𝑚 = 11

Examples of Graphs

• Social Networks
• Maps
• Computer Networks
• Neural Networks
• Circuits
• Molecules Representations
• ”Everything”

Graph Representation: Adjacency Matrix

• The adjacency matrix is an
𝑛-by-𝑛 matrix 𝐴 such that
𝐴 𝑖, 𝑗 = 1 if 𝑖, 𝑗 ∈ 𝐸 and 0
otherwise.

Paths and Connectivity

• A path in an undirected graph 𝐺 = (𝑉, 𝐸) is a sequence
of nodes 𝑣1, 𝑣2, … , 𝑣𝑘 such that for every consecutive
pair 𝑣𝑖 and 𝑣𝑖+1, 𝑣𝑖 , 𝑣𝑖+1 ∈ 𝐸.
• A path is simple if no vertex appears more than once

in the pattern. s

t

Paths and Connectivity

• A path in an undirected graph 𝐺 = (𝑉, 𝐸) is a sequence
of nodes 𝑣1, 𝑣2, … , 𝑣𝑘 such that for every consecutive
pair 𝑣𝑖 and 𝑣𝑖+1, 𝑣𝑖 , 𝑣𝑖+1 ∈ 𝐸.
• A path is simple if no vertex appears more than once

in the pattern. s

t

Paths and Connectivity

• A graph 𝐺 = 𝑉, 𝐸 is connected if for any 𝑢 ∈ 𝑉 and 𝑣 ∈
𝑉, there exists a simple path between 𝑢 and 𝑣.

Cycles

• A cycle in a graph 𝐺 = 𝑉, 𝐸 is a path 𝑣1, 𝑣2, … , 𝑣𝑘 such
that 𝑘 ≥ 2 and 𝑣1 = 𝑣𝑘 (it starts and ends at the same
vertex).
• We say it is simple if there are no other repeats.

Trees

• An undirected graph is a tree if it is connected and does
not contain a cycle.
• A graph that doesn’t contain a cycle is called acyclic.
• A vertex with degree 1 is called a leaf.

Rooted Trees

• A rooted tree is a tree with some node 𝑟 fixed as the
root. We think of it as a hierarchical structure.

Trees

Lemma: Let 𝐺 = (𝑉, 𝐸) be an undirected graph on 𝑛 nodes.
Any two of the following statements imply the third:

• G is connected.
• G does not contain a cycle.
• G has 𝑛 − 1 edges.

Trees (Proof on Website)

Lemma: Let 𝐺 = (𝑉, 𝐸) be an undirected graph on 𝑛 nodes.
Any two of the following statements imply the third:

• G is connected.
• G does not contain a cycle.
• G has 𝑛 − 1 edges.

Trees

Lemma: Let T = (𝑉, 𝐸) be a tree on 𝑛 nodes. Then if 𝑛 ≥ 2,
there must exist at least two leaf nodes.

Connectivity Problem(s)

s-t Connectivity Problem:
Input: Graph 𝐺 = (𝑉, 𝐸), source 𝑠, and destination 𝑡.
Output: True if there exists a path and False otherwise.

s-t Shortest Path Problem:
Input: Graph 𝐺 = (𝑉, 𝐸), source 𝑠, and destination 𝑡.
Output: The length of the shortest path from s to t (∞ if
there is no path).

Q: What is a brute force solution?

s-t Connectivity Problem:
Input: Graph 𝐺 = (𝑉, 𝐸), source 𝑠, and destination 𝑡.
Output: True if there exists a path and False otherwise.

S

t

Q: What is a brute force solution?

You could generate all sequences of length n-1 and check if
any are paths. However, there are a lot of sequences
((𝑛 − 2)𝑛−1). That is slow…

S

t

Another Connectivity Problem

t

Graph Connectivity:
Input: 𝐺 = (𝑉, 𝐸) and 𝑠 ∈ 𝑉

Output: T = {u ∈ T: there exists a path from s to u in G}

S

t

Another Connectivity Problem

t

Observation: If we solve the graph connectivity problem,
then we can solve the s-t connectivity problem by checking
if t is in T.

S

t

Breadth First Search

t

Q: How do you find
all nodes reachable
from node 1?

Breadth First Search

t

Idea:
• What can 1

reach?
• What can those

nodes reach?
• What can those

nodes reach?
• ….

Breadth First Search (Layers)

• 𝐿0 = 𝑠

• 𝐿1 = neighbors of 𝐿0.
• 𝐿2 = neighbors of 𝐿1 that are not in 𝐿0.
• 𝐿i = neighbors of 𝐿i−1 that are not in previous layer.

Breadth First Search (“Algorithm”)

• Input: 𝐺 = (𝑉, 𝐸) and 𝑠 ∈ 𝑉

• Let 𝐿0 = {s}

• Assume 𝐿0, … , 𝐿𝑖 have been constructed:
• Let 𝐿i+1 be nodes do not appear in 𝐿0, … , 𝐿𝑖 and have

an edge to 𝐿𝑖.
• If 𝐿i+1 is empty, stop.

• Return all layers.

Breadth First Search (Properties)

• For each j ≥ 0, layer 𝐿𝑗 produced by BFS consists of all
nodes at distance j from s.

• There is a path from s to t if and only if t appears in some
layer.

• For any {u, v} ∈ E, if 𝑢 ∈ 𝐿𝑖 and 𝑣 ∈ 𝐿𝑗 then i and j differ
by at most 1.

• You can think of the output as a tree! We call this the BFS
(discovery) Tree.

Breadth First Search (Tree)

Original Graph Search Tree

	Slide 1: CSE 331: Algorithms & Complexity
	Slide 2: Schedule
	Slide 3: Course Updates
	Slide 4: Student’s Current State
	Slide 5: Student’s Current State
	Slide 6: Student’s Current State
	Slide 7: Student’s Current State
	Slide 8: Returning Matching
	Slide 9: Returning Matching
	Slide 10: A: dot dot dot , less than or equal to cap O open paren n squared , , close paren plus n squared dot cap O of 1 , plus cap O open paren n squared , , close paren less than or equal to cap O open paren n squared , , close paren
	Slide 11: Graph G = (V,E)
	Slide 12: Graph G = (V,E)
	Slide 13: Examples of Graphs
	Slide 14: Graph Representation: Adjacency Matrix
	Slide 15: Paths and Connectivity
	Slide 16: Paths and Connectivity
	Slide 17: Paths and Connectivity
	Slide 18: Cycles
	Slide 19: Trees
	Slide 20: Rooted Trees
	Slide 21: Trees
	Slide 22: Trees (Proof on Website)
	Slide 23: Trees
	Slide 24: Connectivity Problem(s)
	Slide 25: Q: What is a brute force solution?
	Slide 26: Q: What is a brute force solution?
	Slide 27: Another Connectivity Problem
	Slide 28: Another Connectivity Problem
	Slide 29: Breadth First Search
	Slide 30: Breadth First Search
	Slide 31: Breadth First Search (Layers)
	Slide 32: Breadth First Search (“Algorithm”)
	Slide 33: Breadth First Search (Properties)
	Slide 34: Breadth First Search (Tree)

