CSE 331:
Allg(o)r[ilt]hunnls & (C<o>lnnqp>ll<exiilty

L]

“Graph Theory”

Prof. Charlie Anne Carlson (She/Her)
Lecture 10
Friday September 19th, 2025

G5

University at Buffalo

Schedule

1.Course Updates

2.Finish GS Analysis

3.Graphs
1.Connectivity
2.Trees

3. Traversal

Course Updates

* HW 1 Solutions Out

e HW2Out

* Project Signup end of day

* First Quiz Monday Sept 29
* Inclass

* Check Piazza for practice
problems

Student’s Current State

GALE-SHAPLEY (preference lists for n hospitals and n students)

INITIALIZE M to empty matching.
WHILE (some hospital / is unmatched)
s < first student on /’s list to whom 4 has not yet proposed.

IF (s is unmatched)
Add h—s to matching M.

ELSE IF (s prefers A to current partner A"

These are not the indices of
hospitals or students but
preferences.

RETURN stable matching M.

|

}

H[i,j] ishospitali’sjth
preferered student.

S[i, 7] isstudenti’sjth preferred
hospital.

Unmatched Hospitals stored in a
linked list called H unmatched.
Next [1] is hospitali’s “next
preference” to ask.

Current[i] isstudenti’s

current “matched preference.”

Student’s Current State

GALE-SHAPLEY (preference lists for n hospitals and n students)

INITIALIZE M to empty matching. * How do we do this check?
WHILE (some hospital / is unmatched)

s < first student on /’s list to whom 4 has not yet proggfSed.
IF (s is unmatched)
Add h—s to matching M.
ELSE IF (s prefers A to current partner /")
Replace h'—s with h—s in matching M.
ELSE

s rejects h.

RETURN stable matching M.

Student’s Current State

GALE-SHAPLEY (preference lists for n hospitals and n students)

INITIALIZE M to empty matching.

WHILE (some hospital / is unmatched)
s < first student on A’s list to whom 4 has not y
IF (s is unmatched)

Add h—s to matching M.
ELSE IF (s prefers A to current partner /")
Replace h'—s with h—s in matching M.
ELSE

s rejects h.

RETURN stable matching M.

Create an array of arrays,
Ranking such thatfor studenti
and hospital j, Ranking[1i, J]IS
the rank of j for .

* Notthesameas S but

similar.

We can can construct this for all
students in O(n"2) time before the
loop.

Student’s Current State

GALE-SHAPLEY (preference lists for n hospitals and n students)

INITIALIZE M to empty matching.

WHILE (some hospital / is unmatched)

s < first student on /’s list to whom 4 has not yet proposed.

IF (s is unmatched)
Add h—s to matching M.
ELSE IF (s prefers A to current partner /")
Replace h'—s with h—s in matching M.
ELSE

s rejects h.

RETURN stable matching M.

/

Create an array of arrays,
Ranking such thatfor studenti
and hospital j, Ranking[1i, J]IS
the rank of j for .

We can then in O(1) time compare
Ranking[s,h] and
Ranking[s,Current[s]].

Returning Matching

GALE-SHAPLEY (preference lists for n hospitals and n students)

INITIALIZE M to empty matching. * Where is our matching?

WHILE (some hospital / is unmatched)
s < first student on /’s list to whom 4 has not ye
IF (s is unmatched)
Add h—s to matching M.
ELSE IF (s prefers A to curre

Replace h'—s with # in matching M.

RETURN stable matching M.

Returning Matching

GALE-SHAPLEY (preference lists for n hospitals and n students)

INITIALIZE M to empty matching. * The matchingis stored in

Current

* You can convertthisinto a list of
pairs by looping over all students,
finding the current match and
adding the pair to M.

* Thistakes O(n) time.

WHILE (some hospital / is unmatched)
s < first student on A’s list to whom 4 has not ye
IF (s is unmatched)
Add h—s to matching M.
ELSE IF (s prefers A to curre

Replace h'—s with in matching M.

RETURN stable matching M.

A:... <0n?)+n%-001) +0n%) <0n?

GALE-SHAPLEY (preference lists for n hospitals and n students)

INITIALIZE M to empty matching. T, € 0(n?) Computations
WHILE (some hospital / is unmatched) T; < n? Number Loops
s < first student on /’s list to whom 4 has not yet proposed.
IF (s is unmatched)
Add h—s to matching M.
ELSE IF (s prefers & to current partner ') T, € 0(1) Computations
Replace h'—s with A—s in matching M.
ELSE

s rejects h.

RETURN stable matching M. T; € 0(n?) Computations

Graph G = (V,E)

* Agraphisaway of encoding
pairwise relationships on a
set of objects.

* You have a collection V of
vertices or nodes and

* acollection E edges that
“connect” two nodes.

 We oftendefinen = |V]|
andm = |E|.

Graph G = (V,E)

- V=1{1,234,5,6,7,8}

* E={{12};{1,3},12,3},{2,4},{2,5},
{3,5},13,7},13,8},{4,5},15,6}, {7,8}}

e n=2

e m=11

Examples of Graphs

* Social Networks

e Maps

e Computer Networks

* Neural Networks

* Circuits

* Molecules Representations
* “Everything”

Graph Representation: Adjacency Matrix

* The adjacency matrixis an
n-by-n matrix A such that
A(i,j) =1if{i,j} € Eand0
otherwise.

123456738
1101100000
2110111000
3/11001011
4101001000
5101110100
600001000
/700100001
800100010

Paths and Connectivity

A path in an undirected graph ¢ = (V, E) is a sequence
of nodes v4, V5, ..., V), such that for every consecutive
pair v; and v; 44, {v;, Vi1, } E E.

* Apathis simple if novertex appears more than once
In the pattern. A

Paths and Connectivity

 Apathinanundirected graph ¢ = (V/,E) is a sequence
of nodes v4, v, ..., V), such that for every consecutive
pair v; and v; 44, {v;, Vi1, } E E.

S * A pathis simple if no vertex appears more than once

‘ In the pattern. '

SR

Paths and Connectivity

« AgraphG = (V,E) is connected if foranyu € Vandv €
V, there exists a simple path between u and v.

SRy

Cycles

 Acycleinagraph G = (V,E) is apath vy, vy, ..., V;, SUch
that k = 2 and v; = vy, (it starts and ends at the same
vertex).

* Wesayitis simple if there are no other repeats.

-

’ \\.
sy S Q0 O
\ \ Y
\ & "
\ P <
-
I)"(’
(1
\\—Il

Trees

* Anundirected graphis atree ifitis connected and does
not contain a cycle.

* Agraphthat doesn’t contain a cycle is called acyclic.
* Avertexwith degree 1 is called a leaf.

Rooted Trees

e Arooted tree is atree with some node r fixed as the
root. We think of it as a hierarchical structure.

e rootr

1) the parent of v

(9) (3) (4) @ () (9) achild of v

a tree the same tree, rooted at 1

Trees

Lemma: Let G = (V, E) be an undirected graph on n nodes.
Any two of the following statements imply the third:

* (G isconnected.
* (G does not contain acycle.
* Ghasn —1 edges.

Trees (Proof on Website)

Lemma: Let G = (V, E) be an undirected graph on n nodes.
Any two of the following statements imply the third:

* (G isconnected.
* (G does not contain acycle.
* Ghasn —1 edges.

Trees

Lemma: LetT = (V,E) be atree onn nodes. Thenifn = 2,
there must exist at least two leaf nodes.

° rootr

1) the parent of v

(9) (3) (4) @ () (9) achild of v

a tree the same tree, rooted at 1

Connectivity Problem(s)

s-t Connectivity Problem:

Input: Graph ¢ = (V, E), source s, and destination t.
Output: True if there exists a path and False otherwise.

s-t Shortest Path Problem:
Input: Graph ¢ = (V, E), source s, and destination t.

Output: The length of the shortest path from sto t (oo if
there is no path).

Q: What is a brute force solution?

s-t Connectivity Problem:
Input: Graph ¢ = (V, E), source s, and destination t.
Output: True if there exists a path and False otherwise.

SR =<y

Q: What is a brute force solution?

You could generate all sequences of length n-1 and check if

any are paths. However, there are a lot of sequences
((n — 2)"*1). That is slow...

SR =<y

Another Connectivity Problem

Graph Connectivity:
Input: ¢ = (V,E)ands e I/
Output: T = {u € T: there exists a path from s to u in G}

C ooNe
~_—O
ST

Another Connectivity Problem

Observation: If we solve the graph connectivity problem,
then we can solve the s-t connectivity problem by checking
iftisinT.

S

(Q. Q. _C
~ 0
ST

Breadth First Search

Q: How do you find
all nodes reachable
from node 17

12

Breadth First Search

ldea:

e Whatcan
reach?

e \What canthose
nodes reach?

 What can those
nodes reach?

12

Breadth First Search (Layers)

Ly=s

L = neighbors of L.

L, = neighbors of L, that are notin L,.

L; = neighbors of L;_4 that are not in previous layer.

Breadth First Search (“Algorithm™)

* Input: ¢ = (V,E)ands € V
* Letly = {s}
* Assume L, ..., L; have been constructed:

* Letl;,, benodesdonotappearinl,,...,L; and have
anedgetoL;.

* If Li;41 1S empty, stop.
* Return all layers.

Breadth First Search (Properties)

* Foreachj = 0, layer L; produced by BFS consists of all
nodes at distance j from s.

* Thereisapathfromstotifandonlyiftappearsinsome
ayer.

* Forany{u,v} €E,ifu€L;andv € L; theniand] differ
oy at most 1.

* You can think of the output as a tree! We call this the BFS
(discovery) Tree.

Breadth First Search (Tree)

Original Graph Search Tree

	Slide 1: CSE 331: Algorithms & Complexity
	Slide 2: Schedule
	Slide 3: Course Updates
	Slide 4: Student’s Current State
	Slide 5: Student’s Current State
	Slide 6: Student’s Current State
	Slide 7: Student’s Current State
	Slide 8: Returning Matching
	Slide 9: Returning Matching
	Slide 10: A: dot dot dot , less than or equal to cap O open paren n squared , , close paren plus n squared dot cap O of 1 , plus cap O open paren n squared , , close paren less than or equal to cap O open paren n squared , , close paren
	Slide 11: Graph G = (V,E)
	Slide 12: Graph G = (V,E)
	Slide 13: Examples of Graphs
	Slide 14: Graph Representation: Adjacency Matrix
	Slide 15: Paths and Connectivity
	Slide 16: Paths and Connectivity
	Slide 17: Paths and Connectivity
	Slide 18: Cycles
	Slide 19: Trees
	Slide 20: Rooted Trees
	Slide 21: Trees
	Slide 22: Trees (Proof on Website)
	Slide 23: Trees
	Slide 24: Connectivity Problem(s)
	Slide 25: Q: What is a brute force solution?
	Slide 26: Q: What is a brute force solution?
	Slide 27: Another Connectivity Problem
	Slide 28: Another Connectivity Problem
	Slide 29: Breadth First Search
	Slide 30: Breadth First Search
	Slide 31: Breadth First Search (Layers)
	Slide 32: Breadth First Search (“Algorithm”)
	Slide 33: Breadth First Search (Properties)
	Slide 34: Breadth First Search (Tree)

