
CSE 331: 
Algorithms & Complexity

Prof. Charlie Anne Carlson (She/Her)
Lecture 10 

Friday September 19th, 2025

“Graph Theory”



Schedule

1.Course Updates
2.Finish GS Analysis
3.Graphs

1.Connectivity
2.Trees
3.Traversal    



Course Updates

• HW 1 Solutions Out 
• HW 2 Out
• Project Signup end of day
• First Quiz Monday Sept 29 

• In class
• Check Piazza for practice 

problems



Student’s Current State

• H[i,j] is hospital i’s jth 
preferered student. 

• S[i,j] is student i’s jth preferred 
hospital.

• Unmatched Hospitals stored in a 
linked list called H_unmatched.

• Next[i] is hospital i’s “next 
preference” to ask.

• Current[i] is student i’s 
current “matched preference.”

These are not the indices of 
hospitals or students but 
preferences.



Student’s Current State

• How do we do this check?



Student’s Current State

• Create an array of arrays, 
Ranking such that for student 𝑖 
and hospital 𝑗, Ranking[i,j]is 
the rank of j for i. 
• Not the same as S but 

similar.
• We can can construct this for all 

students in O(n^2) time before the 
loop.



Student’s Current State

• Create an array of arrays, 
Ranking such that for student 𝑖 
and hospital 𝑗, Ranking[i,j]is 
the rank of j for i. 

• We can then in O(1) time compare 
Ranking[s,h] and 
Ranking[s,Current[s]]. 



Returning Matching

• Where is our matching?



Returning Matching

• The matching is stored in 
Current

• You can convert this into a list of 
pairs by looping over all students, 
finding the current match and 
adding the pair to M.

• This takes O(n) time.



A: …  ≤ 𝑂 𝑛2 + 𝑛2 ⋅ 𝑂 1 + 𝑂 𝑛2 ≤ 𝑂 𝑛2

𝑇0 ∈ 𝑂(𝑛2) Computations

𝑇1 ≤ 𝑛2 Number Loops

𝑇2 ∈ 𝑂 1  Computations

𝑇3 ∈ 𝑂(𝑛2) Computations



Graph G = (V,E)

• A graph is a way of encoding 
pairwise relationships on a 
set of objects. 

• You have a collection 𝑉 of 
vertices or nodes and

• a collection 𝐸 edges that 
“connect” two nodes. 

• We often define 𝑛 =  |𝑉| 
and 𝑚 =  |𝐸|. 



Graph G = (V,E)

• 𝑉 =  {1,2,3,4,5,6,7,8}

• 𝐸 = { 1,2 , 1,3 , 2,3 , 2,4 , 2,5 ,

3,5 , 3,7 , 3,8 , 4,5 , 5,6 , {7,8}}

• 𝑛 = 8

• 𝑚 = 11



Examples of Graphs

• Social Networks 
• Maps
• Computer Networks
• Neural Networks
• Circuits
• Molecules Representations
• ”Everything” 



Graph Representation: Adjacency Matrix

• The adjacency matrix is an 
𝑛-by-𝑛 matrix 𝐴 such that 
𝐴 𝑖, 𝑗 = 1 if 𝑖, 𝑗 ∈ 𝐸 and 0 
otherwise. 



Paths and Connectivity

• A path in an undirected graph 𝐺 = (𝑉, 𝐸) is a sequence 
of nodes 𝑣1, 𝑣2, … , 𝑣𝑘  such that for every consecutive 
pair 𝑣𝑖  and 𝑣𝑖+1, 𝑣𝑖 , 𝑣𝑖+1 ∈ 𝐸.
• A path is simple if no vertex appears more than once 

in the pattern. s

t



Paths and Connectivity

• A path in an undirected graph 𝐺 = (𝑉, 𝐸) is a sequence 
of nodes 𝑣1, 𝑣2, … , 𝑣𝑘  such that for every consecutive 
pair 𝑣𝑖  and 𝑣𝑖+1, 𝑣𝑖 , 𝑣𝑖+1 ∈ 𝐸.
• A path is simple if no vertex appears more than once 

in the pattern. s

t



Paths and Connectivity

• A graph 𝐺 = 𝑉, 𝐸  is connected if for any 𝑢 ∈ 𝑉 and 𝑣 ∈
𝑉, there exists a simple path between 𝑢 and 𝑣.



Cycles 

• A cycle in a graph 𝐺 = 𝑉, 𝐸  is a path 𝑣1, 𝑣2, … , 𝑣𝑘  such 
that 𝑘 ≥ 2 and 𝑣1 = 𝑣𝑘  (it starts and ends at the same 
vertex). 
• We say it is simple if there are no other repeats. 



Trees 

• An undirected graph is a tree if it is connected and does 
not contain a cycle.
• A graph that doesn’t contain a cycle is called acyclic.
• A vertex with degree 1 is called a leaf.   



Rooted Trees 

• A rooted tree is a tree with some node 𝑟 fixed as the 
root. We think of it as a hierarchical structure. 



Trees 

Lemma: Let 𝐺 = (𝑉, 𝐸) be an undirected graph on 𝑛 nodes. 
Any two of the following statements imply the third:

• G is connected.
• G does not contain a cycle.
• G has 𝑛 − 1 edges.  



Trees (Proof on Website) 

Lemma: Let 𝐺 = (𝑉, 𝐸) be an undirected graph on 𝑛 nodes. 
Any two of the following statements imply the third:

• G is connected.
• G does not contain a cycle.
• G has 𝑛 − 1 edges.  



Trees 

Lemma: Let T = (𝑉, 𝐸) be a tree on 𝑛 nodes. Then if 𝑛 ≥ 2, 
there must exist at least two leaf nodes. 



Connectivity Problem(s) 

s-t Connectivity Problem:
Input: Graph 𝐺 = (𝑉, 𝐸), source 𝑠, and destination 𝑡.
Output: True if there exists a path and False otherwise.

s-t Shortest Path Problem:
Input: Graph 𝐺 = (𝑉, 𝐸), source 𝑠, and destination 𝑡.
Output: The length of the shortest path from s to t (∞ if 
there is no path).



Q: What is a brute force solution?

s-t Connectivity Problem:
Input: Graph 𝐺 = (𝑉, 𝐸), source 𝑠, and destination 𝑡.
Output: True if there exists a path and False otherwise.

S

t



Q: What is a brute force solution?

You could generate all sequences of length n-1 and check if 
any are paths. However, there are a lot of sequences 
((𝑛 − 2)𝑛−1). That is slow…

S

t



Another Connectivity Problem

t

Graph Connectivity:
Input: 𝐺 = (𝑉, 𝐸) and 𝑠 ∈  𝑉

Output: T =  {u ∈ T:  there exists a path from s to u in G}

S

t



Another Connectivity Problem

t

Observation: If we solve the graph connectivity problem, 
then we can solve the s-t connectivity problem by checking 
if t is in T.

S

t



Breadth First Search

t

Q: How do you find 
all nodes reachable 
from node 1? 



Breadth First Search

t

Idea:
• What can 1 

reach?
• What can those 

nodes reach?
• What can those 

nodes reach?
• ….



Breadth First Search (Layers)

• 𝐿0 = 𝑠

• 𝐿1 = neighbors of 𝐿0.
• 𝐿2 = neighbors of 𝐿1 that are not in 𝐿0.
• 𝐿i = neighbors of 𝐿i−1 that are not in previous layer.



Breadth First Search (“Algorithm”)

• Input: 𝐺 = (𝑉, 𝐸) and 𝑠 ∈  𝑉

• Let 𝐿0 = {s}

• Assume 𝐿0, … , 𝐿𝑖  have been constructed:
• Let 𝐿i+1 be nodes do not appear in 𝐿0, … , 𝐿𝑖  and have 

an edge to 𝐿𝑖.
• If 𝐿i+1 is empty, stop. 

• Return all layers. 



Breadth First Search (Properties)

• For each j ≥ 0, layer 𝐿𝑗  produced by BFS consists of all 
nodes at distance j from s.

• There is a path from s to t if and only if t appears in some 
layer.

• For any {u, v}  ∈ E, if 𝑢 ∈ 𝐿𝑖  and 𝑣 ∈ 𝐿𝑗  then i and j differ 
by at most 1.

• You can think of the output as a tree! We call this the BFS 
(discovery) Tree. 



Breadth First Search (Tree)

Original Graph Search Tree
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