

CSE 331: Algorithms & Complexity “Graph Theory”

Prof. Charlie Anne Carlson (She/Her)

Lecture 10

Friday September 19th, 2025

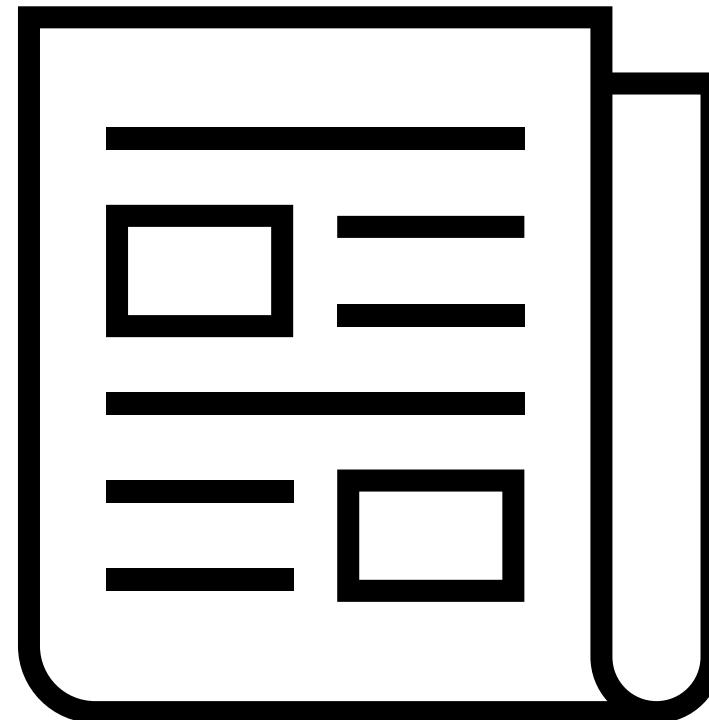
University at Buffalo®

Schedule

1. Course Updates
2. Finish GS Analysis
3. Graphs
 1. Connectivity
 2. Trees
 3. Traversal

Course Updates

- HW 1 Solutions Out
- HW 2 Out
- Project Signup end of day
- First Quiz Monday Sept 29
 - In class
 - Check Piazza for practice problems



Student's Current State

GALE–SHAPLEY (*preference lists for n hospitals and n students*)

INITIALIZE M to empty matching.

WHILE (some hospital h is unmatched)

$s \leftarrow$ first student on h 's list to whom h has not yet proposed.

IF (s is unmatched)

Add $h-s$ to matching M .

ELSE IF (s prefers h to current partner h')

These are not the indices of hospitals or students but preferences.

RETURN stable matching M .

- $H[i, j]$ is hospital i 's j th preferred student.
- $S[i, j]$ is student i 's j th preferred hospital.
- Unmatched Hospitals stored in a linked list called $H_{\text{unmatched}}$.
- $\text{Next}[i]$ is hospital i 's “next preference” to ask.
- $\text{Current}[i]$ is student i 's current “matched preference.”

Student's Current State

GALE–SHAPLEY (*preference lists for n hospitals and n students*)

INITIALIZE M to empty matching.

WHILE (some hospital h is unmatched)

$s \leftarrow$ first student on h 's list to whom h has not yet proposed.

IF (s is unmatched)

Add $h-s$ to matching M .

ELSE IF (s prefers h to current partner h')

Replace $h'-s$ with $h-s$ in matching M .

ELSE

s rejects h .

RETURN stable matching M .

- How do we do this check?

Student's Current State

GALE–SHAPLEY (*preference lists for n hospitals and n students*)

INITIALIZE M to empty matching.

WHILE (some hospital h is unmatched)

$s \leftarrow$ first student on h 's list to whom h has not yet proposed.

IF (s is unmatched)

Add $h-s$ to matching M .

ELSE IF (s prefers h to current partner h')

Replace $h'-s$ with $h-s$ in matching M .

ELSE

s rejects h .

RETURN stable matching M .

- Create an array of arrays, Ranking such that for student i and hospital j , $\text{Ranking}[i, j]$ is the rank of j for i .
 - Not the same as S but similar.
- We can construct this for all students in $O(n^2)$ time before the loop.

Student's Current State

GALE–SHAPLEY (*preference lists for n hospitals and n students*)

INITIALIZE M to empty matching.

WHILE (some hospital h is unmatched)

$s \leftarrow$ first student on h 's list to whom h has not yet proposed.

IF (s is unmatched)

Add $h-s$ to matching M .

ELSE IF (s prefers h to current partner h')

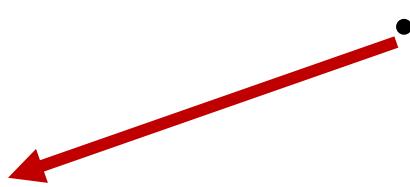
Replace $h'-s$ with $h-s$ in matching M .

ELSE

s rejects h .

RETURN stable matching M .

- Create an array of arrays, Ranking such that for student i and hospital j , $\text{Ranking}[i, j]$ is the rank of j for i .
• We can then in $O(1)$ time compare $\text{Ranking}[s, h]$ and $\text{Ranking}[s, \text{Current}[s]]$.



Returning Matching

GALE–SHAPLEY (*preference lists for n hospitals and n students*)

INITIALIZE M to empty matching.

WHILE (some hospital h is unmatched)

$s \leftarrow$ first student on h 's list to whom h has not yet proposed.

IF (s is unmatched)

Add $h-s$ to matching M .

ELSE IF (s prefers h to current partner h')

Replace $h'-s$ with $h-s$ in matching M .

ELSE

s rejects h .

- Where is our matching?

RETURN stable matching M .

Returning Matching

GALE–SHAPLEY (*preference lists for n hospitals and n students*)

INITIALIZE M to empty matching.

WHILE (some hospital h is unmatched)

$s \leftarrow$ first student on h 's list to whom h has not yet proposed.

IF (s is unmatched)

Add $h-s$ to matching M .

ELSE IF (s prefers h to current partner h')

Replace $h'-s$ with $h-s$ in matching M .

ELSE

s rejects h .

RETURN stable matching M .

- The matching is stored in $Current$
- You can convert this into a list of pairs by looping over all students, finding the current match and adding the pair to M .
- This takes $O(n)$ time.

$$A: \dots \leq O(n^2) + n^2 \cdot O(1) + O(n^2) \leq O(n^2)$$

GALE–SHAPLEY (*preference lists for n hospitals and n students*)

INITIALIZE M to empty matching.

$T_0 \in O(n^2)$ Computations

WHILE (some hospital h is unmatched)

$T_1 \leq n^2$ Number Loops

$s \leftarrow$ first student on h 's list to whom h has not yet proposed.

$T_2 \in O(1)$ Computations

IF (s is unmatched)

Add $h-s$ to matching M .

ELSE IF (s prefers h to current partner h')

Replace $h'-s$ with $h-s$ in matching M .

ELSE

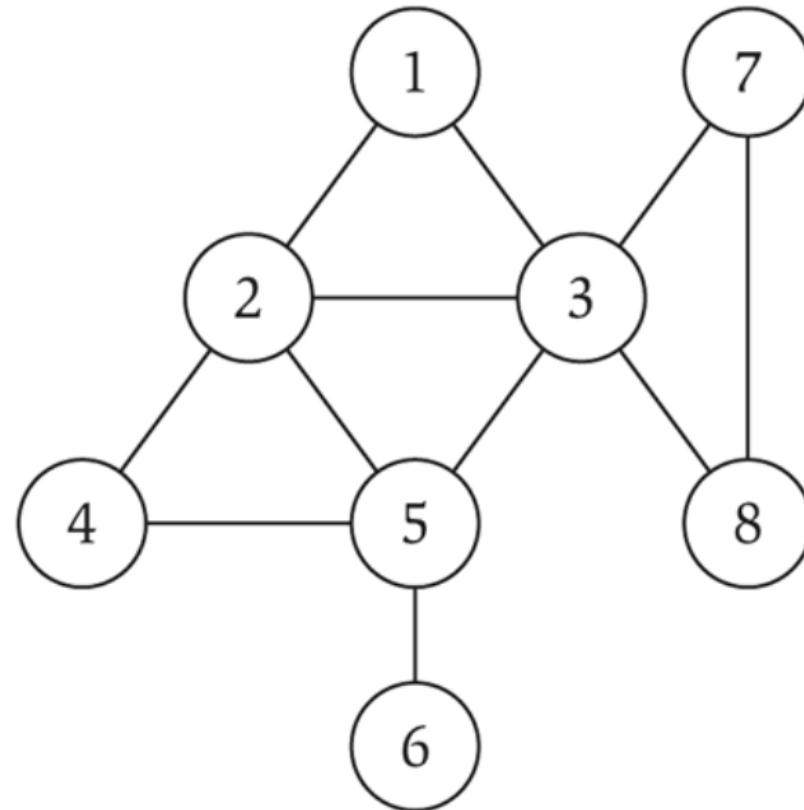
s rejects h .

$T_3 \in O(n^2)$ Computations

RETURN stable matching M .

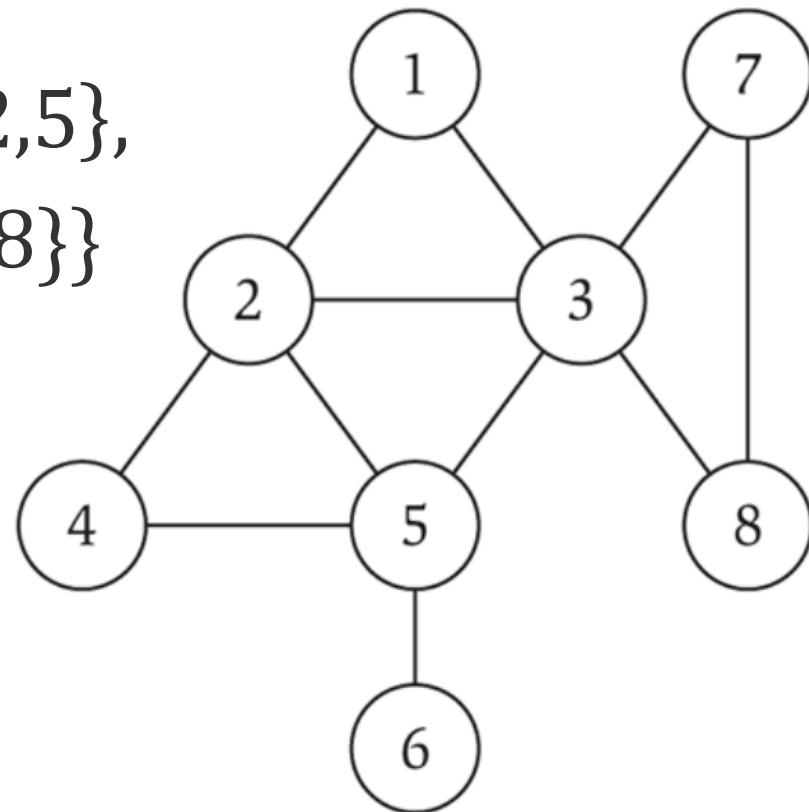
Graph $G = (V, E)$

- A graph is a way of encoding pairwise relationships on a set of objects.
- You have a collection V of **vertices or nodes** and
- a collection E **edges** that “connect” two nodes.
- We often define $n = |V|$ and $m = |E|$.



Graph $G = (V, E)$

- $V = \{1, 2, 3, 4, 5, 6, 7, 8\}$
- $E = \{ \{1, 2\}, \{1, 3\}, \{2, 3\}, \{2, 4\}, \{2, 5\}, \{3, 5\}, \{3, 7\}, \{3, 8\}, \{4, 5\}, \{5, 6\}, \{7, 8\} \}$
- $n = 8$
- $m = 11$



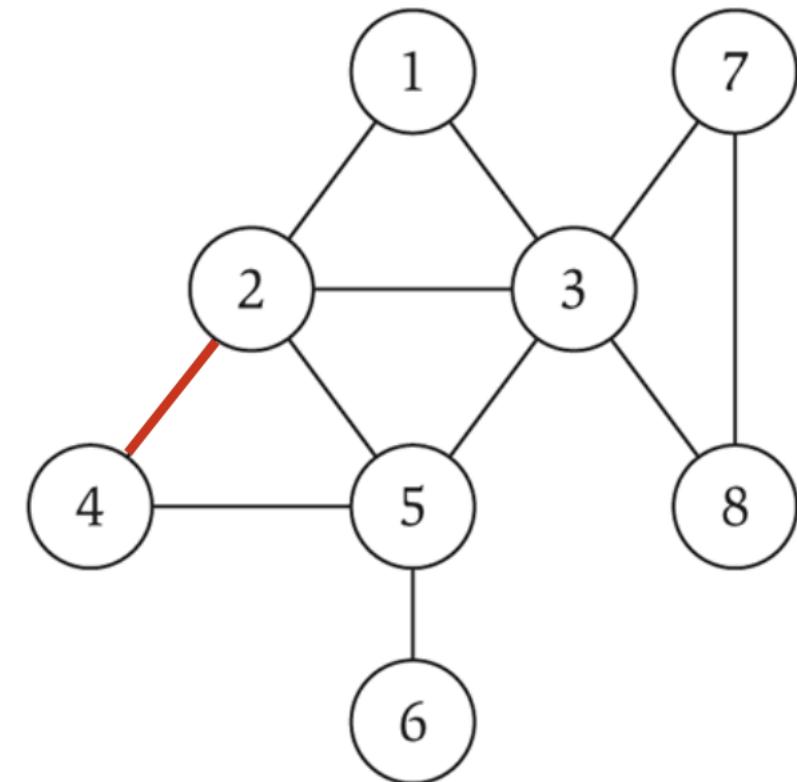
Examples of Graphs

- Social Networks
- Maps
- Computer Networks
- Neural Networks
- Circuits
- Molecules Representations
- “Everything”

Graph Representation: Adjacency Matrix

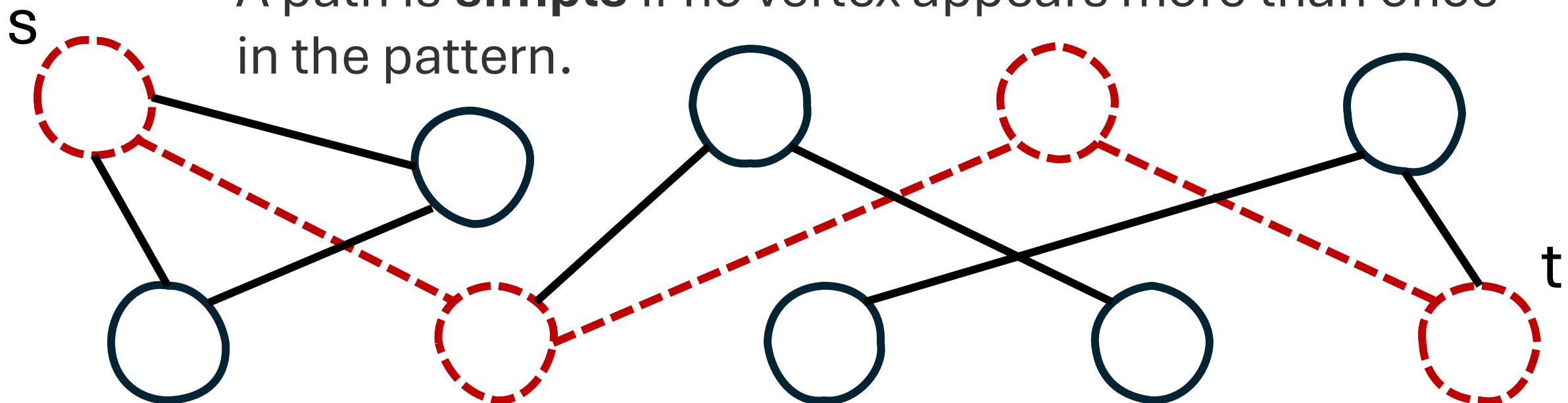
- The **adjacency matrix** is an n -by- n matrix A such that $A(i, j) = 1$ if $\{i, j\} \in E$ and 0 otherwise.

	1	2	3	4	5	6	7	8
1	0	1	1	0	0	0	0	0
2	1	0	1	1	1	0	0	0
3	1	1	0	0	1	0	1	1
4	0	1	0	0	1	0	0	0
5	0	1	1	1	0	1	0	0
6	0	0	0	0	1	0	0	0
7	0	0	1	0	0	0	0	1
8	0	0	1	0	0	0	1	0



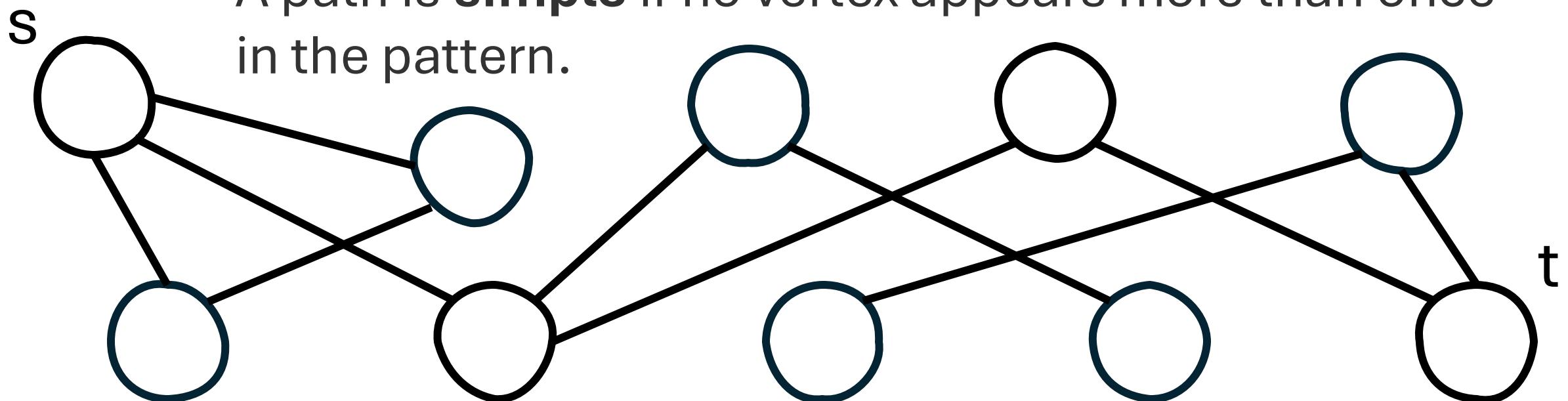
Paths and Connectivity

- A **path** in an undirected graph $G = (V, E)$ is a sequence of nodes v_1, v_2, \dots, v_k such that for every consecutive pair v_i and v_{i+1} , $\{v_i, v_{i+1}\} \in E$.
- A path is **simple** if no vertex appears more than once in the pattern.



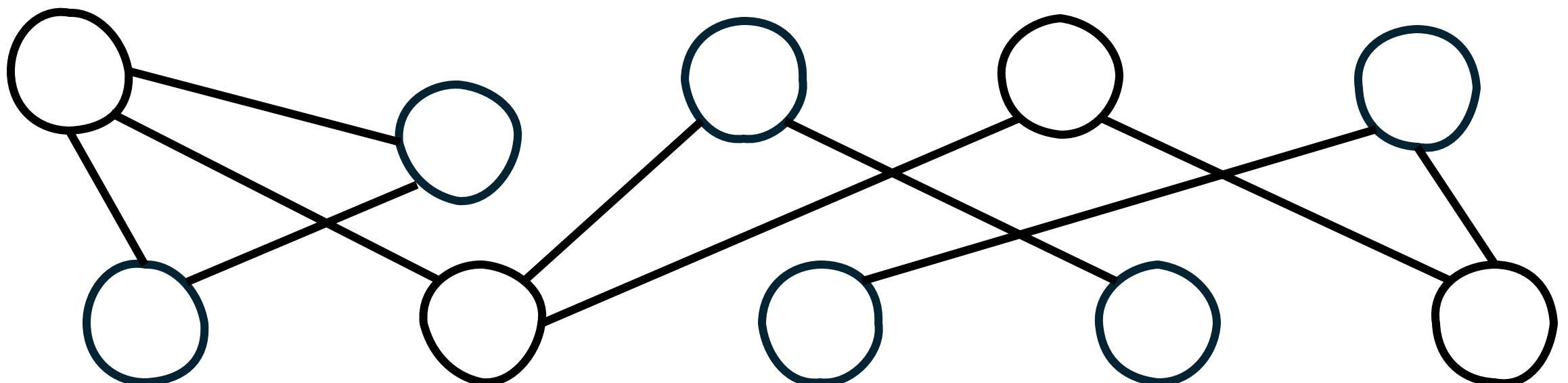
Paths and Connectivity

- A **path** in an undirected graph $G = (V, E)$ is a sequence of nodes v_1, v_2, \dots, v_k such that for every consecutive pair v_i and v_{i+1} , $\{v_i, v_{i+1}\} \in E$.
 - A path is **simple** if no vertex appears more than once in the pattern.



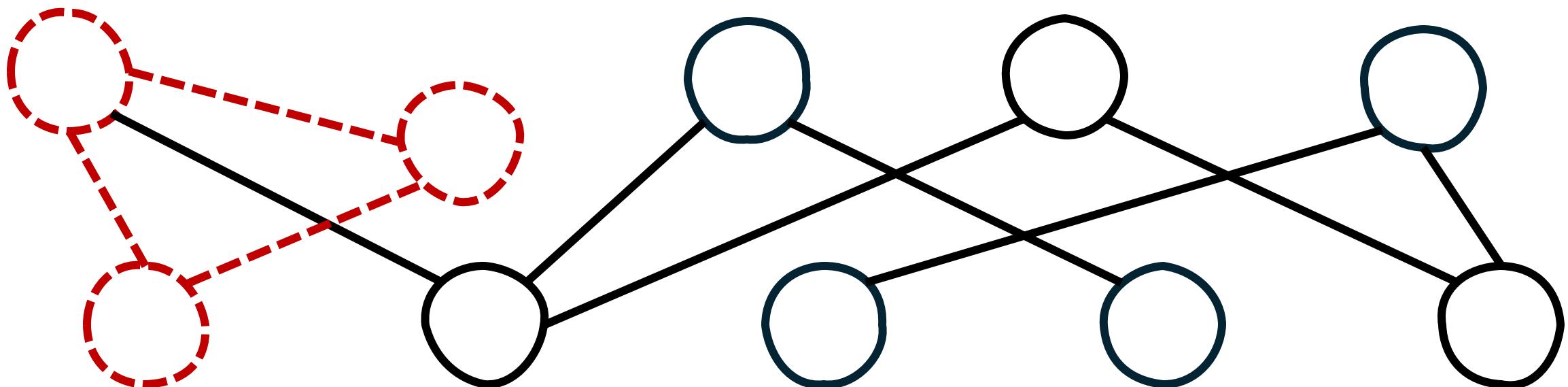
Paths and Connectivity

- A graph $G = (V, E)$ is **connected** if for any $u \in V$ and $v \in V$, there exists a simple path between u and v .



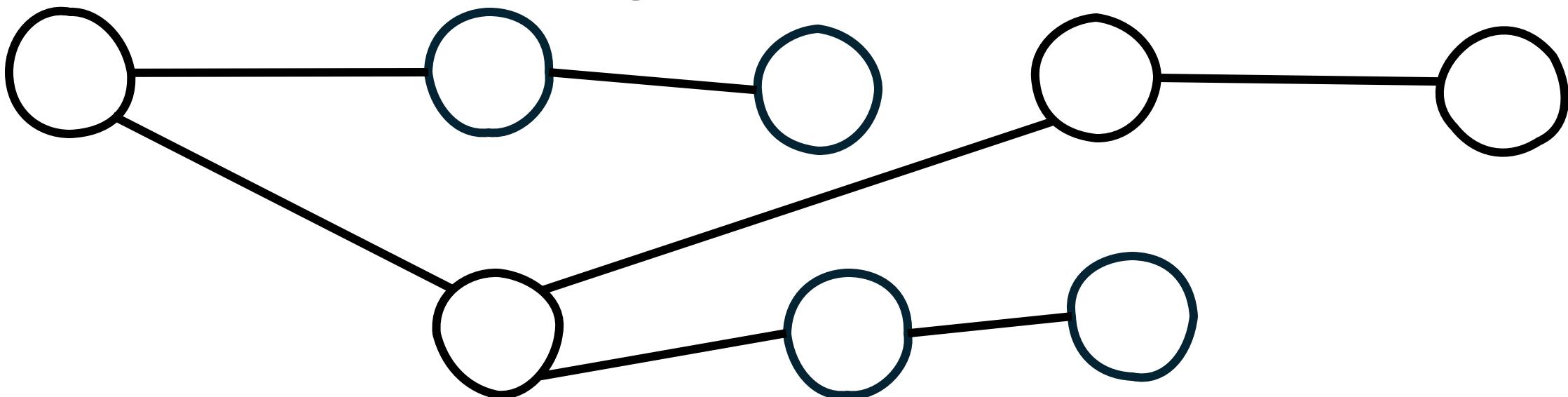
Cycles

- A **cycle** in a graph $G = (V, E)$ is a path v_1, v_2, \dots, v_k such that $k \geq 2$ and $v_1 = v_k$ (it starts and ends at the same vertex).
 - We say it is **simple** if there are no other repeats.



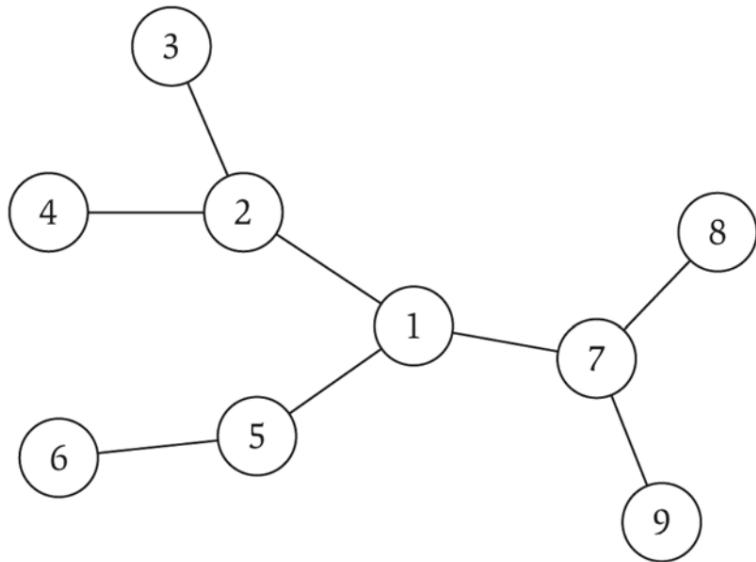
Trees

- An undirected graph is a **tree** if it is connected and does not contain a cycle.
 - A graph that doesn't contain a cycle is called **acyclic**.
 - A vertex with degree 1 is called a **leaf**.

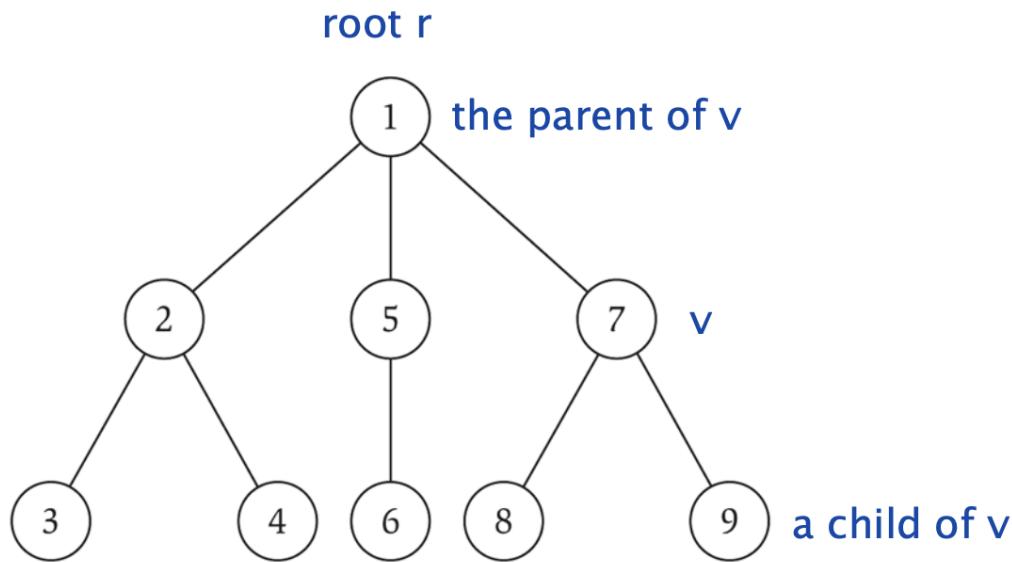


Rooted Trees

- A **rooted tree** is a tree with some node r fixed as the **root**. We think of it as a hierarchical structure.



a tree

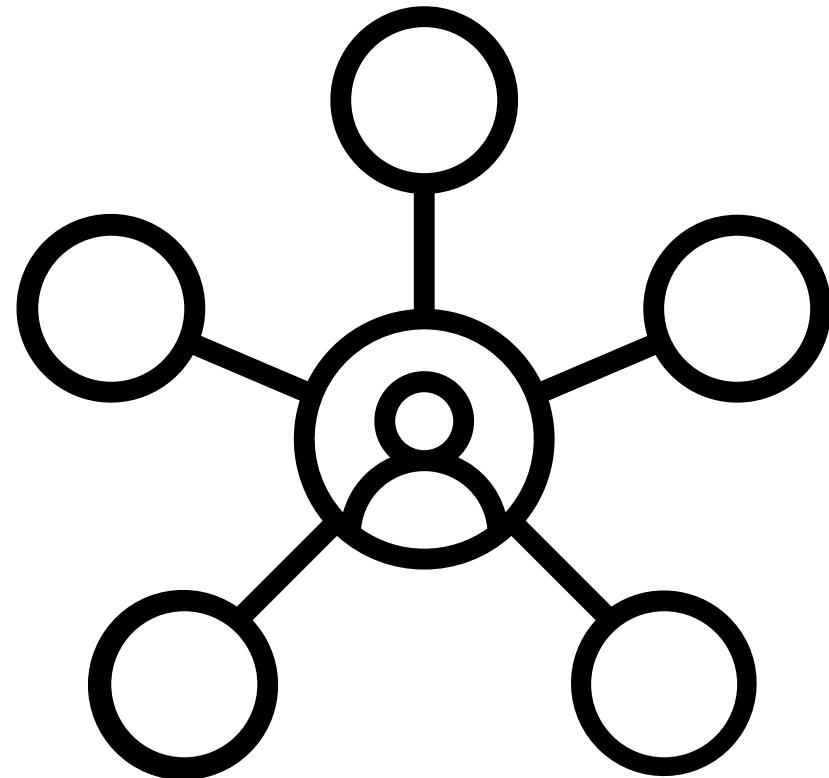


the same tree, rooted at 1

Trees

Lemma: Let $G = (V, E)$ be an undirected graph on n nodes. Any two of the following statements imply the third:

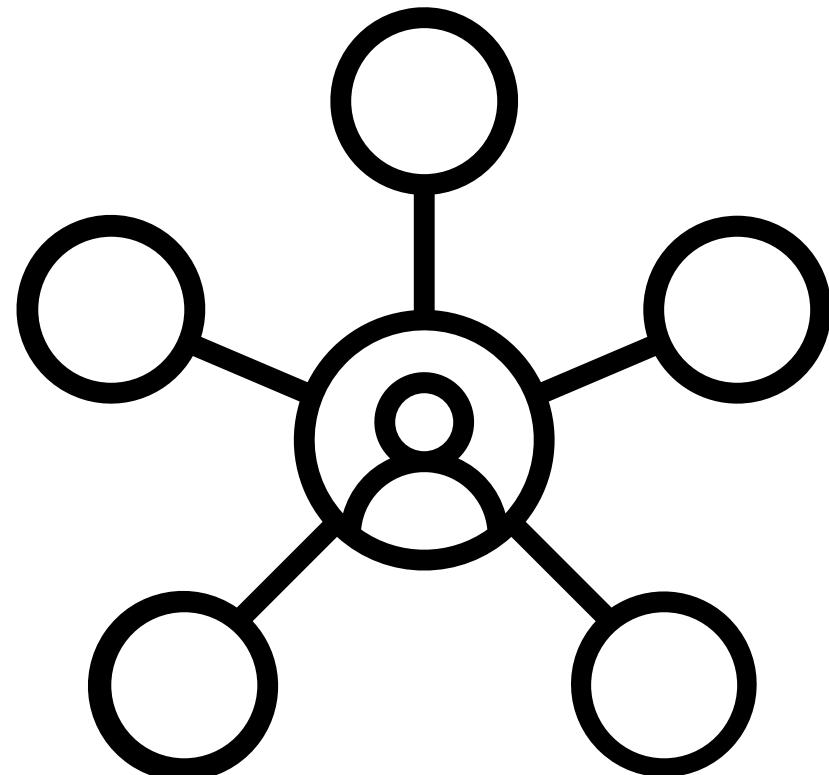
- G is connected.
- G does not contain a cycle.
- G has $n - 1$ edges.



Trees (Proof on Website)

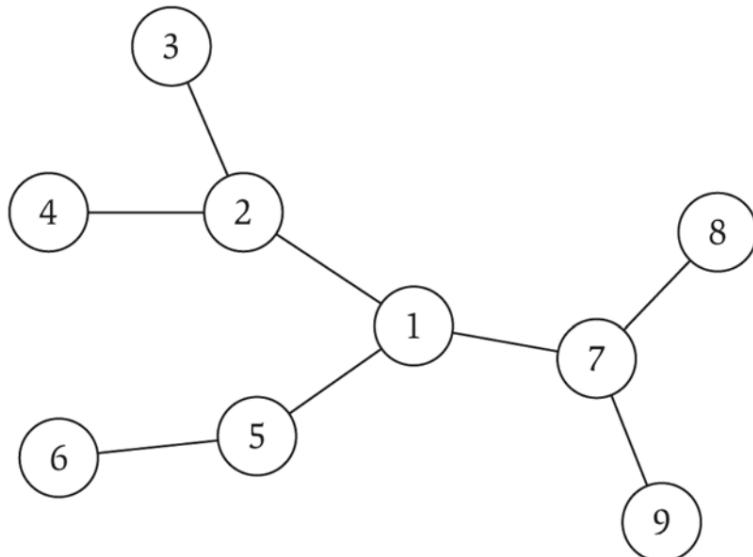
Lemma: Let $G = (V, E)$ be an undirected graph on n nodes. Any two of the following statements imply the third:

- G is connected.
- G does not contain a cycle.
- G has $n - 1$ edges.

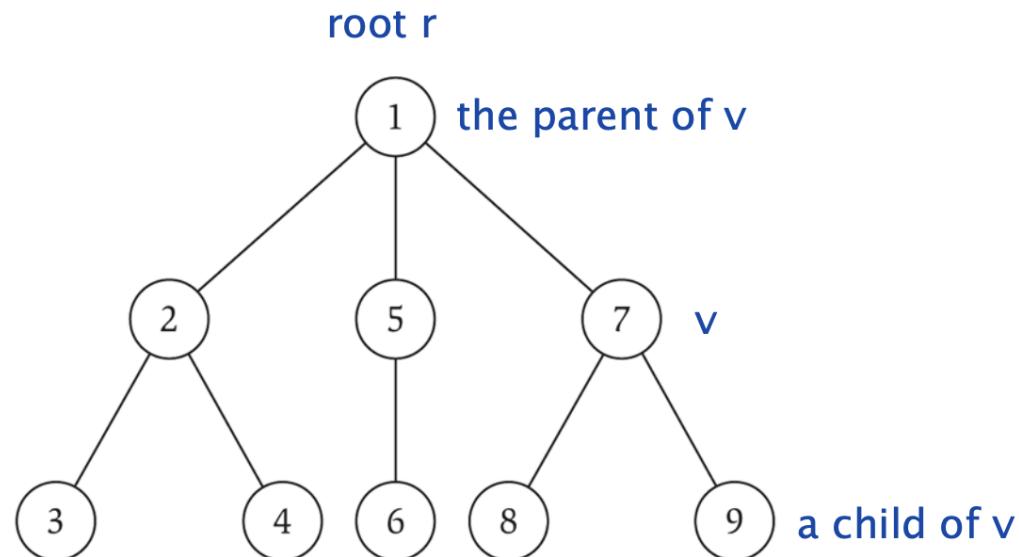


Trees

Lemma: Let $T = (V, E)$ be a tree on n nodes. Then if $n \geq 2$, there must exist at least two leaf nodes.



a tree



the same tree, rooted at 1

Connectivity Problem(s)

s-t Connectivity Problem:

Input: Graph $G = (V, E)$, source s , and destination t .

Output: True if there exists a path and False otherwise.

s-t Shortest Path Problem:

Input: Graph $G = (V, E)$, source s , and destination t .

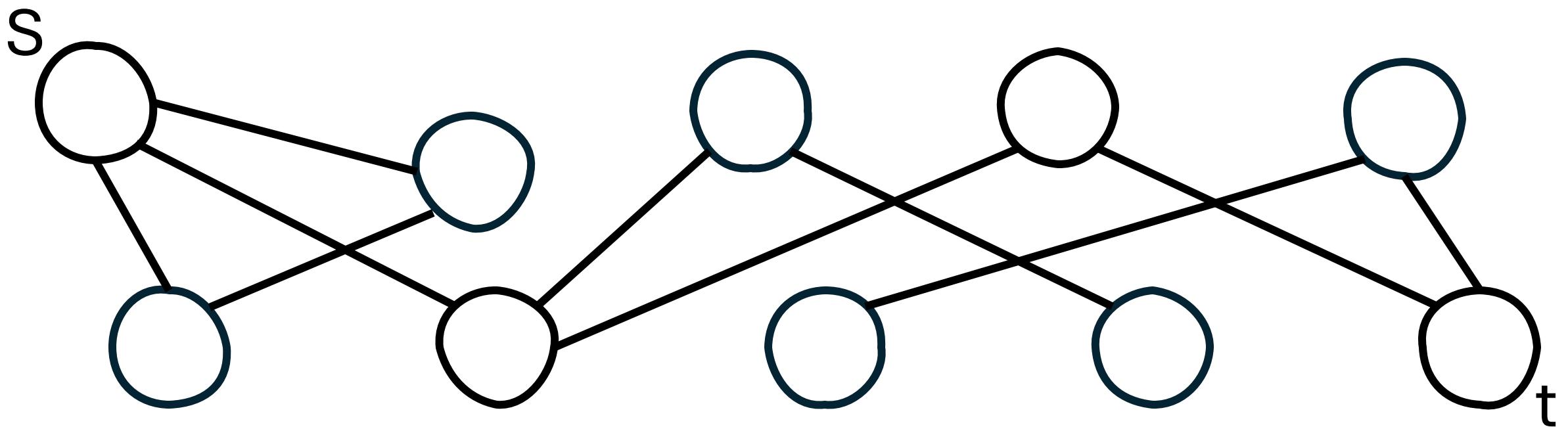
Output: The length of the shortest path from s to t (∞ if there is no path).

Q: What is a brute force solution?

s-t Connectivity Problem:

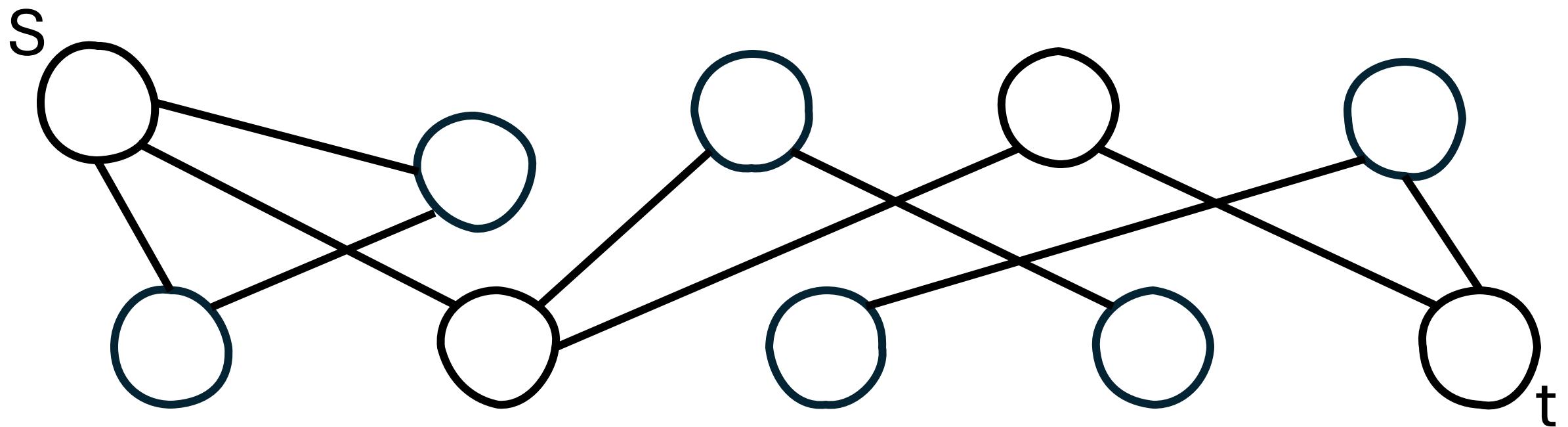
Input: Graph $G = (V, E)$, source s , and destination t .

Output: True if there exists a path and False otherwise.



Q: What is a brute force solution?

You could generate all sequences of length $n-1$ and check if any are paths. However, there are a lot of sequences $((n - 2)^{n-1})$. That is slow...

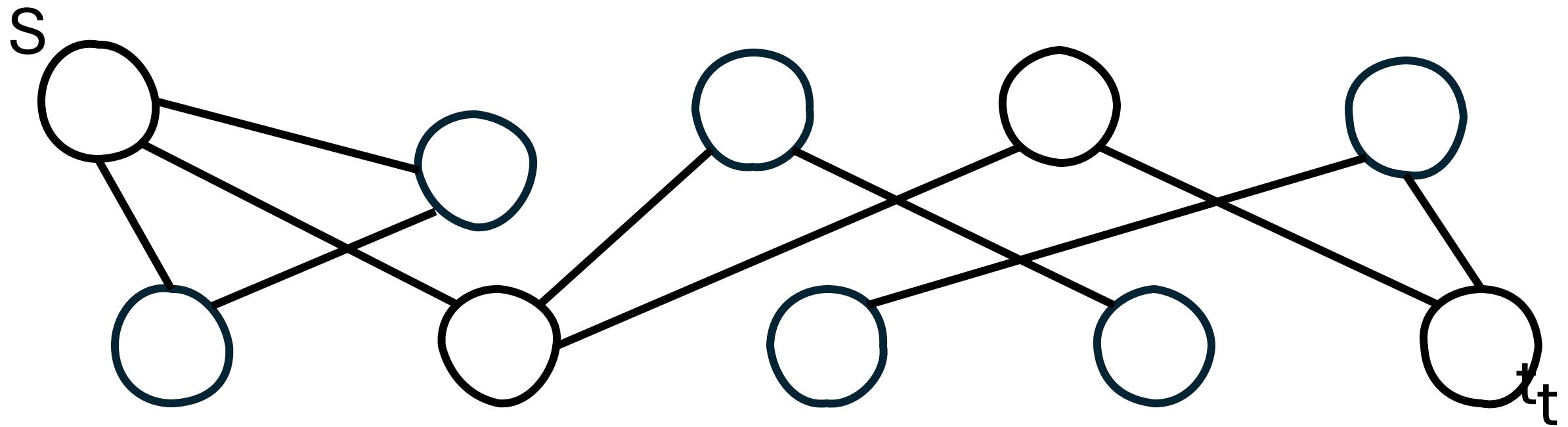


Another Connectivity Problem

Graph Connectivity:

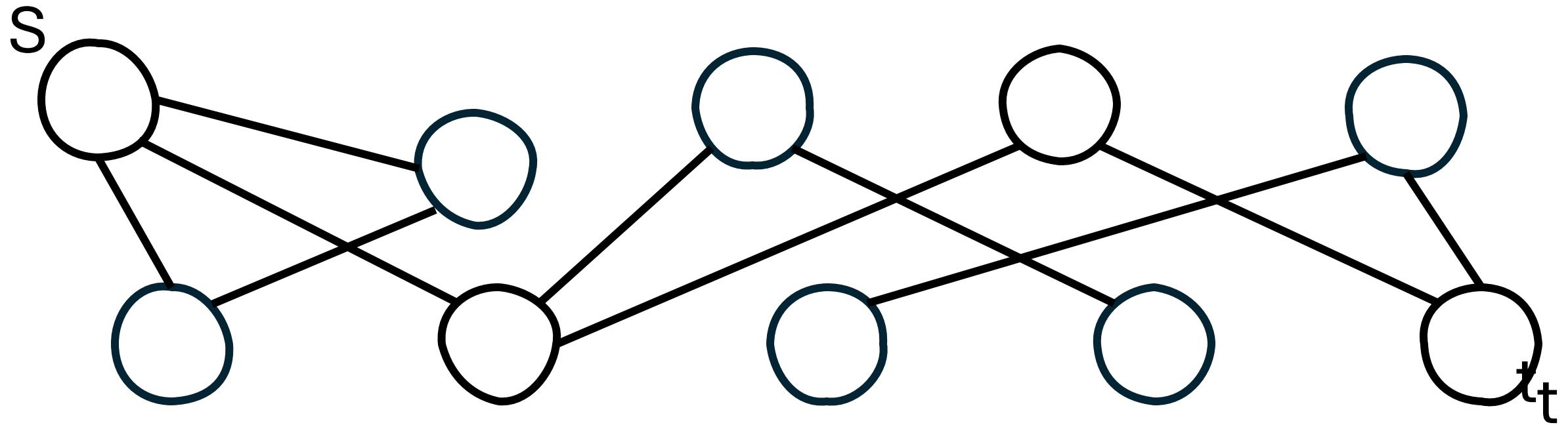
Input: $G = (V, E)$ and $s \in V$

Output: $T = \{u \in T: \text{there exists a path from } s \text{ to } u \text{ in } G\}$



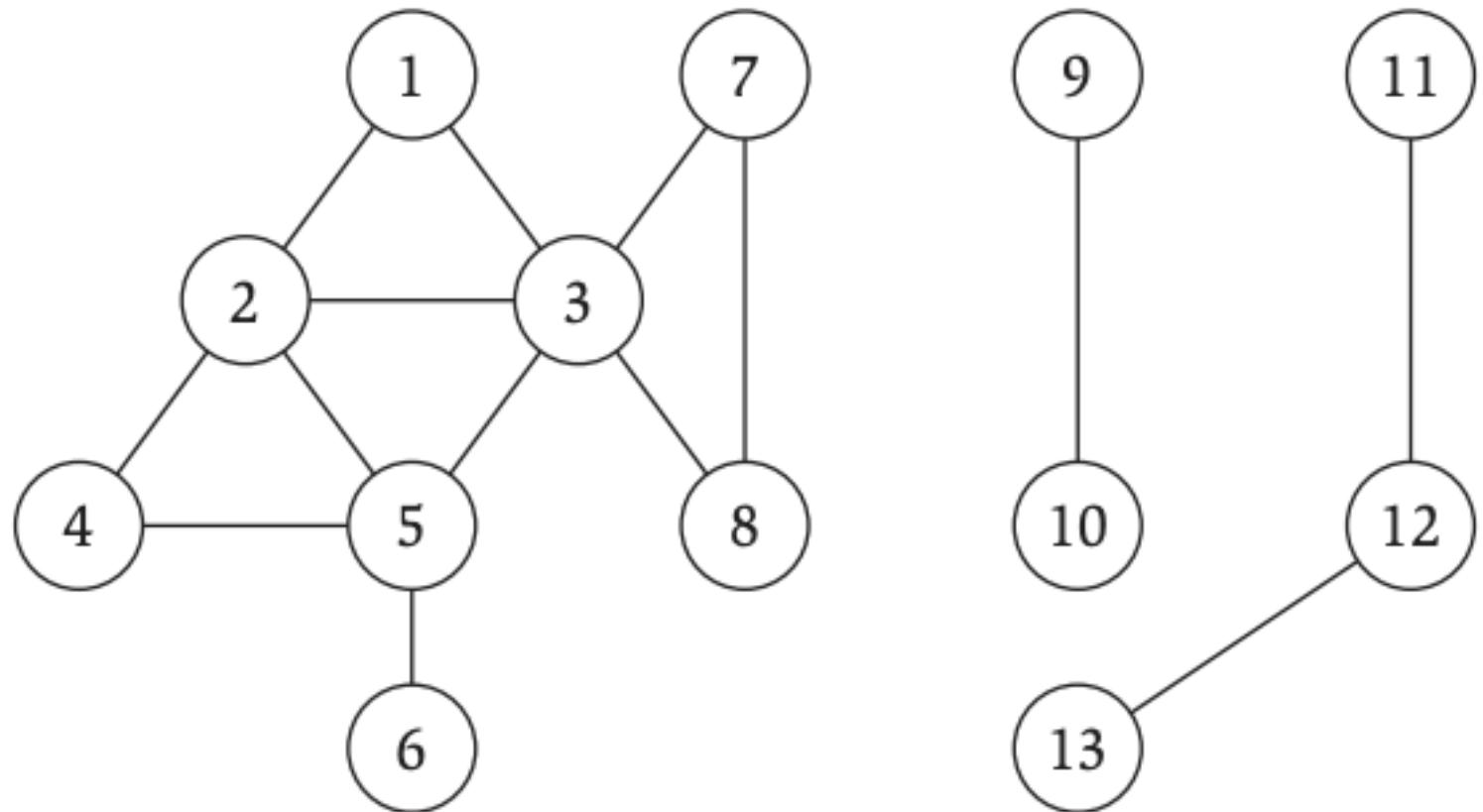
Another Connectivity Problem

Observation: If we solve the graph connectivity problem, then we can solve the s-t connectivity problem by checking if t is in T.



Breadth First Search

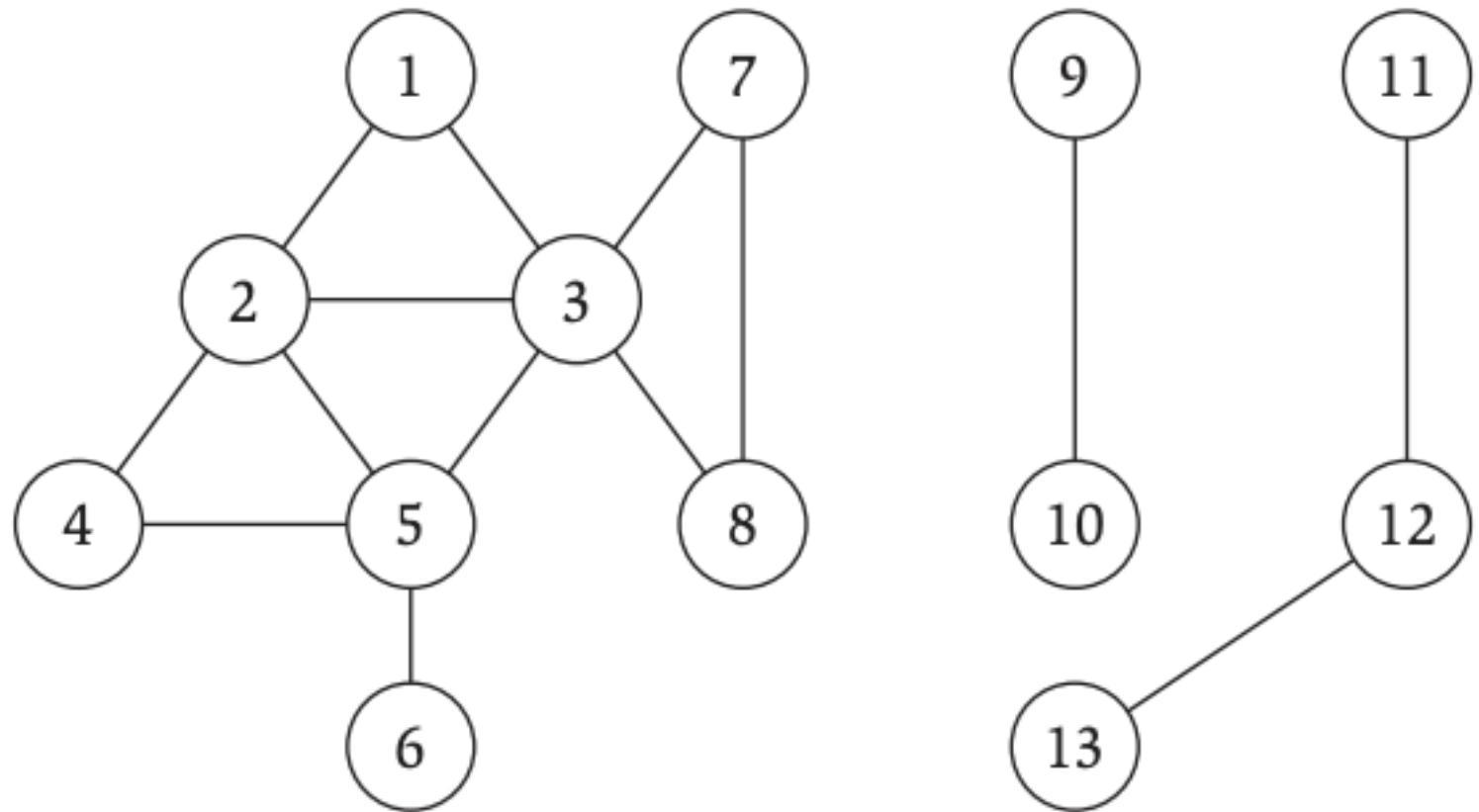
Q: How do you find all nodes reachable from node 1?



Breadth First Search

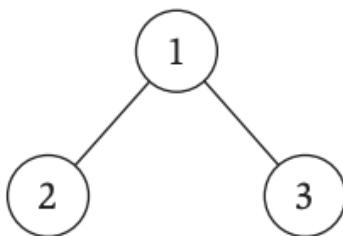
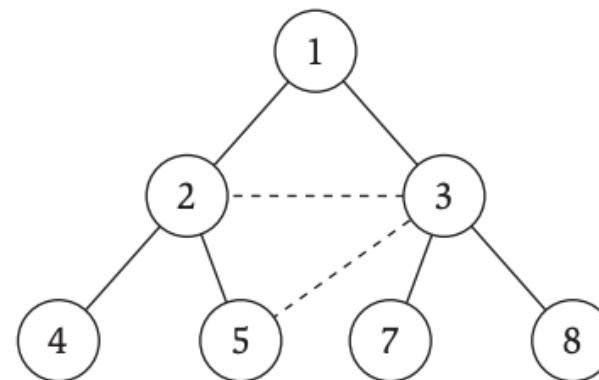
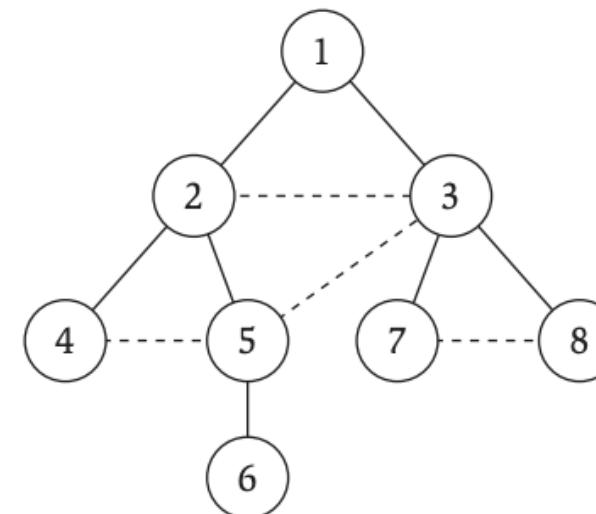
Idea:

- What can 1 reach?
- What can those nodes reach?
- What can those nodes reach?
-



Breadth First Search (Layers)

- $L_0 = s$
- $L_1 = \text{neighbors of } L_0.$
- $L_2 = \text{neighbors of } L_1 \text{ that are not in } L_0.$
- $L_i = \text{neighbors of } L_{i-1} \text{ that are not in previous layer.}$



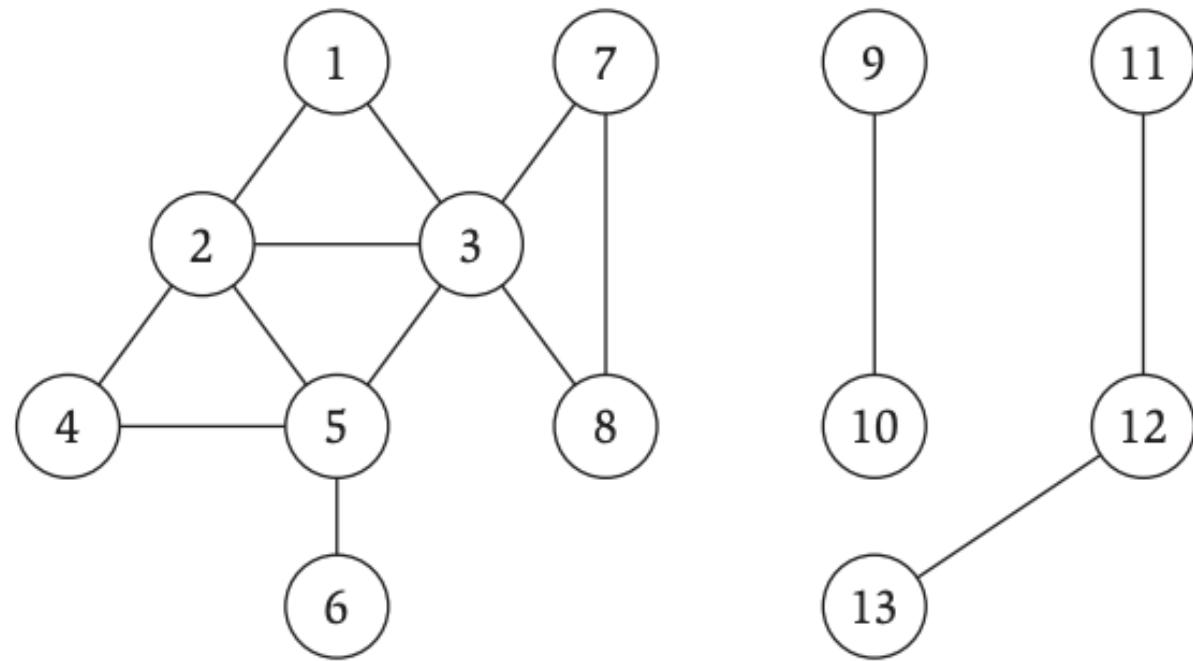
Breadth First Search (“Algorithm”)

- Input: $G = (V, E)$ and $s \in V$
- Let $L_0 = \{s\}$
- Assume L_0, \dots, L_i have been constructed:
 - Let L_{i+1} be nodes do not appear in L_0, \dots, L_i and have an edge to L_i .
 - If L_{i+1} is empty, stop.
- Return all layers.

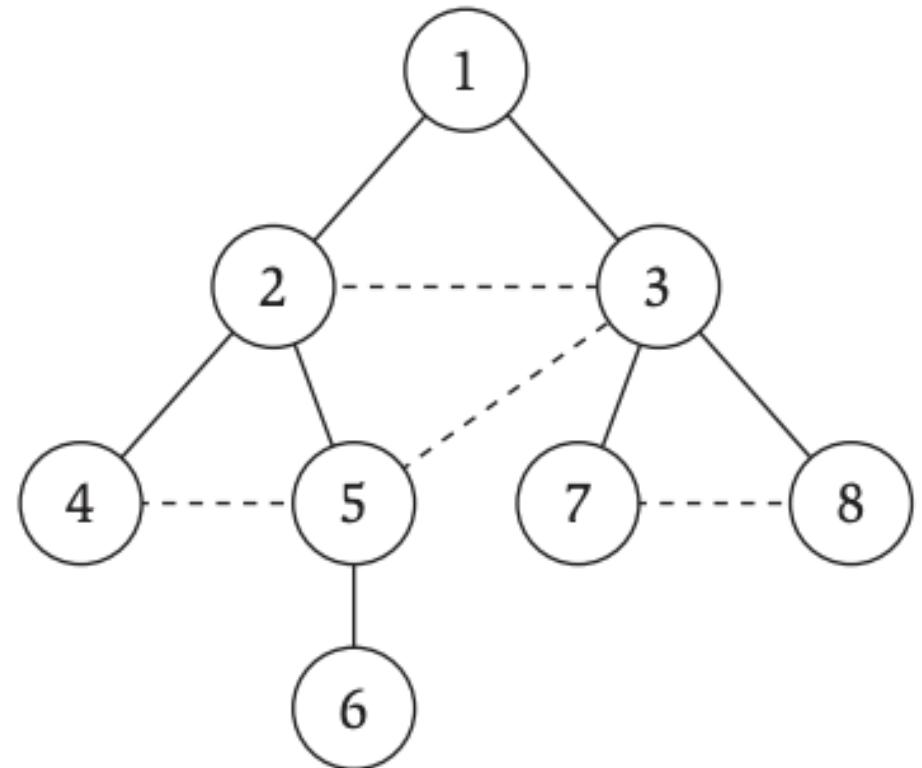
Breadth First Search (Properties)

- For each $j \geq 0$, layer L_j produced by BFS consists of all nodes at distance j from s .
- There is a path from s to t if and only if t appears in some layer.
- For any $\{u, v\} \in E$, if $u \in L_i$ and $v \in L_j$ then i and j differ by at most 1.
- You can think of the output as a tree! We call this the **BFS (discovery) Tree**.

Breadth First Search (Tree)



Original Graph



Search Tree