
CSE 331:
Algorithms & Complexity

Prof. Charlie Anne Carlson (She/Her)
Lecture 11

Monday September 22nd, 2025

“BFS”

Schedule

1.Course Updates
2.Graph Connectivity
3.Graph Traversal

1.BFS
2.DFS
3.WFS

Course Updates

• HW 1 Grading Out Tomorrow
• HW 2 Due Tomorrow
• HW 3 Out Tomorrow
• Group Project

• Team Emails Soon
• No Autolab Registration

• First Quiz NEXT Monday!

Connectivity Problem(s)

s-t Connectivity Problem:
Input: Graph 𝐺 = (𝑉, 𝐸), source 𝑠, and destination 𝑡.
Output: True if there exists a path and False otherwise.

s-t Shortest Path Problem:
Input: Graph 𝐺 = (𝑉, 𝐸), source 𝑠, and destination 𝑡.
Output: The length of the shortest path from s to t (∞ if
there is no path).

Another Connectivity Problem

t

Graph Connectivity:
Input: 𝐺 = (𝑉, 𝐸) and 𝑠 ∈ 𝑉

Output: T = {u ∈ T: there exists a path from s to u in G}

S

t

Breadth First Search (Layers)

• 𝐿0 = 𝑠

• 𝐿1 = neighbors of 𝐿0.
• 𝐿2 = neighbors of 𝐿1 that are not in 𝐿0.
• 𝐿i = neighbors of 𝐿i−1 that are not in previous layer.

Breadth First Search (“Algorithm”)

• Input: 𝐺 = (𝑉, 𝐸) and 𝑠 ∈ 𝑉

• Let 𝐿0 = {s}

• Assume 𝐿0, … , 𝐿𝑖 have been constructed:
• Let 𝐿i+1 be nodes do not appear in 𝐿0, … , 𝐿𝑖 and have

an edge to 𝐿𝑖.
• If 𝐿i+1 is empty, stop.

• Return all layers.

Breadth First Search (Properties)

• For each j ≥ 0, layer 𝐿𝑗 produced by BFS consists of all
nodes at distance j from s.

• There is a path from s to t if and only if t appears in some
layer.

• For any {u, v} ∈ E, if 𝑢 ∈ 𝐿𝑖 and 𝑣 ∈ 𝐿𝑗 then i and j differ
by at most 1.

• You can think of the output as a tree! We call this the BFS
(discovery) Tree.

Breadth First Search (Properties)

Claim: For any {u, v} ∈ E, if 𝑢 ∈ 𝐿𝑖 and 𝑣 ∈ 𝐿𝑗 then i and j
differ by at most 1.

Breadth First Search (Properties)

Claim: For any {u, v} ∈ E, if 𝑢 ∈ 𝐿𝑖 and 𝑣 ∈ 𝐿𝑗 then i and j
differ by at most 1.

Proof Outline:
• Without loss of generality, we assume that i ≤ j.
• Suppose for the sake of contradiction that d(i, j) > 1.

Breadth First Search (Properties)

Proof Outline:
• Without loss of generality, we assume that i < j.
• Suppose for the sake of contradiction that d(i, j) > 1.

𝐿𝑖 𝐿𝑖+1 𝐿j

⋯

{s}

u v

Breadth First Search (Properties)

Proof Outline:
• Without loss of generality, we assume that i < j.
• Suppose for the sake of contradiction that d(i, j) > 1.

𝐿𝑖 𝐿𝑖+1 𝐿j

⋯

{s}

u v

Breadth First Search (Properties)

Proof:
• Without loss of generality, we assume that i < j.
• Suppose for the sake of contradiction that d(i, j) > 1.

• This implies i + 1 < j.
• Then 𝑢 ∈ 𝐿𝑖 , 𝑣 ∉ 𝐿0, 𝐿1, … , 𝐿𝑖, and {u, v} ∈ E.

• Hence, BFS would have put 𝑣 ∈ 𝐿𝑖+1.
• This contradicts initial assumption that 𝑣 ∈ 𝐿j and j >

 i + 1.

Breadth First Search (Tree)

Original Graph Search Tree

Breadth First Search (Tree)

Original Graph Search Tree

“Tree Edges”

“Not Tree Edges”

Connected Component of (s) (CC(s))

The CC(s) is the set of
all vertices that are
connected to s by a
path.

“The set of vertices
that you can reach
from s using a simple
path.”

Connected Component of (s) (CC(s))

The CC(s) is the set of
all vertices that are
connected to s by a
path.

“The set of vertices
that you can reach
from s using a simple
path.”

CC(1)

Explore Algorithm

• Input: 𝐺 = (𝑉, 𝐸) and 𝑠 ∈ 𝑉

• Output: CC(s)
• Let R = {s}

• While there exists {u, v} ∈ E such that u ∈ R and 𝑣 ∉ 𝑅:

• Add v to 𝑅
• Return R

Explore Algorithm

• Input: 𝐺 = (𝑉, 𝐸) and 𝑠 ∈ 𝑉

• Output: CC(s)
• Let R = {s}

• While there exists {u, v} ∈ E
such that u ∈ R and 𝑣 ∉ 𝑅:

• Add v to 𝑅
• Return R

R

Explore Algorithm

• Input: 𝐺 = (𝑉, 𝐸) and 𝑠 ∈ 𝑉

• Output: CC(s)
• Let R = {s}

• While there exists {u, v} ∈ E
such that u ∈ R and 𝑣 ∉ 𝑅:

• Add v to 𝑅
• Return R

R

Explore Algorithm

• Input: 𝐺 = (𝑉, 𝐸) and 𝑠 ∈ 𝑉

• Output: CC(s)
• Let R = {s}

• While there exists {u, v} ∈ E
such that u ∈ R and 𝑣 ∉ 𝑅:

• Add v to 𝑅
• Return R

R

Explore Algorithm

• Input: 𝐺 = (𝑉, 𝐸) and 𝑠 ∈ 𝑉

• Output: CC(s)
• Let R = {s}

• While there exists {u, v} ∈ E
such that u ∈ R and 𝑣 ∉ 𝑅:

• Add v to 𝑅
• Return R

R

Explore Algorithm

• Input: 𝐺 = (𝑉, 𝐸) and 𝑠 ∈ 𝑉

• Output: CC(s)
• Let R = {s}

• While there exists {u, v} ∈ E
such that u ∈ R and 𝑣 ∉ 𝑅:

• Add v to 𝑅
• Return R

R

Explore Algorithm

• Input: 𝐺 = (𝑉, 𝐸) and 𝑠 ∈ 𝑉

• Output: CC(s)
• Let R = {s}

• While there exists {u, v} ∈ E
such that u ∈ R and 𝑣 ∉ 𝑅:

• Add v to 𝑅
• Return R

R

Explore Algorithm

• Input: 𝐺 = (𝑉, 𝐸) and 𝑠 ∈ 𝑉

• Output: CC(s)
• Let R = {s}

• While there exists {u, v} ∈ E
such that u ∈ R and 𝑣 ∉ 𝑅:

• Add v to 𝑅
• Return R

R

Explore Algorithm

• Input: 𝐺 = (𝑉, 𝐸) and 𝑠 ∈ 𝑉

• Output: CC(s)
• Let R = {s}

• While there exists {u, v} ∈ E
such that u ∈ R and 𝑣 ∉ 𝑅:

• Add v to 𝑅
• Return R

R

Explore Algorithm

• Input: 𝐺 = (𝑉, 𝐸) and 𝑠 ∈ 𝑉

• Output: CC(s)
• Let R = {s}

• While there exists {u, v} ∈ E
such that u ∈ R and 𝑣 ∉ 𝑅:

• Add v to 𝑅
• Return R

CC(1)

Q: What is the difference? (BFS vs Explore)

• Input: 𝐺 = (𝑉, 𝐸) and 𝑠 ∈ 𝑉

• Output: CC(s)
• Let R = {s}

• While there exists {u, v} ∈ E
such that u ∈ R and 𝑣 ∉ 𝑅:

• Add v to 𝑅
• Return R

• Input: 𝐺 = (𝑉, 𝐸) and 𝑠 ∈ 𝑉

• Let 𝐿0 = {s}

• Assume 𝐿0, … , 𝐿𝑖 have been
constructed:
• Let 𝐿i+1 be nodes do not

appear in 𝐿0, … , 𝐿𝑖 and
have an edge to 𝐿𝑖.

• If 𝐿i+1 is empty, stop.
• Return all layers.

Q: What is the difference? (BFS vs Explore)

• Input: 𝐺 = (𝑉, 𝐸) and 𝑠 ∈ 𝑉

• Output: CC(s)
• Let R = {s}

• While there exists {u, v} ∈ E
such that u ∈ R and 𝑣 ∉ 𝑅:

• Add v to 𝑅
• Return R

• Input: 𝐺 = (𝑉, 𝐸) and 𝑠 ∈ 𝑉

• Let 𝐿0 = {s}

• Assume 𝐿0, … , 𝐿𝑖 have been
constructed:
• Let 𝐿i+1 be nodes do not

appear in 𝐿0, … , 𝐿𝑖 and
have an edge to 𝐿𝑖.

• If 𝐿i+1 is empty, stop.
• Return all layers.

BFS is Explore but Explore isn’t
necessarily BFS!

Q: How do we show this solves Connectivity?

• Input: 𝐺 = (𝑉, 𝐸) and 𝑠 ∈ 𝑉

• Output: CC(s)
• Let R = {s}

• While there exists {u, v} ∈ E
such that u ∈ R and 𝑣 ∉ 𝑅:

• Add v to 𝑅
• Return R

Q: How do we show this solves Connectivity?

• Input: 𝐺 = (𝑉, 𝐸) and 𝑠 ∈ 𝑉

• Output: CC(s)
• Let R = {s}

• While there exists {u, v} ∈ E
such that u ∈ R and 𝑣 ∉ 𝑅:

• Add v to 𝑅
• Return R

• Argue that R = CC(s)!
• Q: How do we do this?

Q: How do we show this solves Connectivity?

• Input: 𝐺 = (𝑉, 𝐸) and 𝑠 ∈ 𝑉

• Output: CC(s)
• Let R = {s}

• While there exists {u, v} ∈ E
such that u ∈ R and 𝑣 ∉ 𝑅:

• Add v to 𝑅
• Return R

• Argue that R = CC(s)!
• Show R ⊆ CC(s)

• Show CC(s) ⊆ R

Breadth First Search (Properties)

Claim: R ⊆ CC(s)

Proof Idea:
• This wants us to show that everything reached by Explore

is in the connected component of s.
• Let’s do induction on iteration of the algorithm.

• Do you believe the first iteration.
• Given any iteration is true, how do you feel about the

next iteration?

Q: Does this always terminate?

• Input: 𝐺 = (𝑉, 𝐸) and 𝑠 ∈ 𝑉

• Output: CC(s)
• Let R = {s}

• While there exists {u, v} ∈ E
such that u ∈ R and 𝑣 ∉ 𝑅:

• Add v to 𝑅
• Return R

• Well, we must be adding a
vertex in each iteration and
there are only so many
vertices, right?

Q: Does this always terminate?

• Input: 𝐺 = (𝑉, 𝐸) and 𝑠 ∈ 𝑉

• Output: CC(s)
• Let R = {s}

• While there exists {u, v} ∈ E
such that u ∈ R and 𝑣 ∉ 𝑅:

• Add v to 𝑅
• Return R

Explore Proofs

Claim: CC(s) ⊆ R

Proof:
• This saying that every vertex in the connected

component is added to R by Explore.
• This is saying that for every vertex v such that there is a

path from s to v, 𝑣 is added to R by Explore.

Explore Proofs

Claim: CC(s) ⊆ R

Proof:
• Suppose to the contrary that there

exists v ∈ CC(s) such that v ∉ R.
• Then there must exist a path

that starts at s (inside R) and
ends at v (outside 𝑅).

𝑠

v

Explore Proofs

Claim: CC(s) ⊆ R

Proof:
• There then must exist {x, y} ∈ E

such that x ∈ R and y ∉ R.

𝑠

v

x

y

Explore Proofs

Claim: CC(s) ⊆ R

Proof:
• There then must exist {x, y} ∈ E

such that x ∈ R and y ∉ R.
• If this the case, then the algorithm

wouldn’t have terminated and
would have instead added y. =><=

𝑠

v

𝑠

x

y

Q: How would you describe BFS?

• 𝐿0 = 𝑠

• 𝐿1 = neighbors of 𝐿0.
• 𝐿2 = neighbors of 𝐿1 that are not in 𝐿0.
• 𝐿i = neighbors of 𝐿i−1 that are not in previous layer.

Depth First Search

• Input: The current vertex u ∈ V
• Global: An array of exploration 𝐴 ∈ {0,1}𝑉

• Mark current vertex as explored (A[u] = 1).
• For each {u, v} ∈ E:

• If v is not explored (A[v] == 0):
• DFS(v,A)

Depth First Search

• Input: The current vertex u ∈ V
• Global: An array of exploration 𝐴 ∈ {0,1}𝑉

• Mark current vertex as explored (A[u] = 1).
• For each {u, v} ∈ E:

• If v is not explored (A[v] == 0):
• DFS(v,A)

• Idea: You are recursing or “drilling down”. If you get
stuck, you go up a step and try the next choice.

Depth First Search

A = {1}

Depth First Search

A = {1,2}

Depth First Search

A = {1,2,4}

Depth First Search

A = {1,2,4,5}

Depth First Search

A = {1,2,4,5,6}

Depth First Search

A = {1,2,4,5,6,3}

Depth First Search

A = {1,2,4,5,6,3,7}

Depth First Search

A = {1,2,4,5,6,3,7,8}

DFS Trees vs BFS Trees

Q: How can you compute all the connected
components of a graph?

	Slide 1: CSE 331: Algorithms & Complexity
	Slide 2: Schedule
	Slide 3: Course Updates
	Slide 4: Connectivity Problem(s)
	Slide 5: Another Connectivity Problem
	Slide 6: Breadth First Search (Layers)
	Slide 7: Breadth First Search (“Algorithm”)
	Slide 8: Breadth First Search (Properties)
	Slide 9: Breadth First Search (Properties)
	Slide 10: Breadth First Search (Properties)
	Slide 11: Breadth First Search (Properties)
	Slide 12: Breadth First Search (Properties)
	Slide 13: Breadth First Search (Properties)
	Slide 14: Breadth First Search (Tree)
	Slide 15: Breadth First Search (Tree)
	Slide 16: Connected Component of (s) (CC(s))
	Slide 17: Connected Component of (s) (CC(s))
	Slide 18: Explore Algorithm
	Slide 19: Explore Algorithm
	Slide 20: Explore Algorithm
	Slide 21: Explore Algorithm
	Slide 22: Explore Algorithm
	Slide 23: Explore Algorithm
	Slide 24: Explore Algorithm
	Slide 25: Explore Algorithm
	Slide 26: Explore Algorithm
	Slide 27: Explore Algorithm
	Slide 28: Q: What is the difference? (BFS vs Explore)
	Slide 29: Q: What is the difference? (BFS vs Explore)
	Slide 30: Q: How do we show this solves Connectivity?
	Slide 31: Q: How do we show this solves Connectivity?
	Slide 32: Q: How do we show this solves Connectivity?
	Slide 33: Breadth First Search (Properties)
	Slide 34: Q: Does this always terminate?
	Slide 35: Q: Does this always terminate?
	Slide 36: Explore Proofs
	Slide 37: Explore Proofs
	Slide 38: Explore Proofs
	Slide 39: Explore Proofs
	Slide 40: Q: How would you describe BFS?
	Slide 41: Depth First Search
	Slide 42: Depth First Search
	Slide 43: Depth First Search
	Slide 44: Depth First Search
	Slide 45: Depth First Search
	Slide 46: Depth First Search
	Slide 47: Depth First Search
	Slide 48: Depth First Search
	Slide 49: Depth First Search
	Slide 50: Depth First Search
	Slide 51: DFS Trees vs BFS Trees
	Slide 52: Q: How can you compute all the connected components of a graph?

