
CSE 331: 
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Monday September 22nd, 2025

“BFS”



Schedule

1.Course Updates
2.Graph Connectivity
3.Graph Traversal

1.BFS
2.DFS
3.WFS



Course Updates

• HW 1 Grading Out Tomorrow
• HW 2 Due Tomorrow
• HW 3 Out Tomorrow
• Group Project

• Team Emails Soon
• No Autolab Registration

• First Quiz NEXT Monday!



Connectivity Problem(s) 

s-t Connectivity Problem:
Input: Graph 𝐺 = (𝑉, 𝐸), source 𝑠, and destination 𝑡.
Output: True if there exists a path and False otherwise.

s-t Shortest Path Problem:
Input: Graph 𝐺 = (𝑉, 𝐸), source 𝑠, and destination 𝑡.
Output: The length of the shortest path from s to t (∞ if 
there is no path).



Another Connectivity Problem

t

Graph Connectivity:
Input: 𝐺 = (𝑉, 𝐸) and 𝑠 ∈  𝑉

Output: T =  {u ∈ T:  there exists a path from s to u in G}

S

t



Breadth First Search (Layers)

• 𝐿0 = 𝑠

• 𝐿1 = neighbors of 𝐿0.
• 𝐿2 = neighbors of 𝐿1 that are not in 𝐿0.
• 𝐿i = neighbors of 𝐿i−1 that are not in previous layer.



Breadth First Search (“Algorithm”)

• Input: 𝐺 = (𝑉, 𝐸) and 𝑠 ∈  𝑉

• Let 𝐿0 = {s}

• Assume 𝐿0, … , 𝐿𝑖  have been constructed:
• Let 𝐿i+1 be nodes do not appear in 𝐿0, … , 𝐿𝑖  and have 

an edge to 𝐿𝑖.
• If 𝐿i+1 is empty, stop. 

• Return all layers. 



Breadth First Search (Properties)

• For each j ≥ 0, layer 𝐿𝑗  produced by BFS consists of all 
nodes at distance j from s.

• There is a path from s to t if and only if t appears in some 
layer.

• For any {u, v}  ∈ E, if 𝑢 ∈ 𝐿𝑖  and 𝑣 ∈ 𝐿𝑗  then i and j differ 
by at most 1.

• You can think of the output as a tree! We call this the BFS 
(discovery) Tree. 



Breadth First Search (Properties)

Claim: For any {u, v}  ∈ E, if 𝑢 ∈ 𝐿𝑖  and 𝑣 ∈ 𝐿𝑗  then i and j 
differ by at most 1.



Breadth First Search (Properties)

Claim: For any {u, v}  ∈ E, if 𝑢 ∈ 𝐿𝑖  and 𝑣 ∈ 𝐿𝑗  then i and j 
differ by at most 1.

Proof Outline: 
• Without loss of generality, we assume that i ≤ j. 
• Suppose for the sake of contradiction that d(i, j)  >  1.



Breadth First Search (Properties)

Proof Outline: 
• Without loss of generality, we assume that i < j. 
• Suppose for the sake of contradiction that d(i, j)  >  1.
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⋯
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Breadth First Search (Properties)

Proof: 
• Without loss of generality, we assume that i < j. 
• Suppose for the sake of contradiction that d(i, j)  >  1.

• This implies i + 1 < j.
• Then 𝑢 ∈ 𝐿𝑖 , 𝑣 ∉ 𝐿0, 𝐿1, … , 𝐿𝑖, and {u, v}  ∈ E.

• Hence, BFS would have put 𝑣 ∈ 𝐿𝑖+1.
• This contradicts initial assumption that 𝑣 ∈ 𝐿j and j >

 i + 1. 



Breadth First Search (Tree)

Original Graph Search Tree



Breadth First Search (Tree)

Original Graph Search Tree

“Tree Edges”

“Not Tree Edges”



Connected Component of (s) (CC(s))

The CC(s) is the set of 
all vertices that are 
connected to s by a 
path. 

“The set of vertices 
that you can reach 
from s using a simple 
path.”
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Explore Algorithm

• Input: 𝐺 = (𝑉, 𝐸) and 𝑠 ∈  𝑉

• Output: CC(s)
• Let R = {s}

• While there exists {u, v}  ∈ E such that u ∈ R and 𝑣 ∉ 𝑅:

• Add v to 𝑅
• Return R
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Q: What is the difference? (BFS vs Explore)

• Input: 𝐺 = (𝑉, 𝐸) and 𝑠 ∈  𝑉

• Output: CC(s)
• Let R = {s}

• While there exists {u, v}  ∈ E 
such that u ∈ R and 𝑣 ∉ 𝑅:

• Add v to 𝑅
• Return R

• Input: 𝐺 = (𝑉, 𝐸) and 𝑠 ∈  𝑉

• Let 𝐿0 = {s}

• Assume 𝐿0, … , 𝐿𝑖  have been 
constructed:
• Let 𝐿i+1 be nodes do not 

appear in 𝐿0, … , 𝐿𝑖  and 
have an edge to 𝐿𝑖.

• If 𝐿i+1 is empty, stop. 
• Return all layers. 
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• Let 𝐿0 = {s}

• Assume 𝐿0, … , 𝐿𝑖  have been 
constructed:
• Let 𝐿i+1 be nodes do not 

appear in 𝐿0, … , 𝐿𝑖  and 
have an edge to 𝐿𝑖.

• If 𝐿i+1 is empty, stop. 
• Return all layers. 

BFS is Explore but Explore isn’t 
necessarily BFS!



Q: How do we show this solves Connectivity?

• Input: 𝐺 = (𝑉, 𝐸) and 𝑠 ∈  𝑉

• Output: CC(s)
• Let R = {s}

• While there exists {u, v}  ∈ E 
such that u ∈ R and 𝑣 ∉ 𝑅:

• Add v to 𝑅
• Return R
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• Output: CC(s)
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• While there exists {u, v}  ∈ E 
such that u ∈ R and 𝑣 ∉ 𝑅:

• Add v to 𝑅
• Return R

• Argue that R = CC(s)!
• Q: How do we do this?



Q: How do we show this solves Connectivity?

• Input: 𝐺 = (𝑉, 𝐸) and 𝑠 ∈  𝑉

• Output: CC(s)
• Let R = {s}

• While there exists {u, v}  ∈ E 
such that u ∈ R and 𝑣 ∉ 𝑅:

• Add v to 𝑅
• Return R

• Argue that R = CC(s)!
• Show R ⊆ CC(s)

• Show CC(s) ⊆ R



Breadth First Search (Properties)

Claim: R ⊆ CC(s)

Proof Idea: 
• This wants us to show that everything reached by Explore 

is in the connected component of s. 
• Let’s do induction on iteration of the algorithm.

• Do you believe the first iteration.
• Given any iteration is true, how do you feel about the 

next iteration?



Q: Does this always terminate? 

• Input: 𝐺 = (𝑉, 𝐸) and 𝑠 ∈  𝑉

• Output: CC(s)
• Let R = {s}

• While there exists {u, v}  ∈ E 
such that u ∈ R and 𝑣 ∉ 𝑅:

• Add v to 𝑅
• Return R

• Well, we must be adding a 
vertex in each iteration and 
there are only so many 
vertices, right?



Q: Does this always terminate? 

• Input: 𝐺 = (𝑉, 𝐸) and 𝑠 ∈  𝑉

• Output: CC(s)
• Let R = {s}

• While there exists {u, v}  ∈ E 
such that u ∈ R and 𝑣 ∉ 𝑅:

• Add v to 𝑅
• Return R



Explore Proofs

Claim: CC(s)  ⊆ R

Proof: 
• This saying that every vertex in the connected 

component is added to R by Explore.
• This is saying that for every vertex v such that there is a 

path from s to v, 𝑣 is added to R by Explore.



Explore Proofs

Claim: CC(s)  ⊆ R

Proof: 
• Suppose to the contrary that there 

exists v ∈ CC(s) such that v ∉ R. 
• Then there must exist a path 

that starts at s (inside R) and 
ends at v (outside 𝑅). 

𝑠

v



Explore Proofs

Claim: CC(s)  ⊆ R

Proof: 
• There then must exist {x, y}  ∈ E 

such that x ∈ R and y ∉ R.

𝑠

v

x

y



Explore Proofs

Claim: CC(s)  ⊆ R

Proof: 
• There then must exist {x, y}  ∈ E 

such that x ∈ R and y ∉ R.
• If this the case, then the algorithm 

wouldn’t have terminated and 
would have instead added y. =><=

𝑠

v

𝑠

x

y



Q: How would you describe BFS?

• 𝐿0 = 𝑠

• 𝐿1 = neighbors of 𝐿0.
• 𝐿2 = neighbors of 𝐿1 that are not in 𝐿0.
• 𝐿i = neighbors of 𝐿i−1 that are not in previous layer.



Depth First Search 

• Input: The current vertex u ∈ V 
• Global: An array of exploration 𝐴 ∈ {0,1}𝑉

• Mark current vertex as explored (A[u]  =  1).
• For each {u, v}  ∈ E:

• If v is not explored (A[v]  ==  0):
• DFS(v,A)



Depth First Search 

• Input: The current vertex u ∈ V 
• Global: An array of exploration 𝐴 ∈ {0,1}𝑉

• Mark current vertex as explored (A[u]  =  1).
• For each {u, v}  ∈ E:

• If v is not explored (A[v]  ==  0):
• DFS(v,A)

• Idea: You are recursing or “drilling down”. If you get 
stuck, you go up a step and try the next choice. 



Depth First Search 

A = {1}



Depth First Search 

A = {1,2}



Depth First Search 

A = {1,2,4}



Depth First Search 

A = {1,2,4,5}



Depth First Search 

A = {1,2,4,5,6}



Depth First Search 

A = {1,2,4,5,6,3}



Depth First Search 

A = {1,2,4,5,6,3,7}



Depth First Search 

A = {1,2,4,5,6,3,7,8}



DFS Trees vs BFS Trees



Q: How can you compute all the connected 
components of a graph?
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