CSE 331:
Allg(o)r[itt]hunnlg & (C<o>lnnqp>ll<ex[i1ty

€ BFS”

Prof. Charlie Anne Carlson (She/Her)
Lecture 11
Monday September 22nd, 2025

L]

4G5

University at Buffalo

Schedule

1.Course Updates
2.Graph Connectivity
3.Graph Traversal

1.BFS

2.DFS

3.WFS

Course Updates

W 1 Grading Out Tomorrow
W 2 Due Tomorrow
W 3 Out Tomorrow

Group Project

Team Emails Soon
No Autolab Registration

First Quiz NEXT Monday!

Connectivity Problem(s)

s-t Connectivity Problem:

Input: Graph ¢ = (V, E), source s, and destination t.
Output: True if there exists a path and False otherwise.

s-t Shortest Path Problem:
Input: Graph ¢ = (V, E), source s, and destination t.

Output: The length of the shortest path from sto t (oo if
there is no path).

Another Connectivity Problem

Graph Connectivity:
Input: ¢ = (V,E)ands e I/
Output: T = {u € T: there exists a path from s to u in G}

C ooNe
~_—O
ST

Breadth First Search (Layers)

Ly=s

L = neighbors of L.

L, = neighbors of L, that are notin L,.

L; = neighbors of L;_4 that are not in previous layer.

Breadth First Search (“Algorithm™)

* Input: ¢ = (V,E)ands € V
* Letly = {s}
* Assume L, ..., L; have been constructed:

* Letl;,, benodesdonotappearinl,,...,L; and have
anedgetoL;.

* If Li;41 1S empty, stop.
* Return all layers.

Breadth First Search (Properties)

* Foreachj = 0, layer L; produced by BFS consists of all
nodes at distance j from s.

* Thereisapathfromstotifandonlyiftappearsinsome
ayer.

* Forany{u,v} €E,ifu€L;andv € L; theniand] differ
oy at most 1.

* You can think of the output as a tree! We call this the BFS
(discovery) Tree.

Breadth First Search (Properties)

Claim: Forany {u,v} €E,ifu € L;andv € L; theniand]j
differ by at most 1.

Breadth First Search (Properties)

Claim: Forany {u,v} €E,ifu € L;andv € L; theniand]j
differ by at most 1.

Proof Outline:
* Without loss of generality, we assume thati1 <.
* Suppose for the sake of contradiction thatd(i,j) > 1.

Breadth First Search (Properties)

Proof Outline:
* Without loss of generality, we assume thati1 <.
* Suppose for the sake of contradictionthatd(i,j) > 1.

l+1

Breadth First Search (Properties)

Proof Outline:
* Without loss of generality, we assume thati1 <.
* Suppose for the sake of contradictionthatd(i,j) > 1.

l+1

Breadth First Search (Properties)

Proof:
* Without loss of generality, we assume that1 <.
* Suppose for the sake of contradiction thatd(i,j) > 1.
* Thisimpliesi+ 1 <j.
 Thenu€lL;v€&LylLq..,Lj,and{u,v} €E.
* Hence, BFS would have putv € L;, 1.

* This contradicts initial assumption thatv € Ly andj >
1+ 1.

Breadth First Search (Tree)

Original Graph Search Tree

Breadth First Search (Tree)

“Tree Edges”

“Not Tree Edges”

Original Graph Search Tree

Connected Component of (s) (CC(s))

12

The CC(s) is the set of
all vertices that are
connectedto s by a
path.

“The set of vertices
that you can reach
from s using a simple
path.”

Connected Component of (s) (CC(s))

12

The CC(s) is the set of
all vertices that are
connectedto s by a
path.

“The set of vertices
that you can reach
from s using a simple
path.”

Explore Algorithm

* Input: G = (V,E)ands € V

 Output: CC(s)

 LetR = {s}

* While there exists {u,v} € Esuchthatu € Randv €& R:
* AddvtoR

* ReturnR

Explore Algorithm

* Input: G = (V,E)ands € V
 QOutput: CC(s)
 LetR = {s}

* While there exists {u,v} € E
suchthatu € Randv €& R:

e AddvtoR
e ReturnR

Explore Algorithm

* Input: G = (V,E)ands € V
 QOutput: CC(s)
 LetR = {s}

* While there exists {u,v} € E
suchthatu € Randv €& R:

e AddvtoR
e ReturnR

Explore Algorithm

* Input: G = (V,E)ands € V
 Qutput: CC(s)
 LetR = {s}

* While there exists {u,v} € E
suchthatu € Randv €& R:

e AddvtoR
e Return R

Explore Algorithm

* Input: G = (V,E)ands € V
 Qutput: CC(s)
 LetR = {s}

* While there exists {u,v} € E
suchthatu € Randv €& R:

e AddvtoR
e Return R

Explore Algorithm

* Input: G = (V,E)ands € V
 Qutput: CC(s)
 LetR = {s}

* While there exists {u,v} € E
suchthatu € Randv €& R:

e AddvtoR
e Return R

Explore Algorithm

* Input: G = (V,E)ands € V
 Qutput: CC(s)
 LetR = {s}

* While there exists {u,v} € E
suchthatu € Randv €& R:

e AddvtoR
e Return R

Explore Algorithm

* Input: G = (V,E)ands € V
 Qutput: CC(s)
 LetR = {s}

* While there exists {u,v} € E
suchthatu € Randv €& R:

e AddvtoR
e Return R

Explore Algorithm

* Input: G = (V,E)ands € V
 Qutput: CC(s)
 LetR = {s}

* While there exists {u,v} € E
suchthatu € Randv €& R:

e AddvtoR
e Return R

Explore Algorithm

* Input: G = (V,E)ands € V
 Qutput: CC(s)
 LetR = {s}

* While there exists {u,v} € E
suchthatu € Randv €& R:

e AddvtoR
e Return R

Q: What is the difference? (BFS vs Explore)

Input: G = (V,E)ands € V. ¢ Input:G = (V,E)ands € V

Output: CC(s) * LetLy = {s}

Let R = {s} * Assume Ly, ..., L; have been
While there exists {u,v} € E constructed:

suchthatu € Randv €& R: * lLetl;,4 benodesdonot
e AddvioR appearin Ly, ..., L; and

Return R have an edge to L;.

* If Lij;1 IS empty, stop.
* Return all layers.

Q: What is the difference? (BFS vs Explore)

* Input:G = (V,E)ands € V

* Qutput: CC(s)

* LetR = {s}

* While there exists {u,v} € E
suchthatu € Randv & R:
* AddvtoR

* ReturnR

BFS is Explore but Explore isn’t
necessarily BFS!

Input: 6 = (V,E)ands € V
Let Ly = {s}

Assume L, ..., L; have been
constructed:

* lLetl;,4 benodesdonot
appearin Ly, ..., L; and
have an edge to L;.

* If Lij;1 IS empty, stop.
Return all layers.

Q: How do we show this solves Connectivity?

Input: G = (V,E)ands € V
Output: CC(s)
Let R = {s}

While there exists {u,v} € E
suchthatu € Randv & R:

e AddvtoR
Return R

Q: How do we show this solves Connectivity?

Input: G = (V,E)ands € V¢ Arguethat R=CC(s)!
Output: CC(s) * Q:How dowe do this?
Let R = {s}

While there exists {u,v} € E
suchthatu € Randv & R:

e AddvtoR
Return R

Q: How do we show this solves Connectivity?

Input: G = (V,E)ands € V¢ Arguethat R=CC(s)!

Output: CC(s) ShowR < CC(s)
Let R = {s} * ShowCC(s) € R
While there exists {u,v} € E

suchthatu € Randv & R:
e AddvtoR
Return R

Breadth First Search (Properties)

Claim: R < CC(s)

Proof Idea:

* This wants us to show that everything reached by Explore
Is In the connected component of s.

* Let’s doinduction on iteration of the algorithm.
* Do you believe the first iteration.

 Given any iterationis true, how do you feel about the
next iteration?

Q: Does this always terminate?

Input: G = (V,E)ands € V + Well, we mustbe adding a
Output: CC(s) vertex in each iteration and
LetR = {s) there are only so many

, , vertices, right?
While there exists {u,v} € E

suchthatu € Randv & R:
e AddvVvtioR
Return R

Q: Does this always terminate?

Input: G = (V,E)ands € V
Output: CC(s)
Let R = {s}

While there exists {u,v} € E
suchthatu € Randv & R:

e AddvtoR
Return R

Explore Proofs

Claim: CC(s) <R

Proof:

* This saying that every vertex in the connected
component is added to R by Explore.

* This is saying that for every vertex v such that there is a
path fromstov, vis addedto R by Explore.

Explore Proofs

Claim: CC(s) © R

Proof:

e Suppose to the contrary that there
exists v € CC(s) suchthatv & R.

* Then there must exist a path
that starts at s (inside R) and
ends at v (outside R).

Explore Proofs

Claim: CC(s) © R

Proof:

* There then mustexist{x,y} € E
suchthatx € Randy €& R.

Explore Proofs

Claim: CC(s) © R

Proof:

* There then mustexist{x,y} € E
suchthatx € Randy €& R.

* |f this the case, then the algorithm
wouldn’t have terminated and
would have instead added y. =><=

Q: How would you describe BFS?

* Ly=s

* L, =neighbors of L,.

* L, =neighbors of L; thatare notin L,.

* L; =neighbors of L;_4 that are not in previous layer.

Depth First Search

Input: The current vertexu €V

 Global: An array of exploration 4 € {0,1}"

* Mark current vertex as explored (Alu] = 1).

* Foreach{u,v} €E:

* Ifvisnotexplored (Alv] == 0):
 DFS(v,A)

Depth First Search

Input: The current vertexu €V

Global: An array of exploration 4 € {0,1}"

Mark current vertex as explored (A[u] = 1).

* Foreach{u,v} €E:

* Ifvisnotexplored (Alv] == 0):
 DFS(v,A)

* |ldea: You are recursing or “drilling down”. If you get
stuck, you go up a step and try the next choice.

Depth First Search

A={1}

Depth First Search

A={1,2)

Depth First Search

A={1,2,4}

Depth First Search

A={1,2,4,5}

Depth First Search

A={1,2,4,5,6}

Depth First Search

A={1,2,4,5,6,3}

7

(1)
s

() / @

Depth First Search

A={1,2,4,5,6,3,7)

Depth First Search

A={1,2,4,5,6,3,7,8}

DFS Trees vs BFS Trees

Q: How can you compute all the connected
components of a graph?

13

	Slide 1: CSE 331: Algorithms & Complexity
	Slide 2: Schedule
	Slide 3: Course Updates
	Slide 4: Connectivity Problem(s)
	Slide 5: Another Connectivity Problem
	Slide 6: Breadth First Search (Layers)
	Slide 7: Breadth First Search (“Algorithm”)
	Slide 8: Breadth First Search (Properties)
	Slide 9: Breadth First Search (Properties)
	Slide 10: Breadth First Search (Properties)
	Slide 11: Breadth First Search (Properties)
	Slide 12: Breadth First Search (Properties)
	Slide 13: Breadth First Search (Properties)
	Slide 14: Breadth First Search (Tree)
	Slide 15: Breadth First Search (Tree)
	Slide 16: Connected Component of (s) (CC(s))
	Slide 17: Connected Component of (s) (CC(s))
	Slide 18: Explore Algorithm
	Slide 19: Explore Algorithm
	Slide 20: Explore Algorithm
	Slide 21: Explore Algorithm
	Slide 22: Explore Algorithm
	Slide 23: Explore Algorithm
	Slide 24: Explore Algorithm
	Slide 25: Explore Algorithm
	Slide 26: Explore Algorithm
	Slide 27: Explore Algorithm
	Slide 28: Q: What is the difference? (BFS vs Explore)
	Slide 29: Q: What is the difference? (BFS vs Explore)
	Slide 30: Q: How do we show this solves Connectivity?
	Slide 31: Q: How do we show this solves Connectivity?
	Slide 32: Q: How do we show this solves Connectivity?
	Slide 33: Breadth First Search (Properties)
	Slide 34: Q: Does this always terminate?
	Slide 35: Q: Does this always terminate?
	Slide 36: Explore Proofs
	Slide 37: Explore Proofs
	Slide 38: Explore Proofs
	Slide 39: Explore Proofs
	Slide 40: Q: How would you describe BFS?
	Slide 41: Depth First Search
	Slide 42: Depth First Search
	Slide 43: Depth First Search
	Slide 44: Depth First Search
	Slide 45: Depth First Search
	Slide 46: Depth First Search
	Slide 47: Depth First Search
	Slide 48: Depth First Search
	Slide 49: Depth First Search
	Slide 50: Depth First Search
	Slide 51: DFS Trees vs BFS Trees
	Slide 52: Q: How can you compute all the connected components of a graph?

