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“More BFS and DFS”



Schedule

1.Course Updates
2.Graph Traversal

1.BFS
2.DFS
3.Stacks & Queues

3.Coloring



Course Updates

• HW 1 Grading Out
• HW 2 Solutions Out Soon
• HW 3 Out 
• Group Project

• Team Emails Soon
• No Autolab Registration

• First Quiz NEXT Monday!
• Sample Midterms



Q: How do we show this solves Connectivity?

• Input: 𝐺 = (𝑉, 𝐸) and 𝑠 ∈  𝑉

• Output: CC(s)
• Let R = {s}

• While there exists {u, v}  ∈ E 
such that u ∈ R and 𝑣 ∉ 𝑅:

• Add v to 𝑅
• Return R



Q: How do we show this solves Connectivity?

• Input: 𝐺 = (𝑉, 𝐸) and 𝑠 ∈  𝑉

• Output: CC(s)
• Let R = {s}

• While there exists {u, v}  ∈ E 
such that u ∈ R and 𝑣 ∉ 𝑅:

• Add v to 𝑅
• Return R

• Argue that R = CC(s)!
• Show 𝑹 ⊆ 𝑪𝑪(𝒔)

• Show 𝑪𝑪(𝒔) ⊆ 𝑹



Breadth First Search (Properties)

Claim: R ⊆ CC(s)

Proof Idea: 
• This wants us to show that everything reached by Explore 

is in the connected component of s. 
• Let’s do induction on iteration of the algorithm.

• Do you believe the first iteration.
• Given any iteration is true, how do you feel about the 

next iteration?



Q: Does this always terminate? 

• Input: 𝐺 = (𝑉, 𝐸) and 𝑠 ∈  𝑉

• Output: CC(s)
• Let R = {s}

• While there exists {u, v}  ∈ E 
such that u ∈ R and 𝑣 ∉ 𝑅:

• Add v to 𝑅
• Return R



Q: Does this always terminate? 

• Input: 𝐺 = (𝑉, 𝐸) and 𝑠 ∈  𝑉

• Output: CC(s)
• Let R = {s}

• While there exists {u, v}  ∈ E 
such that u ∈ R and 𝑣 ∉ 𝑅:

• Add v to 𝑅
• Return R

• Yes, in each round we either 
add a vertex, or we exit. 
There are only |V| vertices 
and show provided the 
input is finite, the algorithm 
must terminate. 



Explore Proofs

Claim: CC(s)  ⊆ R

Proof: 
• This says that every vertex in the connected component 

is added to R by Explore.
• That is, for every vertex 𝑣 such that there is a path from s 

to 𝑣, 𝑣 is added to R by Explore.



Explore Proofs

Claim: CC(s)  ⊆ R

Proof: 
• Suppose to the contrary that there 

exists 𝑣 ∈ CC(s) such that 𝑣 ∉ R. 
• Then there must exist a path 

that starts at s (inside R) and 
ends at 𝑣 (outside 𝑅). 

𝑠

v

𝑅



Explore Proofs

Claim: CC(s)  ⊆ R

Proof: 
• There then must exist {x, y}  ∈ E 

such that x ∈ R and y ∉ R.
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y
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Q: What is wrong with such an {x, y} existing?

• Input: 𝐺 = (𝑉, 𝐸) and 𝑠 ∈  𝑉

• Output: CC(s)
• Let R = {s}

• While there exists {u, v}  ∈ E 
such that u ∈ R and 𝑣 ∉ 𝑅:

• Add v to 𝑅
• Return R



Explore Proofs

Claim: CC(s)  ⊆ R

Proof: 
• There then must exist {x, y}  ∈ E 

such that x ∈ R and y ∉ R.
• If this the case, then the algorithm 

wouldn’t have terminated and 
would have instead added y. =><=
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Q: How would you describe BFS?

• 𝐿0 = 𝑠

• 𝐿1 = neighbors of 𝐿0.
• 𝐿2 = neighbors of 𝐿1 that are not in 𝐿0.
• 𝐿i = neighbors of 𝐿i−1 that are not in previous layer.



Depth First Search 

• Input: The current vertex u ∈ V 
• Global: An array of exploration 𝐴 ∈ {0,1}𝑉

• Mark current vertex as explored (A[u]  =  1).
• For each {u, v}  ∈ E:

• If v is not explored (A[v]  ==  0):
• DFS(v)



Depth First Search 

• Input: The current vertex u ∈ V 
• Global: An array of exploration 𝐴 ∈ {0,1}𝑉

• Mark current vertex as explored (A[u]  =  1).
• For each {u, v}  ∈ E:

• If v is not explored (A[v]  ==  0):
• DFS(v)

• Idea: You are recursing or “drilling down”. If you get 
stuck, you go up a step and try the next choice. 



Depth First Search 

A = {1}



Depth First Search 

A = {1,2}



Depth First Search 

A = {1,2,4}



Depth First Search 

A = {1,2,4,5}



Depth First Search 

A = {1,2,4,5,6}



Depth First Search 

A = {1,2,4,5,6,3}



Depth First Search 

A = {1,2,4,5,6,3,7}



Depth First Search 

A = {1,2,4,5,6,3,7,8}



DFS Trees vs BFS Trees



Q: How can you compute all the connected 
components of a graph?



A: Run Explore on a vertex. Keep track of all visited 
vertices. Run Explore on unvisited vertex. Stop 
when everyone is visited. 



Q: What is the difference? (DFS vs Explore)

• Input: 𝐺 = (𝑉, 𝐸) and 𝑠 ∈  𝑉

• Output: CC(s)
• Let R = {s}

• While there exists {u, v}  ∈ E 
such that u ∈ R and 𝑣 ∉ 𝑅:

• Add v to 𝑅
• Return R

• Input: The current vertex 
u ∈ V 

• Global: An array 𝐴 ∈ {0,1}𝑉

• Mark current vertex (A[u]  =
 1).

• For each {u, v}  ∈ E:
• If (A[v]  ==  0):

• DFS(v)



Q: What is the difference? (DFS vs Explore)

• Input: 𝐺 = (𝑉, 𝐸) and 𝑠 ∈  𝑉

• Output: CC(s)
• Let R = {s}

• While there exists {u, v}  ∈ E 
such that u ∈ R and 𝑣 ∉ 𝑅:

• Add v to 𝑅
• Return R

• Input: The current vertex 
u ∈ V 

• Global: An array 𝐴 ∈ {0,1}𝑉

• Mark current vertex (A[u]  =
 1).

• For each {u, v}  ∈ E:
• If (A[v]  ==  0):

• DFS(v)DFS is Explore but Explore isn’t 
necessarily DFS!



Adjacency List 

Fix a graph G = (V, E). The adjacency list of G is a vertex 
indexed array L of linked lists such that for each v ∈ V, 
N v is a linked list that contains all neighbors of  v exactly 
once. 

N[1] : [2] -> [3]
N[2] : [1] -> [3] -> [5] -> [4]
N[3] : [1] -> [2] -> [5] -> [7] -> [8]
N[4] : [2] -> [5]
N[5] : [2] -> [3] -> [4] -> [6]
N[6] : [5]
N[7] : [3] -> [8]
N[8] : [3] -> [7]



Adjacency List vs Adjacency Matrix 

N[1] : [2] -> [3]
N[2] : [1] -> [3] -> [5] -> [4]
N[3] : [1] -> [2] -> [5] -> [7] -> [8]
N[4] : [2] -> [5]
N[5] : [2] -> [3] -> [4] -> [6]
N[6] : [5]
N[7] : [3] -> [8]
N[8] : [3] -> [7]

Space:
Lookup:
List Neighbors: 

Space:
Lookup:
List Neighbors: 



Adjacency List vs Adjacency Matrix 

N[1] : [2] -> [3]
N[2] : [1] -> [3] -> [5] -> [4]
N[3] : [1] -> [2] -> [5] -> [7] -> [8]
N[4] : [2] -> [5]
N[5] : [2] -> [3] -> [4] -> [6]
N[6] : [5]
N[7] : [3] -> [8]
N[8] : [3] -> [7]

Space: O(n^2)
Lookup: O(1)
List Neighbors: O(n) 

Space: O(n + m)
Lookup: O(𝑑𝑢)
List Neighbors: O(𝑑𝑢) 



Degree Sum Formula or “Handshaking Lemma”

Fix a graph G = (V, E). Say that 
every vertex v ∈ V represents a 
person and two people share an 
edge if they have shaken hands. 
Q1: How many handshakes 
happened?
Q2: How many times did 
someone prepare to shake a 
hand?



Degree Sum Formula or “Handshaking Lemma”

Fix a graph G = (V, E). Say that 
every vertex v ∈ V represents a 
person and two people share an 
edge if they have shaken hands. 
A1: |𝐸|

A2: σ𝑢 𝑑𝑢 = 2|E|



Q: What is a stack?

• A data structure for 
maintaining a set of elements. 

• We can add and remove 
elements from the stack in 
constant time. 

• When we remove an element, 
we get the last element that 
was added.  
• “last-in, first-out” or LIFO



Q: What is Queue?

• A data structure for maintaining a 
set of elements. 

• We can add and remove 
elements from the stack in 
constant time. 

• When we remove an element, we 
get the first element that was 
added (and is still in the set).  
• “first-in, first-out” or FIFO



Stack vs Queue

• Both can be implemented with a 
(doubly) linked list.

• Let’s assume that both 
implement the remove function 
to take the first element of the 
linked list. 

• Q: How do we implement the add 
function for Stack vs Queue?



Stack vs Queue

• Both can be implemented with a 
(doubly) linked list.

• Let’s assume that both 
implement the remove function 
to take the first element of the 
linked list. 

• A: For a Stack we insert at the 
front and for a Queue we insert at 
the end. 



Breadth First Search

• Input: 𝐺 = (𝑉, 𝐸) and 𝑠 ∈  𝑉

• Output: BFS Tree
• Let 𝐿0 = {s}

• Assume 𝐿0, … , 𝐿𝑖  have been constructed:
• Let 𝐿i+1 be nodes do not appear in 𝐿0, … , 𝐿𝑖  and have 

an edge to 𝐿𝑖.
• If 𝐿i+1 is empty, stop. 

• Return all layers. 



A more specific BFS
BFS(s): 

Initialize Discovered to be a node index array of false 

Set Discovered[s] = true

Initialize L[0] to be a linked list with one element s

Initialize i to be 0

While L[i] is not empty:

 Initialize L[i+1] to be empty linked list 

For u in L[i]:

 For each edge (u, v) incident to u: 

  If Discovered[v] = false:

   Set Discovered[u] = true

   Add v to L[i+1]

++i



Q: What is the runtime? 
BFS(s): 

Initialize Discovered to be a node index array of false 

Set Discovered[s] = true

Initialize L[0] to be a linked list with one element s

Initialize i to be 0

While L[i] is not empty:

 Initialize L[i+1] to be empty linked list 

For u in L[i]:

 For each edge (u, v) incident to u: 

  If Discovered[v] = false:

   Set Discovered[u] = true

   Add v to L[i+1]

++i



Q: What is the runtime? 
BFS(s): 

Initialize Discovered to be a node index array of false 

Set Discovered[s] = true

Initialize L[0] to be a linked list with one element s

Initialize i to be 0

While L[i] is not empty:

 Initialize L[i+1] to be empty linked list 

For u in L[i]:

 For each edge (u, v) incident to u: 

  If Discovered[v] = false:

   Set Discovered[u] = true

   Add v to L[i+1]

++i

O(n)

Total Tim
e:



Q: What is the runtime? 
BFS(s): 

Initialize Discovered to be a node index array of false 

Set Discovered[s] = true

Initialize L[0] to be a linked list with one element s

Initialize i to be 0

While L[i] is not empty:

 Initialize L[i+1] to be empty linked list 

For u in L[i]:

 For each edge (u, v) incident to u: 

  If Discovered[v] = false:

   Set Discovered[u] = true

   Add v to L[i+1]

++i

O(n)
O(1)

Total Tim
e:



Q: What is the runtime? 
BFS(s): 

Initialize Discovered to be a node index array of false 

Set Discovered[s] = true

Initialize L[0] to be a linked list with one element s

Initialize i to be 0

While L[i] is not empty:

 Initialize L[i+1] to be empty linked list 

For u in L[i]:

 For each edge (u, v) incident to u: 

  If Discovered[v] = false:

   Set Discovered[u] = true

   Add v to L[i+1]

++i

O(n)
O(1)
O(1)

Total Tim
e:



Q: What is the runtime? 
BFS(s): 

Initialize Discovered to be a node index array of false 

Set Discovered[s] = true

Initialize L[0] to be a linked list with one element s

Initialize i to be 0

While L[i] is not empty:

 Initialize L[i+1] to be empty linked list 

For u in L[i]:

 For each edge (u, v) incident to u: 

  If Discovered[v] = false:

   Set Discovered[u] = true

   Add v to L[i+1]

++i

O(n)
O(1)
O(1)
O(1)

Total Tim
e:



Q: What is the runtime? 
BFS(s): 

Initialize Discovered to be a node index array of false 

Set Discovered[s] = true

Initialize L[0] to be a linked list with one element s

Initialize i to be 0

While L[i] is not empty:

 Initialize L[i+1] to be empty linked list 

For u in L[i]:

 For each edge (u, v) incident to u: 

  If Discovered[v] = false:

   Set Discovered[u] = true

   Add v to L[i+1]

++i

O(n)
O(1)
O(1)
O(1)

Q: How many times does this loop run?

Total Tim
e:



Q: What is the runtime? 
BFS(s): 

Initialize Discovered to be a node index array of false 

Set Discovered[s] = true

Initialize L[0] to be a linked list with one element s

Initialize i to be 0

While L[i] is not empty:

 Initialize L[i+1] to be empty linked list 

For u in L[i]:

 For each edge (u, v) incident to u: 

  If Discovered[v] = false:

   Set Discovered[u] = true

   Add v to L[i+1]

++i

O(n)
O(1)
O(1)
O(1)

A: ڂ𝑖 𝐿𝑖  ≤ n

Total Tim
e:



Q: What is the runtime? 
BFS(s): 

Initialize Discovered to be a node index array of false 

Set Discovered[s] = true

Initialize L[0] to be a linked list with one element s

Initialize i to be 0

While L[i] is not empty:

 Initialize L[i+1] to be empty linked list 

For u in L[i]:

 For each edge (u, v) incident to u: 

  If Discovered[v] = false:

   Set Discovered[u] = true

   Add v to L[i+1]

++i

O(n)
O(1)
O(1)
O(1)
O(n)

Q: How many layers max?

Total Tim
e:



Q: What is the runtime? 
BFS(s): 

Initialize Discovered to be a node index array of false 

Set Discovered[s] = true

Initialize L[0] to be a linked list with one element s

Initialize i to be 0

While L[i] is not empty:

 Initialize L[i+1] to be empty linked list 

For u in L[i]:

 For each edge (u, v) incident to u: 

  If Discovered[v] = false:

   Set Discovered[u] = true

   Add v to L[i+1]

++i

O(n)
O(1)
O(1)
O(1)
O(n)

A: One for each vertex. O(n)

Total Tim
e:



Q: What is the runtime? 
BFS(s): 

Initialize Discovered to be a node index array of false 

Set Discovered[s] = true

Initialize L[0] to be a linked list with one element s

Initialize i to be 0

While L[i] is not empty:

 Initialize L[i+1] to be empty linked list 

For u in L[i]:

 For each edge (u, v) incident to u: 

  If Discovered[v] = false:

   Set Discovered[u] = true

   Add v to L[i+1]

++i

O(n)
O(1)
O(1)
O(1)
O(n)
O(n)

Q: How many times does this loop run?

Total Tim
e:



Q: What is the runtime? 
BFS(s): 

Initialize Discovered to be a node index array of false 

Set Discovered[s] = true

Initialize L[0] to be a linked list with one element s

Initialize i to be 0

While L[i] is not empty:

 Initialize L[i+1] to be empty linked list 

For u in L[i]:

 For each edge (u, v) incident to u: 

  If Discovered[v] = false:

   Set Discovered[u] = true

   Add v to L[i+1]

++i

O(n)
O(1)
O(1)
O(1)
O(n)
O(n)

A: ڂ𝑖 𝐿𝑖  ≤ nO(n)

Total Tim
e:



Q: What is the runtime? 
BFS(s): 

Initialize Discovered to be a node index array of false 

Set Discovered[s] = true

Initialize L[0] to be a linked list with one element s

Initialize i to be 0

While L[i] is not empty:

 Initialize L[i+1] to be empty linked list 

For u in L[i]:

 For each edge (u, v) incident to u: 

  If Discovered[v] = false:

   Set Discovered[u] = true

   Add v to L[i+1]

++i

O(n)
O(1)
O(1)
O(1)
O(n)
O(n)

Q: How do we do this?
O(n)

Total Tim
e:



Q: Which should we use?

N[1] : [2] -> [3]
N[2] : [1] -> [3] -> [5] -> [4]
N[3] : [1] -> [2] -> [5] -> [7] -> [8]
N[4] : [2] -> [5]
N[5] : [2] -> [3] -> [4] -> [6]
N[6] : [5]
N[7] : [3] -> [8]
N[8] : [3] -> [7]

Space: O(n^2)
Lookup: O(1)
List Neighbors: O(n) 

Space: O(n + m)
Lookup: O(𝑑𝑢)
List Neighbors: O(𝑑𝑢) 



Adjacency List vs Adjacency Matrix 

N[1] : [2] -> [3]
N[2] : [1] -> [3] -> [5] -> [4]
N[3] : [1] -> [2] -> [5] -> [7] -> [8]
N[4] : [2] -> [5]
N[5] : [2] -> [3] -> [4] -> [6]
N[6] : [5]
N[7] : [3] -> [8]
N[8] : [3] -> [7]

Space: O(n^2)
Lookup: O(1)
List Neighbors: O(n) 

Space: O(n + m)
Lookup: O(𝑑𝑢)
List Neighbors: O(𝑑𝑢) 



Q: What is the runtime? 
BFS(s): 

Initialize Discovered to be a node index array of false 

Set Discovered[s] = true

Initialize L[0] to be a linked list with one element s

Initialize i to be 0

While L[i] is not empty:

 Initialize L[i+1] to be empty linked list 

For u in L[i]:

 For each edge (u, v) incident to u: 

  If Discovered[v] = false:

   Set Discovered[u] = true

   Add v to L[i+1]

++i

O(n)
O(1)
O(1)
O(1)
O(n)
O(n)

A: Linked List
O(n)

Total Tim
e:



Q: What is the runtime? 
BFS(s): 

Initialize Discovered to be a node index array of false 

Set Discovered[s] = true

Initialize L[0] to be a linked list with one element s

Initialize i to be 0

While L[i] is not empty:

 Initialize L[i+1] to be empty linked list 

For u in L[i]:

 For each edge (u, v) incident to u: 

  If Discovered[v] = false:

   Set Discovered[u] = true

   Add v to L[i+1]

++i

O(n)
O(1)
O(1)
O(1)
O(n)
O(n)

O(𝑑𝑢)
O(n)

Q: How many times does 
this loop run for u?

Total Tim
e:



Q: What is the runtime? 
BFS(s): 

Initialize Discovered to be a node index array of false 

Set Discovered[s] = true

Initialize L[0] to be a linked list with one element s

Initialize i to be 0

While L[i] is not empty:

 Initialize L[i+1] to be empty linked list 

For u in L[i]:

 For each edge (u, v) incident to u: 

  If Discovered[v] = false:

   Set Discovered[u] = true

   Add v to L[i+1]

++i

O(n)
O(1)
O(1)
O(1)
O(n)
O(n)

O(σ𝑑𝑢)
O(n)

A: One time for each u!

Total Tim
e:



Q: What is the runtime? 
BFS(s): 

Initialize Discovered to be a node index array of false 

Set Discovered[s] = true

Initialize L[0] to be a linked list with one element s

Initialize i to be 0

While L[i] is not empty:

 Initialize L[i+1] to be empty linked list 

For u in L[i]:

 For each edge (u, v) incident to u: 

  If Discovered[v] = false:

   Set Discovered[u] = true

   Add v to L[i+1]

++i

O(n)
O(1)
O(1)
O(1)
O(n)
O(n)

O(m)
O(n)

Total Tim
e:



Q: What is the runtime? 
BFS(s): 

Initialize Discovered to be a node index array of false 

Set Discovered[s] = true

Initialize L[0] to be a linked list with one element s

Initialize i to be 0

While L[i] is not empty:

 Initialize L[i+1] to be empty linked list 

For u in L[i]:

 For each edge (u, v) incident to u: 

  If Discovered[v] = false:

   Set Discovered[u] = true

   Add v to L[i+1]

++i

O(n)
O(1)
O(1)
O(1)
O(n)
O(n)

O(m)
O(n)

O(1)
O(1)
O(1)

O(1)

Total Tim
e:



Q: What is the runtime? 
BFS(s): 

Initialize Discovered to be a node index array of false 

Set Discovered[s] = true

Initialize L[0] to be a linked list with one element s

Initialize i to be 0

While L[i] is not empty:

 Initialize L[i+1] to be empty linked list 

For u in L[i]:

 For each edge (u, v) incident to u: 

  If Discovered[v] = false:

   Set Discovered[u] = true

   Add v to L[i+1]

++i

O(n)
O(1)
O(1)
O(1)
O(n)
O(n)

O(m)
O(n)

O(n)

O(m)
O(m)
O(m)

Total Tim
e:



Q: What is the runtime? 
BFS(s): 

Initialize Discovered to be a node index array of false 

Set Discovered[s] = true

Initialize L[0] to be a linked list with one element s

Initialize i to be 0

While L[i] is not empty:

 Initialize L[i+1] to be empty linked list 

For u in L[i]:

 For each edge (u, v) incident to u: 

  If Discovered[v] = false:

   Set Discovered[u] = true

   Add v to L[i+1]

++i

O(n)
O(1)
O(1)
O(1)
O(n)
O(n)

O(m)
O(n)

O(n)

O(m)
O(m)
O(m)

O(n + m)

Total Tim
e:



Q: What if I use a matrix? 
BFS(s): 

Initialize Discovered to be a node index array of false 

Set Discovered[s] = true

Initialize L[0] to be a linked list with one element s

Initialize i to be 0

While L[i] is not empty:

 Initialize L[i+1] to be empty linked list 

For u in L[i]:

 For each edge (u, v) incident to u: 

  If Discovered[v] = false:

   Set Discovered[u] = true

   Add v to L[i+1]

++i



Q: What if I use a matrix? 
BFS(s): 

Initialize Discovered to be a node index array of false 

Set Discovered[s] = true

Initialize L[0] to be a linked list with one element s

Initialize i to be 0

While L[i] is not empty:

 Initialize L[i+1] to be empty linked list 

For u in L[i]:

 For each edge (u, v) incident to u: 

  If Discovered[v] = false:

   Set Discovered[u] = true

   Add v to L[i+1]

++i

O(n^2)

O(n^2)
O(n^2)
O(n^2)
O(n^2)



A New BFS
BFS(s): 

Initialize Discovered to be a node index array of false 

Set Discovered[s] = true

Initialize Q to be a Queue with one element s

While Q is not empty:

u = Q.dequeue()

 For each edge (u, v) incident to u: 

  If Discovered[v] = false:

   Set Discovered[u] = true

   Add v to Q

++i



Q: What is the runtime? (Assume Linked List)
BFS(s): 

Initialize Discovered to be a node index array of false 

Set Discovered[s] = true

Initialize Q to be a Queue with one element s

While Q is not empty:

u = Q.dequeue()

 For each edge (u, v) incident to u: 

  If Discovered[v] = false:

   Set Discovered[u] = true

   Add v to Q

++i



Q: What is the runtime? O(m+n) 
BFS(s): 

Initialize Discovered to be a node index array of false 

Set Discovered[s] = true

Initialize Q to be a Queue with one element s

While Q is not empty:

u = Q.dequeue()

 For each edge (u, v) incident to u: 

  If Discovered[v] = false:

   Set Discovered[u] = true

   Add v to Q

++i



Q: What if we change the queue to a stack?
???(s): 

Initialize Explored to be a node index array of false 

Set Explored[s] = true

Initialize Q to be a Stack with one element s

While Q is not empty:

u = Q.remove()

If Explored[u] = false:

  For each edge (u, v) incident to u: 

   Add v to Q

++i



A: We DFS
DFSs): 

Initialize Explored to be a node index array of false 

Set Explored[s] = true

Initialize Q to be a Stack with one element s

While Q is not empty:

u = Q.remove()

If Explored[u] = false:

  For each edge (u, v) incident to u: 

   Add v to Q

++i



Q: What is the runtime of DFS?
DFSs): 

Initialize Explored to be a node index array of false 

Set Explored[s] = true

Initialize Q to be a Stack with one element s

While Q is not empty:

u = Q.remove()

If Explored[u] = false:

  For each edge (u, v) incident to u: 

   Add v to Q

++i



Q: What is the runtime of DFS? O(m+n)
DFSs): 

Initialize Explored to be a node index array of false 

Set Explored[s] = true

Initialize Q to be a Stack with one element s

While Q is not empty:

u = Q.remove()

If Explored[u] = false:

  For each edge (u, v) incident to u: 

   Add v to Q

++i

Q: How many times does this loop run for u?



Q: What is the runtime of DFS? O(m+n)
DFSs): 

Initialize Explored to be a node index array of false 

Set Explored[s] = true

Initialize Q to be a Stack with one element s

While Q is not empty:

u = Q.remove()

If Explored[u] = false:

  For each edge (u, v) incident to u: 

   Add v to Q

++i

A: At most once for each edge



Problem: Bipartite Graph

Input: A graph G =  (V, E)

Output: True if G is bipartite and False otherwise.

Def: We say that a graph is bipartite if we can partition the 
vertices V into two groups L and R such that each edge has one 
endpoint in 𝐿 and the other endpoint in 𝑅. 



Problem: Bipartite Graph

Def: We say that a graph is bipartite if we can partition the 
vertices V into two groups L and R such that each edge has one 
endpoint in 𝐿 and the other endpoint in 𝑅. 

Bipartite Not Bipartite



Problem: Bipartite Graph

Input: A graph G =  (V, E)

Output: True if G is bipartite and False otherwise.

Algorithm Ideas: 



Problem: Bipartite Graph

Input: A graph G =  (V, E)

Output: True if G is bipartite and False otherwise.

Algorithm Ideas: We will find the layering produced by BFS and 
color odd levels Red and even layers Blue.

Q: When will this fail? 



Problem: Bipartite Graph

Input: A graph G =  (V, E)

Output: True if G is bipartite and False otherwise.

Algorithm Ideas: We will find the layering produced by BFS and 
color odd levels Red and even layers Blue. This will fail if there is 
a cross edge in one of the layers.

Q: What does this imply?



Problem: Bipartite Graph

Input: A graph G =  (V, E)

Output: True if G is bipartite and False otherwise.

Algorithm Ideas: We will find the layering produced by BFS and 
color odd levels Red and even layers Blue. This will fail if there is 
a cross edge in one of the layers. This implies there is an odd 
cycle in the graph.

Q: Is that a problem?



Problem: Bipartite Graph

Input: A graph G =  (V, E)

Output: True if G is bipartite and False otherwise.

Algorithm Ideas: We will find the layering produced by BFS and 
color odd levels Red and even layers Blue. This will fail if there is 
a cross edge in one of the layers. This implies there is an odd 
cycle in the graph. We can show that a graph is not bipartite if it 
contains an odd cycle. 
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