CSE 331:
Allg(o)r[itt]hunnlg & (C<o>lnnqp>ll<ex[i1ty

“More BFS and DFS”

Prof. Charlie Anne Carlson (She/Her)
Lecture 12
Wednesday September 24th, 2025

L]

G5

University at Buffalo

Schedule

1.Course Updates
2.Graph Traversal

1.BFS

2.DFS

3.Stacks & Queues
3.Coloring

Course Updates

W 1 Grading Out
W 2 Solutions Out Soon
W 3 Out

Group Project

Team Emails Soon
No Autolab Registration

First Quiz NEXT Monday!
Sample Midterms

Q: How do we show this solves Connectivity?

Input: G = (V,E)ands € V
Output: CC(s)
Let R = {s}

While there exists {u,v} € E
suchthatu € Randv & R:

e AddvtoR
Return R

Q: How do we show this solves Connectivity?

Input: G = (V,E)ands € V + Argue that R=CC(s)!

Output: CC(s) « ShowR C CC(s)
Let R = {s} * Show(CC(s) € R
While there exists {u,v} € E

suchthatu € Randv & R:
e AddvtoR
Return R

Breadth First Search (Properties)

Claim: R < CC(s)

Proof Idea:

* This wants us to show that everything reached by Explore
Is In the connected component of s.

* Let’s doinduction on iteration of the algorithm.
* Do you believe the first iteration.

 Given any iterationis true, how do you feel about the
next iteration?

Q: Does this always terminate?

Input: G = (V,E)ands € V
Output: CC(s)
Let R = {s}

While there exists {u,v} € E
suchthatu € Randv & R:

e AddvtoR
Return R

Q: Does this always terminate?

Input: G = (V,E)ands € V * Yes,ineachround we either
Output: CC(s) add a vertex, or we exit.
LetR = {s) There are only !V| vertices
and show provided the
iInput is finite, the algorithm
must terminate.

While there exists {u,v} € E
suchthatu € Rand v €& R:

e AddvVvtioR
Return R

Explore Proofs

Claim: CC(s) <R

Proof:

* This says that every vertex in the connected component
Is added to R by Explore.

* Thatis, for every vertex v such that there is a path from s
to v, vis added to R by Explore.

Explore Proofs

Claim: CC(s) © R

Proof:

e Suppose to the contrary that there
exists v € CC(s) such thatv & R.

* Then there must exist a path
that starts at s (inside R) and
ends at v (outside R).

Explore Proofs

Claim: CC(s) © R

Proof:

* There then mustexist{x,y} € E
suchthatx € Randy €& R.

Q: What is wrong with such an {x, y} existing?

Input: G = (V,E)ands € V
Output: CC(s)
Let R = {s}

While there exists {u,v} € E
suchthatu € Randv & R:

e AddvtoR
Return R

Explore Proofs

Claim: CC(s) © R

Proof:

* There then mustexist{x,y} € E
suchthatx € Randy €& R.

* |f this the case, then the algorithm
wouldn’t have terminated and
would have instead added y. =><=

Q: How would you describe BFS?

* Ly=s

* L, =neighbors of L,.

* L, =neighbors of L; thatare notin L,.

* L; =neighbors of L;_4 that are not in previous layer.

Depth First Search

Input: The current vertexu €V

 Global: An array of exploration 4 € {0,1}"

* Mark current vertex as explored (Alu] = 1).

* Foreach{u,v} €E:

* Ifvisnotexplored (Alv] == 0):
 DFS(v)

Depth First Search

Input: The current vertexu €V

Global: An array of exploration 4 € {0,1}"

Mark current vertex as explored (A[u] = 1).

* Foreach{u,v} €E:

* Ifvisnotexplored (Alv] == 0):
 DFS(v)

* |ldea: You are recursing or “drilling down”. If you get
stuck, you go up a step and try the next choice.

Depth First Search

A={1}

Depth First Search

A={1,2)

Depth First Search

A={1,2,4}

Depth First Search

A={1,2,4,5}

Depth First Search

A={1,2,4,5,6}

Depth First Search

A={1,2,4,5,6,3}

7

(1)
s

() / @

Depth First Search

A={1,2,4,5,6,3,7)

Depth First Search

A={1,2,4,5,6,3,7,8}

DFS Trees vs BFS Trees

Q: How can you compute all the connected
components of a graph?

13

A: Run Explore on a vertex. Keep track of all visited
vertices. Run Explore on unvisited vertex. Stop

when everyone is visited.

13

Q: What is the difference? (DFS vs Explore)

Input: G = (V,E)ands € V
Output: CC(s)
Let R = {s} ’

While there exists {u,v} € E ’
suchthatu € Randv & R:

e AddvtoR °
Return R

Input: The current vertex
u ev

Global: An array 4 € {0,1}"

Mark current vertex (A[u
1).

Foreach {u,v} € E:
o If (Alv] == 0):
* DFS(v)

Q: What is the difference? (DFS vs Explore)

* Input:G = (V,E)ands € V * Input: The current vertex

 Output: CC(s) u€eyv
+ LetR = {s) e Global: Anarray 4 € {0,1}"
* While there exists {u,v} € E * Markcurrentvertex (Alu] =
suchthatu € Randv & R: 1).
e AddvtoR * Foreach{u,v} €E:
e ReturnR * If(Alv] == 0):
DFS is Explore but Explore isn’t * DFS(v)

necessarily DFS!

Adjacency List

Fixa graph G = (V, E). The adjacency list of G is a vertex
Indexed array L of linked lists such that foreachv € V,
N[v]is a linked list that contains all neighbors of v exactly
once.

o
3]->[5] ->[4]

2] ->[5] ->[7] ->[8]
5]

3]

L T D
V V V V V

> [4] -> [6]

1->[8]
>[7]

ZZZZZZ2ZZ
XN 00N =

LWONN = =N

Adjacency List vs Adjacency Matrix

Space: Space:
Lookup: Lookup:
List Neighbors: List Neighbors:

12345678 N[1]:[2]->[3]
1101100000 N[2]:[1]->[3]->[5] -> [4]
2110111000 N[3]:[1]->[2]->[5] ->[7] ->[8]
311001011 N[4]:[2]->[5]
4101001000 N[5]: [2]-> [3] -> [4] -> [6]
5(01110100 NI61: 5
6/00001000 N[7] : [3] -> [8]
/7100100001 N[8]: [3]->[7]
8/00100010

Adjacency List vs Adjacency Matrix

Space: O(n"2) Space: O(n + m)
Lookup: O(1) Lookup: O(d,)
List Neighbors: O(n) List Neighbors: O(d,)

12345678 N[1]:[2]->[3]
1101100000 N[2]:[1]->[3]->[5] -> [4]
2110111000 N[3]:[1]->[2]->[5] ->[7] ->[8]
311001011 N[4]:[2]->[5]
4101001000 N[5]: [2]-> [3] -> [4] -> [6]
5(01110100 NI61: 5
6/00001000 N[7] : [3] -> [8]
/7100100001 N[8]: [3]->[7]
8/00100010

Degree Sum Formula or “Handshaking Lemma”

Fixa graph G = (V, E). Say that
every vertexv € Vrepresents a
person and two people share an
edge if they have shaken hands.

Q1: How many handshakes
happened?

Q2: How many times did
someone prepare to shake a
hand?

Degree Sum Formula or “Handshaking Lemma”

Fixa graph G = (V, E). Say that
every vertexv € Vrepresents a
person and two people share an
edge if they have shaken hands.
A1l: |E]

A2:)., d, = 2|E|

Q: What is a stack?

* A data structure for
maintaining a set of elements.

* We can add and remove
elements from the stack in
constanttime.

* When we remove an element,
we get the last element that
was added.

e “last-in, first-out” or LIFO

Q: What is Queue?

 Adata structure for maintaining a
set of elements.

* We can add and remove
elements from the stack in
constant time.

* When we remove an element, we
get the first element that was
added (and is still in the set).

e “first-in, first-out” or FIFO

Stack vs Queue

* Both can be implemented with a
(doubly) linked list.

e Let’s assume that both
Implement the remove function
to take the first element of the ®

4
linked list.]‘ 3
 Q:How do we implement the add << W/
[SO

function for Stack vs Queue?

Stack vs Queue

* Both can be implemented with a
(doubly) linked list.

e Let’s assume that both
Implement the remove function
to take the first element of the ®

5
linked list. ‘]‘ 3
* A:For aStackwe insert atthe os W
S

front and for a Queue we insert at
the end.

Breadth First Search

* Input:¢G = (V,E)ands € V

* Output: BFS Tree

* LetLly = {s}

* Assume L, ..., L; have been constructed:

* Letl;,, benodesdonotappearinl,,...,L; and have
anedgetoL;.

If L;, 1 IS empty, stop.
* Return all layers.

A more specific BFS

BES (s) :
Initialize Discovered to be a node index array of false
Set Discovered[s] = true
Initialize L[0] to be a linked list with one element s
Initialize 1 to be O
While L[1] is not empty:
Initialize L[i+1l] to be empty linked list
For u in L[1]:
For each edge (u, v) incident to u:
If Discovered[v] = false:
Set Discovered[u] = true
Add v to L[1+1]

++1

Q: What is the runtime?

BES (s) :
Initialize Discovered to be a node index array of false
Set Discovered[s] = true
Initialize L[0] to be a linked list with one element s
Initialize 1 to be O
While L[1] is not empty:
Initialize L[i+1l] to be empty linked list
For u in L[1]:
For each edge (u, v) incident to u:
If Discovered[v] = false:
Set Discovered[u] = true
Add v to L[1+1]

++1

Q: What is the runtime?

** BFS(s) :

awl] 1e10]

O(n) Initialize Discovered to be a node index array of false
Set Discovered[s] = true
Initialize L[0] to be a linked list with one element s
Initialize 1 to be 0
While L[1] is not empty:
Initialize L[i+1l] to be empty linked list
For u in L[1]:
For each edge (u, v) incident to u:
If Discovered[v] = false:
Set Discovered[u] = true
Add v to L[i+1]

++1

Q: What is the runtime?

** BFS(s) :

awl] 1e10]

O(n) Initialize Discovered to be a node index array of false
O(1) Set Discovered[s] = true
Initialize L[0] to be a linked list with one element s
Initialize 1 to be 0
While L[1] is not empty:
Initialize L[i+1l] to be empty linked list
For u in L[1]:
For each edge (u, v) incident to u:
If Discovered[v] = false:
Set Discovered[u] = true
Add v to L[i+1]

++1

Q: What is the runtime?

** BFS(s) :

awl] 1e10]

O(n) Initialize Discovered to be a node index array of false
O(1) Set Discovered[s] = true
()(1) Initialize L[O] to be a linked list with one element s
Initialize 1 to be 0
While L[1] is not empty:
Initialize L[i+1l] to be empty linked list
For u in L[1]:
For each edge (u, v) incident to u:
If Discovered[v] = false:
Set Discovered|[u] = true
Add v to L[i+1]

++1

Q: What is the runtime?

awl] 1e10]

** BFS (s) :

O(n) Initialize Discovered to be a node index array of false
()(1) Set Discovered[s] = true

()(1) Initialize L[0] to be a linked list with one element s
O(1) Initialize i to be 0

While L[1] is not empty:
Initialize L[i+1l] to be empty linked list
For u in L[1]:
For each edge (u, v) incident to u:
If Discovered[v] = false:
Set Discovered[u] = true
Add v to L[1+1]

++1

awl] 1e10]

Q: What is the runtime?

** BFS(s) :
N) Initialize Discovered to be a node index array of false
1) Set Discovered[s] = true
1) Initialize L[O] to be a linked list with one element s
1) Initialize i to be 0

OXONONG®

AN N N SN

While L[i] is not empty: Q:How manytimes does this loop run?
Initialize L[i+1l] to be empty linked list
For u in L[1]:
For each edge (u, v) incident to u:
If Discovered[v] = false:
Set Discovered|[u] = true
Add v to L[i+1]

++1

Q: What is the runtime?

awl] 1e10]

** BFS (s) :

O(n) Initialize Discovered to be a node index array of false
()(1) Set Discovered[s] = true

()(1) Initialize L[0] to be a linked list with one element s
O(1) Initialize i to be 0

While L[i] is not empty: A: |UiLi| <n
Initialize L[i+1l] to be empty linked list
For u in L[1]:

For each edge (u, v) incident to u:
If Discovered[v] = false:
Set Discovered[u] = true
Add v to L[i+1]

++1

:awl| 1e10]

Q: What is the runtime?

BES (s) :

N) Initialize Discovered to be a node index array of false

) Set Discovered[s] = true
) Initialize L[0O] to be a linked list with one element s
) Initialize i to be 0
) While L[1] is not empty:
Initialize L[i+1] to be empty linked list Q: How many I_ayers max”??
For u in L[1]:
For each edge (u, v) incident to u:
If Discovered[v] = false:
Set Discovered|[u] = true
Add v to L[i+1]

++1

:awl| 1e10]

Q: What is the runtime?

BES (s) :

N) Initialize Discovered to be a node index array of false

Set Discovered[s] = true
Initialize L[0O] to be a linked list with one element s

)

)

) Initialize i to be 0

) While L[1] is not empty:
)

Initialize L[i+1] to be empty linked list A:QOne for each vertex.

For u in L[1]:
For each edge (u, v) incident to u:
If Discovered[v] = false:
Set Discovered[u] = true
Add v to L[1+1]

++1

:awl| 1e10]

Q: What is the runtime?

(s) :
Initialize Discovered to be a node index array of false
Set Discovered[s] = true
Initialize L[0] to be a linked list with one element s
Initialize 1 to be 0
While L[1] is not empty:
Initialize L[i+1l] to be empty linked list
For u in L[i]: QQ: How many times does this loop run?
For each edge (u, v) incident to u:
If Discovered[v] = false:
Set Discovered[u] = true
Add v to L[i+1]

++1

;o] 1e10]

Q: What is the runtime?

BES (s) :

N) Initialize Discovered to be a node index array of false
1) Set Discovered[s] = true

1) Initialize L[O] to be a linked list with one element s
1) Initialize i to be 0

n) While L[1] is not empty:

n) Initialize L[i+1l] to be empty linked list

n) For u in L[l]:A:luiLil <n

For each edge (u, v) incident to u:

If Discovered[v] = false:
Set Discovered[u] =
Add v to L[i1+1]

++1

:awl| 1e10]

Q: What is the runtime?

BES (s) :

N) Initialize Discovered to be a node index array of false

Set Discovered[s] = true

Initialize L[0O] to be a linked list with one element s

)
g Initialize 1 to be 0
) While L[1] is not empty:
) Initialize L[i+1l] to be empty linked list
) For u in LJ[i]:
For each edge (u, v) incident to u: QZ How do we do this?
If Discovered[v] = false:
Set Discovered[u] = true
Add v to L[i+1]

++1

Q: Which should we use?

Space: O(n"2) Space: O(n + m)
Lookup: O(1) Lookup: O(d,)
List Neighbors: O(n) List Neighbors: O(d,)

12345678 N[1]:[2]->[3]
1101100000 N[2]:[1]->[3]->[5] -> [4]
2110111000 N[3]:[1]->[2]->[5] ->[7] ->[8]
311001011 N[4]:[2]->[5]
4101001000 N[5]: [2]-> [3] -> [4] -> [6]
5(01110100 NI61: 5
6/00001000 N[7] : [3] -> [8]
/7100100001 N[8]: [3]->[7]
8/00100010

Adjacency List vs Adjacency Matrix

Space: O(n"2) Space: O(n + m)

Lookup: O(1) RN aTa] 4N T @1 (7 FRRF—— -
List Neighbors: O(n)

12345678 N[1]:[2]->[3]
1101100000 N[2]:[1]->[3]->[5] -> [4]
2110111000 N[3]:[1]->[2]->[5] ->[7] ->[8]
311001011 N[4]:[2]->[5]
4101001000 N[5]: [2] -> [3] -> [4] -> [6]
5(01110100 NI61: 5
6/]00001000 N[7] : [3] -> [8]
/7100100001 N[8]: [3]->[7]
8/00100010

;o] 1e10]

Q: What is the runtime?

BES (s) :
N) Initialize Discovered to be a node index array of false
1) Set Discovered[s] = true
1) Initialize L[O] to be a linked list with one element s
1) Initialize i to be 0
n) While L[1] is not empty:
n) Initialize L[i+1l] to be empty linked list
n) For u in L[i]:
For each edge (u, v) incident to u: A: Linked List
If Discovered[v] = false:
Set Discovered|[u] = true

Add v to L[1+1]

++1

:awl| 1e10]

Q: What is the runtime?

BES (s) :

N) Initialize Discovered to be a node index array of false

Set Discovered[s] = true

Initialize L[0O] to be a linked list with one element s

)
; Initialize 1 to be 0
) While L[1] is not empty:
) Initialize L[i+1l] to be empty linked list
) For u in L[i]:
O(du)For each edge (u, v) incident to u: Q: How manytimes does
If Discovered[v] = false: this loop run foru?
Set Discovered[u] = true
Add v to L[i+1]

++1

:awl| 1e10]

Q: What is the runtime?

BES (s) :

N) Initialize Discovered to be a node index array of false

Set Discovered[s] = true
Initialize L[0O] to be a linked list with one element s

Initialize 1 to be O

)
)
)
)
) Initialize L[i+1l] to be empty linked list
)
d

While L[1] is not empty:
For u in LJ[i]:
) For each edge (u, v) incident to u: A: One time for each u!
u
If Discovered[v] = false:
Set Discovered[u] = true

Add v to L[1+1]

++1

;o] 1e10]

(s) :

Q: What is the runtime?

Initialize Discovered to be a node index array of false

Set Discovered[s] = true

Initialize LI[O0]

to be a linked 1list with one element s

Initialize 1 to be O

While L[1] is not empty:

Initialize L[i+1l] to be empty linked list

For u in LJ[1i

]

For each edge (u, v) incident to u:

++1

If Discovered[v] = false:
Set Discovered[u] = true

Add v to L[1+1]

Q: What is the runtime?

:awl| 1€10]

BES (s) :
O(n) Initialize Discovered to be a node index array of false
0(1) Set Discovered[s] = true
O(’]) Initialize L[0] to be a linked list with one element s
O(1) Initialize i to be 0
O(ﬂ) While L[1] 1s not empty:
O(n) Initialize L[i+l] to be empty linked list
O(n) For u in L[i]:
O(m) For each edge (u, v) incident to u:
O(1)If Discovered|[v] = false:
O(1) set Discovered[u] = true

O(1)Add v to L[i+1]

Q: What is the runtime?

:aWl] 1e10]

BES (s) :
O(n) Initialize Discovered to be a node index array of false
0(1) Set Discovered[s] = true
O(’]) Initialize L[0] to be a linked list with one element s
O(1) Initialize i to be 0
O(ﬂ) While L[1] 1s not empty:
O(n) Initialize L[i+1l] to be empty linked list
O(n) For u in LJ[i]:
O(m) For each edge (u, v) incident to u:
O(m) If Discovered|[v] = false:
O(m) Set Discovered[u]
O(m) Add v to L[i+1]

o
>

++1

:awl| 1e10]

Q: What is the runtime? O(n + m)

BES (s) :

ONONONONONG®
S

e e e e e N
>

' N N N N N’

o
)

0000
EEIEE

o
>

Initialize Discovered to be a node index array of false

>

Set Discovered[s] = true
Initialize L[0] to be a linked list with one element s
Initialize 1 to be 0
While L[1] is not empty:
Initialize L[i+1l] to be empty linked list
For u in L[1]:

For each edge (u, v) incident to u:

S’ e’

If Discovered[v] = false:
Set Discovered[u] = true

Add v to L[1+1]

p —

++1

Q: What if | use a matrix?

BES (s) :
Initialize Discovered to be a node index array of false
Set Discovered[s] = true
Initialize L[0] to be a linked list with one element s
Initialize 1 to be O
While L[1] is not empty:
Initialize L[i+1l] to be empty linked list
For u in L[1]:
For each edge (u, v) incident to u:
If Discovered[v] = false:
Set Discovered[u] = true
Add v to L[1+1]

++1

Q: What if | use a matrix? O(n”2)

BES (s) :
Initialize Discovered to be a node index array of false
Set Discovered[s] = true
ITnitialize L[0] to be a linked list with one element s
Initialize 1 to be O
While L[1] is not empty:
Initialize L[i+1l] to be empty linked list
For u in L[1]:

For each edge (u, v) incident to u:

O(n"2)
O(n"2) If Discovered|[v] = false:
()UJAZ) Set Discovered|[u] = true
O(n"2) Add v to L[i+1]

++1

A New BFS

BES (s) :
Initialize Discovered to be a node index array of false

Set Discovered[s] = true
Initialize Q to be a Queue with one element s
While Q i1s not empty:

u = Q.dequeue ()

For each edge (u, v) incident to u:

If Discovered[v] = false:
Set Discovered[u] = true
Add v to O

++1i

Q: What is the runtime? (Assume Linked List)

BES (s) :
Initialize Discovered to be a node index array of false

Set Discovered[s] = true
Initialize Q to be a Queue with one element s
While Q i1s not empty:

u = Q.dequeue ()

For each edge (u, v) incident to u:

If Discovered[v] = false:
Set Discovered[u] = true
Add v to O

++1i

Q: What is the runtime? O(m+n)

BES (s) :
Initialize Discovered to be a node index array of false

Set Discovered[s] = true
Initialize Q to be a Queue with one element s
While Q i1s not empty:

u = Q.dequeue ()

For each edge (u, v) incident to u:

If Discovered[v] = false:
Set Discovered[u] = true
Add v to O

++1i

Q: What if we change the queue to a stack?

??27(s):

Initialize Explored to be a node index array of false

Set Explored[s] = true
Initialize Q to be a Stack with one element s

While Q i1s not empty:

u = Q.remove ()

If Explored[u] = false:
For each edge (u, v) 1incident to u:
Add v to Q

++1i

A: We DFS

DFSs) :
Initialize Explored to be a node index array of false

Set Explored[s] = true
Initialize Q to be a Stack with one element s

While Q i1s not empty:

u = Q.remove ()

If Explored[u] = false:
For each edge (u, v) 1incident to u:
Add v to Q

++1i

Q: What is the runtime of DFS?

DFSs) :
Initialize Explored to be a node index array of false

Set Explored[s] = true
Initialize Q to be a Stack with one element s

While Q i1s not empty:

u = Q.remove ()

If Explored[u] = false:
For each edge (u, v) 1incident to u:
Add v to Q

++1i

Q: What is the runtime of DFS? O(m+n)

DFSs) :
Initialize Explored to be a node index array of false

Set Explored[s] = true
Initialize Q to be a Stack with one element s

While Q is not empty: Q: How many times does this loop run for u?

u = Q.remove ()

If Explored[u] = false:
For each edge (u, v) 1incident to u:
Add v to Q

++1i

Q: What is the runtime of DFS? O(m+n)

DFSs) :
Initialize Explored to be a node index array of false

Set Explored[s] = true
Initialize Q to be a Stack with one element s

While Q is not empty: A: At mostonce for each edge

u = Q.remove ()

If Explored[u] = false:
For each edge (u, v) 1incident to u:
Add v to Q

++1i

Problem: Bipartite Graph

Input: Agraph G = (V,E)
Output: True if G is bipartite and False otherwise.

Def: We say that a graph is bipartite if we can partition the
vertices V into two groups L and R such that each edge has one

endpoint in L and the other endpointin R.

Problem: Bipartite Graph

Def: We say that a graph is bipartite if we can partition the
vertices V into two groups L and R such that each edge has one
endpoint in L and the other endpointin R.

eme

Bipartite Not Bipartite

Problem: Bipartite Graph

Input: Agraph G = (V,E)
Output: True if G is bipartite and False otherwise.

Algorithm Ideas:

Problem: Bipartite Graph

Input: Agraph G = (V,E)
Output: True if G is bipartite and False otherwise.

Algorithm ldeas: We will find the layering produced by BFS and
color odd levels Red and even layers Blue.

Q: When will this fail?

Problem: Bipartite Graph
Input: Agraph G = (V,E)

Output: True if G is bipartite and False otherwise.

Algorithm ldeas: We will find the layering produced by BFS and

color odd levels Red and even layers Blue. This will fail if there is
a cross edge in one of the layers.

Q: What does this imply?

Problem: Bipartite Graph

Input: Agraph G = (V,E)

Output: True if G is bipartite and False otherwise.

Algorithm ldeas: We will find the layering produced by BFS and
color odd levels Red and even layers Blue. This will fail if there is

a cross edge in one of the layers. This implies there is an odd
cycle in the graph.

Q: Is that a problem?

Problem: Bipartite Graph

Input: Agraph G = (V,E)
Output: True if G is bipartite and False otherwise.

Algorithm ldeas: We will find the layering produced by BFS and
color odd levels Red and even layers Blue. This will fail if there is
a cross edge in one of the layers. This implies there is an odd

cycle in the graph. We can show that a graph is not bipartite if it
contains an odd cycle.

	Slide 1: CSE 331: Algorithms & Complexity
	Slide 2: Schedule
	Slide 3: Course Updates
	Slide 4: Q: How do we show this solves Connectivity?
	Slide 5: Q: How do we show this solves Connectivity?
	Slide 6: Breadth First Search (Properties)
	Slide 7: Q: Does this always terminate?
	Slide 8: Q: Does this always terminate?
	Slide 9: Explore Proofs
	Slide 10: Explore Proofs
	Slide 11: Explore Proofs
	Slide 12: Q: What is wrong with such an open brace x,y close brace existing?
	Slide 13: Explore Proofs
	Slide 14: Q: How would you describe BFS?
	Slide 15: Depth First Search
	Slide 16: Depth First Search
	Slide 17: Depth First Search
	Slide 18: Depth First Search
	Slide 19: Depth First Search
	Slide 20: Depth First Search
	Slide 21: Depth First Search
	Slide 22: Depth First Search
	Slide 23: Depth First Search
	Slide 24: Depth First Search
	Slide 25: DFS Trees vs BFS Trees
	Slide 26: Q: How can you compute all the connected components of a graph?
	Slide 27: A: Run Explore on a vertex. Keep track of all visited vertices. Run Explore on unvisited vertex. Stop when everyone is visited.
	Slide 28: Q: What is the difference? (DFS vs Explore)
	Slide 29: Q: What is the difference? (DFS vs Explore)
	Slide 30: Adjacency List
	Slide 31: Adjacency List vs Adjacency Matrix
	Slide 32: Adjacency List vs Adjacency Matrix
	Slide 33: Degree Sum Formula or “Handshaking Lemma”
	Slide 34: Degree Sum Formula or “Handshaking Lemma”
	Slide 35: Q: What is a stack?
	Slide 36: Q: What is Queue?
	Slide 37: Stack vs Queue
	Slide 38: Stack vs Queue
	Slide 39: Breadth First Search
	Slide 40: A more specific BFS
	Slide 41: Q: What is the runtime?
	Slide 42: Q: What is the runtime?
	Slide 43: Q: What is the runtime?
	Slide 44: Q: What is the runtime?
	Slide 45: Q: What is the runtime?
	Slide 46: Q: What is the runtime?
	Slide 47: Q: What is the runtime?
	Slide 48: Q: What is the runtime?
	Slide 49: Q: What is the runtime?
	Slide 50: Q: What is the runtime?
	Slide 51: Q: What is the runtime?
	Slide 52: Q: What is the runtime?
	Slide 53: Q: Which should we use?
	Slide 54: Adjacency List vs Adjacency Matrix
	Slide 55: Q: What is the runtime?
	Slide 56: Q: What is the runtime?
	Slide 57: Q: What is the runtime?
	Slide 58: Q: What is the runtime?
	Slide 59: Q: What is the runtime?
	Slide 60: Q: What is the runtime?
	Slide 61: Q: What is the runtime?
	Slide 62: Q: What if I use a matrix?
	Slide 63: Q: What if I use a matrix?
	Slide 64: A New BFS
	Slide 65: Q: What is the runtime? (Assume Linked List)
	Slide 66: Q: What is the runtime? O(m+n)
	Slide 67: Q: What if we change the queue to a stack?
	Slide 68: A: We DFS
	Slide 69: Q: What is the runtime of DFS?
	Slide 70: Q: What is the runtime of DFS? O(m+n)
	Slide 71: Q: What is the runtime of DFS? O(m+n)
	Slide 72: Problem: Bipartite Graph
	Slide 73: Problem: Bipartite Graph
	Slide 74: Problem: Bipartite Graph
	Slide 75: Problem: Bipartite Graph
	Slide 76: Problem: Bipartite Graph
	Slide 77: Problem: Bipartite Graph
	Slide 78: Problem: Bipartite Graph

