

CSE 331: Algorithms & Complexity “More BFS and DFS”

Prof. Charlie Anne Carlson (She/Her)

Lecture 12

Wednesday September 24th, 2025

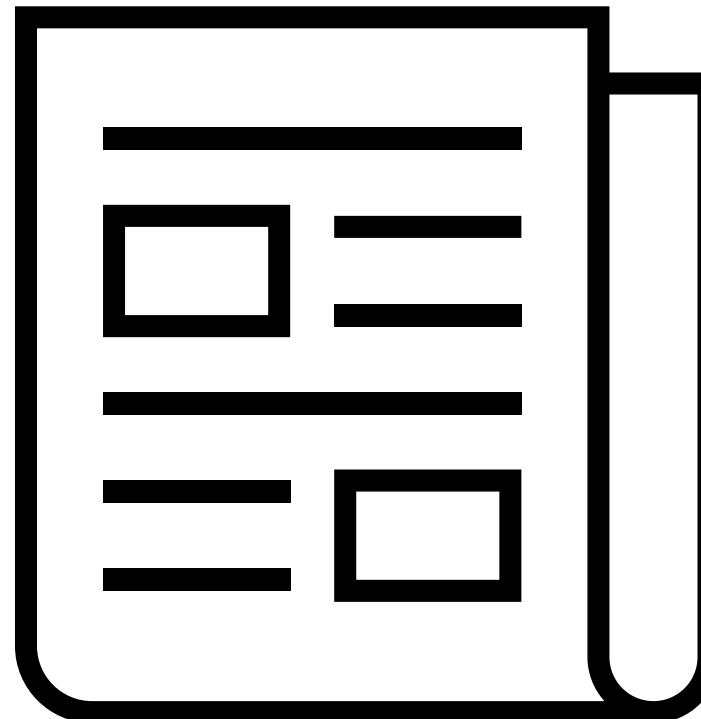
University at Buffalo®

Schedule

1. Course Updates
2. Graph Traversal
 1. BFS
 2. DFS
3. Stacks & Queues
3. Coloring

Course Updates

- HW 1 Grading Out
- HW 2 Solutions Out Soon
- HW 3 Out
- Group Project
 - Team Emails Soon
 - No Autolab Registration
- First Quiz NEXT Monday!
- Sample Midterms



Q: How do we show this solves Connectivity?

- Input: $G = (V, E)$ and $s \in V$
- Output: $\text{CC}(s)$
- Let $R = \{s\}$
- While there exists $\{u, v\} \in E$ such that $u \in R$ and $v \notin R$:
 - Add v to R
- Return R

Q: How do we show this solves Connectivity?

- Input: $G = (V, E)$ and $s \in V$
- Output: $CC(s)$
- Let $R = \{s\}$
- While there exists $\{u, v\} \in E$ such that $u \in R$ and $v \notin R$:
 - Add v to R
- Return R

- **Argue that $R = CC(s)$!**
 - **Show $R \subseteq CC(s)$**
 - **Show $CC(s) \subseteq R$**

Breadth First Search (Properties)

Claim: $R \subseteq CC(s)$

Proof Idea:

- This wants us to show that everything reached by Explore is in the connected component of s .
- Let's do induction on iteration of the algorithm.
 - Do you believe the first iteration.
 - Given any iteration is true, how do you feel about the next iteration?

Q: Does this always terminate?

- Input: $G = (V, E)$ and $s \in V$
- Output: $\text{CC}(s)$
- Let $R = \{s\}$
- While there exists $\{u, v\} \in E$ such that $u \in R$ and $v \notin R$:
 - Add v to R
- Return R

Q: Does this always terminate?

- Input: $G = (V, E)$ and $s \in V$
- Output: $\text{CC}(s)$
- Let $R = \{s\}$
- While there exists $\{u, v\} \in E$ such that $u \in R$ and $v \notin R$:
 - Add v to R
- Return R

- Yes, in each round we either add a vertex, or we exit. There are only $|V|$ vertices and provided the input is finite, the algorithm must terminate.

Explore Proofs

Claim: $CC(s) \subseteq R$

Proof:

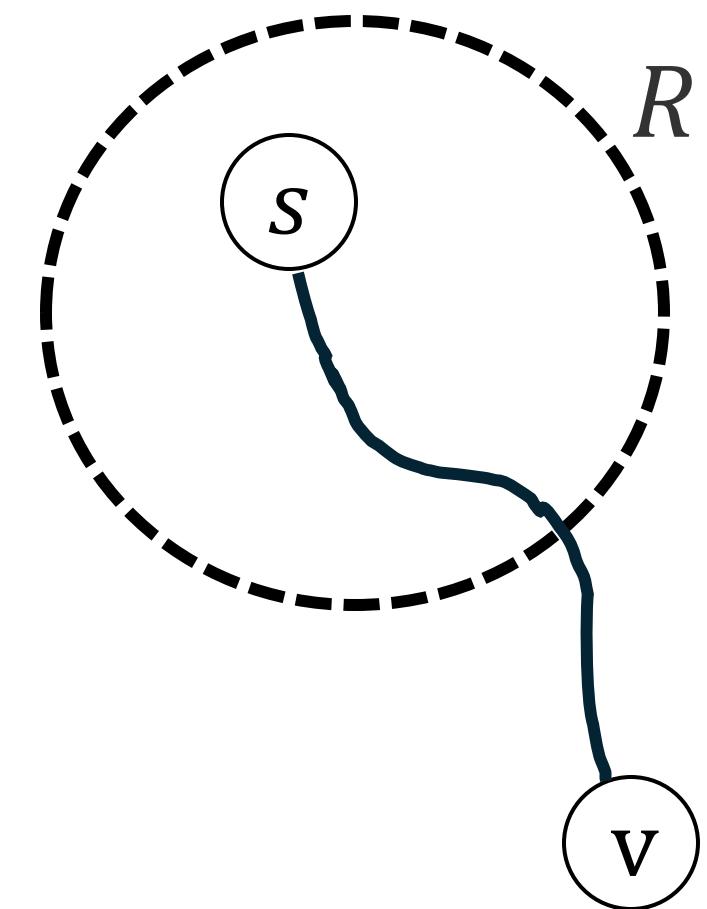
- This says that every vertex in the connected component is added to R by `Explore`.
- That is, for every vertex v such that there is a path from s to v , v is added to R by `Explore`.

Explore Proofs

Claim: $CC(s) \subseteq R$

Proof:

- Suppose to the contrary that there exists $v \in CC(s)$ such that $v \notin R$.
 - Then there must exist a path that starts at s (inside R) and ends at v (outside R).

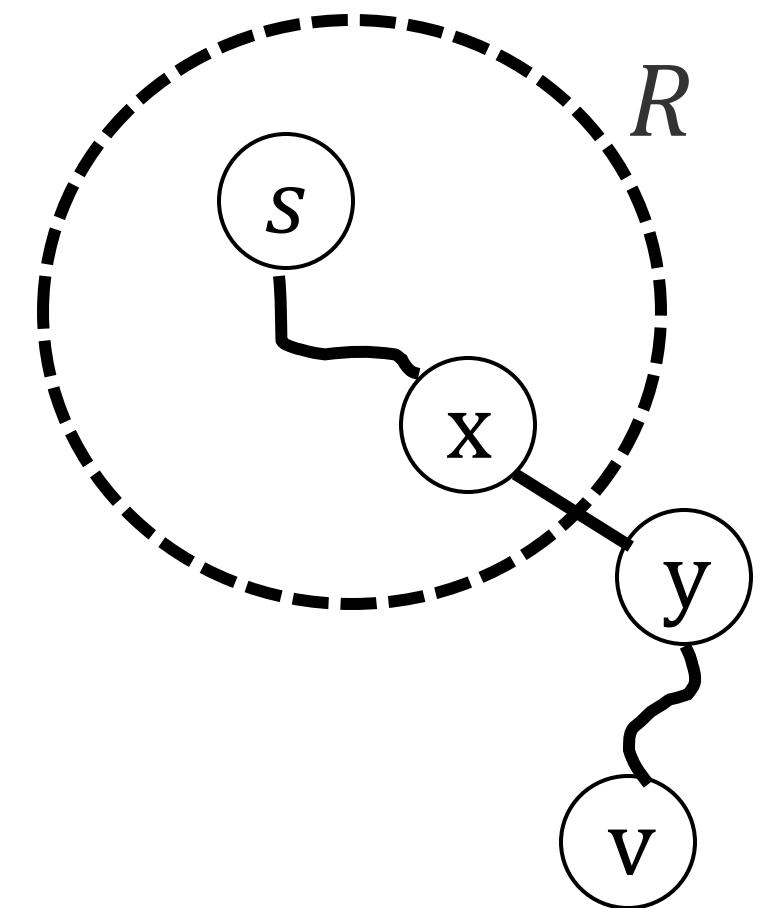


Explore Proofs

Claim: $CC(s) \subseteq R$

Proof:

- There then must exist $\{x, y\} \in E$ such that $x \in R$ and $y \notin R$.



Q: What is wrong with such an $\{x, y\}$ existing?

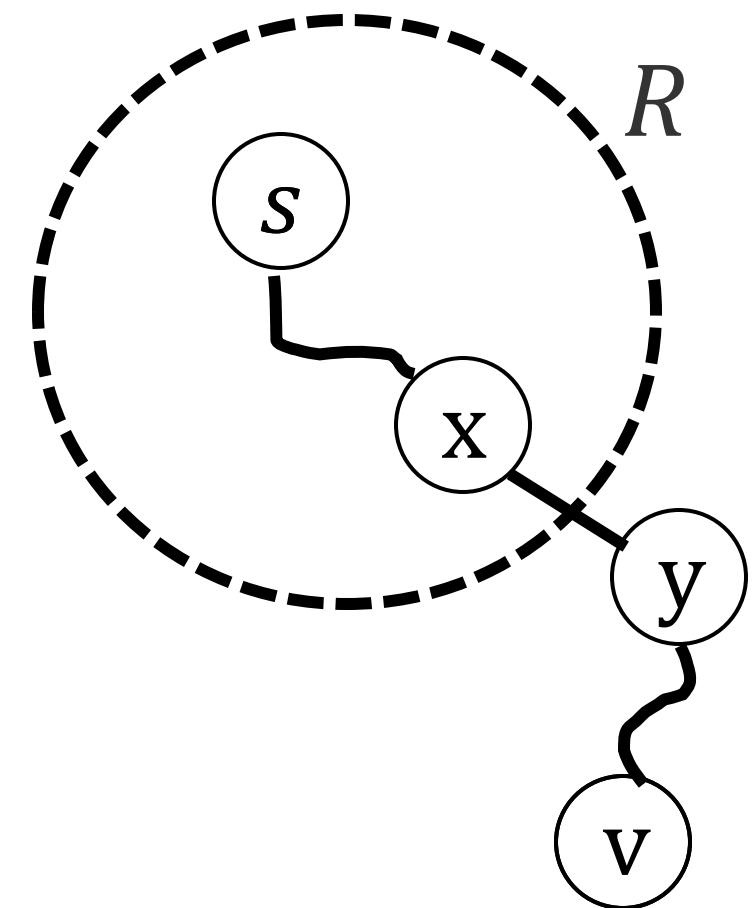
- Input: $G = (V, E)$ and $s \in V$
- Output: $\text{CC}(s)$
- Let $R = \{s\}$
- While there exists $\{u, v\} \in E$ such that $u \in R$ and $v \notin R$:
 - Add v to R
- Return R

Explore Proofs

Claim: $CC(s) \subseteq R$

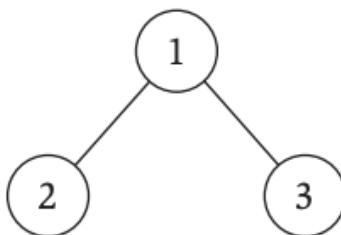
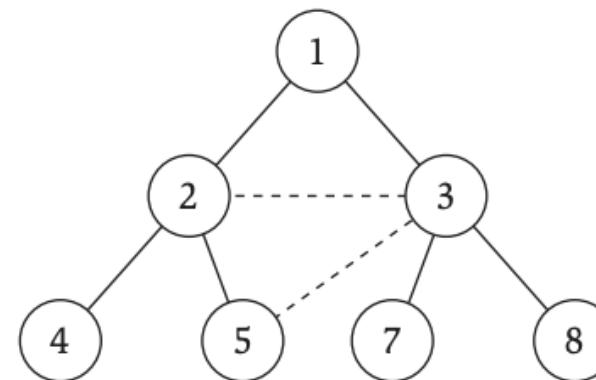
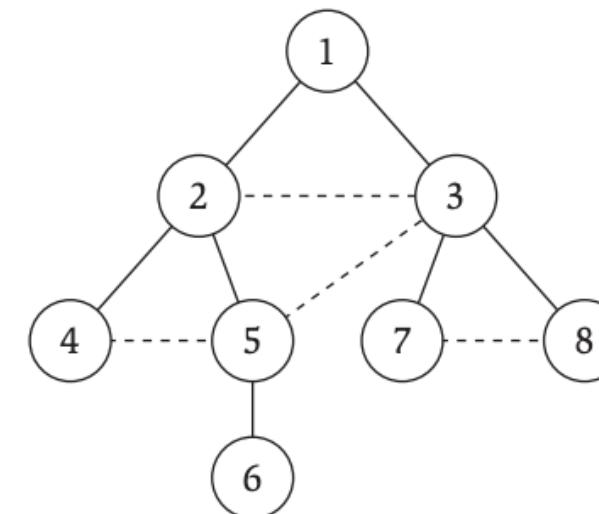
Proof:

- There then must exist $\{x, y\} \in E$ such that $x \in R$ and $y \notin R$.
- If this the case, then the algorithm wouldn't have terminated and would have instead added y . $=><=$



Q: How would you describe BFS?

- $L_0 = s$
- $L_1 = \text{neighbors of } L_0.$
- $L_2 = \text{neighbors of } L_1 \text{ that are not in } L_0.$
- $L_i = \text{neighbors of } L_{i-1} \text{ that are not in previous layer.}$



Depth First Search

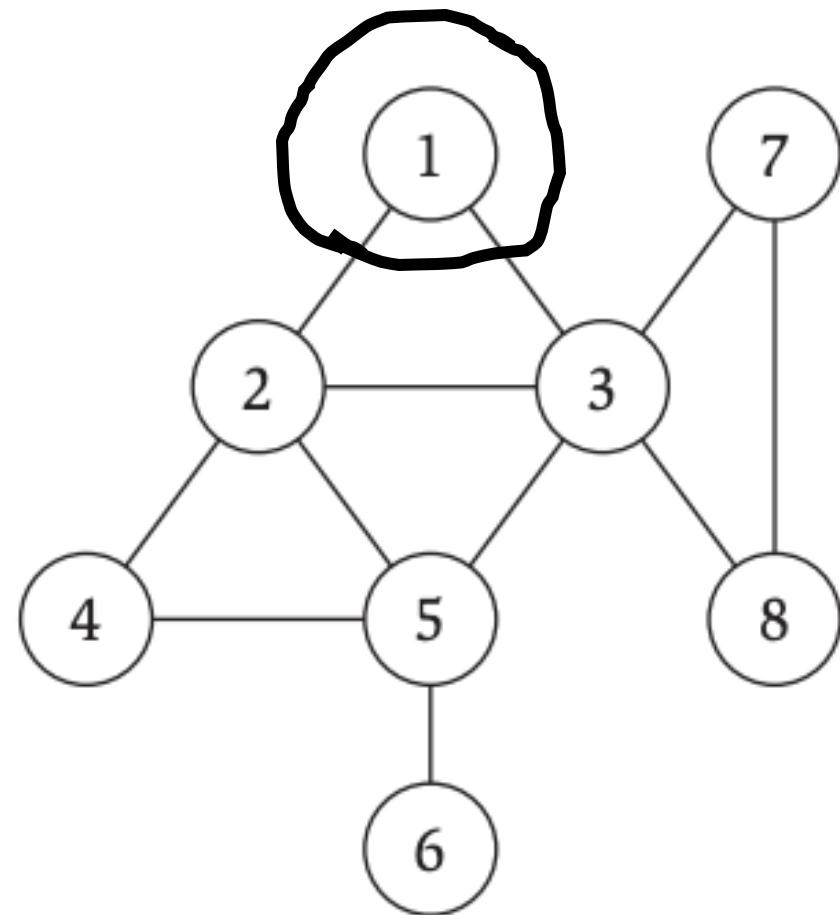
- **Input:** The current vertex $u \in V$
- **Global:** An array of exploration $A \in \{0,1\}^V$
- Mark current vertex as explored ($A[u] = 1$).
- For each $\{u, v\} \in E$:
 - If v is not explored ($A[v] == 0$):
 - $\text{DFS}(v)$

Depth First Search

- **Input:** The current vertex $u \in V$
- **Global:** An array of exploration $A \in \{0,1\}^V$
- Mark current vertex as explored ($A[u] = 1$).
- For each $\{u, v\} \in E$:
 - If v is not explored ($A[v] == 0$):
 - $\text{DFS}(v)$
- **Idea:** You are recursing or “drilling down”. If you get stuck, you go up a step and try the next choice.

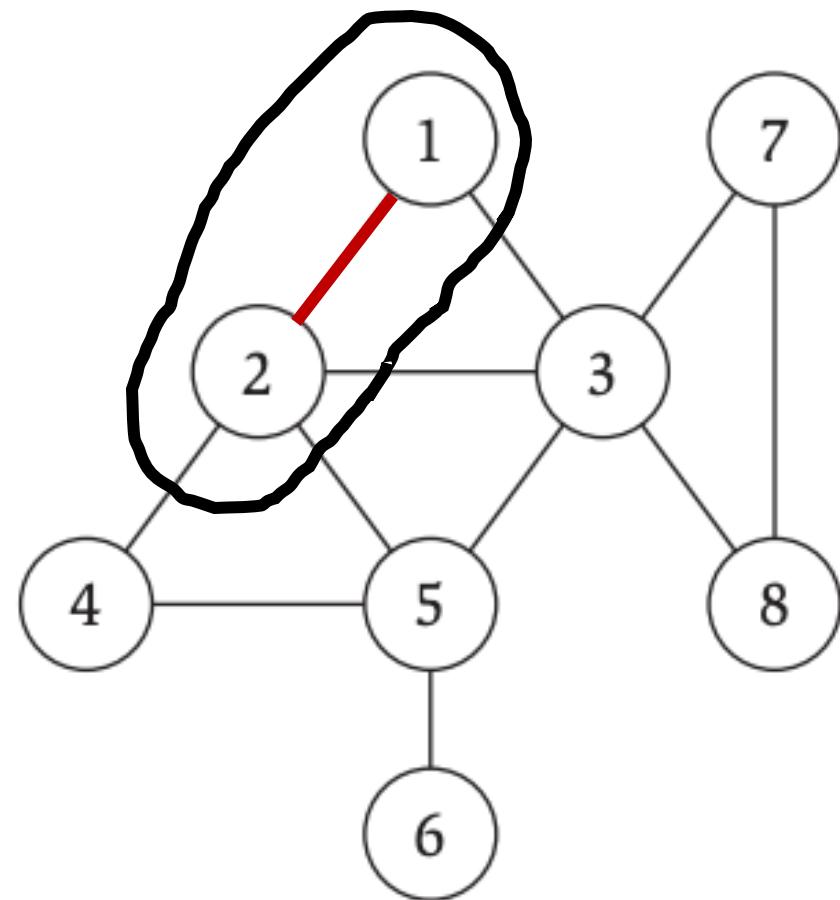
Depth First Search

$A = \{1\}$



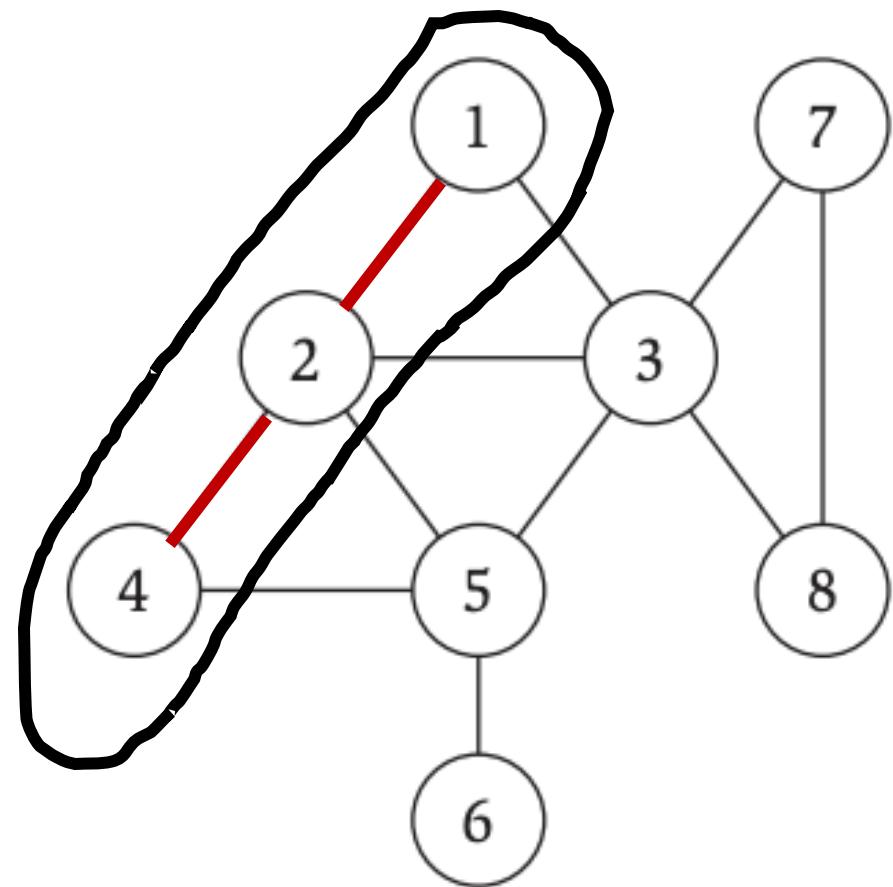
Depth First Search

$$A = \{1, 2\}$$



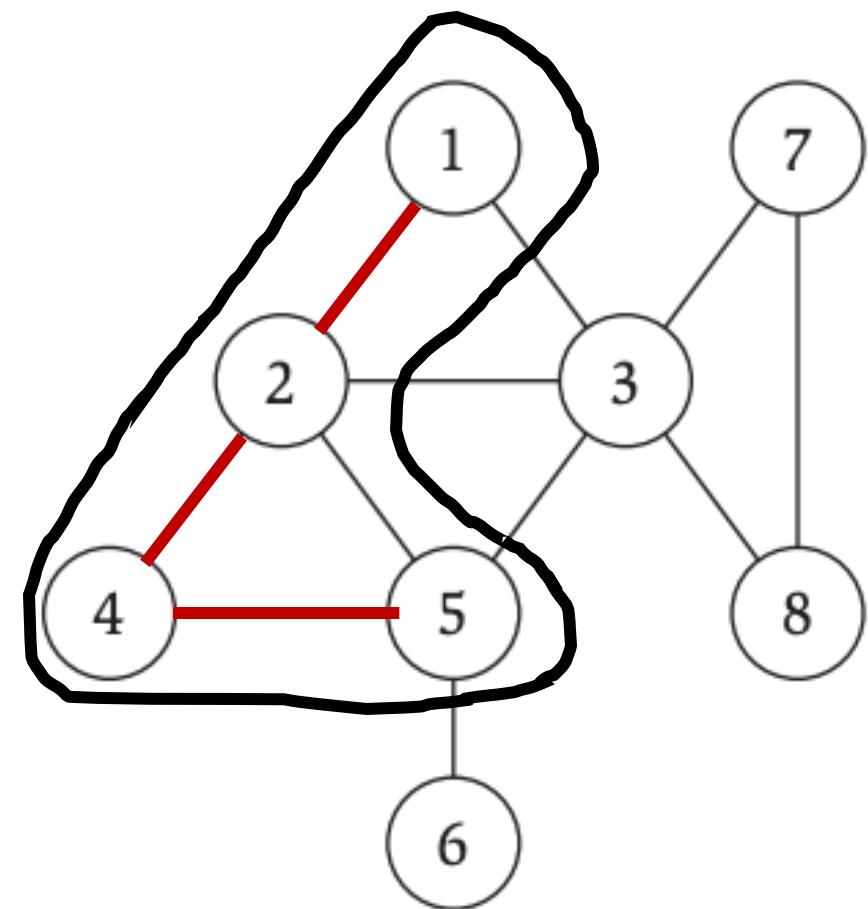
Depth First Search

$A = \{1, 2, 4\}$



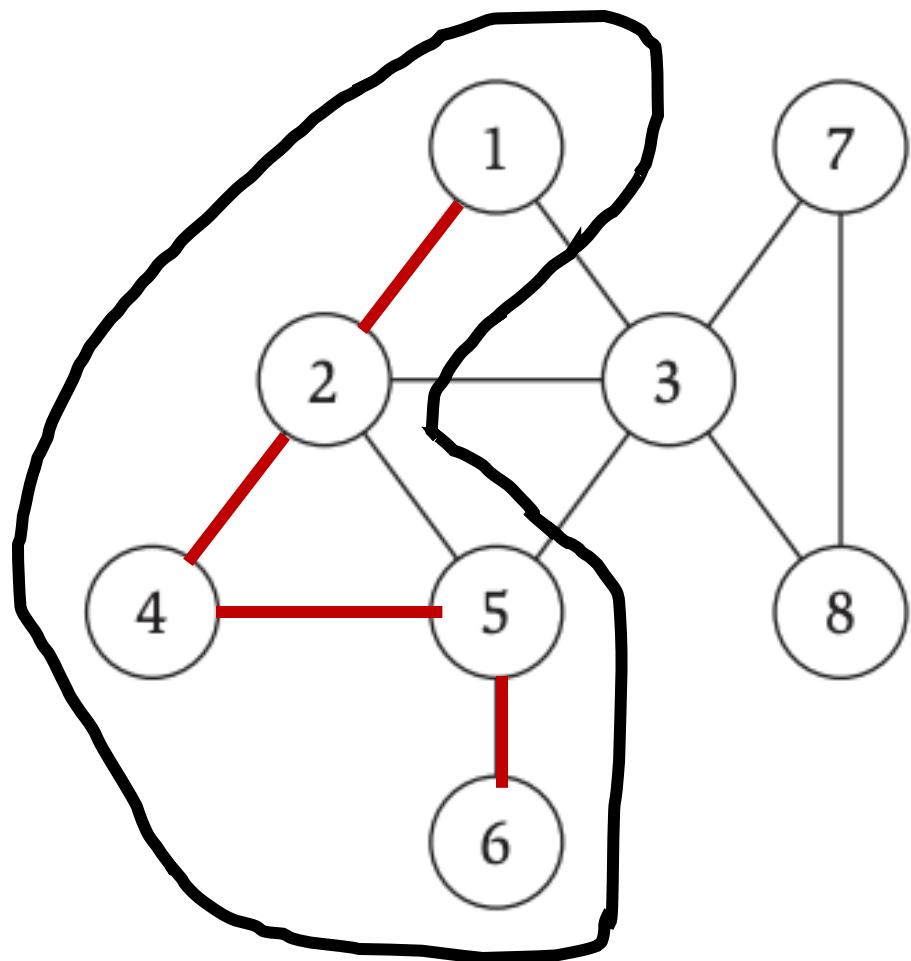
Depth First Search

$A = \{1, 2, 4, 5\}$



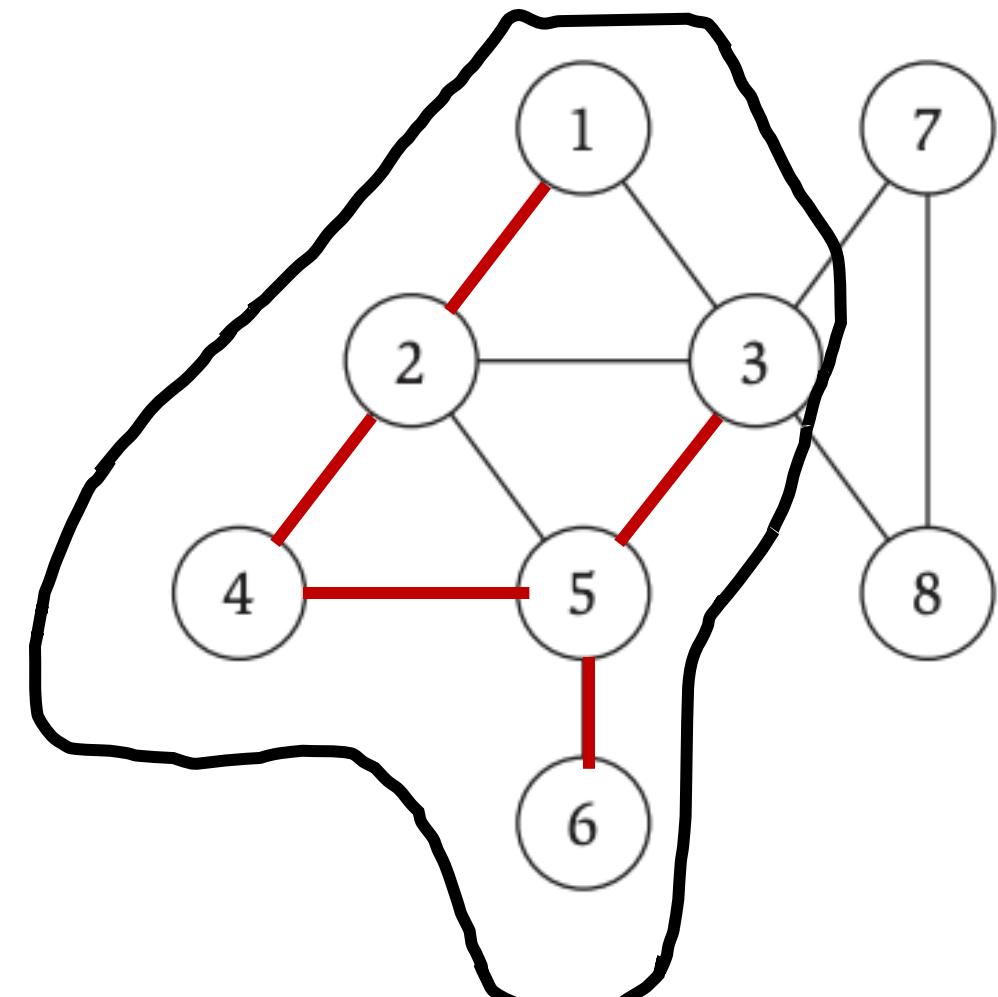
Depth First Search

$A = \{1, 2, 4, 5, 6\}$



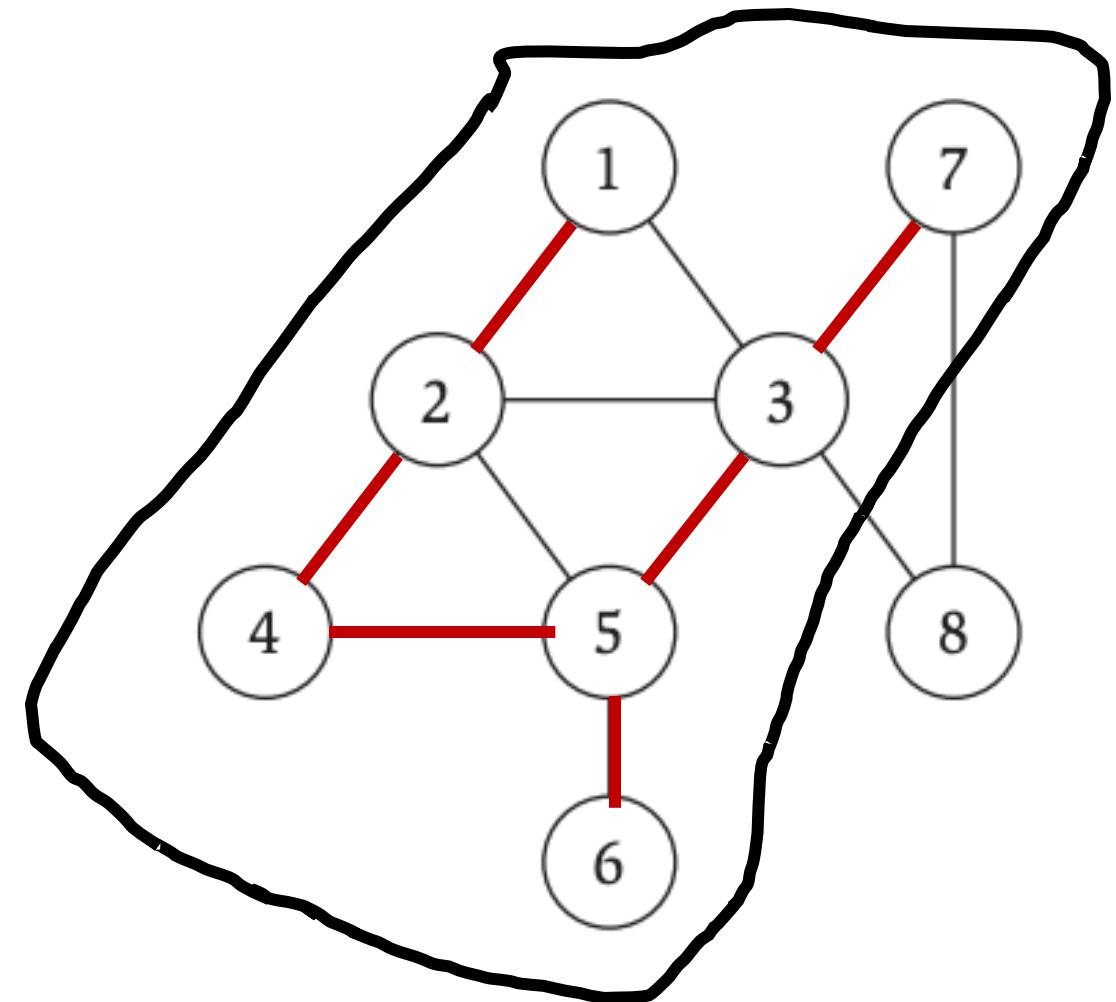
Depth First Search

$A = \{1, 2, 4, 5, 6, 3\}$



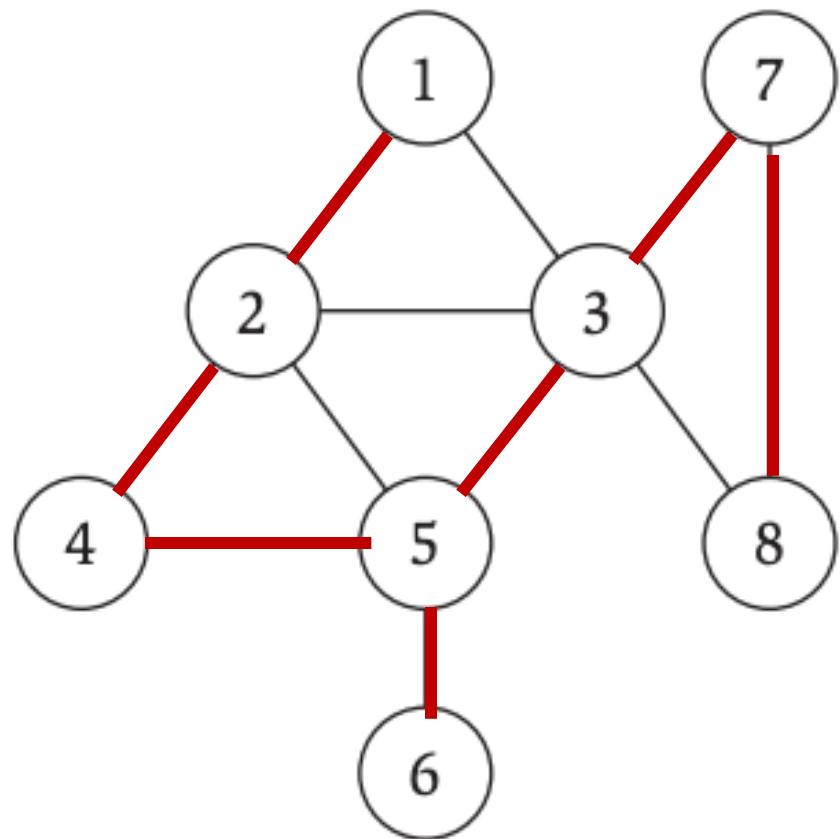
Depth First Search

$A = \{1, 2, 4, 5, 6, 3, 7\}$

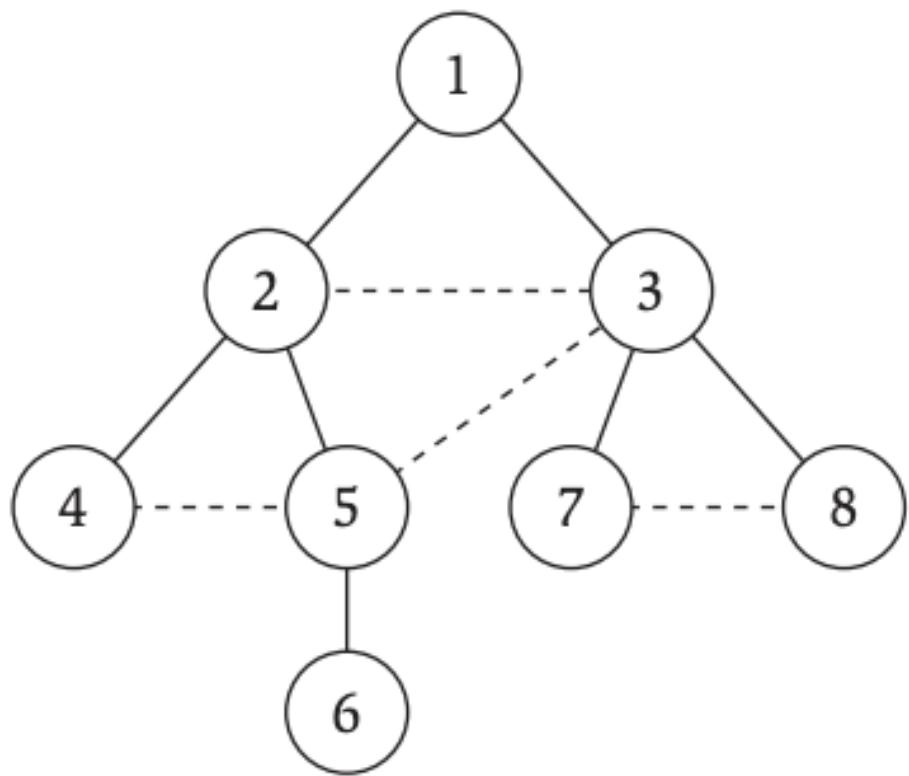
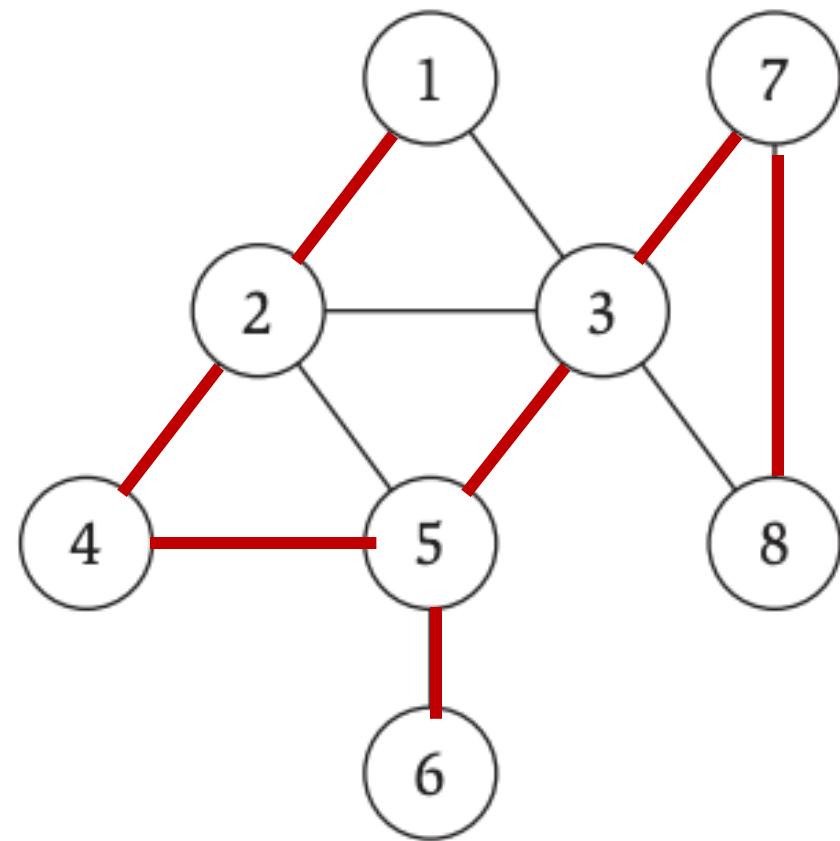


Depth First Search

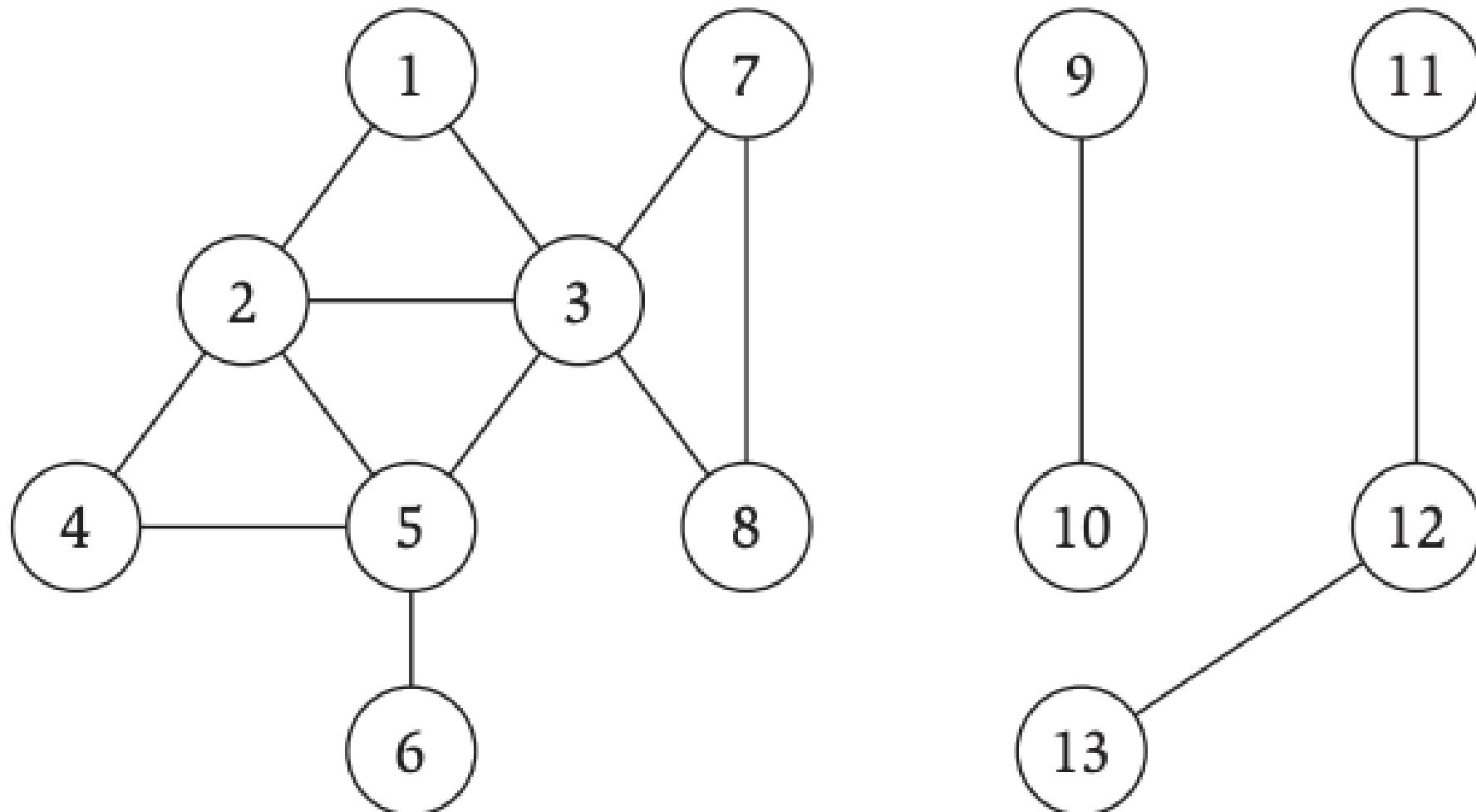
$A = \{1, 2, 4, 5, 6, 3, 7, 8\}$



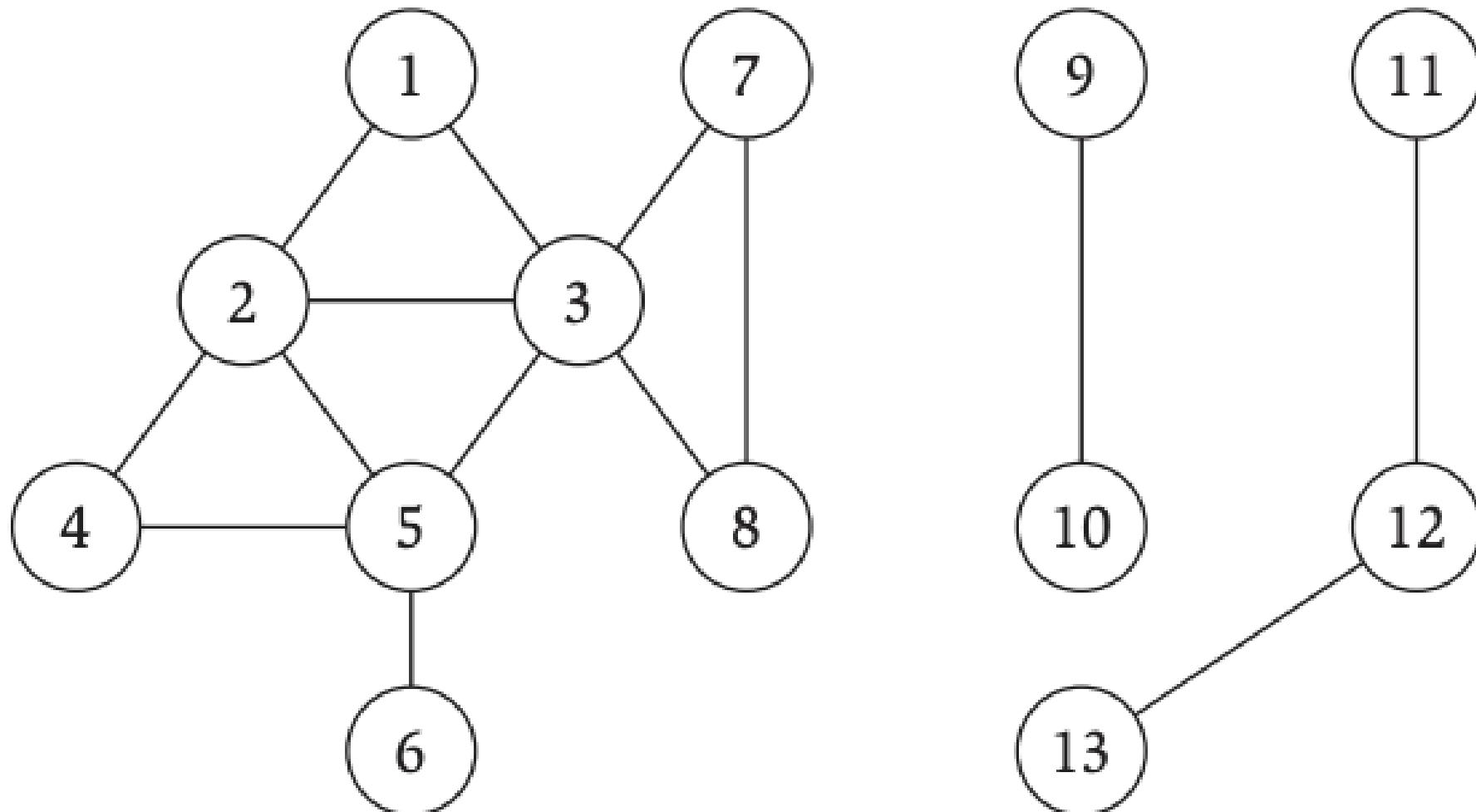
DFS Trees vs BFS Trees



Q: How can you compute all the connected components of a graph?



A: Run Explore on a vertex. Keep track of all visited vertices. Run Explore on unvisited vertex. Stop when everyone is visited.



Q: What is the difference? (DFS vs Explore)

- **Input:** $G = (V, E)$ and $s \in V$
- **Output:** $\text{CC}(s)$
- Let $R = \{s\}$
- While there exists $\{u, v\} \in E$ such that $u \in R$ and $v \notin R$:
 - Add v to R
- Return R

- **Input:** The current vertex $u \in V$
- **Global:** An array $A \in \{0,1\}^V$
- Mark current vertex ($A[u] = 1$).
- For each $\{u, v\} \in E$:
 - If ($A[v] == 0$):
 - $\text{DFS}(v)$

Q: What is the difference? (DFS vs Explore)

- **Input:** $G = (V, E)$ and $s \in V$
- **Output:** $\text{CC}(s)$
- Let $R = \{s\}$
- While there exists $\{u, v\} \in E$ such that $u \in R$ and $v \notin R$:
 - Add v to R
- Return R

- **Input:** The current vertex $u \in V$
- **Global:** An array $A \in \{0,1\}^V$
- Mark current vertex ($A[u] = 1$).
- For each $\{u, v\} \in E$:
 - If ($A[v] == 0$):
 - $\text{DFS}(v)$

DFS is Explore but Explore isn't necessarily DFS!

Adjacency List

Fix a graph $G = (V, E)$. The **adjacency list** of G is a vertex indexed array L of linked lists such that for each $v \in V$, $N[v]$ is a linked list that contains all neighbors of v exactly once.

$N[1] : [2] \rightarrow [3]$

$N[2] : [1] \rightarrow [3] \rightarrow [5] \rightarrow [4]$

$N[3] : [1] \rightarrow [2] \rightarrow [5] \rightarrow [7] \rightarrow [8]$

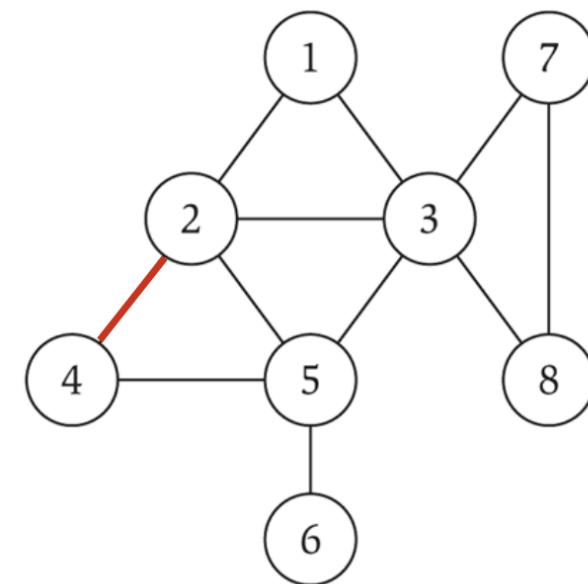
$N[4] : [2] \rightarrow [5]$

$N[5] : [2] \rightarrow [3] \rightarrow [4] \rightarrow [6]$

$N[6] : [5]$

$N[7] : [3] \rightarrow [8]$

$N[8] : [3] \rightarrow [7]$



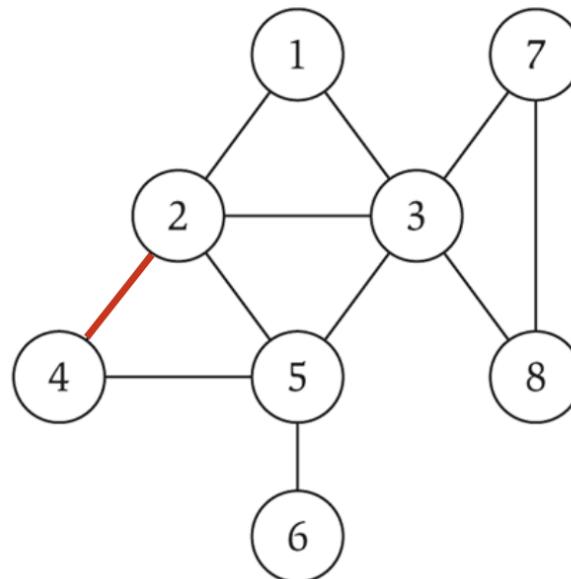
Adjacency List vs Adjacency Matrix

Space:

Lookup:

List Neighbors:

	1	2	3	4	5	6	7	8
1	0	1	1	0	0	0	0	0
2	1	0	1	1	1	0	0	0
3	1	1	0	0	1	0	1	1
4	0	1	0	0	1	0	0	0
5	0	1	1	1	0	1	0	0
6	0	0	0	0	1	0	0	0
7	0	0	1	0	0	0	0	1
8	0	0	1	0	0	0	1	0



Space:

Lookup:

List Neighbors:

$N[1] : [2] \rightarrow [3]$

$N[2] : [1] \rightarrow [3] \rightarrow [5] \rightarrow [4]$

$N[3] : [1] \rightarrow [2] \rightarrow [5] \rightarrow [7] \rightarrow [8]$

$N[4] : [2] \rightarrow [5]$

$N[5] : [2] \rightarrow [3] \rightarrow [4] \rightarrow [6]$

$N[6] : [5]$

$N[7] : [3] \rightarrow [8]$

$N[8] : [3] \rightarrow [7]$

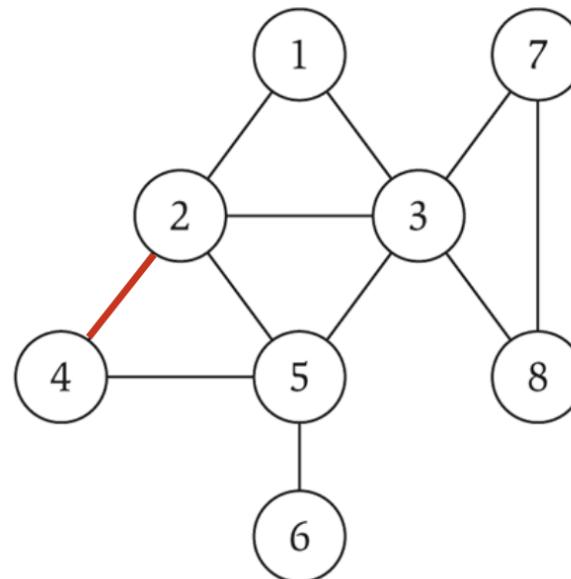
Adjacency List vs Adjacency Matrix

Space: $O(n^2)$

Lookup: $O(1)$

List Neighbors: $O(n)$

	1	2	3	4	5	6	7	8
1	0	1	1	0	0	0	0	0
2	1	0	1	1	1	0	0	0
3	1	1	0	0	1	0	1	1
4	0	1	0	0	1	0	0	0
5	0	1	1	1	0	1	0	0
6	0	0	0	0	1	0	0	0
7	0	0	1	0	0	0	0	1
8	0	0	1	0	0	0	1	0



Space: $O(n + m)$

Lookup: $O(d_u)$

List Neighbors: $O(d_u)$

$N[1] : [2] \rightarrow [3]$

$N[2] : [1] \rightarrow [3] \rightarrow [5] \rightarrow [4]$

$N[3] : [1] \rightarrow [2] \rightarrow [5] \rightarrow [7] \rightarrow [8]$

$N[4] : [2] \rightarrow [5]$

$N[5] : [2] \rightarrow [3] \rightarrow [4] \rightarrow [6]$

$N[6] : [5]$

$N[7] : [3] \rightarrow [8]$

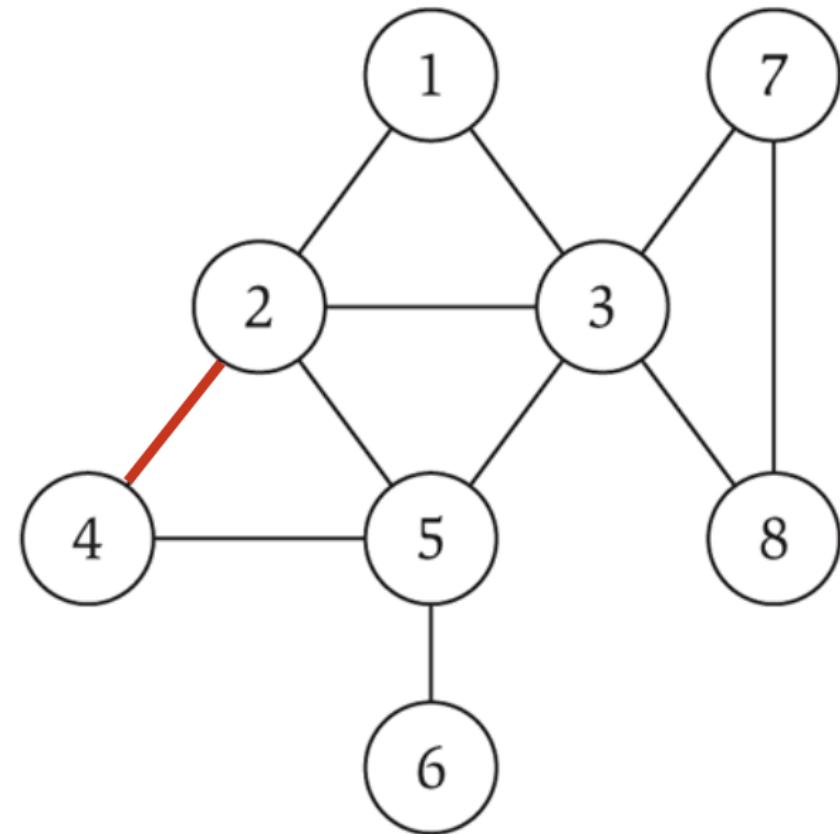
$N[8] : [3] \rightarrow [7]$

Degree Sum Formula or “Handshaking Lemma”

Fix a graph $G = (V, E)$. Say that every vertex $v \in V$ represents a person and two people share an edge if they have shaken hands.

Q1: How many handshakes happened?

Q2: How many times did someone prepare to shake a hand?

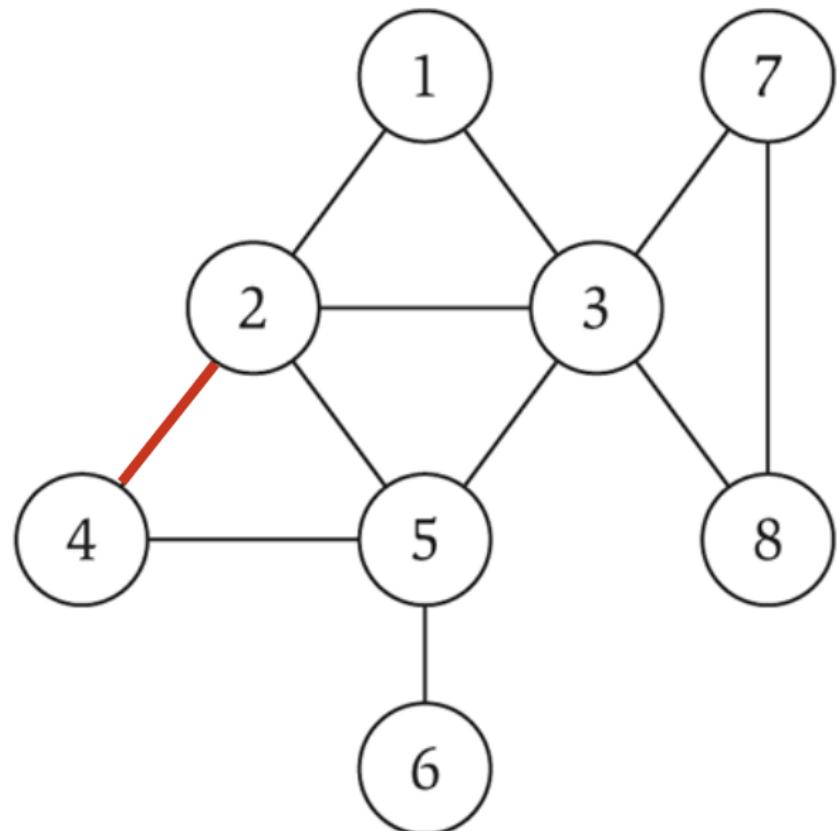


Degree Sum Formula or “Handshaking Lemma”

Fix a graph $G = (V, E)$. Say that every vertex $v \in V$ represents a person and two people share an edge if they have shaken hands.

$$A1: |E|$$

$$A2: \sum_u d_u = 2|E|$$



Q: What is a stack?

- A data structure for maintaining a set of elements.
- We can add and remove elements from the stack in constant time.
- When we remove an element, we get the last element that was added.
- “last-in, first-out” or LIFO

Q: What is Queue?

- A data structure for maintaining a set of elements.
- We can add and remove elements from the stack in constant time.
- When we remove an element, we get the first element that was added (and is still in the set).
 - “first-in, first-out” or FIFO

Stack vs Queue

- Both can be implemented with a (doubly) linked list.
- Let's assume that both implement the remove function to take the first element of the linked list.
- Q: How do we implement the add function for Stack vs Queue?

Stack vs Queue

- Both can be implemented with a (doubly) linked list.
- Let's assume that both implement the remove function to take the first element of the linked list.
- A: For a Stack we insert at the front and for a Queue we insert at the end.

Breadth First Search

- **Input:** $G = (V, E)$ and $s \in V$
- **Output:** BFS Tree
- Let $L_0 = \{s\}$
- Assume L_0, \dots, L_i have been constructed:
 - Let L_{i+1} be nodes do not appear in L_0, \dots, L_i and have an edge to L_i .
 - If L_{i+1} is empty, stop.
- Return all layers.

A more specific BFS

BFS(s) :

 Initialize Discovered to be a node index array of false

 Set Discovered[s] = true

 Initialize L[0] to be a linked list with one element s

 Initialize i to be 0

 While L[i] is not empty:

 Initialize L[i+1] to be empty linked list

 For u in L[i]:

 For each edge (u, v) incident to u:

 If Discovered[v] = false:

 Set Discovered[u] = true

 Add v to L[i+1]

 ++i

Q: What is the runtime?

BFS(s) :

 Initialize Discovered to be a node index array of false

 Set Discovered[s] = true

 Initialize L[0] to be a linked list with one element s

 Initialize i to be 0

 While L[i] is not empty:

 Initialize L[i+1] to be empty linked list

 For u in L[i]:

 For each edge (u, v) incident to u:

 If Discovered[v] = false:

 Set Discovered[u] = true

 Add v to L[i+1]

 ++i

Q: What is the runtime?

BFS(s) :

O(n) Initialize Discovered to be a node index array of false

Set Discovered[s] = true

Initialize L[0] to be a linked list with one element s

Initialize i to be 0

While L[i] is not empty:

 Initialize L[i+1] to be empty linked list

 For u in L[i]:

 For each edge (u, v) incident to u:

 If Discovered[v] = false:

 Set Discovered[u] = true

 Add v to L[i+1]

 ++i

Q: What is the runtime?

BFS(s) :

O(n) Initialize Discovered to be a node index array of false

O(1) Set Discovered[s] = true

Initialize L[0] to be a linked list with one element s

Initialize i to be 0

While L[i] is not empty:

 Initialize L[i+1] to be empty linked list

 For u in L[i]:

 For each edge (u, v) incident to u:

 If Discovered[v] = false:

 Set Discovered[u] = true

 Add v to L[i+1]

 ++i

Q: What is the runtime?

BFS(s) :

O(n) Initialize Discovered to be a node index array of false

O(1) Set Discovered[s] = true

O(1) Initialize L[0] to be a linked list with one element s

Initialize i to be 0

While L[i] is not empty:

 Initialize L[i+1] to be empty linked list

 For u in L[i]:

 For each edge (u, v) incident to u:

 If Discovered[v] = false:

 Set Discovered[u] = true

 Add v to L[i+1]

 ++i

Q: What is the runtime?

BFS(s) :

O(n) Initialize Discovered to be a node index array of false

O(1) Set Discovered[s] = true

O(1) Initialize L[0] to be a linked list with one element s

O(1) Initialize i to be 0

While L[i] is not empty:

 Initialize L[i+1] to be empty linked list

 For u in L[i]:

 For each edge (u, v) incident to u:

 If Discovered[v] = false:

 Set Discovered[u] = true

 Add v to L[i+1]

 ++i

Q: What is the runtime?

BFS(s) :

O(n) Initialize Discovered to be a node index array of false

O(1) Set Discovered[s] = true

O(1) Initialize L[0] to be a linked list with one element s

O(1) Initialize i to be 0

While L[i] is not empty: **Q: How many times does this loop run?**

 Initialize L[i+1] to be empty linked list

 For u in L[i] :

 For each edge (u, v) incident to u:

 If Discovered[v] = false:

 Set Discovered[u] = true

 Add v to L[i+1]

 ++i

Q: What is the runtime?

BFS(s) :

O(n) Initialize Discovered to be a node index array of false

O(1) Set Discovered[s] = true

O(1) Initialize L[0] to be a linked list with one element s

O(1) Initialize i to be 0

While L[i] is not empty: **A: $|\bigcup_i L_i| \leq n$**

 Initialize L[i+1] to be empty linked list

 For u in L[i] :

 For each edge (u, v) incident to u:

 If Discovered[v] = false:

 Set Discovered[u] = true

 Add v to L[i+1]

 ++i

Q: What is the runtime?

BFS(s) :

O(n) Initialize Discovered to be a node index array of false

O(1) Set Discovered[s] = true

O(1) Initialize L[0] to be a linked list with one element s

O(1) Initialize i to be 0

O(n) While L[i] is not empty:

 Initialize L[i+1] to be empty linked list **Q: How many layers max?**

 For u in L[i] :

 For each edge (u, v) incident to u:

 If Discovered[v] = false:

 Set Discovered[u] = true

 Add v to L[i+1]

 ++i

Q: What is the runtime?

BFS(s) :

O(n) Initialize Discovered to be a node index array of false

O(1) Set Discovered[s] = true

O(1) Initialize L[0] to be a linked list with one element s

O(1) Initialize i to be 0

O(n) While L[i] is not empty:

O(n) Initialize L[i+1] to be empty linked list **A: One for each vertex.**

For u in L[i] :

For each edge (u, v) incident to u:

If Discovered[v] = false:

Set Discovered[u] = true

Add v to L[i+1]

++i

Q: What is the runtime?

BFS(s) :

O(n) Initialize Discovered to be a node index array of false

O(1) Set Discovered[s] = true

O(1) Initialize L[0] to be a linked list with one element s

O(1) Initialize i to be 0

O(n) While L[i] is not empty:

O(n) Initialize L[i+1] to be empty linked list

For u in L[i]: **Q: How many times does this loop run?**

For each edge (u, v) incident to u:

If Discovered[v] = false:

Set Discovered[u] = true

Add v to L[i+1]

++i

Q: What is the runtime?

BFS(s) :

O(n) Initialize Discovered to be a node index array of false

O(1) Set Discovered[s] = true

O(1) Initialize L[0] to be a linked list with one element s

O(1) Initialize i to be 0

O(n) While L[i] is not empty:

O(n) Initialize L[i+1] to be empty linked list

O(n) For u in L[i]: **A: $|U_i L_i| \leq n$**

 For each edge (u, v) incident to u:

 If Discovered[v] = false:

 Set Discovered[v] = true

 Add v to L[i+1]

 ++i

Q: What is the runtime?

BFS(s) :

O(n) Initialize Discovered to be a node index array of false

O(1) Set Discovered[s] = true

O(1) Initialize L[0] to be a linked list with one element s

O(1) Initialize i to be 0

O(n) While L[i] is not empty:

O(n) Initialize L[i+1] to be empty linked list

O(n) For u in L[i]:

For each edge (u, v) incident to u: **Q: How do we do this?**

If Discovered[v] = false:

Set Discovered[u] = true

Add v to L[i+1]

++i

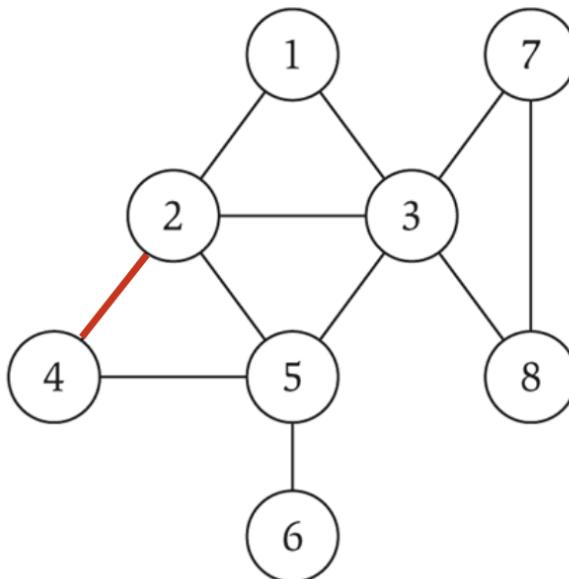
Q: Which should we use?

Space: $O(n^2)$

Lookup: $O(1)$

List Neighbors: $O(n)$

	1	2	3	4	5	6	7	8
1	0	1	1	0	0	0	0	0
2	1	0	1	1	1	0	0	0
3	1	1	0	0	1	0	1	1
4	0	1	0	0	1	0	0	0
5	0	1	1	1	0	1	0	0
6	0	0	0	0	1	0	0	0
7	0	0	1	0	0	0	0	1
8	0	0	1	0	0	0	1	0



Space: $O(n + m)$

Lookup: $O(d_u)$

List Neighbors: $O(d_u)$

$N[1] : [2] \rightarrow [3]$

$N[2] : [1] \rightarrow [3] \rightarrow [5] \rightarrow [4]$

$N[3] : [1] \rightarrow [2] \rightarrow [5] \rightarrow [7] \rightarrow [8]$

$N[4] : [2] \rightarrow [5]$

$N[5] : [2] \rightarrow [3] \rightarrow [4] \rightarrow [6]$

$N[6] : [5]$

$N[7] : [3] \rightarrow [8]$

$N[8] : [3] \rightarrow [7]$

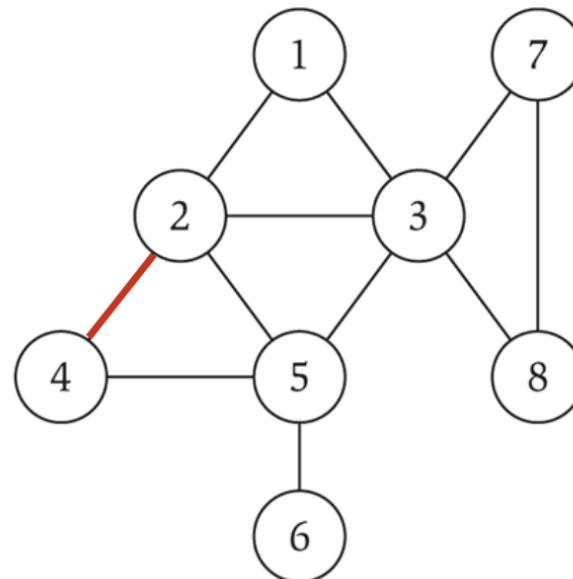
Adjacency List vs Adjacency Matrix

Space: $O(n^2)$

Lookup: $O(1)$

List Neighbors: $O(n)$

	1	2	3	4	5	6	7	8
1	0	1	1	0	0	0	0	0
2	1	0	1	1	1	0	0	0
3	1	1	0	0	1	0	1	1
4	0	1	0	0	1	0	0	0
5	0	1	1	1	0	1	0	0
6	0	0	0	0	1	0	0	0
7	0	0	1	0	0	0	0	1
8	0	0	1	0	0	0	1	0



Space: $O(n + m)$

Lookup: $O(d_u)$

List Neighbors: $O(d_u)$

$N[1] : [2] \rightarrow [3]$

$N[2] : [1] \rightarrow [3] \rightarrow [5] \rightarrow [4]$

$N[3] : [1] \rightarrow [2] \rightarrow [5] \rightarrow [7] \rightarrow [8]$

$N[4] : [2] \rightarrow [5]$

$N[5] : [2] \rightarrow [3] \rightarrow [4] \rightarrow [6]$

$N[6] : [5]$

$N[7] : [3] \rightarrow [8]$

$N[8] : [3] \rightarrow [7]$

Q: What is the runtime?

BFS(s) :

O(n) Initialize Discovered to be a node index array of false

O(1) Set Discovered[s] = true

O(1) Initialize L[0] to be a linked list with one element s

O(1) Initialize i to be 0

O(n) While L[i] is not empty:

O(n) Initialize L[i+1] to be empty linked list

O(n) For u in L[i]:

For each edge (u, v) incident to u: **A: Linked List**

If Discovered[v] = false:

Set Discovered[u] = true

Add v to L[i+1]

++i

Q: What is the runtime?

BFS(s) :

O(n) Initialize Discovered to be a node index array of false

O(1) Set Discovered[s] = true

O(1) Initialize L[0] to be a linked list with one element s

O(1) Initialize i to be 0

O(n) While L[i] is not empty:

O(n) Initialize L[i+1] to be empty linked list

O(n) For u in L[i]:

O(d_u) For each edge (u, v) incident to u:

 If Discovered[v] = false:

 Set Discovered[u] = true

 Add v to L[i+1]

 ++i

Q: How many times does this loop run for u?

Q: What is the runtime?

BFS(s) :

$O(n)$ Initialize Discovered to be a node index array of false

$O(1)$ Set Discovered[s] = true

$O(1)$ Initialize $L[0]$ to be a linked list with one element s

$O(1)$ Initialize i to be 0

$O(n)$ While $L[i]$ is not empty:

$O(n)$ Initialize $L[i+1]$ to be empty linked list

$O(n)$ For u in $L[i]$:

For each edge (u, v) incident to u: **A: One time for each u!**

If $\text{Discovered}[v] = \text{false}$:

Set $\text{Discovered}[u] = \text{true}$

Add v to $L[i+1]$

$++i$

Q: What is the runtime?

BFS(s) :

O(n) Initialize Discovered to be a node index array of false

O(1) Set Discovered[s] = true

O(1) Initialize L[0] to be a linked list with one element s

O(1) Initialize i to be 0

O(n) While L[i] is not empty:

O(n) Initialize L[i+1] to be empty linked list

O(n) For u in L[i]:

 For each edge (u, v) incident to u:

 If Discovered[v] = false:

 Set Discovered[u] = true

 Add v to L[i+1]

 ++i

Q: What is the runtime?

BFS(s) :

- O(n)** Initialize Discovered to be a node index array of false
- O(1)** Set Discovered[s] = true
- O(1)** Initialize L[0] to be a linked list with one element s
- O(1)** Initialize i to be 0
- O(n)** While L[i] is not empty:
 - O(n)** Initialize L[i+1] to be empty linked list
 - O(n)** For u in L[i]:
 - For each edge (u, v) incident to u:
 - O(1)** If Discovered[v] = false:
 - O(1)** Set Discovered[u] = true
 - O(1)** Add v to L[i+1]
 - O(1)** ++i

Q: What is the runtime?

BFS(s) :

$O(n)$ Initialize Discovered to be a node index array of false

$O(1)$ Set Discovered[s] = true

$O(1)$ Initialize L[0] to be a linked list with one element s

$O(1)$ Initialize i to be 0

$O(n)$ While L[i] is not empty:

$O(n)$ Initialize L[i+1] to be empty linked list

$O(n)$ For u in L[i]:

$O(m)$ For each edge (u, v) incident to u:

$O(m)$ If Discovered[v] = false:

$O(m)$ Set Discovered[u] = true

$O(m)$ Add v to L[i+1]

$O(n)$ ++i

Q: What is the runtime? $O(n + m)$

BFS(s) :

$O(n)$ Initialize Discovered to be a node index array of false

$O(1)$ Set Discovered[s] = true

$O(1)$ Initialize L[0] to be a linked list with one element s

$O(1)$ Initialize i to be 0

$O(n)$ While L[i] is not empty:

$O(n)$ Initialize L[i+1] to be empty linked list

$O(n)$ For u in L[i]:

$O(m)$ For each edge (u, v) incident to u:

$O(m)$ If Discovered[v] = false:

$O(m)$ Set Discovered[u] = true

$O(m)$ Add v to L[i+1]

$O(n)$ ++i

Q: What if I use a matrix?

BFS(s) :

 Initialize Discovered to be a node index array of false

 Set Discovered[s] = true

 Initialize L[0] to be a linked list with one element s

 Initialize i to be 0

 While L[i] is not empty:

 Initialize L[i+1] to be empty linked list

 For u in L[i]:

 For each edge (u, v) incident to u:

 If Discovered[v] = false:

 Set Discovered[u] = true

 Add v to L[i+1]

 ++i

Q: What if I use a matrix? $O(n^2)$

BFS(s) :

 Initialize Discovered to be a node index array of false

 Set Discovered[s] = true

 Initialize L[0] to be a linked list with one element s

 Initialize i to be 0

 While L[i] is not empty:

 Initialize L[i+1] to be empty linked list

 For u in L[i]:

 For each edge (u, v) incident to u:

 If Discovered[v] = false:

 Set Discovered[u] = true

 Add v to L[i+1]

 ++i

$O(n^2)$

$O(n^2)$

$O(n^2)$

$O(n^2)$

A New BFS

BFS(s) :

 Initialize Discovered to be a node index array of false

 Set Discovered[s] = true

 Initialize Q to be a Queue with one element s

 While Q is not empty:

 u = Q.dequeue()

 For each edge (u, v) incident to u:

 If Discovered[v] = false:

 Set Discovered[u] = true

 Add v to Q

 ++i

Q: What is the runtime? (Assume Linked List)

BFS(s) :

 Initialize Discovered to be a node index array of false

 Set Discovered[s] = true

 Initialize Q to be a Queue with one element s

 While Q is not empty:

 u = Q.dequeue()

 For each edge (u, v) incident to u:

 If Discovered[v] = false:

 Set Discovered[u] = true

 Add v to Q

 ++i

Q: What is the runtime? $O(m+n)$

BFS(s) :

 Initialize Discovered to be a node index array of false

 Set Discovered[s] = true

 Initialize Q to be a Queue with one element s

 While Q is not empty:

 u = Q.dequeue()

 For each edge (u, v) incident to u:

 If Discovered[v] = false:

 Set Discovered[u] = true

 Add v to Q

 ++i

Q: What if we change the queue to a stack?

???(s) :

 Initialize Explored to be a node index array of false

 Set Explored[s] = true

 Initialize Q to be a **Stack** with one element s

 While Q is not empty:

 u = Q.remove()

 If Explored[u] = false:

 For each edge (u, v) incident to u:

 Add v to Q

 ++i

A: We DFS

DFSs):

Initialize Explored to be a node index array of false

Set Explored[s] = true

Initialize Q to be a **Stack** with one element s

While Q is not empty:

 u = Q.remove()

 If Explored[u] = false:

 For each edge (u, v) incident to u:

 Add v to Q

 ++i

Q: What is the runtime of DFS?

DFSs) :

Initialize `Explored` to be a node index array of `false`

Set `Explored[s] = true`

Initialize `Q` to be a **Stack** with one element `s`

While `Q` is not empty:

`u = Q.remove()`

 If `Explored[u] = false`:

 For each edge (u, v) incident to `u`:

 Add `v` to `Q`

`++i`

Q: What is the runtime of DFS? $O(m+n)$

DFSs) :

Initialize `Explored` to be a node index array of `false`

Set `Explored[s]` = `true`

Initialize `Q` to be a **Stack** with one element `s`

While `Q` is not empty: **Q: How many times does this loop run for u?**

`u = Q.remove()`

 If `Explored[u]` = `false`:

 For each edge (u, v) incident to `u`:

 Add `v` to `Q`

`++i`

Q: What is the runtime of DFS? $O(m+n)$

DFSs) :

Initialize Explored to be a node index array of false

Set Explored[s] = true

Initialize Q to be a **Stack** with one element s

While Q is not empty: **A: At most once for each edge**

 u = Q.remove()

 If Explored[u] = false:

 For each edge (u, v) incident to u:

 Add v to Q

 ++i

Problem: Bipartite Graph

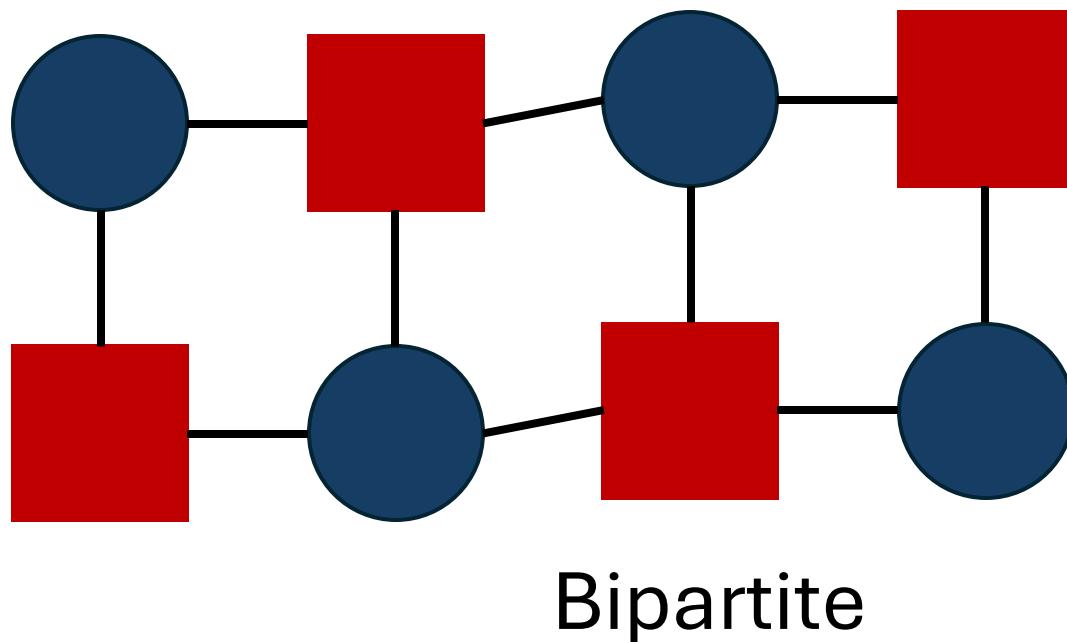
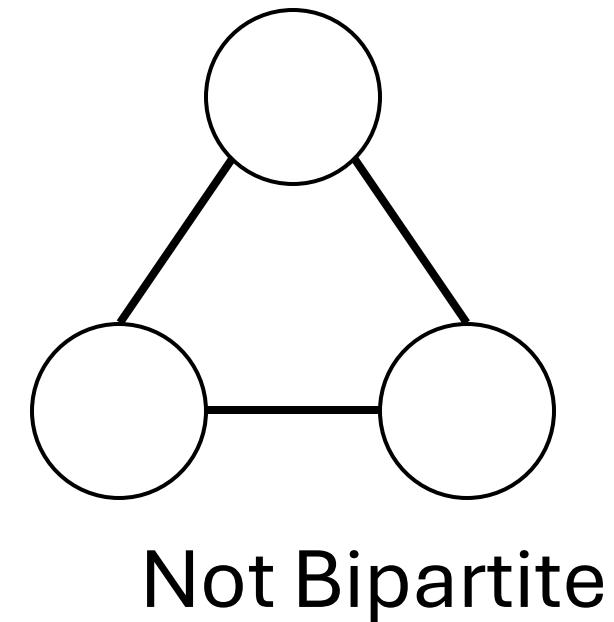
Input: A graph $G = (V, E)$

Output: True if G is bipartite and False otherwise.

Def: We say that a graph is bipartite if we can partition the vertices V into two groups L and R such that each edge has one endpoint in L and the other endpoint in R .

Problem: Bipartite Graph

Def: We say that a graph is bipartite if we can partition the vertices V into two groups L and R such that each edge has one endpoint in L and the other endpoint in R .



Problem: Bipartite Graph

Input: A graph $G = (V, E)$

Output: True if G is bipartite and False otherwise.

Algorithm Ideas:

Problem: Bipartite Graph

Input: A graph $G = (V, E)$

Output: True if G is bipartite and False otherwise.

Algorithm Ideas: We will find the layering produced by BFS and color odd levels Red and even layers Blue.

Q: When will this fail?

Problem: Bipartite Graph

Input: A graph $G = (V, E)$

Output: True if G is bipartite and False otherwise.

Algorithm Ideas: We will find the layering produced by BFS and color odd levels Red and even layers Blue. This will fail if there is a cross edge in one of the layers.

Q: What does this imply?

Problem: Bipartite Graph

Input: A graph $G = (V, E)$

Output: True if G is bipartite and False otherwise.

Algorithm Ideas: We will find the layering produced by BFS and color odd levels Red and even layers Blue. This will fail if there is a cross edge in one of the layers. This implies there is an odd cycle in the graph.

Q: Is that a problem?

Problem: Bipartite Graph

Input: A graph $G = (V, E)$

Output: True if G is bipartite and False otherwise.

Algorithm Ideas: We will find the layering produced by BFS and color odd levels Red and even layers Blue. This will fail if there is a cross edge in one of the layers. This implies there is an odd cycle in the graph. We can show that a graph is not bipartite if it contains an odd cycle.