
CSE 331:
Algorithms & Complexity

Prof. Charlie Anne Carlson (She/Her)
Lecture 12

Wednesday September 24th, 2025

“More BFS and DFS”

Schedule

1.Course Updates
2.Graph Traversal

1.BFS
2.DFS
3.Stacks & Queues

3.Coloring

Course Updates

• HW 1 Grading Out
• HW 2 Solutions Out Soon
• HW 3 Out
• Group Project

• Team Emails Soon
• No Autolab Registration

• First Quiz NEXT Monday!
• Sample Midterms

Q: How do we show this solves Connectivity?

• Input: 𝐺 = (𝑉, 𝐸) and 𝑠 ∈ 𝑉

• Output: CC(s)
• Let R = {s}

• While there exists {u, v} ∈ E
such that u ∈ R and 𝑣 ∉ 𝑅:

• Add v to 𝑅
• Return R

Q: How do we show this solves Connectivity?

• Input: 𝐺 = (𝑉, 𝐸) and 𝑠 ∈ 𝑉

• Output: CC(s)
• Let R = {s}

• While there exists {u, v} ∈ E
such that u ∈ R and 𝑣 ∉ 𝑅:

• Add v to 𝑅
• Return R

• Argue that R = CC(s)!
• Show 𝑹 ⊆ 𝑪𝑪(𝒔)

• Show 𝑪𝑪(𝒔) ⊆ 𝑹

Breadth First Search (Properties)

Claim: R ⊆ CC(s)

Proof Idea:
• This wants us to show that everything reached by Explore

is in the connected component of s.
• Let’s do induction on iteration of the algorithm.

• Do you believe the first iteration.
• Given any iteration is true, how do you feel about the

next iteration?

Q: Does this always terminate?

• Input: 𝐺 = (𝑉, 𝐸) and 𝑠 ∈ 𝑉

• Output: CC(s)
• Let R = {s}

• While there exists {u, v} ∈ E
such that u ∈ R and 𝑣 ∉ 𝑅:

• Add v to 𝑅
• Return R

Q: Does this always terminate?

• Input: 𝐺 = (𝑉, 𝐸) and 𝑠 ∈ 𝑉

• Output: CC(s)
• Let R = {s}

• While there exists {u, v} ∈ E
such that u ∈ R and 𝑣 ∉ 𝑅:

• Add v to 𝑅
• Return R

• Yes, in each round we either
add a vertex, or we exit.
There are only |V| vertices
and show provided the
input is finite, the algorithm
must terminate.

Explore Proofs

Claim: CC(s) ⊆ R

Proof:
• This says that every vertex in the connected component

is added to R by Explore.
• That is, for every vertex 𝑣 such that there is a path from s

to 𝑣, 𝑣 is added to R by Explore.

Explore Proofs

Claim: CC(s) ⊆ R

Proof:
• Suppose to the contrary that there

exists 𝑣 ∈ CC(s) such that 𝑣 ∉ R.
• Then there must exist a path

that starts at s (inside R) and
ends at 𝑣 (outside 𝑅).

𝑠

v

𝑅

Explore Proofs

Claim: CC(s) ⊆ R

Proof:
• There then must exist {x, y} ∈ E

such that x ∈ R and y ∉ R.

𝑠

v

x

y

𝑅

Q: What is wrong with such an {x, y} existing?

• Input: 𝐺 = (𝑉, 𝐸) and 𝑠 ∈ 𝑉

• Output: CC(s)
• Let R = {s}

• While there exists {u, v} ∈ E
such that u ∈ R and 𝑣 ∉ 𝑅:

• Add v to 𝑅
• Return R

Explore Proofs

Claim: CC(s) ⊆ R

Proof:
• There then must exist {x, y} ∈ E

such that x ∈ R and y ∉ R.
• If this the case, then the algorithm

wouldn’t have terminated and
would have instead added y. =><=

𝑠

v

𝑠

x

y

𝑅

Q: How would you describe BFS?

• 𝐿0 = 𝑠

• 𝐿1 = neighbors of 𝐿0.
• 𝐿2 = neighbors of 𝐿1 that are not in 𝐿0.
• 𝐿i = neighbors of 𝐿i−1 that are not in previous layer.

Depth First Search

• Input: The current vertex u ∈ V
• Global: An array of exploration 𝐴 ∈ {0,1}𝑉

• Mark current vertex as explored (A[u] = 1).
• For each {u, v} ∈ E:

• If v is not explored (A[v] == 0):
• DFS(v)

Depth First Search

• Input: The current vertex u ∈ V
• Global: An array of exploration 𝐴 ∈ {0,1}𝑉

• Mark current vertex as explored (A[u] = 1).
• For each {u, v} ∈ E:

• If v is not explored (A[v] == 0):
• DFS(v)

• Idea: You are recursing or “drilling down”. If you get
stuck, you go up a step and try the next choice.

Depth First Search

A = {1}

Depth First Search

A = {1,2}

Depth First Search

A = {1,2,4}

Depth First Search

A = {1,2,4,5}

Depth First Search

A = {1,2,4,5,6}

Depth First Search

A = {1,2,4,5,6,3}

Depth First Search

A = {1,2,4,5,6,3,7}

Depth First Search

A = {1,2,4,5,6,3,7,8}

DFS Trees vs BFS Trees

Q: How can you compute all the connected
components of a graph?

A: Run Explore on a vertex. Keep track of all visited
vertices. Run Explore on unvisited vertex. Stop
when everyone is visited.

Q: What is the difference? (DFS vs Explore)

• Input: 𝐺 = (𝑉, 𝐸) and 𝑠 ∈ 𝑉

• Output: CC(s)
• Let R = {s}

• While there exists {u, v} ∈ E
such that u ∈ R and 𝑣 ∉ 𝑅:

• Add v to 𝑅
• Return R

• Input: The current vertex
u ∈ V

• Global: An array 𝐴 ∈ {0,1}𝑉

• Mark current vertex (A[u] =
 1).

• For each {u, v} ∈ E:
• If (A[v] == 0):

• DFS(v)

Q: What is the difference? (DFS vs Explore)

• Input: 𝐺 = (𝑉, 𝐸) and 𝑠 ∈ 𝑉

• Output: CC(s)
• Let R = {s}

• While there exists {u, v} ∈ E
such that u ∈ R and 𝑣 ∉ 𝑅:

• Add v to 𝑅
• Return R

• Input: The current vertex
u ∈ V

• Global: An array 𝐴 ∈ {0,1}𝑉

• Mark current vertex (A[u] =
 1).

• For each {u, v} ∈ E:
• If (A[v] == 0):

• DFS(v)DFS is Explore but Explore isn’t
necessarily DFS!

Adjacency List

Fix a graph G = (V, E). The adjacency list of G is a vertex
indexed array L of linked lists such that for each v ∈ V,
N v is a linked list that contains all neighbors of v exactly
once.

N[1] : [2] -> [3]
N[2] : [1] -> [3] -> [5] -> [4]
N[3] : [1] -> [2] -> [5] -> [7] -> [8]
N[4] : [2] -> [5]
N[5] : [2] -> [3] -> [4] -> [6]
N[6] : [5]
N[7] : [3] -> [8]
N[8] : [3] -> [7]

Adjacency List vs Adjacency Matrix

N[1] : [2] -> [3]
N[2] : [1] -> [3] -> [5] -> [4]
N[3] : [1] -> [2] -> [5] -> [7] -> [8]
N[4] : [2] -> [5]
N[5] : [2] -> [3] -> [4] -> [6]
N[6] : [5]
N[7] : [3] -> [8]
N[8] : [3] -> [7]

Space:
Lookup:
List Neighbors:

Space:
Lookup:
List Neighbors:

Adjacency List vs Adjacency Matrix

N[1] : [2] -> [3]
N[2] : [1] -> [3] -> [5] -> [4]
N[3] : [1] -> [2] -> [5] -> [7] -> [8]
N[4] : [2] -> [5]
N[5] : [2] -> [3] -> [4] -> [6]
N[6] : [5]
N[7] : [3] -> [8]
N[8] : [3] -> [7]

Space: O(n^2)
Lookup: O(1)
List Neighbors: O(n)

Space: O(n + m)
Lookup: O(𝑑𝑢)
List Neighbors: O(𝑑𝑢)

Degree Sum Formula or “Handshaking Lemma”

Fix a graph G = (V, E). Say that
every vertex v ∈ V represents a
person and two people share an
edge if they have shaken hands.
Q1: How many handshakes
happened?
Q2: How many times did
someone prepare to shake a
hand?

Degree Sum Formula or “Handshaking Lemma”

Fix a graph G = (V, E). Say that
every vertex v ∈ V represents a
person and two people share an
edge if they have shaken hands.
A1: |𝐸|

A2: σ𝑢 𝑑𝑢 = 2|E|

Q: What is a stack?

• A data structure for
maintaining a set of elements.

• We can add and remove
elements from the stack in
constant time.

• When we remove an element,
we get the last element that
was added.
• “last-in, first-out” or LIFO

Q: What is Queue?

• A data structure for maintaining a
set of elements.

• We can add and remove
elements from the stack in
constant time.

• When we remove an element, we
get the first element that was
added (and is still in the set).
• “first-in, first-out” or FIFO

Stack vs Queue

• Both can be implemented with a
(doubly) linked list.

• Let’s assume that both
implement the remove function
to take the first element of the
linked list.

• Q: How do we implement the add
function for Stack vs Queue?

Stack vs Queue

• Both can be implemented with a
(doubly) linked list.

• Let’s assume that both
implement the remove function
to take the first element of the
linked list.

• A: For a Stack we insert at the
front and for a Queue we insert at
the end.

Breadth First Search

• Input: 𝐺 = (𝑉, 𝐸) and 𝑠 ∈ 𝑉

• Output: BFS Tree
• Let 𝐿0 = {s}

• Assume 𝐿0, … , 𝐿𝑖 have been constructed:
• Let 𝐿i+1 be nodes do not appear in 𝐿0, … , 𝐿𝑖 and have

an edge to 𝐿𝑖.
• If 𝐿i+1 is empty, stop.

• Return all layers.

A more specific BFS
BFS(s):

Initialize Discovered to be a node index array of false

Set Discovered[s] = true

Initialize L[0] to be a linked list with one element s

Initialize i to be 0

While L[i] is not empty:

 Initialize L[i+1] to be empty linked list

For u in L[i]:

 For each edge (u, v) incident to u:

 If Discovered[v] = false:

 Set Discovered[u] = true

 Add v to L[i+1]

++i

Q: What is the runtime?
BFS(s):

Initialize Discovered to be a node index array of false

Set Discovered[s] = true

Initialize L[0] to be a linked list with one element s

Initialize i to be 0

While L[i] is not empty:

 Initialize L[i+1] to be empty linked list

For u in L[i]:

 For each edge (u, v) incident to u:

 If Discovered[v] = false:

 Set Discovered[u] = true

 Add v to L[i+1]

++i

Q: What is the runtime?
BFS(s):

Initialize Discovered to be a node index array of false

Set Discovered[s] = true

Initialize L[0] to be a linked list with one element s

Initialize i to be 0

While L[i] is not empty:

 Initialize L[i+1] to be empty linked list

For u in L[i]:

 For each edge (u, v) incident to u:

 If Discovered[v] = false:

 Set Discovered[u] = true

 Add v to L[i+1]

++i

O(n)

Total Tim
e:

Q: What is the runtime?
BFS(s):

Initialize Discovered to be a node index array of false

Set Discovered[s] = true

Initialize L[0] to be a linked list with one element s

Initialize i to be 0

While L[i] is not empty:

 Initialize L[i+1] to be empty linked list

For u in L[i]:

 For each edge (u, v) incident to u:

 If Discovered[v] = false:

 Set Discovered[u] = true

 Add v to L[i+1]

++i

O(n)
O(1)

Total Tim
e:

Q: What is the runtime?
BFS(s):

Initialize Discovered to be a node index array of false

Set Discovered[s] = true

Initialize L[0] to be a linked list with one element s

Initialize i to be 0

While L[i] is not empty:

 Initialize L[i+1] to be empty linked list

For u in L[i]:

 For each edge (u, v) incident to u:

 If Discovered[v] = false:

 Set Discovered[u] = true

 Add v to L[i+1]

++i

O(n)
O(1)
O(1)

Total Tim
e:

Q: What is the runtime?
BFS(s):

Initialize Discovered to be a node index array of false

Set Discovered[s] = true

Initialize L[0] to be a linked list with one element s

Initialize i to be 0

While L[i] is not empty:

 Initialize L[i+1] to be empty linked list

For u in L[i]:

 For each edge (u, v) incident to u:

 If Discovered[v] = false:

 Set Discovered[u] = true

 Add v to L[i+1]

++i

O(n)
O(1)
O(1)
O(1)

Total Tim
e:

Q: What is the runtime?
BFS(s):

Initialize Discovered to be a node index array of false

Set Discovered[s] = true

Initialize L[0] to be a linked list with one element s

Initialize i to be 0

While L[i] is not empty:

 Initialize L[i+1] to be empty linked list

For u in L[i]:

 For each edge (u, v) incident to u:

 If Discovered[v] = false:

 Set Discovered[u] = true

 Add v to L[i+1]

++i

O(n)
O(1)
O(1)
O(1)

Q: How many times does this loop run?

Total Tim
e:

Q: What is the runtime?
BFS(s):

Initialize Discovered to be a node index array of false

Set Discovered[s] = true

Initialize L[0] to be a linked list with one element s

Initialize i to be 0

While L[i] is not empty:

 Initialize L[i+1] to be empty linked list

For u in L[i]:

 For each edge (u, v) incident to u:

 If Discovered[v] = false:

 Set Discovered[u] = true

 Add v to L[i+1]

++i

O(n)
O(1)
O(1)
O(1)

A: ڂ𝑖 𝐿𝑖 ≤ n

Total Tim
e:

Q: What is the runtime?
BFS(s):

Initialize Discovered to be a node index array of false

Set Discovered[s] = true

Initialize L[0] to be a linked list with one element s

Initialize i to be 0

While L[i] is not empty:

 Initialize L[i+1] to be empty linked list

For u in L[i]:

 For each edge (u, v) incident to u:

 If Discovered[v] = false:

 Set Discovered[u] = true

 Add v to L[i+1]

++i

O(n)
O(1)
O(1)
O(1)
O(n)

Q: How many layers max?

Total Tim
e:

Q: What is the runtime?
BFS(s):

Initialize Discovered to be a node index array of false

Set Discovered[s] = true

Initialize L[0] to be a linked list with one element s

Initialize i to be 0

While L[i] is not empty:

 Initialize L[i+1] to be empty linked list

For u in L[i]:

 For each edge (u, v) incident to u:

 If Discovered[v] = false:

 Set Discovered[u] = true

 Add v to L[i+1]

++i

O(n)
O(1)
O(1)
O(1)
O(n)

A: One for each vertex. O(n)

Total Tim
e:

Q: What is the runtime?
BFS(s):

Initialize Discovered to be a node index array of false

Set Discovered[s] = true

Initialize L[0] to be a linked list with one element s

Initialize i to be 0

While L[i] is not empty:

 Initialize L[i+1] to be empty linked list

For u in L[i]:

 For each edge (u, v) incident to u:

 If Discovered[v] = false:

 Set Discovered[u] = true

 Add v to L[i+1]

++i

O(n)
O(1)
O(1)
O(1)
O(n)
O(n)

Q: How many times does this loop run?

Total Tim
e:

Q: What is the runtime?
BFS(s):

Initialize Discovered to be a node index array of false

Set Discovered[s] = true

Initialize L[0] to be a linked list with one element s

Initialize i to be 0

While L[i] is not empty:

 Initialize L[i+1] to be empty linked list

For u in L[i]:

 For each edge (u, v) incident to u:

 If Discovered[v] = false:

 Set Discovered[u] = true

 Add v to L[i+1]

++i

O(n)
O(1)
O(1)
O(1)
O(n)
O(n)

A: ڂ𝑖 𝐿𝑖 ≤ nO(n)

Total Tim
e:

Q: What is the runtime?
BFS(s):

Initialize Discovered to be a node index array of false

Set Discovered[s] = true

Initialize L[0] to be a linked list with one element s

Initialize i to be 0

While L[i] is not empty:

 Initialize L[i+1] to be empty linked list

For u in L[i]:

 For each edge (u, v) incident to u:

 If Discovered[v] = false:

 Set Discovered[u] = true

 Add v to L[i+1]

++i

O(n)
O(1)
O(1)
O(1)
O(n)
O(n)

Q: How do we do this?
O(n)

Total Tim
e:

Q: Which should we use?

N[1] : [2] -> [3]
N[2] : [1] -> [3] -> [5] -> [4]
N[3] : [1] -> [2] -> [5] -> [7] -> [8]
N[4] : [2] -> [5]
N[5] : [2] -> [3] -> [4] -> [6]
N[6] : [5]
N[7] : [3] -> [8]
N[8] : [3] -> [7]

Space: O(n^2)
Lookup: O(1)
List Neighbors: O(n)

Space: O(n + m)
Lookup: O(𝑑𝑢)
List Neighbors: O(𝑑𝑢)

Adjacency List vs Adjacency Matrix

N[1] : [2] -> [3]
N[2] : [1] -> [3] -> [5] -> [4]
N[3] : [1] -> [2] -> [5] -> [7] -> [8]
N[4] : [2] -> [5]
N[5] : [2] -> [3] -> [4] -> [6]
N[6] : [5]
N[7] : [3] -> [8]
N[8] : [3] -> [7]

Space: O(n^2)
Lookup: O(1)
List Neighbors: O(n)

Space: O(n + m)
Lookup: O(𝑑𝑢)
List Neighbors: O(𝑑𝑢)

Q: What is the runtime?
BFS(s):

Initialize Discovered to be a node index array of false

Set Discovered[s] = true

Initialize L[0] to be a linked list with one element s

Initialize i to be 0

While L[i] is not empty:

 Initialize L[i+1] to be empty linked list

For u in L[i]:

 For each edge (u, v) incident to u:

 If Discovered[v] = false:

 Set Discovered[u] = true

 Add v to L[i+1]

++i

O(n)
O(1)
O(1)
O(1)
O(n)
O(n)

A: Linked List
O(n)

Total Tim
e:

Q: What is the runtime?
BFS(s):

Initialize Discovered to be a node index array of false

Set Discovered[s] = true

Initialize L[0] to be a linked list with one element s

Initialize i to be 0

While L[i] is not empty:

 Initialize L[i+1] to be empty linked list

For u in L[i]:

 For each edge (u, v) incident to u:

 If Discovered[v] = false:

 Set Discovered[u] = true

 Add v to L[i+1]

++i

O(n)
O(1)
O(1)
O(1)
O(n)
O(n)

O(𝑑𝑢)
O(n)

Q: How many times does
this loop run for u?

Total Tim
e:

Q: What is the runtime?
BFS(s):

Initialize Discovered to be a node index array of false

Set Discovered[s] = true

Initialize L[0] to be a linked list with one element s

Initialize i to be 0

While L[i] is not empty:

 Initialize L[i+1] to be empty linked list

For u in L[i]:

 For each edge (u, v) incident to u:

 If Discovered[v] = false:

 Set Discovered[u] = true

 Add v to L[i+1]

++i

O(n)
O(1)
O(1)
O(1)
O(n)
O(n)

O(σ𝑑𝑢)
O(n)

A: One time for each u!

Total Tim
e:

Q: What is the runtime?
BFS(s):

Initialize Discovered to be a node index array of false

Set Discovered[s] = true

Initialize L[0] to be a linked list with one element s

Initialize i to be 0

While L[i] is not empty:

 Initialize L[i+1] to be empty linked list

For u in L[i]:

 For each edge (u, v) incident to u:

 If Discovered[v] = false:

 Set Discovered[u] = true

 Add v to L[i+1]

++i

O(n)
O(1)
O(1)
O(1)
O(n)
O(n)

O(m)
O(n)

Total Tim
e:

Q: What is the runtime?
BFS(s):

Initialize Discovered to be a node index array of false

Set Discovered[s] = true

Initialize L[0] to be a linked list with one element s

Initialize i to be 0

While L[i] is not empty:

 Initialize L[i+1] to be empty linked list

For u in L[i]:

 For each edge (u, v) incident to u:

 If Discovered[v] = false:

 Set Discovered[u] = true

 Add v to L[i+1]

++i

O(n)
O(1)
O(1)
O(1)
O(n)
O(n)

O(m)
O(n)

O(1)
O(1)
O(1)

O(1)

Total Tim
e:

Q: What is the runtime?
BFS(s):

Initialize Discovered to be a node index array of false

Set Discovered[s] = true

Initialize L[0] to be a linked list with one element s

Initialize i to be 0

While L[i] is not empty:

 Initialize L[i+1] to be empty linked list

For u in L[i]:

 For each edge (u, v) incident to u:

 If Discovered[v] = false:

 Set Discovered[u] = true

 Add v to L[i+1]

++i

O(n)
O(1)
O(1)
O(1)
O(n)
O(n)

O(m)
O(n)

O(n)

O(m)
O(m)
O(m)

Total Tim
e:

Q: What is the runtime?
BFS(s):

Initialize Discovered to be a node index array of false

Set Discovered[s] = true

Initialize L[0] to be a linked list with one element s

Initialize i to be 0

While L[i] is not empty:

 Initialize L[i+1] to be empty linked list

For u in L[i]:

 For each edge (u, v) incident to u:

 If Discovered[v] = false:

 Set Discovered[u] = true

 Add v to L[i+1]

++i

O(n)
O(1)
O(1)
O(1)
O(n)
O(n)

O(m)
O(n)

O(n)

O(m)
O(m)
O(m)

O(n + m)

Total Tim
e:

Q: What if I use a matrix?
BFS(s):

Initialize Discovered to be a node index array of false

Set Discovered[s] = true

Initialize L[0] to be a linked list with one element s

Initialize i to be 0

While L[i] is not empty:

 Initialize L[i+1] to be empty linked list

For u in L[i]:

 For each edge (u, v) incident to u:

 If Discovered[v] = false:

 Set Discovered[u] = true

 Add v to L[i+1]

++i

Q: What if I use a matrix?
BFS(s):

Initialize Discovered to be a node index array of false

Set Discovered[s] = true

Initialize L[0] to be a linked list with one element s

Initialize i to be 0

While L[i] is not empty:

 Initialize L[i+1] to be empty linked list

For u in L[i]:

 For each edge (u, v) incident to u:

 If Discovered[v] = false:

 Set Discovered[u] = true

 Add v to L[i+1]

++i

O(n^2)

O(n^2)
O(n^2)
O(n^2)
O(n^2)

A New BFS
BFS(s):

Initialize Discovered to be a node index array of false

Set Discovered[s] = true

Initialize Q to be a Queue with one element s

While Q is not empty:

u = Q.dequeue()

 For each edge (u, v) incident to u:

 If Discovered[v] = false:

 Set Discovered[u] = true

 Add v to Q

++i

Q: What is the runtime? (Assume Linked List)
BFS(s):

Initialize Discovered to be a node index array of false

Set Discovered[s] = true

Initialize Q to be a Queue with one element s

While Q is not empty:

u = Q.dequeue()

 For each edge (u, v) incident to u:

 If Discovered[v] = false:

 Set Discovered[u] = true

 Add v to Q

++i

Q: What is the runtime? O(m+n)
BFS(s):

Initialize Discovered to be a node index array of false

Set Discovered[s] = true

Initialize Q to be a Queue with one element s

While Q is not empty:

u = Q.dequeue()

 For each edge (u, v) incident to u:

 If Discovered[v] = false:

 Set Discovered[u] = true

 Add v to Q

++i

Q: What if we change the queue to a stack?
???(s):

Initialize Explored to be a node index array of false

Set Explored[s] = true

Initialize Q to be a Stack with one element s

While Q is not empty:

u = Q.remove()

If Explored[u] = false:

 For each edge (u, v) incident to u:

 Add v to Q

++i

A: We DFS
DFSs):

Initialize Explored to be a node index array of false

Set Explored[s] = true

Initialize Q to be a Stack with one element s

While Q is not empty:

u = Q.remove()

If Explored[u] = false:

 For each edge (u, v) incident to u:

 Add v to Q

++i

Q: What is the runtime of DFS?
DFSs):

Initialize Explored to be a node index array of false

Set Explored[s] = true

Initialize Q to be a Stack with one element s

While Q is not empty:

u = Q.remove()

If Explored[u] = false:

 For each edge (u, v) incident to u:

 Add v to Q

++i

Q: What is the runtime of DFS? O(m+n)
DFSs):

Initialize Explored to be a node index array of false

Set Explored[s] = true

Initialize Q to be a Stack with one element s

While Q is not empty:

u = Q.remove()

If Explored[u] = false:

 For each edge (u, v) incident to u:

 Add v to Q

++i

Q: How many times does this loop run for u?

Q: What is the runtime of DFS? O(m+n)
DFSs):

Initialize Explored to be a node index array of false

Set Explored[s] = true

Initialize Q to be a Stack with one element s

While Q is not empty:

u = Q.remove()

If Explored[u] = false:

 For each edge (u, v) incident to u:

 Add v to Q

++i

A: At most once for each edge

Problem: Bipartite Graph

Input: A graph G = (V, E)

Output: True if G is bipartite and False otherwise.

Def: We say that a graph is bipartite if we can partition the
vertices V into two groups L and R such that each edge has one
endpoint in 𝐿 and the other endpoint in 𝑅.

Problem: Bipartite Graph

Def: We say that a graph is bipartite if we can partition the
vertices V into two groups L and R such that each edge has one
endpoint in 𝐿 and the other endpoint in 𝑅.

Bipartite Not Bipartite

Problem: Bipartite Graph

Input: A graph G = (V, E)

Output: True if G is bipartite and False otherwise.

Algorithm Ideas:

Problem: Bipartite Graph

Input: A graph G = (V, E)

Output: True if G is bipartite and False otherwise.

Algorithm Ideas: We will find the layering produced by BFS and
color odd levels Red and even layers Blue.

Q: When will this fail?

Problem: Bipartite Graph

Input: A graph G = (V, E)

Output: True if G is bipartite and False otherwise.

Algorithm Ideas: We will find the layering produced by BFS and
color odd levels Red and even layers Blue. This will fail if there is
a cross edge in one of the layers.

Q: What does this imply?

Problem: Bipartite Graph

Input: A graph G = (V, E)

Output: True if G is bipartite and False otherwise.

Algorithm Ideas: We will find the layering produced by BFS and
color odd levels Red and even layers Blue. This will fail if there is
a cross edge in one of the layers. This implies there is an odd
cycle in the graph.

Q: Is that a problem?

Problem: Bipartite Graph

Input: A graph G = (V, E)

Output: True if G is bipartite and False otherwise.

Algorithm Ideas: We will find the layering produced by BFS and
color odd levels Red and even layers Blue. This will fail if there is
a cross edge in one of the layers. This implies there is an odd
cycle in the graph. We can show that a graph is not bipartite if it
contains an odd cycle.

	Slide 1: CSE 331: Algorithms & Complexity
	Slide 2: Schedule
	Slide 3: Course Updates
	Slide 4: Q: How do we show this solves Connectivity?
	Slide 5: Q: How do we show this solves Connectivity?
	Slide 6: Breadth First Search (Properties)
	Slide 7: Q: Does this always terminate?
	Slide 8: Q: Does this always terminate?
	Slide 9: Explore Proofs
	Slide 10: Explore Proofs
	Slide 11: Explore Proofs
	Slide 12: Q: What is wrong with such an open brace x,y close brace existing?
	Slide 13: Explore Proofs
	Slide 14: Q: How would you describe BFS?
	Slide 15: Depth First Search
	Slide 16: Depth First Search
	Slide 17: Depth First Search
	Slide 18: Depth First Search
	Slide 19: Depth First Search
	Slide 20: Depth First Search
	Slide 21: Depth First Search
	Slide 22: Depth First Search
	Slide 23: Depth First Search
	Slide 24: Depth First Search
	Slide 25: DFS Trees vs BFS Trees
	Slide 26: Q: How can you compute all the connected components of a graph?
	Slide 27: A: Run Explore on a vertex. Keep track of all visited vertices. Run Explore on unvisited vertex. Stop when everyone is visited.
	Slide 28: Q: What is the difference? (DFS vs Explore)
	Slide 29: Q: What is the difference? (DFS vs Explore)
	Slide 30: Adjacency List
	Slide 31: Adjacency List vs Adjacency Matrix
	Slide 32: Adjacency List vs Adjacency Matrix
	Slide 33: Degree Sum Formula or “Handshaking Lemma”
	Slide 34: Degree Sum Formula or “Handshaking Lemma”
	Slide 35: Q: What is a stack?
	Slide 36: Q: What is Queue?
	Slide 37: Stack vs Queue
	Slide 38: Stack vs Queue
	Slide 39: Breadth First Search
	Slide 40: A more specific BFS
	Slide 41: Q: What is the runtime?
	Slide 42: Q: What is the runtime?
	Slide 43: Q: What is the runtime?
	Slide 44: Q: What is the runtime?
	Slide 45: Q: What is the runtime?
	Slide 46: Q: What is the runtime?
	Slide 47: Q: What is the runtime?
	Slide 48: Q: What is the runtime?
	Slide 49: Q: What is the runtime?
	Slide 50: Q: What is the runtime?
	Slide 51: Q: What is the runtime?
	Slide 52: Q: What is the runtime?
	Slide 53: Q: Which should we use?
	Slide 54: Adjacency List vs Adjacency Matrix
	Slide 55: Q: What is the runtime?
	Slide 56: Q: What is the runtime?
	Slide 57: Q: What is the runtime?
	Slide 58: Q: What is the runtime?
	Slide 59: Q: What is the runtime?
	Slide 60: Q: What is the runtime?
	Slide 61: Q: What is the runtime?
	Slide 62: Q: What if I use a matrix?
	Slide 63: Q: What if I use a matrix?
	Slide 64: A New BFS
	Slide 65: Q: What is the runtime? (Assume Linked List)
	Slide 66: Q: What is the runtime? O(m+n)
	Slide 67: Q: What if we change the queue to a stack?
	Slide 68: A: We DFS
	Slide 69: Q: What is the runtime of DFS?
	Slide 70: Q: What is the runtime of DFS? O(m+n)
	Slide 71: Q: What is the runtime of DFS? O(m+n)
	Slide 72: Problem: Bipartite Graph
	Slide 73: Problem: Bipartite Graph
	Slide 74: Problem: Bipartite Graph
	Slide 75: Problem: Bipartite Graph
	Slide 76: Problem: Bipartite Graph
	Slide 77: Problem: Bipartite Graph
	Slide 78: Problem: Bipartite Graph

