CSE 331:
Allg(o)r[itt]hunnlg & (C<o>lnnqp>ll@x[i1ty

\>

“BFS and DFS Runtime”

Prof. Charlie Anne Carlson (She/Her)
Lecture 13
Friday September 26th, 2025

L]

G5

University at Buffalo

Schedule

1.Course Updates
2.Stacks & Queues
3.Another BFS
4.Runtime Analysis
1.BFS
2.DFS
5.Coloring

Course Updates

HW 2 Solutions Soon
HW 3 Out
Group Project
Team Emails Soon
No Autolab Registration
First Quiz NEXT Monday!
Quiz Solutions Soon

Sample Midterms Soon-ish
Soon = Today... or before | go to sleep

Q: What is a stack?

* A data structure for
maintaining a set of elements.

* We can add and remove
elements from the stack in
constanttime.

* When we remove an element,
we get the last element that
was added.

e “last-in, first-out” or LIFO

Q: What is Queue?

 Adata structure for maintaining a
set of elements.

* We can add and remove
elements from the stack in
constant time.

* When we remove an element, we
get the first element that was
added (and is still in the set).

e “first-in, first-out” or FIFO

Stack vs Queue

* Both can be implemented with a
(doubly) linked list.

e Let’s assume that both
Implement the remove function
to take the first element of the ®

4
linked list.]‘ 3
 Q:How do we implement the add << W/
[SO

function for Stack vs Queue?

Stack vs Queue

* Both can be implemented with a
(doubly) linked list.

e Let’s assume that both
Implement the remove function
to take the first element of the ®

5
linked list. ‘]‘ 3
* A:For aStackwe insert atthe os W
S

front and for a Queue we insert at
the end.

Breadth First Search

* Input:¢G = (V,E)ands € V

* Output: BFS Tree

* LetLly = {s}

* Assume L, ..., L; have been constructed:

* Letl;,, benodesdonotappearinl,,...,L; and have
anedgetoL;.

If L;, 1 IS empty, stop.
* Return all layers.

A more specific BFS

BES (s) :
Initialize Discovered to be a node index array of false
Set Discovered[s] = true
Initialize L[0] to be a linked list with one element s
Initialize 1 to be O
While L[1] is not empty:
Initialize L[i+1l] to be empty linked list
For u in L[1]:
For each edge (u, v) incident to u:
If Discovered[v] = false:
Set Discovered[u] = true
Add v to L[1+1]

++1

Q: What is the runtime?

BES (s) :
Initialize Discovered to be a node index array of false
Set Discovered[s] = true
Initialize L[0] to be a linked list with one element s
Initialize 1 to be O
While L[1] is not empty:
Initialize L[i+1l] to be empty linked list
For u in L[1]:
For each edge (u, v) incident to u:
If Discovered[v] = false:
Set Discovered[u] = true
Add v to L[1+1]

++1

Q: What is the runtime?

** BFS(s) :

awl] 1e10]

O(n) Initialize Discovered to be a node index array of false
Set Discovered[s] = true
Initialize L[0] to be a linked list with one element s
Initialize 1 to be 0
While L[1] is not empty:
Initialize L[i+1l] to be empty linked list
For u in L[1]:
For each edge (u, v) incident to u:
If Discovered[v] = false:
Set Discovered[u] = true
Add v to L[i+1]

++1

Q: What is the runtime?

** BFS(s) :

awl] 1e10]

O(n) Initialize Discovered to be a node index array of false
O(1) Set Discovered[s] = true
Initialize L[0] to be a linked list with one element s
Initialize 1 to be 0
While L[1] is not empty:
Initialize L[i+1l] to be empty linked list
For u in L[1]:
For each edge (u, v) incident to u:
If Discovered[v] = false:
Set Discovered[u] = true
Add v to L[i+1]

++1

Q: What is the runtime?

** BFS(s) :

awl] 1e10]

O(n) Initialize Discovered to be a node index array of false
O(1) Set Discovered[s] = true
()(1) Initialize L[O] to be a linked list with one element s
Initialize 1 to be 0
While L[1] is not empty:
Initialize L[i+1l] to be empty linked list
For u in L[1]:
For each edge (u, v) incident to u:
If Discovered[v] = false:
Set Discovered|[u] = true
Add v to L[i+1]

++1

Q: What is the runtime?

awl] 1e10]

** BFS (s) :

O(n) Initialize Discovered to be a node index array of false
()(1) Set Discovered[s] = true

()(1) Initialize L[0] to be a linked list with one element s
O(1) Initialize i to be 0

While L[1] is not empty:
Initialize L[i+1l] to be empty linked list
For u in L[1]:
For each edge (u, v) incident to u:
If Discovered[v] = false:
Set Discovered[u] = true
Add v to L[1+1]

++1

awl] 1e10]

Q: What is the runtime?

** BFS(s) :
N) Initialize Discovered to be a node index array of false
1) Set Discovered[s] = true
1) Initialize L[O] to be a linked list with one element s
1) Initialize i to be 0

OXONONG®

AN N N SN

While L[i] is not empty: Q:How manytimes does this loop run?
Initialize L[i+1l] to be empty linked list
For u in L[1]:
For each edge (u, v) incident to u:
If Discovered[v] = false:
Set Discovered|[u] = true
Add v to L[i+1]

++1

Q: What is the runtime?

awl] 1e10]

** BFS (s) :

O(n) Initialize Discovered to be a node index array of false
()(1) Set Discovered[s] = true

()(1) Initialize L[0] to be a linked list with one element s
O(1) Initialize i to be 0

While L[i] is not empty: A: |UiLi| <n
Initialize L[i+1l] to be empty linked list
For u in L[1]:

For each edge (u, v) incident to u:
If Discovered[v] = false:
Set Discovered[u] = true
Add v to L[i+1]

++1

:awl| 1e10]

Q: What is the runtime?

BES (s) :

N) Initialize Discovered to be a node index array of false

) Set Discovered[s] = true
) Initialize L[0O] to be a linked list with one element s
) Initialize i to be 0
) While L[1] is not empty:
Initialize L[i+1] to be empty linked list Q: How many I_ayers max”??
For u in L[1]:
For each edge (u, v) incident to u:
If Discovered[v] = false:
Set Discovered|[u] = true
Add v to L[i+1]

++1

:awl| 1e10]

Q: What is the runtime?

BES (s) :

N) Initialize Discovered to be a node index array of false

Set Discovered[s] = true
Initialize L[0O] to be a linked list with one element s

)

)

) Initialize i to be 0

) While L[1] is not empty:
)

Initialize L[i+1] to be empty linked list A:QOne for each vertex.

For u in L[1]:
For each edge (u, v) incident to u:
If Discovered[v] = false:
Set Discovered[u] = true
Add v to L[1+1]

++1

:awl| 1e10]

Q: What is the runtime?

(s) :
Initialize Discovered to be a node index array of false
Set Discovered[s] = true
Initialize L[0] to be a linked list with one element s
Initialize 1 to be 0
While L[1] is not empty:
Initialize L[i+1l] to be empty linked list
For u in L[i]: QQ: How many times does this loop run?
For each edge (u, v) incident to u:
If Discovered[v] = false:
Set Discovered[u] = true
Add v to L[i+1]

++1

;o] 1e10]

Q: What is the runtime?

BES (s) :

N) Initialize Discovered to be a node index array of false
1) Set Discovered[s] = true

1) Initialize L[O] to be a linked list with one element s
1) Initialize i to be 0

n) While L[1] is not empty:

n) Initialize L[i+1l] to be empty linked list

n) For u in L[l]:A:luiLil <n

For each edge (u, v) incident to u:

If Discovered[v] = false:
Set Discovered[u] =
Add v to L[i1+1]

++1

:awl| 1e10]

Q: What is the runtime?

BES (s) :

N) Initialize Discovered to be a node index array of false

Set Discovered[s] = true

Initialize L[0O] to be a linked list with one element s

)
g Initialize 1 to be 0
) While L[1] is not empty:
) Initialize L[i+1l] to be empty linked list
) For u in LJ[i]:
For each edge (u, v) incident to u: QZ How do we do this?
If Discovered[v] = false:
Set Discovered[u] = true
Add v to L[i+1]

++1

Q: Which should we use?

Space: O(n"2) Space: O(n + m)
Lookup: O(1) Lookup: O(d,)
List Neighbors: O(n) List Neighbors: O(d,)

12345678 N[1]:[2]->[3]
1101100000 N[2]:[1]->[3]->[5] -> [4]
2110111000 N[3]:[1]->[2]->[5] ->[7] ->[8]
311001011 N[4]:[2]->[5]
4101001000 N[5]: [2]-> [3] -> [4] -> [6]
5(01110100 NI61: 5
6/00001000 N[7] : [3] -> [8]
/7100100001 N[8]: [3]->[7]
8/00100010

Adjacency List vs Adjacency Matrix

Space: O(n"2) Space: O(n + m)

Lookup: O(1) RN aTa] 4N T @1 (7 FRRF—— -
List Neighbors: O(n)

12345678 N[1]:[2]->[3]
1101100000 N[2]:[1]->[3]->[5] -> [4]
2110111000 N[3]:[1]->[2]->[5] ->[7] ->[8]
311001011 N[4]:[2]->[5]
4101001000 N[5]: [2] -> [3] -> [4] -> [6]
5(01110100 NI61: 5
6/]00001000 N[7] : [3] -> [8]
/7100100001 N[8]: [3]->[7]
8/00100010

;o] 1e10]

Q: What is the runtime?

BES (s) :
N) Initialize Discovered to be a node index array of false
1) Set Discovered[s] = true
1) Initialize L[O] to be a linked list with one element s
1) Initialize i to be 0
n) While L[1] is not empty:
n) Initialize L[i+1l] to be empty linked list
n) For u in L[i]:
For each edge (u, v) incident to u: A: Linked List
If Discovered[v] = false:
Set Discovered|[u] = true

Add v to L[1+1]

++1

:awl| 1e10]

Q: What is the runtime?

BES (s) :

N) Initialize Discovered to be a node index array of false

Set Discovered[s] = true

Initialize L[0O] to be a linked list with one element s

)
; Initialize 1 to be 0
) While L[1] is not empty:
) Initialize L[i+1l] to be empty linked list
) For u in L[i]:
O(du)For each edge (u, v) incident to u: Q: How manytimes does
If Discovered[v] = false: this loop run foru?
Set Discovered[u] = true
Add v to L[i+1]

++1

:awl| 1e10]

Q: What is the runtime?

BES (s) :

N) Initialize Discovered to be a node index array of false

Set Discovered[s] = true
Initialize L[0O] to be a linked list with one element s

Initialize 1 to be O

)
)
)
)
) Initialize L[i+1l] to be empty linked list
)
d

While L[1] is not empty:
For u in LJ[i]:
) For each edge (u, v) incident to u: A: One time for each u!
u
If Discovered[v] = false:
Set Discovered[u] = true

Add v to L[1+1]

++1

;o] 1e10]

(s) :

Q: What is the runtime?

Initialize Discovered to be a node index array of false

Set Discovered[s] = true

Initialize LI[O0]

to be a linked 1list with one element s

Initialize 1 to be O

While L[1] is not empty:

Initialize L[i+1l] to be empty linked list

For u in LJ[1i

]

For each edge (u, v) incident to u:

++1

If Discovered[v] = false:
Set Discovered[u] = true

Add v to L[1+1]

Q: What is the runtime?

:awl| 1€10]

BES (s) :
O(n) Initialize Discovered to be a node index array of false
0(1) Set Discovered[s] = true
O(’]) Initialize L[0] to be a linked list with one element s
O(1) Initialize i to be 0
O(ﬂ) While L[1] 1s not empty:
O(n) Initialize L[i+l] to be empty linked list
O(n) For u in L[i]:
O(m) For each edge (u, v) incident to u:
O(1)If Discovered|[v] = false:
O(1) set Discovered[u] = true

O(1)Add v to L[i+1]

Q: What is the runtime?

:aWl] 1e10]

BES (s) :
O(n) Initialize Discovered to be a node index array of false
0(1) Set Discovered[s] = true
O(’]) Initialize L[0] to be a linked list with one element s
O(1) Initialize i to be 0
O(ﬂ) While L[1] 1s not empty:
O(n) Initialize L[i+1l] to be empty linked list
O(n) For u in LJ[i]:
O(m) For each edge (u, v) incident to u:
O(m) If Discovered|[v] = false:
O(m) Set Discovered[u]
O(m) Add v to L[i+1]

o
>

++1

:awl| 1e10]

Q: What is the runtime? O(n + m)

BES (s) :

ONONONONONG®
S

e e e e e N
>

' N N N N N’

o
)

0000
EEIEE

o
>

Initialize Discovered to be a node index array of false

>

Set Discovered[s] = true
Initialize L[0] to be a linked list with one element s
Initialize 1 to be 0
While L[1] is not empty:
Initialize L[i+1l] to be empty linked list
For u in L[1]:

For each edge (u, v) incident to u:

S’ e’

If Discovered[v] = false:
Set Discovered[u] = true

Add v to L[1+1]

p —

++1

Q: What if | use a matrix?

BES (s) :
Initialize Discovered to be a node index array of false
Set Discovered[s] = true
Initialize L[0] to be a linked list with one element s
Initialize 1 to be O
While L[1] is not empty:
Initialize L[i+1l] to be empty linked list
For u in L[1]:
For each edge (u, v) incident to u:
If Discovered[v] = false:
Set Discovered[u] = true
Add v to L[1+1]

++1

Q: What if | use a matrix? O(n”2)

BES (s) :
Initialize Discovered to be a node index array of false
Set Discovered[s] = true
ITnitialize L[0] to be a linked list with one element s
Initialize 1 to be O
While L[1] is not empty:
Initialize L[i+1l] to be empty linked list
For u in L[1]:

For each edge (u, v) incident to u:

O(n"2)
O(n"2) If Discovered|[v] = false:
()UJAZ) Set Discovered|[u] = true
O(n"2) Add v to L[i+1]

++1

A New BFS

BFS (s) : Discovered :

Initialize Discovered to be a node index array of false Queue:

Set Discovered[s] = true "

Initialize Q to be a Queue with one element s
While Q i1s not empty:
u = Q.dequeue ()
For each edge (u, v) incident to u: (9 V\oo___.____

If Discovered[v] = false:

Set Discovered[u] = true

Add v to O

A New BFS

e e Discovered : {1}
Initialize Discovered to be a node 1inde v of false_ Queue: {1}
Set Discovered[s] = true 35

Initialize Q to be a Queue with one element s

While Q i1s not empty:
u = Q.dequeue ()
For each edge (u, v) incident to u: (9 V\o_______

If Discovered[v] = false:

Set Discovered[u] = true

Add v to O

A New BFS

BES (s) : Discovered : {1}

Initialize Discovered to be a node index array of false_ Queue:{1}

Set Discovered[s] = true
Initialize Q to be a Queue with
While Q i1s not empty:
u = Q.dequeue ()
For each edge (u, v) incident to u:
If Discovered[v] = false:

Set Discovered[u] = true

Add v to O

A New BFS

BES (s) : Discovered : {1}
Initialize Discovered to be a node index array of false Queue:{}

u:{1}

V.

Set Discovered[s] = true
Initialize Q to be a Queue with one ele
While Q i1s not empty:
u = Q.dequeue ()
For each edge (u, v) incident to u:
If Discovered[v] = false:

Set Discovered[u] = true

Add v to O

A New BFS

BES (s) Discovered : {1}
Initialize Discovered to be a node index array of false Queue:{}
Set Discovered[s] = true 35;

Initialize Q to be a Queue with one element s
While Q i1s not empty:
u = Q.dequeue ()
For each edge (u, v) incident to u:"> (9 V\o_______

If Discovered[v] = false:

Set Discovered[u] = true

Add v to O

A New BFS

BES (s) Discovered : {1}
Initialize Discovered to be a node index array of false Queue:{}
Set Discovered[s] = true 35;

Initialize Q to be a Queue with one element s
While Q i1s not empty:
u = Q.dequeue ()
For each edge (u, v) incident to u: -~ [9 V\o______._

If Discovered[v] = false:

Set Discovered[u] = true

Add v to O

A New BFS

BES (s) :

Discovered : {1,2}

Initialize Discovered to be a node index array of fals Queue :{}
Set Discovered[s] = true 35;

Initialize Q to be a Queue with one element s
While Q i1s not empty:
u = Q.dequeue ()
For each edge (u, v) incident to u: /(9 V\o_o______

If Discovered[v] = false:

Set Discovered[u] = true

Add v to O

A New BFS

BES (s) : Discovered: {1,2}
Initialize Discovered to be a node index array of false_ Queue:{2}
Set Discovered[s] = true Sf;

Initialize Q to be a Queue with one element s
While Q i1s not empty:
u = Q.dequeue ()
For each edge (u, v) incident to wo (9 V\o___.____

If Discovered[v] = false:
Set Discovered

Add v to O

A New BFS

BES (s) : Discovered: {1,2}
Initialize Discovered to be a node index array of false Queue:{2}
Set Discovered[s] = true 35;

Initialize Q to be a Queue with one element s
While Q i1s not empty:
u = Q.dequeue ()
For each edge (u, v) incident to u:* (9 V________

If Discovered[v] = false:

Set Discovered[u] = true

Add v to O

A New BFS

BES (s) :

Discovered : {1,2}

Initialize Discovered to be a node i1ndex array of fal Queue : {2}
Set Discovered[s] = true 35;

Initialize Q to be a Queue with one element s
While Q i1s not empty:
u = Q.dequeue ()
For each edge (u, v) incident to v [9 V\o_______

If Discovered[v] = false:

Set Discovered[u] = true

Add v to O

A New BFS

BES (s) :

Discovered : {1,2,3}

Initialize Discovered to be a node index array of fals Queue : {2}
Set Discovered[s] = true 35;

Initialize Q to be a Queue with one element s
While Q i1s not empty:
u = Q.dequeue ()
For each edge (u, v) incident to u: /(9 V\o_o______

If Discovered[v] = false:

Set Discovered[u] = true

Add v to O

A New BFS

BFS (s) : Discovered : {1,2,3}
Initialize Discovered to be a node index array of false_ Queue:{2,3}
Set Discovered[s] = true 35;

Initialize Q to be a Queue with one element s
While Q i1s not empty:
u = Q.dequeue ()
For each edge (u, v) incident to w¢ (9 V\o_______

If Discovered[v] = fals

Set Discovere

Add v to O

A New BFS

BFS (s) : Discovered : {1,2,3}

Initialize Discovered to be a node index array of false Queue:{3}
u:?2
V...

Set Discovered[s] = true
Initialize Q to be a Queue with one ele
While Q i1s not empty:
u = Q.dequeue ()
For each edge (u, v) incident to u:
If Discovered[v] = false:

Set Discovered[u] = true

Add v to O

A New BFS

BFS (s) : Discovered :{1,2,3, 4, 5}

Initialize Discovered to be a node index array of false_ Queue:{3, 4,5}
u:?2
V...

Set Discovered[s] = true
Initialize Q to be a Queue with one
While Q i1s not empty:
u = Q.dequeue ()
For each edge (u, v) incident to u:
If Discovered[v] = false:

Set Discovered[u] = true

Add v to O

A New BFS

BES (s) Discovered: {1,2,3, 4, 5}
Initialize Discovered to be a node index array of false Queue:{4,5}
Set Discovered[s] = true 353

Initialize Q to be a Queue with one element s
While Q i1s not empty:
u = Q.dequeue ()
For each edge (u, v) incident to u: (9 V\o_______

If Discovered[v] = false:

Set Discovered[u] = true

Add v to O

A New BFS

BFS (s) : Discovered: {1,2,3,4,5,7,8,6)
Initialize Discovered to be a node i1index array of false Queue:{7,8}
Set Discovered[s] = true 355

Initialize Q to be a Queue with one element s
While Q i1s not empty:
u = Q.dequeue ()
For each edge (u, v) incident to u: (9 V\o_______

If Discovered[v] = false:

Set Discovered[u] = true

Add v to O

A New BFS

BFS (s) : Discovered: {1,2,3,4,5,7,8,6)

Initialize Discovered to be a node index array of false Queue:{}

Set Discovered[s] = true "

Initialize Q to be a Queue with one element s

While Q i1s not empty:
u = Q.dequeue ()

For each edge (u, v) incident to u: (9 V\o_______

If Discovered[v] = false:
Set Discovered[u] = true
Add v toQ N\ F= /) 7))

Note: We never visit anything in level i before i — 1.

Q: What is the runtime? (Assume Linked List)

BES (s) :
Initialize Discovered to be a node index array of false

Set Discovered[s] = true

Initialize Q to be a Queue with one element s
While Q i1s not empty:
u = Q.dequeue ()
For each edge (u, v) incident to u:
If Discovered[v] = false:

Set Discovered[u] = true

Add v to O

Q: What is the runtime? O(m+n)

BES (s) :
Initialize Discovered to be a node index array of false

Set Discovered[s] = true

Initialize Q to be a Queue with one element s
While Q is not empty: Note: We only do this outer loop at most once

u = Q.dequeue () per vertex.
For each edge (u, v) incident to u:
If Discovered[v] = false: Note: We only do this inner loop

Set Discovered[u] = true gt mosttwice per edge.
Add v to Q

Q: What if we change the queue to a stack?

P27 (s):
Initialize Explored to be a node index array of false

Set Explored[s] = true
Initialize Q to be a Stack with one element s

While Q i1s not empty:

u = Q.remove ()

If Explored[u] = false:

Explored[u] = true

For each edge (u, v) incident to u:

Add v to O

Q: What if we change the queue to a stack?

??27(s):

Initialize Explored to be a node index array of false

Set Explored[s] = true
Initialize Q to be a Stack with one element s

While Q i1s not empty:

u = Q.remove ()

If Explored[u] = false:

Explored[u] = true

For each edge (u, v) incident to u:

Add v to O

Q: What if we change the queue to a stack?

P27 (s):
Initialize Explored to be a node index array of false

Set Explored[s] = true
Initialize Q to be a Stack with one element s

While Q i1s not empty:

u = Q.remove ()

If Explored[u] = false:

Explored[u] = true

For each edge (u, v) incident to u:

Add v to O

A: We DFS

DFS (s) :
Initialize Explored to be a node index array of false

Set Explored[s] = true
Initialize Q to be a Stack with one element s
While Q i1s not empty:
u = Q.remove ()
If Explored[u] = false:
Explored[u] = true

For each edge (u, v) incident to u:

Add v to O

Q: What is the runtime of DFS?

DFSs) :
Initialize Explored to be a node index array of false

Set Explored[s] = true
Initialize Q to be a Stack with one element s
While Q i1s not empty:
u = Q.remove ()
If Explored[u] = false:
Explored[u] = true

For each edge (u, v) incident to u:

Add v to O

Q: What is the runtime of DFS? O(m+n)

DFSs) :
Initialize Explored to be a node index array of false

Set Explored[s] = true
Initialize Q to be a Stack with one element s

While Q is not empty: Q: How many times does this loop run for u?

u = Q.remove ()
If Explored[u] = false:
Explored[u] = true

For each edge (u, v) incident to u:

Add v to O

Q: What is the runtime of DFS? O(m+n)

DFSs) :
Initialize Explored to be a node index array of false

Set Explored[s] = true
Initialize Q to be a Stack with one element s
While Q is not empty: A: At mostonce for each edge
u = Q.remove ()
If Explored[u] = false:
Explored[u] = true
For each edge (u, v) incident to u:

Add v to O

Problem: Bipartite Graph

Input: Agraph G = (V,E)
Output: True if G is bipartite and False otherwise.

Def: We say that a graph is bipartite if we can partition the
vertices V into two groups L and R such that each edge has one

endpoint in L and the other endpointin R.

Problem: Bipartite Graph

Def: We say that a graph is bipartite if we can partition the
vertices V into two groups L and R such that each edge has one
endpoint in L and the other endpointin R.

eme

Bipartite Not Bipartite

Problem: Bipartite Graph

Input: Agraph G = (V,E)
Output: True if G is bipartite and False otherwise.

Algorithm Ideas:

Problem: Bipartite Graph

Input: Agraph G = (V,E)
Output: True if G is bipartite and False otherwise.

Algorithm ldeas: We will find the layering produced by BFS and
color odd levels Red and even layers Blue.

Q: When will this fail?

Problem: Bipartite Graph
Input: Agraph G = (V,E)

Output: True if G is bipartite and False otherwise.

Algorithm ldeas: We will find the layering produced by BFS and

color odd levels Red and even layers Blue. This will fail if there is
a cross edge in one of the layers.

Q: What does this imply?

Problem: Bipartite Graph

Input: Agraph G = (V,E)

Output: True if G is bipartite and False otherwise.

Algorithm ldeas: We will find the layering produced by BFS and
color odd levels Red and even layers Blue. This will fail if there is

a cross edge in one of the layers. This implies there is an odd
cycle in the graph.

Q: Is that a problem?

Problem: Bipartite Graph

Input: Agraph G = (V,E)
Output: True if G is bipartite and False otherwise.

Algorithm ldeas: We will find the layering produced by BFS and
color odd levels Red and even layers Blue. This will fail if there is
a cross edge in one of the layers. This implies there is an odd

cycle in the graph. We can show that a graph is not bipartite if it
contains an odd cycle.

Problem: Bipartite Graph

@ @
L, L, Ls L, L. L3

Case (i) Case (ii)

Problem: Bipartite Graph

L, L, L, L, L, L

Case (i) Case (ii)

Is bipartite! Is not bipartite!

Directed Graphs

* Adirected graphis a graph o ° :

G = (V,E) such thatthe
edges are directed:

* Thatis, each edge o °

(u,v) € Ehasan
ordering (i.e., a start and

an end vertex). ° o 0

By Johannes Rdssel (talk) - Own work, Public Domain,
https://commons.wikimedia.org/w/index.php?curid=5559952

Examples Directed Graphs

* What might the nodes o ° 3

represent?

* What might the edges
represent? o °

By Johannes Rdssel (talk) - Own work, Public Domain,
https://commons.wikimedia.org/w/index.php?curid=5559952

	Slide 1: CSE 331: Algorithms & Complexity
	Slide 2: Schedule
	Slide 3: Course Updates
	Slide 4: Q: What is a stack?
	Slide 5: Q: What is Queue?
	Slide 6: Stack vs Queue
	Slide 7: Stack vs Queue
	Slide 8: Breadth First Search
	Slide 9: A more specific BFS
	Slide 10: Q: What is the runtime?
	Slide 11: Q: What is the runtime?
	Slide 12: Q: What is the runtime?
	Slide 13: Q: What is the runtime?
	Slide 14: Q: What is the runtime?
	Slide 15: Q: What is the runtime?
	Slide 16: Q: What is the runtime?
	Slide 17: Q: What is the runtime?
	Slide 18: Q: What is the runtime?
	Slide 19: Q: What is the runtime?
	Slide 20: Q: What is the runtime?
	Slide 21: Q: What is the runtime?
	Slide 22: Q: Which should we use?
	Slide 23: Adjacency List vs Adjacency Matrix
	Slide 24: Q: What is the runtime?
	Slide 25: Q: What is the runtime?
	Slide 26: Q: What is the runtime?
	Slide 27: Q: What is the runtime?
	Slide 28: Q: What is the runtime?
	Slide 29: Q: What is the runtime?
	Slide 30: Q: What is the runtime?
	Slide 31: Q: What if I use a matrix?
	Slide 32: Q: What if I use a matrix?
	Slide 33: A New BFS
	Slide 34: A New BFS
	Slide 35: A New BFS
	Slide 36: A New BFS
	Slide 37: A New BFS
	Slide 38: A New BFS
	Slide 39: A New BFS
	Slide 40: A New BFS
	Slide 41: A New BFS
	Slide 42: A New BFS
	Slide 43: A New BFS
	Slide 44: A New BFS
	Slide 45: A New BFS
	Slide 46: A New BFS
	Slide 47: A New BFS
	Slide 48: A New BFS
	Slide 49: A New BFS
	Slide 50: Q: What is the runtime? (Assume Linked List)
	Slide 51: Q: What is the runtime? O(m+n)
	Slide 52: Q: What if we change the queue to a stack?
	Slide 53: Q: What if we change the queue to a stack?
	Slide 54: Q: What if we change the queue to a stack?
	Slide 55: A: We DFS
	Slide 56: Q: What is the runtime of DFS?
	Slide 57: Q: What is the runtime of DFS? O(m+n)
	Slide 58: Q: What is the runtime of DFS? O(m+n)
	Slide 59: Problem: Bipartite Graph
	Slide 60: Problem: Bipartite Graph
	Slide 61: Problem: Bipartite Graph
	Slide 62: Problem: Bipartite Graph
	Slide 63: Problem: Bipartite Graph
	Slide 64: Problem: Bipartite Graph
	Slide 65: Problem: Bipartite Graph
	Slide 66: Problem: Bipartite Graph
	Slide 67: Problem: Bipartite Graph
	Slide 68: Directed Graphs
	Slide 69: Examples Directed Graphs

