

CSE 331: Algorithms & Complexity “BFS and DFS Runtime”

Prof. Charlie Anne Carlson (She/Her)

Lecture 13

Friday September 26th, 2025

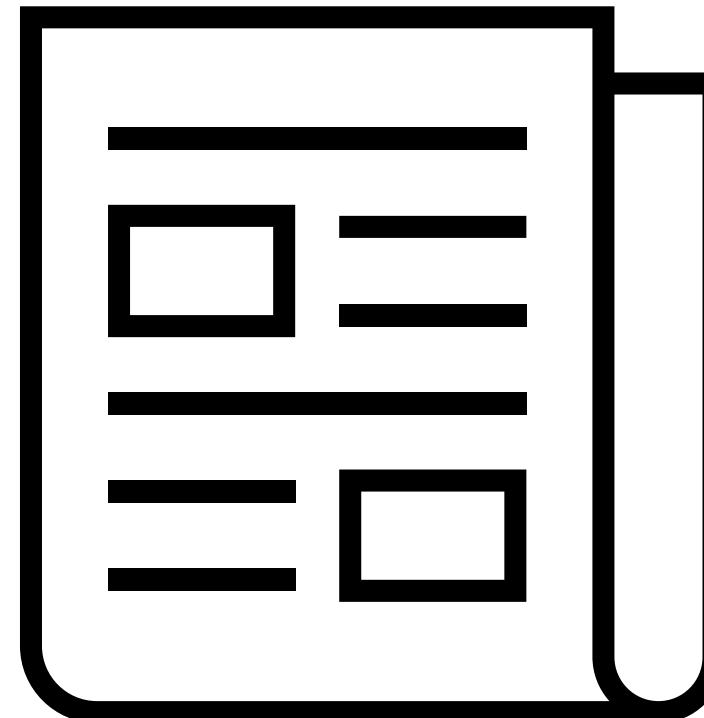
University at Buffalo®

Schedule

1. Course Updates
2. Stacks & Queues
3. Another BFS
4. Runtime Analysis
 1. BFS
 2. DFS
5. Coloring

Course Updates

- **HW 2 Solutions Soon**
- HW 3 Out
- Group Project
 - **Team Emails Soon**
 - No Autolab Registration
- First Quiz NEXT Monday!
 - **Quiz Solutions Soon**
- **Sample Midterms Soon-ish**



Soon = Today... or before I go to sleep

Q: What is a stack?

- A data structure for maintaining a set of elements.
- We can add and remove elements from the stack in constant time.
- When we remove an element, we get the last element that was added.
- “last-in, first-out” or LIFO

Q: What is Queue?

- A data structure for maintaining a set of elements.
- We can add and remove elements from the stack in constant time.
- When we remove an element, we get the first element that was added (and is still in the set).
 - “first-in, first-out” or FIFO

Stack vs Queue

- Both can be implemented with a (doubly) linked list.
- Let's assume that both implement the remove function to take the first element of the linked list.
- Q: How do we implement the add function for Stack vs Queue?

Stack vs Queue

- Both can be implemented with a (doubly) linked list.
- Let's assume that both implement the remove function to take the first element of the linked list.
- A: For a Stack we insert at the front and for a Queue we insert at the end.

Breadth First Search

- **Input:** $G = (V, E)$ and $s \in V$
- **Output:** BFS Tree
- Let $L_0 = \{s\}$
- Assume L_0, \dots, L_i have been constructed:
 - Let L_{i+1} be nodes do not appear in L_0, \dots, L_i and have an edge to L_i .
 - If L_{i+1} is empty, stop.
- Return all layers.

A more specific BFS

BFS(s) :

 Initialize Discovered to be a node index array of false

 Set Discovered[s] = true

 Initialize L[0] to be a linked list with one element s

 Initialize i to be 0

 While L[i] is not empty:

 Initialize L[i+1] to be empty linked list

 For u in L[i]:

 For each edge (u, v) incident to u:

 If Discovered[v] = false:

 Set Discovered[u] = true

 Add v to L[i+1]

 ++i

Q: What is the runtime?

BFS(s) :

 Initialize Discovered to be a node index array of false

 Set Discovered[s] = true

 Initialize L[0] to be a linked list with one element s

 Initialize i to be 0

 While L[i] is not empty:

 Initialize L[i+1] to be empty linked list

 For u in L[i]:

 For each edge (u, v) incident to u:

 If Discovered[v] = false:

 Set Discovered[u] = true

 Add v to L[i+1]

 ++i

Q: What is the runtime?

BFS(s) :

O(n) Initialize Discovered to be a node index array of false

Set Discovered[s] = true

Initialize L[0] to be a linked list with one element s

Initialize i to be 0

While L[i] is not empty:

 Initialize L[i+1] to be empty linked list

 For u in L[i]:

 For each edge (u, v) incident to u:

 If Discovered[v] = false:

 Set Discovered[u] = true

 Add v to L[i+1]

 ++i

Q: What is the runtime?

BFS(s) :

O(n) Initialize Discovered to be a node index array of false

O(1) Set Discovered[s] = true

Initialize L[0] to be a linked list with one element s

Initialize i to be 0

While L[i] is not empty:

 Initialize L[i+1] to be empty linked list

 For u in L[i]:

 For each edge (u, v) incident to u:

 If Discovered[v] = false:

 Set Discovered[u] = true

 Add v to L[i+1]

 ++i

Q: What is the runtime?

BFS(s) :

O(n) Initialize Discovered to be a node index array of false

O(1) Set Discovered[s] = true

O(1) Initialize L[0] to be a linked list with one element s

Initialize i to be 0

While L[i] is not empty:

 Initialize L[i+1] to be empty linked list

 For u in L[i]:

 For each edge (u, v) incident to u:

 If Discovered[v] = false:

 Set Discovered[u] = true

 Add v to L[i+1]

 ++i

Q: What is the runtime?

BFS(s) :

O(n) Initialize Discovered to be a node index array of false

O(1) Set Discovered[s] = true

O(1) Initialize L[0] to be a linked list with one element s

O(1) Initialize i to be 0

While L[i] is not empty:

 Initialize L[i+1] to be empty linked list

 For u in L[i]:

 For each edge (u, v) incident to u:

 If Discovered[v] = false:

 Set Discovered[u] = true

 Add v to L[i+1]

 ++i

Q: What is the runtime?

BFS(s) :

O(n) Initialize Discovered to be a node index array of false

O(1) Set Discovered[s] = true

O(1) Initialize L[0] to be a linked list with one element s

O(1) Initialize i to be 0

While L[i] is not empty: **Q: How many times does this loop run?**

 Initialize L[i+1] to be empty linked list

 For u in L[i] :

 For each edge (u, v) incident to u:

 If Discovered[v] = false:

 Set Discovered[u] = true

 Add v to L[i+1]

 ++i

Q: What is the runtime?

BFS(s) :

$O(n)$ Initialize Discovered to be a node index array of false

$O(1)$ Set Discovered[s] = true

$O(1)$ Initialize L[0] to be a linked list with one element s

$O(1)$ Initialize i to be 0

While L[i] is not empty: **A: $|\bigcup_i L_i| \leq n$**

 Initialize L[i+1] to be empty linked list

 For u in L[i] :

 For each edge (u, v) incident to u:

 If Discovered[v] = false:

 Set Discovered[u] = true

 Add v to L[i+1]

 ++i

Q: What is the runtime?

BFS(s) :

O(n) Initialize Discovered to be a node index array of false

O(1) Set Discovered[s] = true

O(1) Initialize L[0] to be a linked list with one element s

O(1) Initialize i to be 0

O(n) While L[i] is not empty:

 Initialize L[i+1] to be empty linked list **Q: How many layers max?**

 For u in L[i] :

 For each edge (u, v) incident to u:

 If Discovered[v] = false:

 Set Discovered[u] = true

 Add v to L[i+1]

 ++i

Q: What is the runtime?

BFS(s) :

O(n) Initialize Discovered to be a node index array of false

O(1) Set Discovered[s] = true

O(1) Initialize L[0] to be a linked list with one element s

O(1) Initialize i to be 0

O(n) While L[i] is not empty:

O(n) Initialize L[i+1] to be empty linked list **A: One for each vertex.**

For u in L[i] :

For each edge (u, v) incident to u:

If Discovered[v] = false:

Set Discovered[u] = true

Add v to L[i+1]

++i

Q: What is the runtime?

BFS(s) :

O(n) Initialize Discovered to be a node index array of false

O(1) Set Discovered[s] = true

O(1) Initialize L[0] to be a linked list with one element s

O(1) Initialize i to be 0

O(n) While L[i] is not empty:

O(n) Initialize L[i+1] to be empty linked list

For u in L[i]: **Q: How many times does this loop run?**

For each edge (u, v) incident to u:

If Discovered[v] = false:

Set Discovered[u] = true

Add v to L[i+1]

++i

Q: What is the runtime?

BFS(s) :

$O(n)$ Initialize Discovered to be a node index array of false

$O(1)$ Set Discovered[s] = true

$O(1)$ Initialize $L[0]$ to be a linked list with one element s

$O(1)$ Initialize i to be 0

$O(n)$ While $L[i]$ is not empty:

$O(n)$ Initialize $L[i+1]$ to be empty linked list

$O(n)$ For u in $L[i]$: **A: $|U_i L_i| \leq n$**

 For each edge (u, v) incident to u :

 If $Discovered[v] = \text{false}$:

 Set $Discovered[v] = \text{true}$

 Add v to $L[i+1]$

 ++i

Q: What is the runtime?

BFS(s) :

O(n) Initialize Discovered to be a node index array of false

O(1) Set Discovered[s] = true

O(1) Initialize L[0] to be a linked list with one element s

O(1) Initialize i to be 0

O(n) While L[i] is not empty:

O(n) Initialize L[i+1] to be empty linked list

O(n) For u in L[i]:

For each edge (u, v) incident to u: **Q: How do we do this?**

If Discovered[v] = false:

Set Discovered[u] = true

Add v to L[i+1]

++i

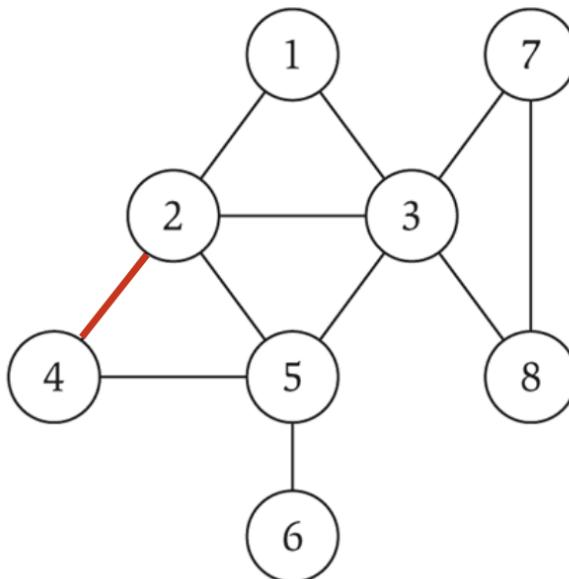
Q: Which should we use?

Space: $O(n^2)$

Lookup: $O(1)$

List Neighbors: $O(n)$

	1	2	3	4	5	6	7	8
1	0	1	1	0	0	0	0	0
2	1	0	1	1	1	0	0	0
3	1	1	0	0	1	0	1	1
4	0	1	0	0	1	0	0	0
5	0	1	1	1	0	1	0	0
6	0	0	0	0	1	0	0	0
7	0	0	1	0	0	0	0	1
8	0	0	1	0	0	0	1	0



Space: $O(n + m)$

Lookup: $O(d_u)$

List Neighbors: $O(d_u)$

$N[1] : [2] \rightarrow [3]$

$N[2] : [1] \rightarrow [3] \rightarrow [5] \rightarrow [4]$

$N[3] : [1] \rightarrow [2] \rightarrow [5] \rightarrow [7] \rightarrow [8]$

$N[4] : [2] \rightarrow [5]$

$N[5] : [2] \rightarrow [3] \rightarrow [4] \rightarrow [6]$

$N[6] : [5]$

$N[7] : [3] \rightarrow [8]$

$N[8] : [3] \rightarrow [7]$

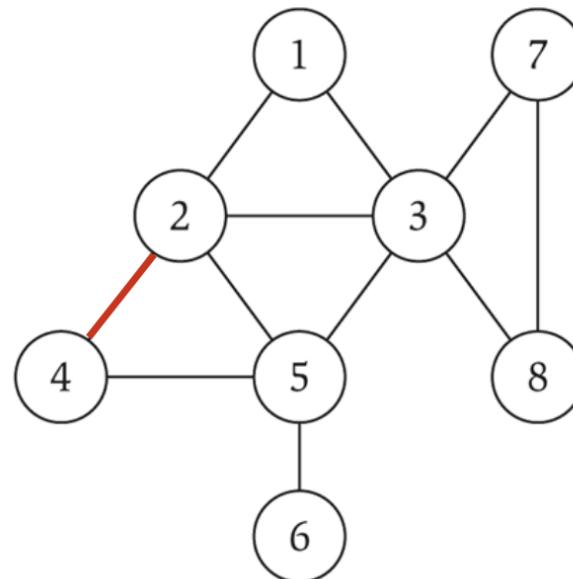
Adjacency List vs Adjacency Matrix

Space: $O(n^2)$

Lookup: $O(1)$

List Neighbors: $O(n)$

	1	2	3	4	5	6	7	8
1	0	1	1	0	0	0	0	0
2	1	0	1	1	1	0	0	0
3	1	1	0	0	1	0	1	1
4	0	1	0	0	1	0	0	0
5	0	1	1	1	0	1	0	0
6	0	0	0	0	1	0	0	0
7	0	0	1	0	0	0	0	1
8	0	0	1	0	0	0	1	0



Space: $O(n + m)$

Lookup: $O(d_u)$

List Neighbors: $O(d_u)$

$N[1] : [2] \rightarrow [3]$

$N[2] : [1] \rightarrow [3] \rightarrow [5] \rightarrow [4]$

$N[3] : [1] \rightarrow [2] \rightarrow [5] \rightarrow [7] \rightarrow [8]$

$N[4] : [2] \rightarrow [5]$

$N[5] : [2] \rightarrow [3] \rightarrow [4] \rightarrow [6]$

$N[6] : [5]$

$N[7] : [3] \rightarrow [8]$

$N[8] : [3] \rightarrow [7]$

Q: What is the runtime?

BFS(s) :

O(n) Initialize Discovered to be a node index array of false

O(1) Set Discovered[s] = true

O(1) Initialize L[0] to be a linked list with one element s

O(1) Initialize i to be 0

O(n) While L[i] is not empty:

O(n) Initialize L[i+1] to be empty linked list

O(n) For u in L[i]:

For each edge (u, v) incident to u: **A: Linked List**

If Discovered[v] = false:

Set Discovered[u] = true

Add v to L[i+1]

++i

Q: What is the runtime?

BFS(s) :

O(n) Initialize Discovered to be a node index array of false

O(1) Set Discovered[s] = true

O(1) Initialize L[0] to be a linked list with one element s

O(1) Initialize i to be 0

O(n) While L[i] is not empty:

O(n) Initialize L[i+1] to be empty linked list

O(n) For u in L[i]:

O(d_u) For each edge (u, v) incident to u:

 If Discovered[v] = false:

 Set Discovered[u] = true

 Add v to L[i+1]

 ++i

Q: How many times does this loop run for u?

Q: What is the runtime?

BFS(s) :

$O(n)$ Initialize Discovered to be a node index array of false

$O(1)$ Set Discovered[s] = true

$O(1)$ Initialize $L[0]$ to be a linked list with one element s

$O(1)$ Initialize i to be 0

$O(n)$ While $L[i]$ is not empty:

$O(n)$ Initialize $L[i+1]$ to be empty linked list

$O(n)$ For u in $L[i]$:

For each edge (u, v) incident to u: **A: One time for each u!**

If $\text{Discovered}[v] = \text{false}$:

Set $\text{Discovered}[u] = \text{true}$

Add v to $L[i+1]$

$++i$

Q: What is the runtime?

BFS(s) :

O(n) Initialize Discovered to be a node index array of false

O(1) Set Discovered[s] = true

O(1) Initialize L[0] to be a linked list with one element s

O(1) Initialize i to be 0

O(n) While L[i] is not empty:

O(n) Initialize L[i+1] to be empty linked list

O(n) For u in L[i]:

 For each edge (u, v) incident to u:

 If Discovered[v] = false:

 Set Discovered[u] = true

 Add v to L[i+1]

 ++i

Q: What is the runtime?

BFS(s) :

- O(n)** Initialize Discovered to be a node index array of false
- O(1)** Set Discovered[s] = true
- O(1)** Initialize L[0] to be a linked list with one element s
- O(1)** Initialize i to be 0
- O(n)** While L[i] is not empty:
 - O(n)** Initialize L[i+1] to be empty linked list
 - O(n)** For u in L[i]:
 - For each edge (u, v) incident to u:
 - O(1)** If Discovered[v] = false:
 - O(1)** Set Discovered[u] = true
 - O(1)** Add v to L[i+1]
 - O(1)** ++i

Q: What is the runtime?

BFS(s) :

$O(n)$ Initialize Discovered to be a node index array of false

$O(1)$ Set Discovered[s] = true

$O(1)$ Initialize L[0] to be a linked list with one element s

$O(1)$ Initialize i to be 0

$O(n)$ While L[i] is not empty:

$O(n)$ Initialize L[i+1] to be empty linked list

$O(n)$ For u in L[i]:

$O(m)$ For each edge (u, v) incident to u:

$O(m)$ If Discovered[v] = false:

$O(m)$ Set Discovered[u] = true

$O(m)$ Add v to L[i+1]

$O(n)$ ++i

Q: What is the runtime? $O(n + m)$

BFS(s) :

$O(n)$ Initialize Discovered to be a node index array of false

$O(1)$ Set Discovered[s] = true

$O(1)$ Initialize L[0] to be a linked list with one element s

$O(1)$ Initialize i to be 0

$O(n)$ While L[i] is not empty:

$O(n)$ Initialize L[i+1] to be empty linked list

$O(n)$ For u in L[i]:

$O(m)$ For each edge (u, v) incident to u:

$O(m)$ If Discovered[v] = false:

$O(m)$ Set Discovered[u] = true

$O(m)$ Add v to L[i+1]

$O(n)$ ++i

Q: What if I use a matrix?

BFS(s) :

 Initialize Discovered to be a node index array of false

 Set Discovered[s] = true

 Initialize L[0] to be a linked list with one element s

 Initialize i to be 0

 While L[i] is not empty:

 Initialize L[i+1] to be empty linked list

 For u in L[i]:

 For each edge (u, v) incident to u:

 If Discovered[v] = false:

 Set Discovered[u] = true

 Add v to L[i+1]

 ++i

Q: What if I use a matrix? $O(n^2)$

BFS(s) :

 Initialize Discovered to be a node index array of false

 Set Discovered[s] = true

 Initialize L[0] to be a linked list with one element s

 Initialize i to be 0

 While L[i] is not empty:

 Initialize L[i+1] to be empty linked list

 For u in L[i]:

 For each edge (u, v) incident to u:

 If Discovered[v] = false:

 Set Discovered[u] = true

 Add v to L[i+1]

 ++i

$O(n^2)$

$O(n^2)$

$O(n^2)$

$O(n^2)$

A New BFS

BFS(s) :

 Initialize Discovered to be a node index array of false

 Discovered :

 Queue :

 u :

 v :

 Set Discovered[s] = true

 Initialize Q to be a Queue with one element s

 While Q is not empty:

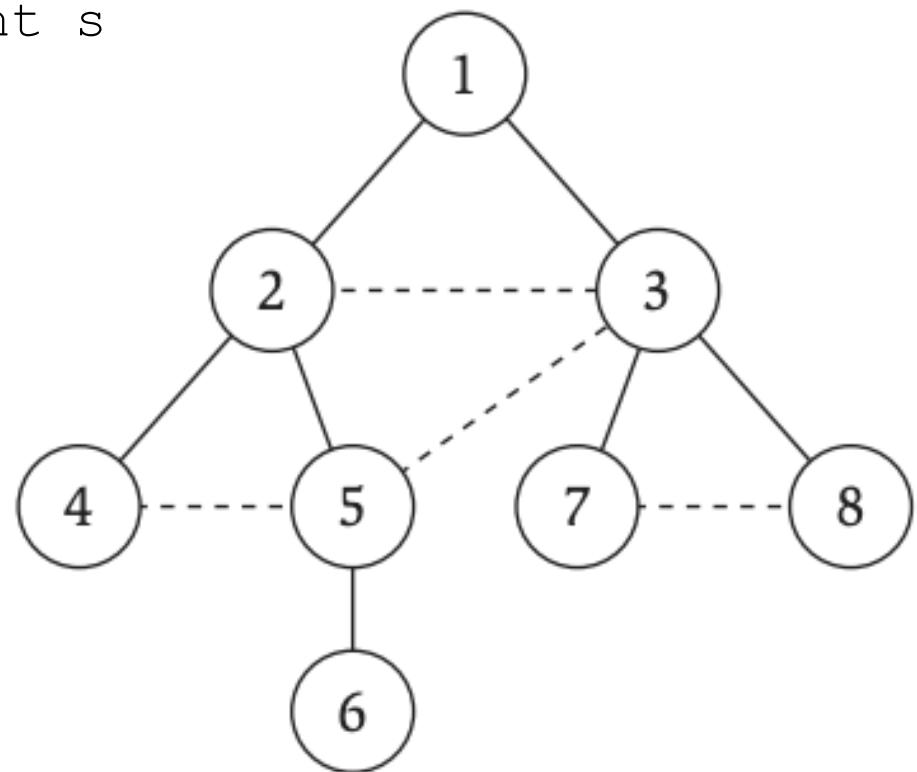
$u = Q.dequeue()$

 For each edge (u, v) incident to u :

 If Discovered[v] = false:

 Set Discovered[u] = true

 Add v to Q



A New BFS

BFS(s) :

 Initialize Discovered to be a node index array of false

 Set $\text{Discovered}[s] = \text{true}$

 Initialize Q to be a Queue with one element s

 While Q is not empty:

$u = Q.\text{dequeue}()$

 For each edge (u, v) incident to u :

 If $\text{Discovered}[v] = \text{false}$:

 Set $\text{Discovered}[v] = \text{true}$

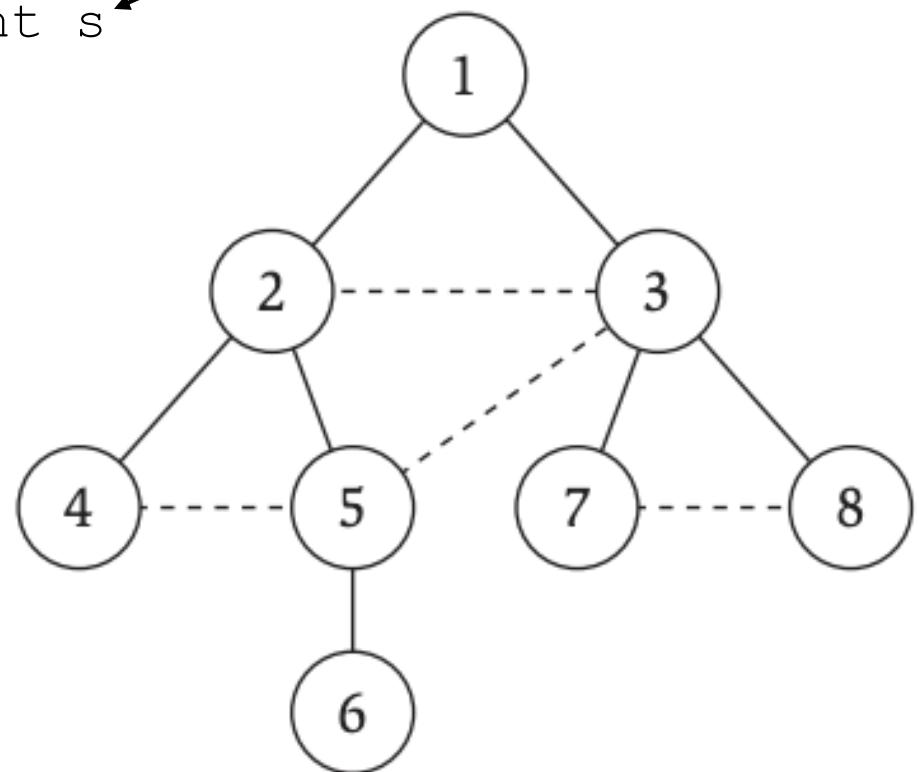
 Add v to Q

 Discovered : {1}

 Queue : {1}

u :

v :



A New BFS

BFS(s) :

 Initialize Discovered to be a node index array of false

 Set Discovered[s] = true

 Initialize Q to be a Queue with one element s

 While Q is not empty:

$u = Q.\text{dequeue}()$

 For each edge (u, v) incident to u :

 If Discovered[v] = false:

 Set Discovered[u] = true

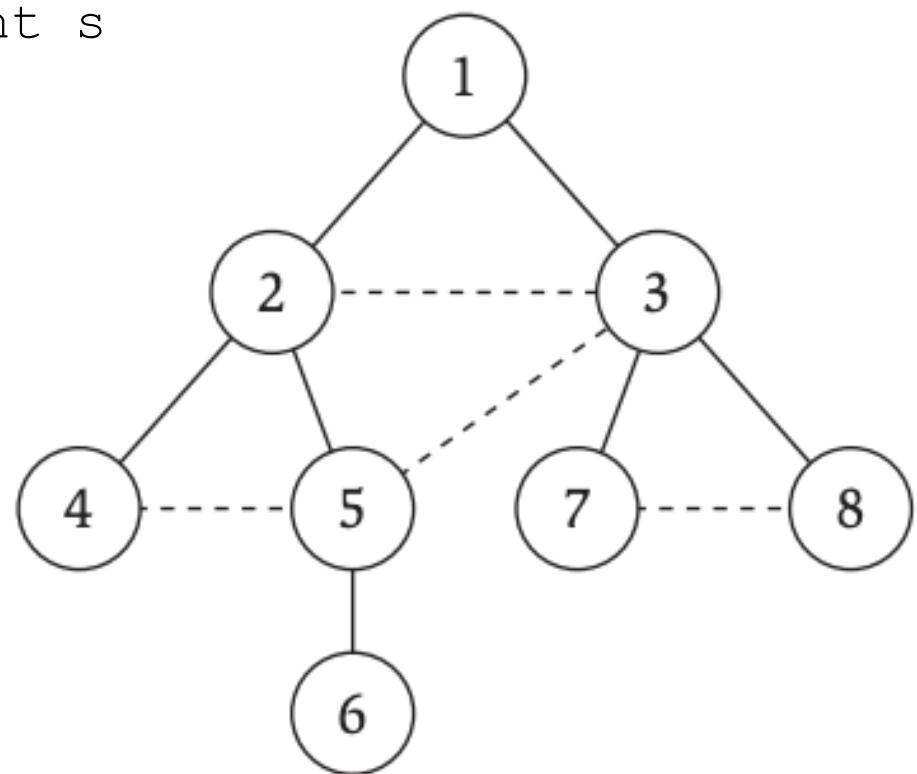
 Add v to Q

 Discovered : {1}

 Queue : {1}

 u :

 v :



A New BFS

BFS(s) :

 Initialize Discovered to be a node index array of false

 Set Discovered[s] = true

 Initialize Q to be a Queue with one element s

 While Q is not empty:

$u = Q.\text{dequeue}()$

 For each edge (u, v) incident to u :

 If Discovered[v] = false:

 Set Discovered[v] = true

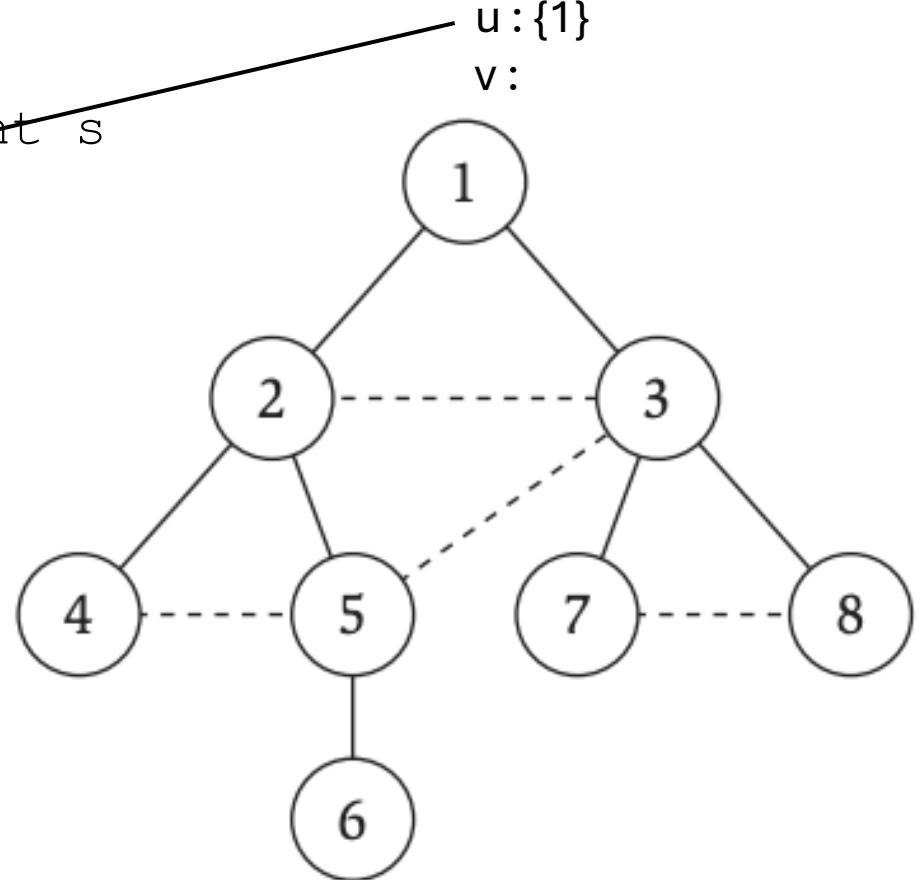
 Add v to Q

 Discovered : {1}

 Queue : {}

$u : \{1\}$

$v :$



A New BFS

BFS(s) :

 Initialize Discovered to be a node index array of false

 Discovered : {1}

 Queue : {}

 u : 1

 v : 2

 Set Discovered[s] = true

 Initialize Q to be a Queue with one element s

 While Q is not empty:

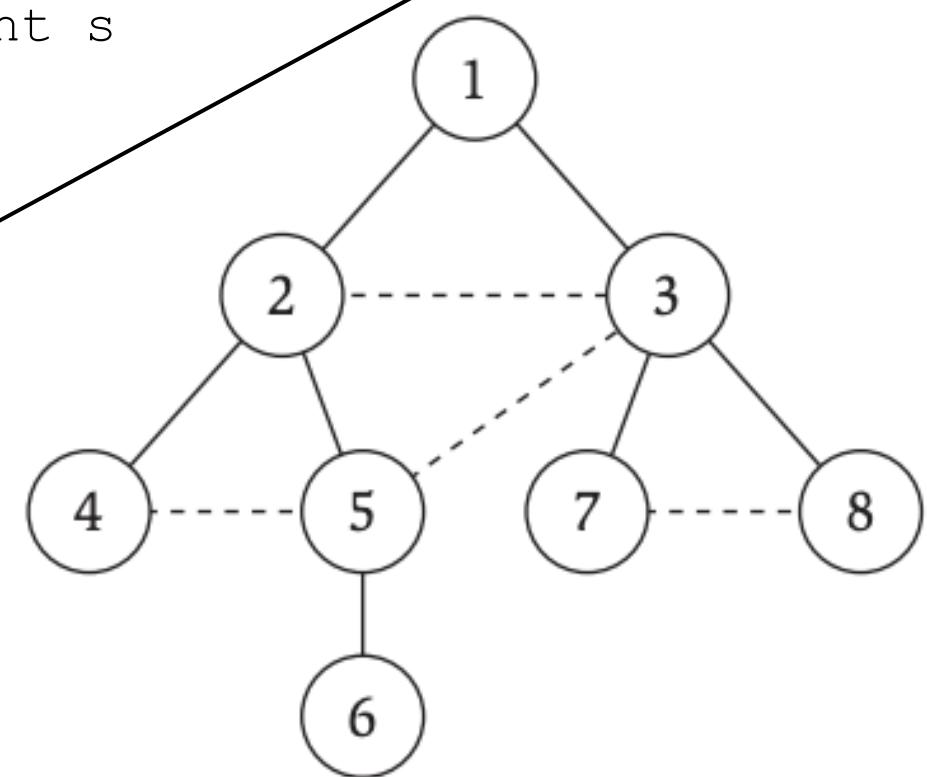
$u = Q.dequeue()$

 For each edge (u, v) incident to u :

 If Discovered[v] = false:

 Set Discovered[u] = true

 Add v to Q



A New BFS

BFS(s) :

 Initialize Discovered to be a node index array of false

 Discovered : {1}

 Queue : {}

 u : 1

 v : 2

 Set Discovered[s] = true

 Initialize Q to be a Queue with one element s

 While Q is not empty:

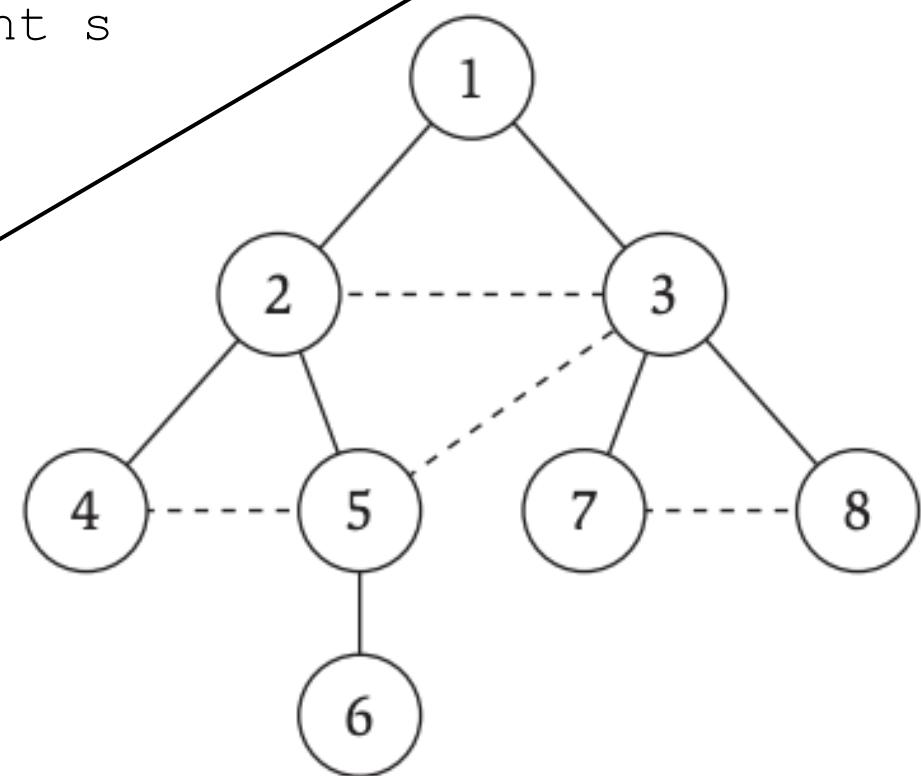
$u = Q.dequeue()$

 For each edge (u, v) incident to u :

 If $Discovered[v] = \text{false}$:

 Set $Discovered[u] = \text{true}$

 Add v to Q



A New BFS

BFS(s) :

 Initialize Discovered to be a node index array of false

 Set $\text{Discovered}[s] = \text{true}$

 Initialize Q to be a Queue with one element s

 While Q is not empty:

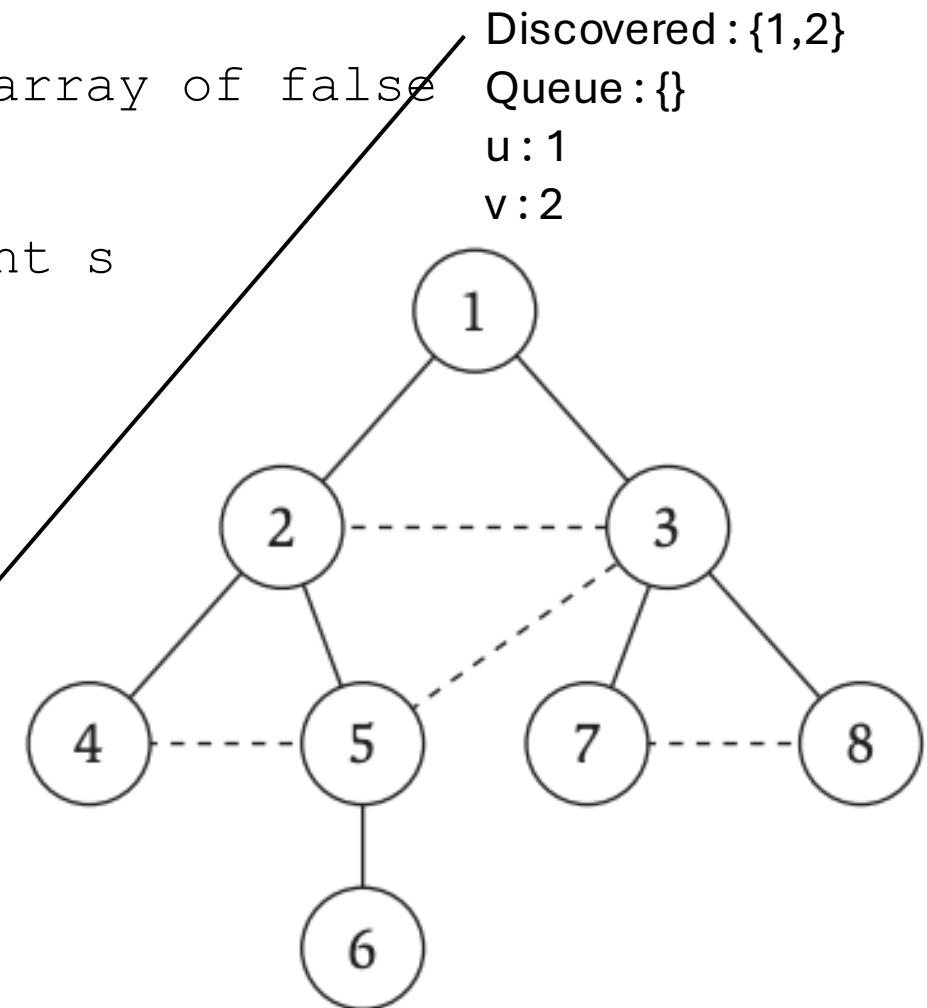
$u = Q.\text{dequeue}()$

 For each edge (u, v) incident to u :

 If $\text{Discovered}[v] = \text{false}$:

 Set $\text{Discovered}[u] = \text{true}$

 Add v to Q



A New BFS

BFS(s) :

 Initialize Discovered to be a node index array of false

 Set $\text{Discovered}[s] = \text{true}$

 Initialize Q to be a Queue with one element s

 While Q is not empty:

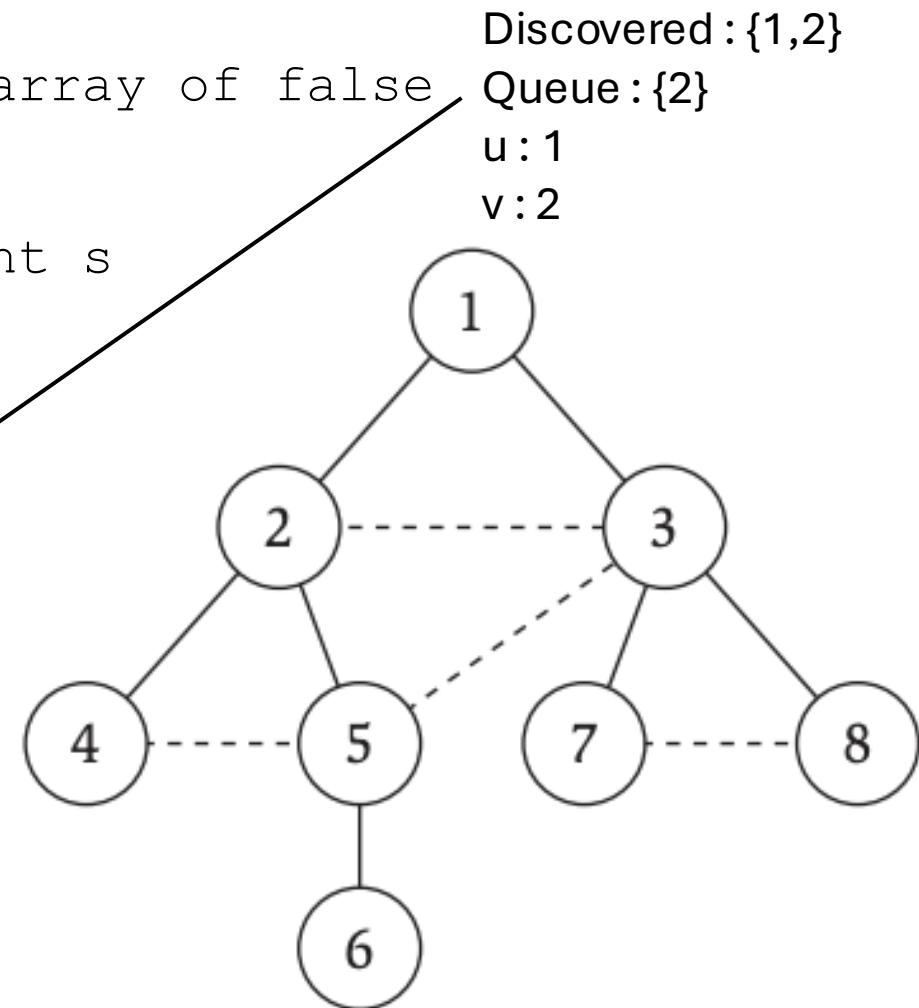
$u = Q.\text{dequeue}()$

 For each edge (u, v) incident to u :

 If $\text{Discovered}[v] = \text{false}$:

 Set $\text{Discovered}[v] = \text{true}$

 Add v to Q



A New BFS

BFS(s) :

 Initialize Discovered to be a node index array of false

 Discovered : {1,2}

 Queue : {2}

 u : 1

 v : 3

 Set Discovered[s] = true

 Initialize Q to be a Queue with one element s

 While Q is not empty:

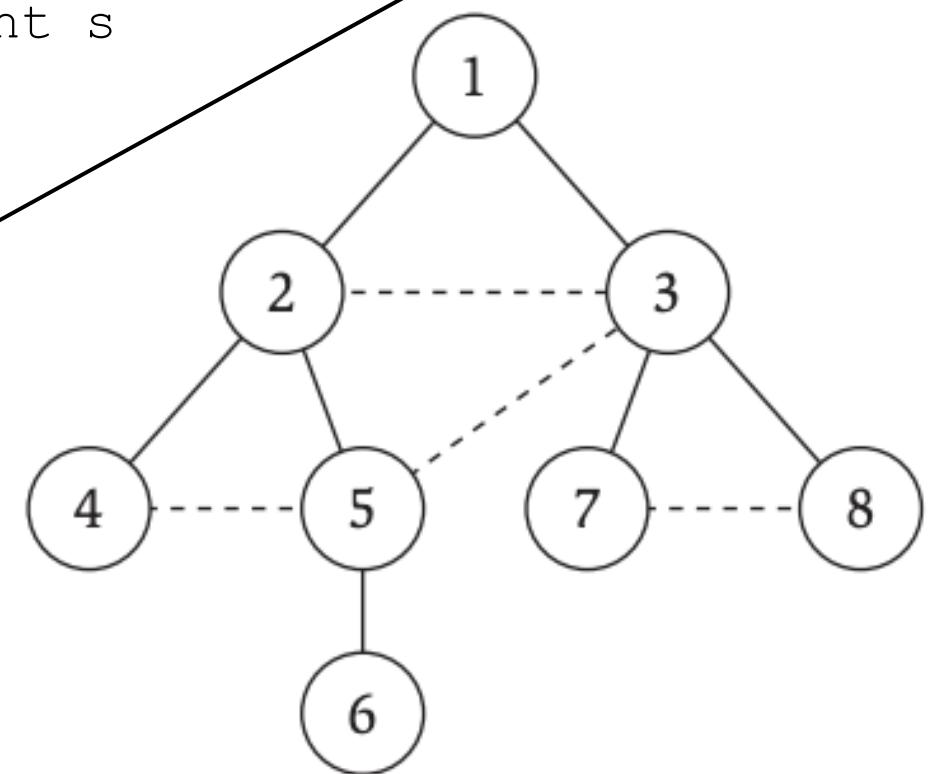
$u = Q.dequeue()$

 For each edge (u, v) incident to u :

 If Discovered[v] = false:

 Set Discovered[u] = true

 Add v to Q



A New BFS

BFS(s) :

 Initialize Discovered to be a node index array of false

 Set $\text{Discovered}[s] = \text{true}$

 Initialize Q to be a Queue with one element s

 While Q is not empty:

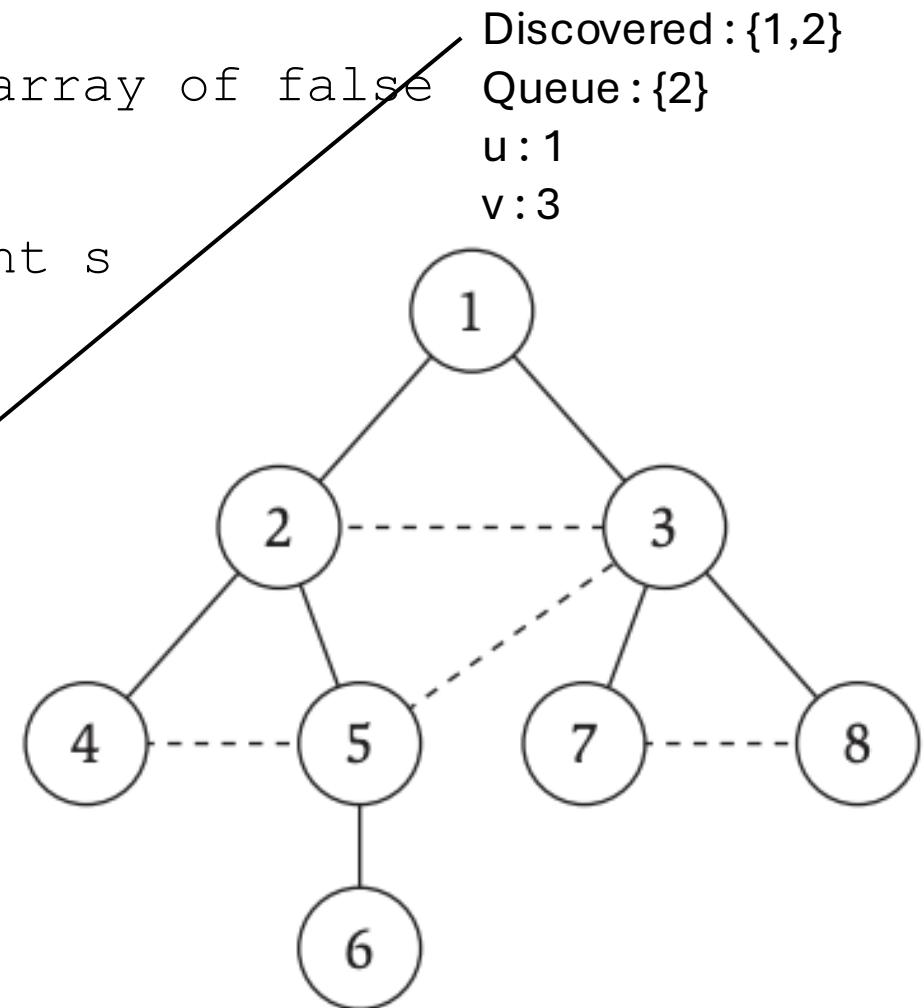
$u = Q.\text{dequeue}()$

 For each edge (u, v) incident to u :

 If $\text{Discovered}[v] = \text{false}$:

 Set $\text{Discovered}[v] = \text{true}$

 Add v to Q



A New BFS

BFS(s) :

 Initialize Discovered to be a node index array of false

 Set $\text{Discovered}[s] = \text{true}$

 Initialize Q to be a Queue with one element s

 While Q is not empty:

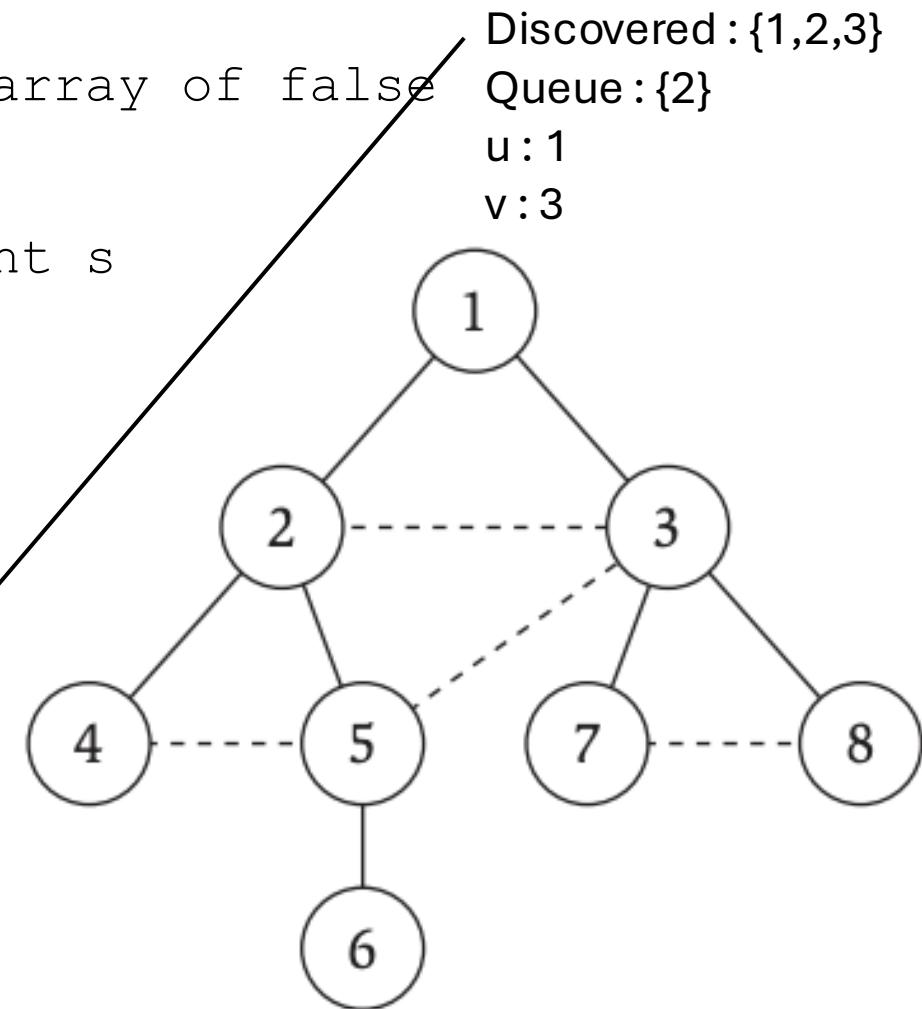
$u = Q.\text{dequeue}()$

 For each edge (u, v) incident to u :

 If $\text{Discovered}[v] = \text{false}$:

 Set $\text{Discovered}[u] = \text{true}$

 Add v to Q



A New BFS

BFS(s) :

 Initialize Discovered to be a node index array of false

 Set $\text{Discovered}[s] = \text{true}$

 Initialize Q to be a Queue with one element s

 While Q is not empty:

$u = Q.\text{dequeue}()$

 For each edge (u, v) incident to u :

 If $\text{Discovered}[v] = \text{false}$:

 Set $\text{Discovered}[v] = \text{true}$

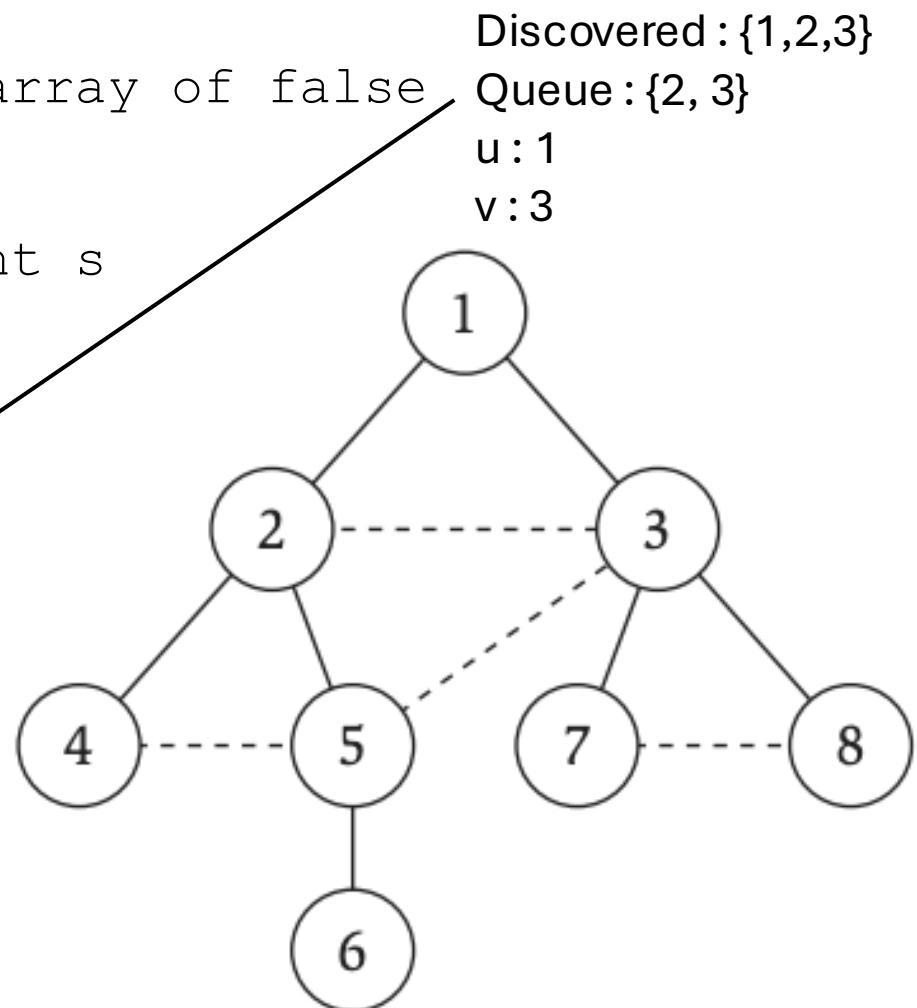
 Add v to Q

Discovered : {1,2,3}

Queue : {2, 3}

$u: 1$

$v: 3$



A New BFS

BFS(s) :

 Initialize Discovered to be a node index array of false

 Discovered : {1,2,3}

 Queue : {3}

 Set Discovered[s] = true

 u : 2

 v : ...

 Initialize Q to be a Queue with one element s

 While Q is not empty:

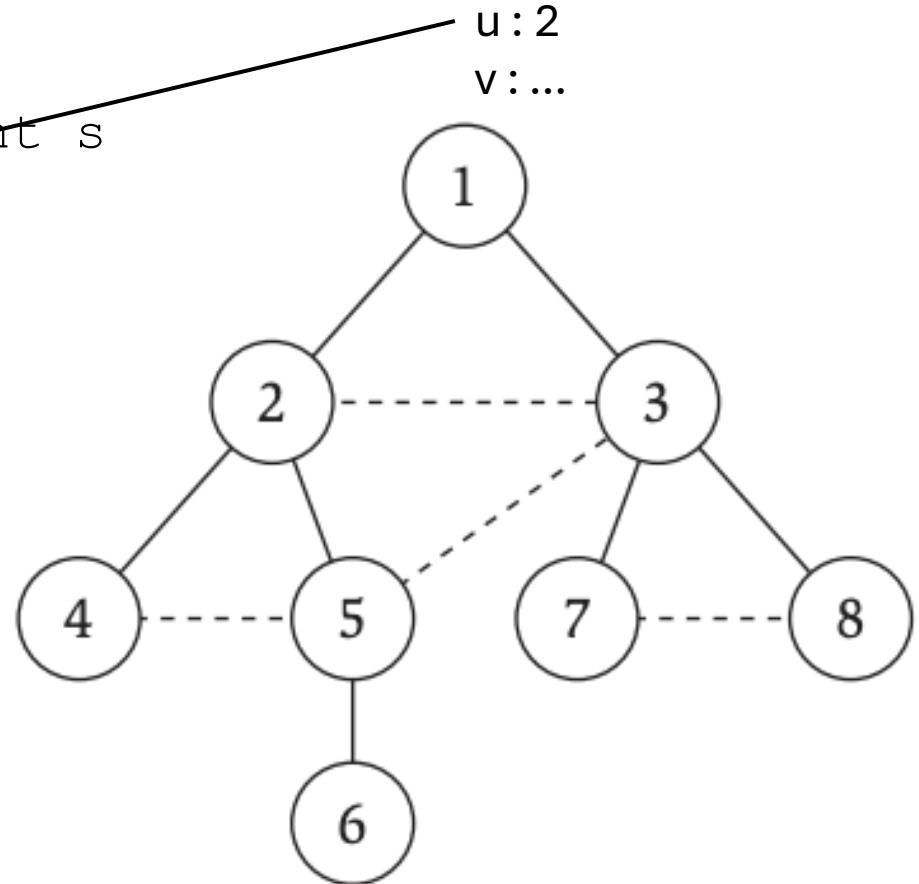
$u = Q.\text{dequeue}()$

 For each edge (u, v) incident to u :

 If Discovered[v] = false:

 Set Discovered[u] = true

 Add v to Q



A New BFS

BFS(s) :

 Initialize Discovered to be a node index array of false

 Set Discovered[s] = true

 Initialize Q to be a Queue with one element s

 While Q is not empty:

$u = Q.\text{dequeue}()$

 For each edge (u, v) incident to u :

 If Discovered[v] = false:

 Set Discovered[v] = true

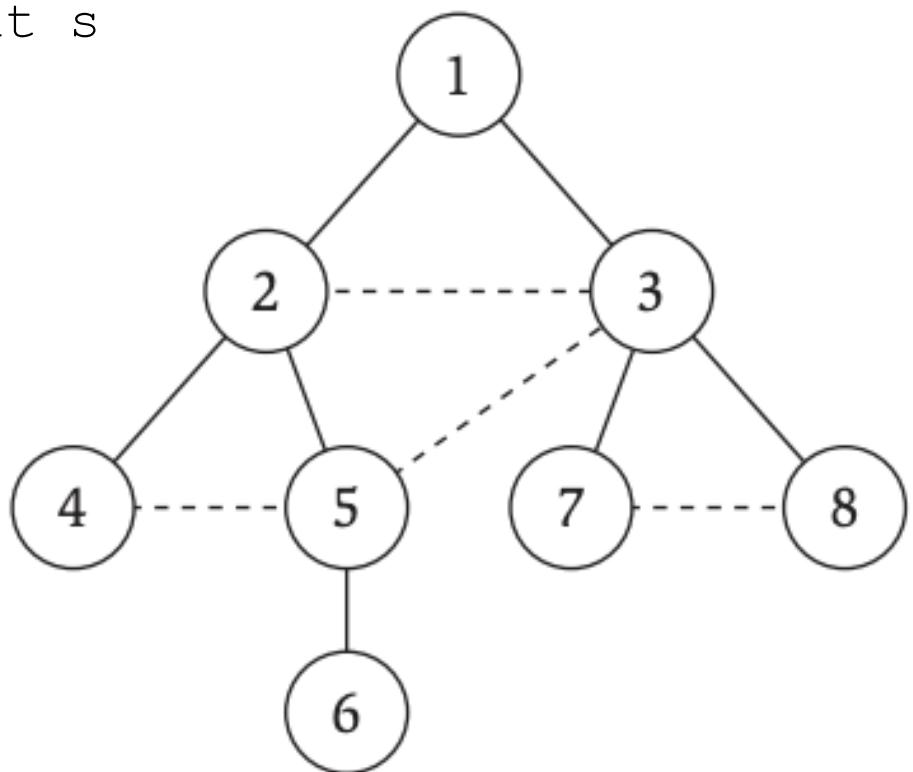
 Add v to Q

Discovered : {1,2,3, 4, 5}

Queue : {3, 4, 5}

u : 2

v : ...



A New BFS

BFS(s) :

 Initialize Discovered to be a node index array of false

 Discovered : {1,2,3, 4, 5}

 Set Discovered[s] = true

 Queue : {4, 5}

 u : 3

 v : ...

 Initialize Q to be a Queue with one element s

 While Q is not empty:

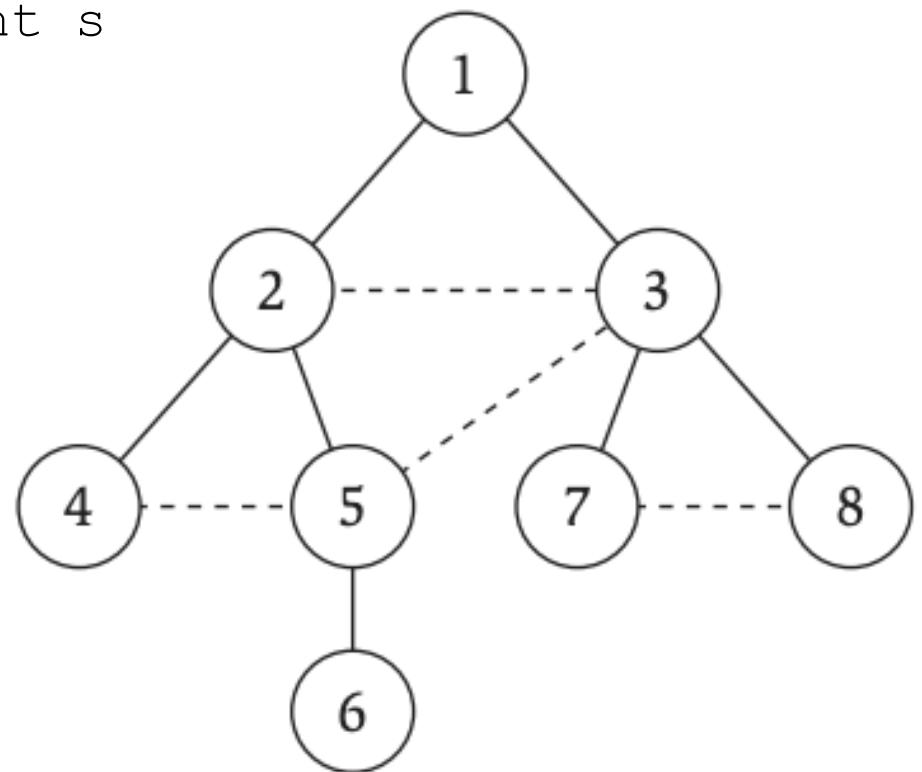
 u = Q.dequeue()

 For each edge (u, v) incident to u:

 If Discovered[v] = false:

 Set Discovered[u] = true

 Add v to Q



A New BFS

BFS(s) :

 Initialize Discovered to be a node index array of false

 Discovered : {1,2,3,4,5,7,8,6}

 Set Discovered[s] = true

 Queue : {7, 8}

 u : 5

 v : ...

 Initialize Q to be a Queue with one element s

 While Q is not empty:

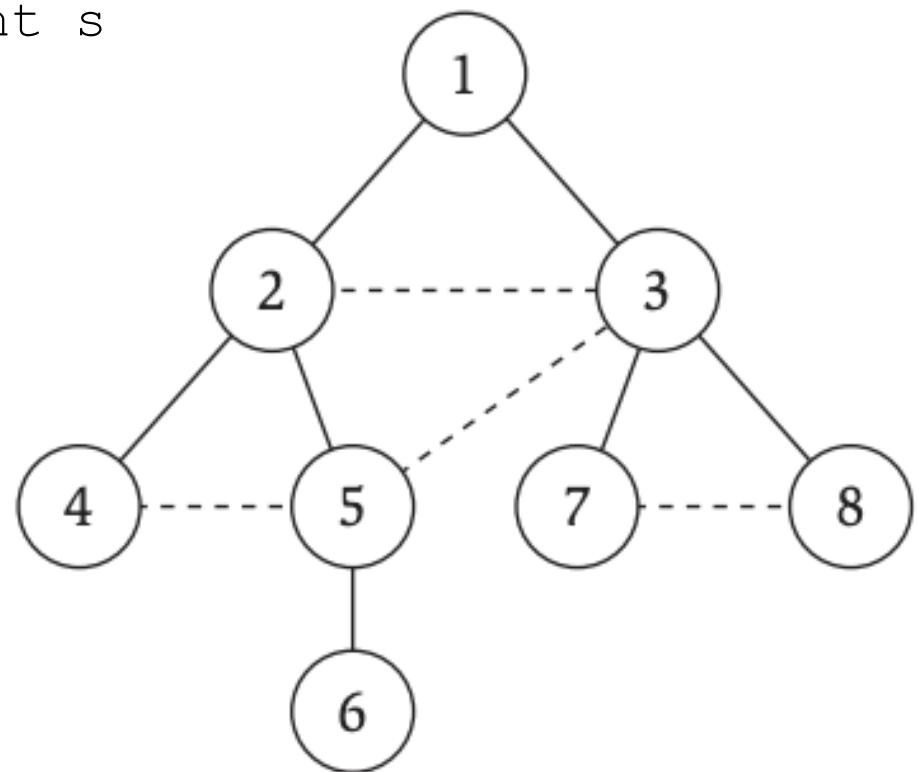
$u = Q.dequeue()$

 For each edge (u, v) incident to u :

 If Discovered[v] = false:

 Set Discovered[u] = true

 Add v to Q



A New BFS

BFS(s) :

 Initialize Discovered to be a node index array of false

 Discovered : {1,2,3,4,5,7,8,6}

 Queue : {}

 u : ...

 v : ...

 Set Discovered[s] = true

 Initialize Q to be a Queue with one element s

 While Q is not empty:

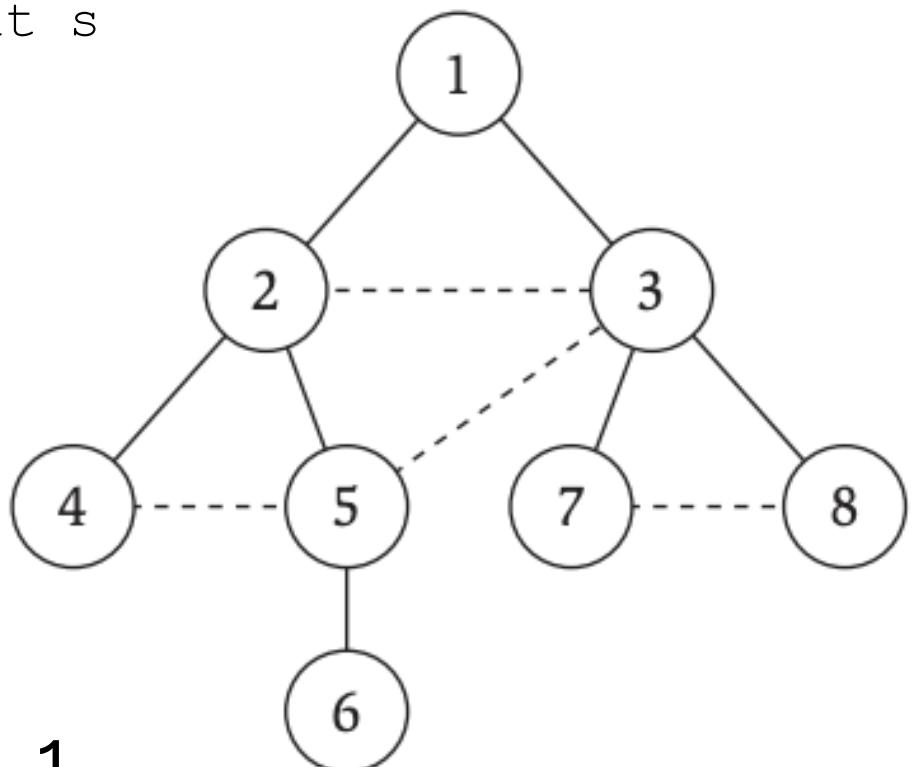
 u = Q.dequeue()

 For each edge (u, v) incident to u:

 If Discovered[v] = false:

 Set Discovered[u] = true

 Add v to Q



Note: We never visit anything in level i before i - 1.

Q: What is the runtime? (Assume Linked List)

BFS(s) :

 Initialize Discovered to be a node index array of false

 Set Discovered[s] = true

 Initialize Q to be a Queue with one element s

 While Q is not empty:

 u = Q.dequeue()

 For each edge (u, v) incident to u:

 If Discovered[v] = false:

 Set Discovered[u] = true

 Add v to Q

Q: What is the runtime? $O(m+n)$

BFS(s) :

 Initialize Discovered to be a node index array of false

 Set Discovered[s] = true

 Initialize Q to be a Queue with one element s

 While Q is not empty: **Note: We only do this outer loop at most once per vertex.**

 u = Q.dequeue()

 For each edge (u, v) incident to u:

 If Discovered[v] = false:

 Set Discovered[v] = true

 Add v to Q

Note: We only do this inner loop at most twice per edge.

Q: What if we change the queue to a stack?

???(s) :

 Initialize Explored to be a node index array of false

 Set Explored[s] = true

 Initialize Q to be a **Stack** with one element s

 While Q is not empty:

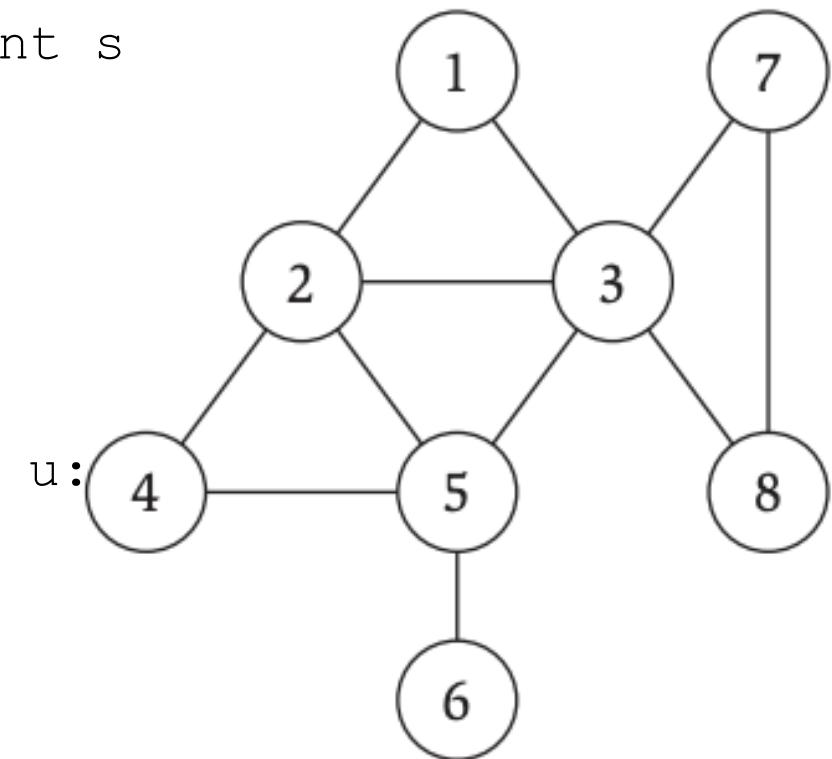
 u = Q.remove()

 If Explored[u] = false:

 Explored[u] = true

 For each edge (u, v) incident to u:

 Add v to Q



Q: What if we change the queue to a stack?

???(s) :

Initialize Explored to be a node index array of false

Set Explored[s] = true

Initialize Q to be a **Stack** with one element s

While Q is not empty:

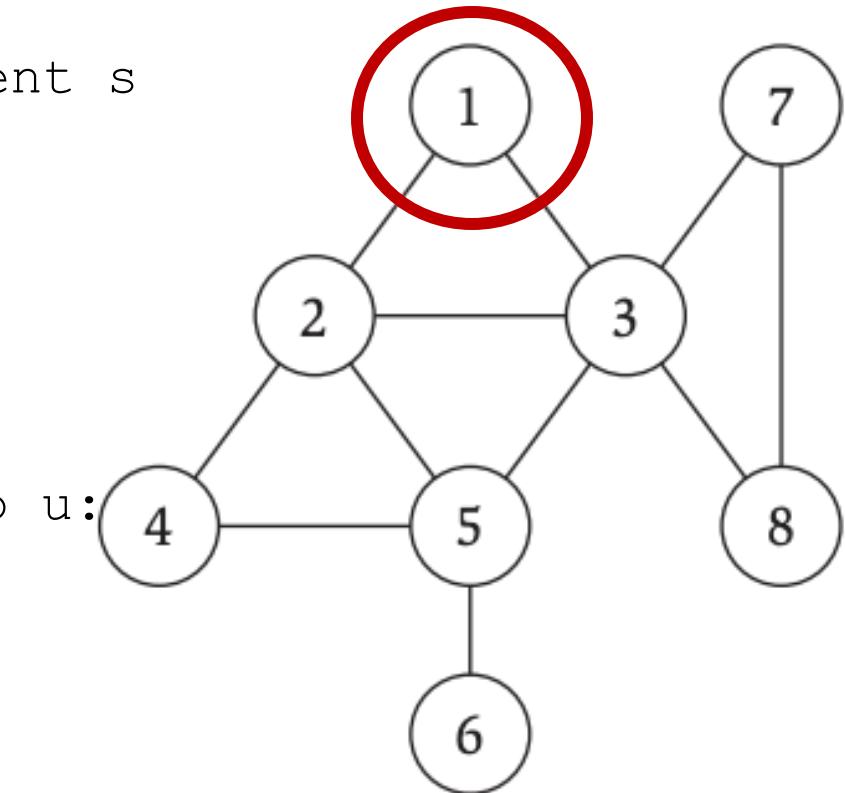
 u = Q.remove()

 If Explored[u] = false:

 Explored[u] = true

 For each edge (u, v) incident to u:

 Add v to Q



Q: What if we change the queue to a stack?

???(s) :

 Initialize Explored to be a node index array of false

 Set Explored[s] = true

 Initialize Q to be a **Stack** with one element s

 While Q is not empty:

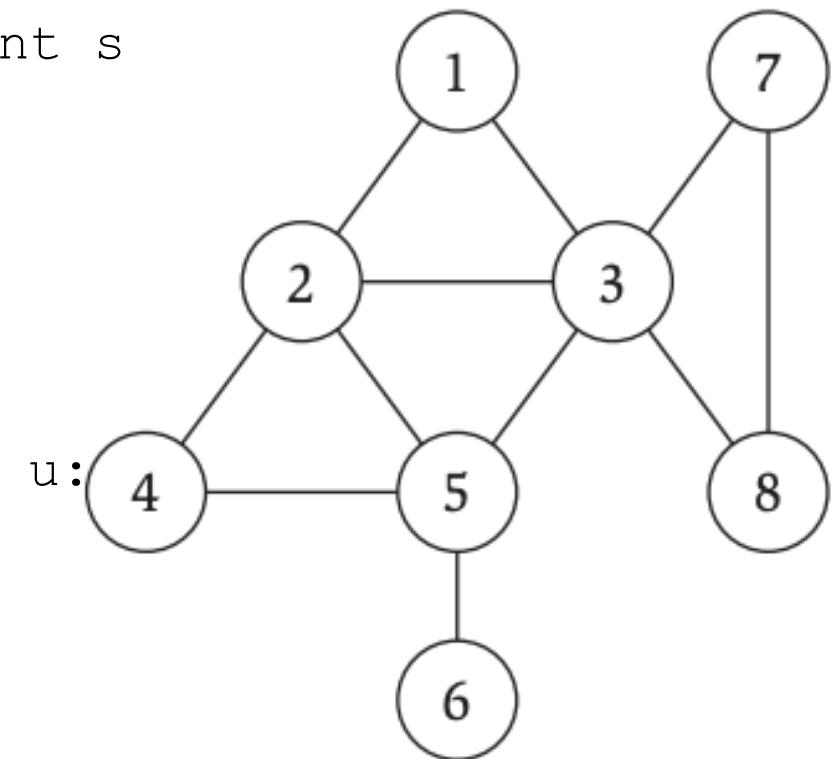
 u = Q.remove()

 If Explored[u] = false:

 Explored[u] = true

 For each edge (u, v) incident to u:

 Add v to Q



A: We DFS

DFS(s) :

 Initialize Explored to be a node index array of false

 Set Explored[s] = true

 Initialize Q to be a **Stack** with one element s

 While Q is not empty:

 u = Q.remove()

 If Explored[u] = false:

 Explored[u] = true

 For each edge (u, v) incident to u:

 Add v to Q

Q: What is the runtime of DFS?

DFSs) :

Initialize `Explored` to be a node index array of `false`

Set `Explored[s] = true`

Initialize `Q` to be a **Stack** with one element `s`

While `Q` is not empty:

`u = Q.remove()`

 If `Explored[u] = false`:

`Explored[u] = true`

 For each edge (u, v) incident to `u`:

 Add `v` to `Q`

Q: What is the runtime of DFS? $O(m+n)$

DFSs) :

Initialize `Explored` to be a node index array of `false`

Set `Explored[s]` = `true`

Initialize `Q` to be a **Stack** with one element `s`

While `Q` is not empty: **Q: How many times does this loop run for u?**

`u = Q.remove()`

 If `Explored[u]` = `false`:

`Explored[u]` = `true`

 For each edge (u, v) incident to `u`:

 Add `v` to `Q`

Q: What is the runtime of DFS? $O(m+n)$

DFSs) :

Initialize `Explored` to be a node index array of `false`

Set `Explored[s] = true`

Initialize `Q` to be a **Stack** with one element `s`

While `Q` is not empty: **A: At most once for each edge**

`u = Q.remove()`

 If `Explored[u] = false`:

`Explored[u] = true`

 For each edge (u, v) incident to `u`:

 Add `v` to `Q`

Problem: Bipartite Graph

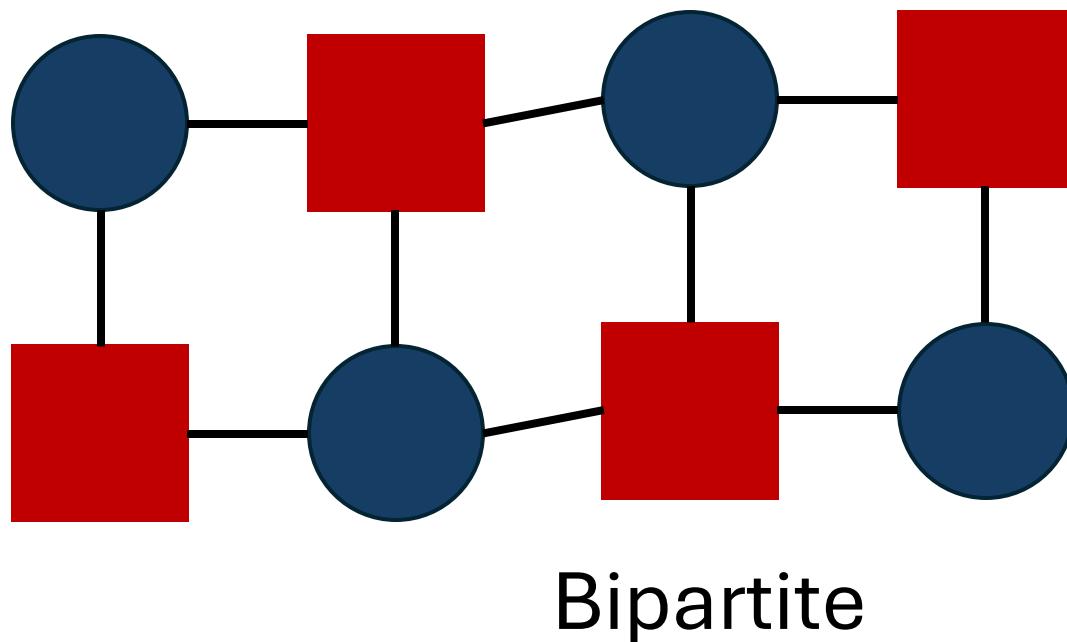
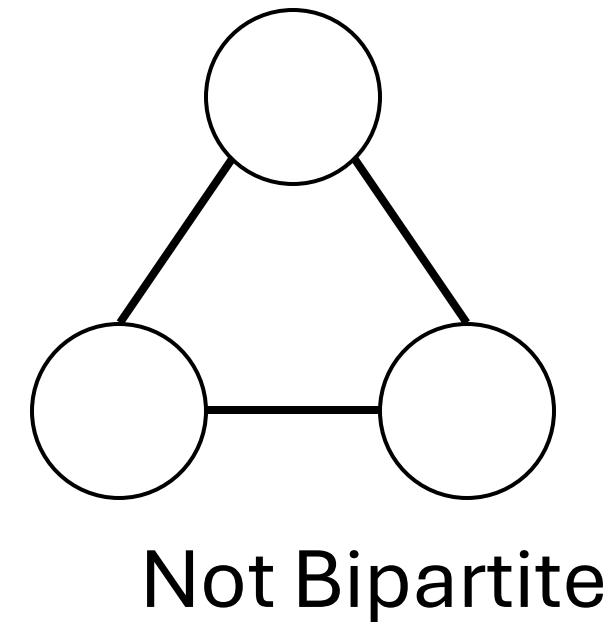
Input: A graph $G = (V, E)$

Output: True if G is bipartite and False otherwise.

Def: We say that a graph is bipartite if we can partition the vertices V into two groups L and R such that each edge has one endpoint in L and the other endpoint in R .

Problem: Bipartite Graph

Def: We say that a graph is bipartite if we can partition the vertices V into two groups L and R such that each edge has one endpoint in L and the other endpoint in R .



Problem: Bipartite Graph

Input: A graph $G = (V, E)$

Output: True if G is bipartite and False otherwise.

Algorithm Ideas:

Problem: Bipartite Graph

Input: A graph $G = (V, E)$

Output: True if G is bipartite and False otherwise.

Algorithm Ideas: We will find the layering produced by BFS and color odd levels Red and even layers Blue.

Q: When will this fail?

Problem: Bipartite Graph

Input: A graph $G = (V, E)$

Output: True if G is bipartite and False otherwise.

Algorithm Ideas: We will find the layering produced by BFS and color odd levels Red and even layers Blue. This will fail if there is a cross edge in one of the layers.

Q: What does this imply?

Problem: Bipartite Graph

Input: A graph $G = (V, E)$

Output: True if G is bipartite and False otherwise.

Algorithm Ideas: We will find the layering produced by BFS and color odd levels Red and even layers Blue. This will fail if there is a cross edge in one of the layers. This implies there is an odd cycle in the graph.

Q: Is that a problem?

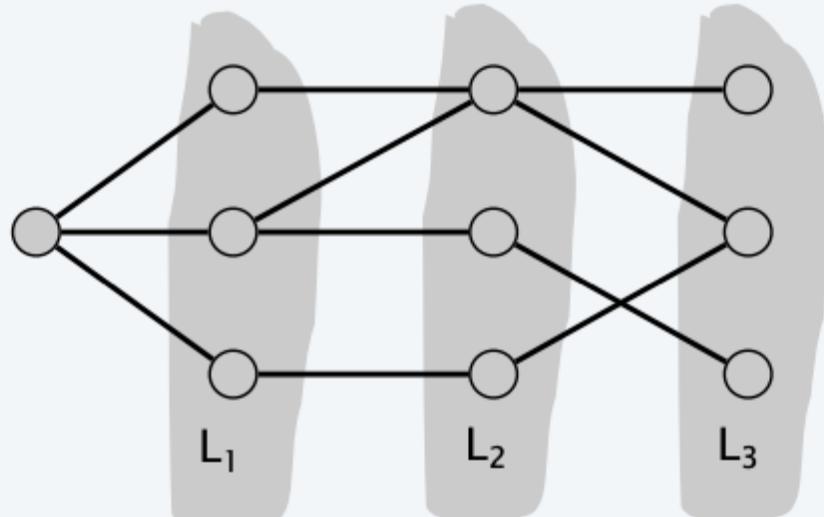
Problem: Bipartite Graph

Input: A graph $G = (V, E)$

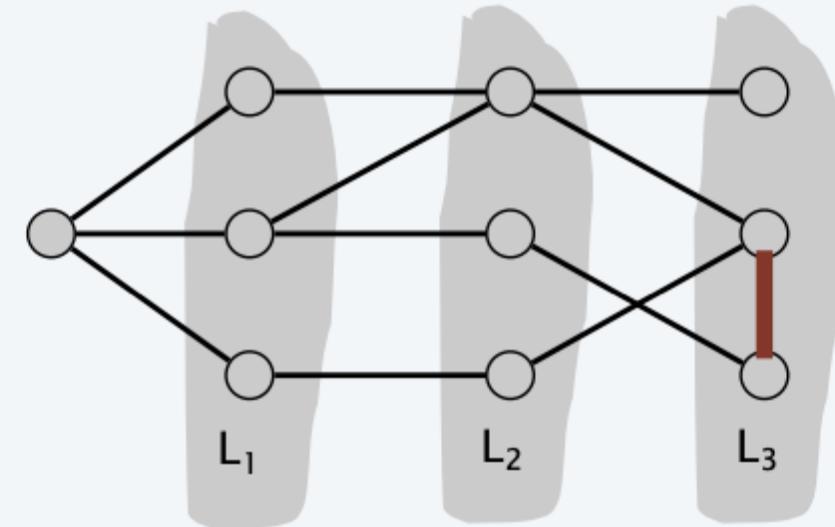
Output: True if G is bipartite and False otherwise.

Algorithm Ideas: We will find the layering produced by BFS and color odd levels Red and even layers Blue. This will fail if there is a cross edge in one of the layers. This implies there is an odd cycle in the graph. We can show that a graph is not bipartite if it contains an odd cycle.

Problem: Bipartite Graph

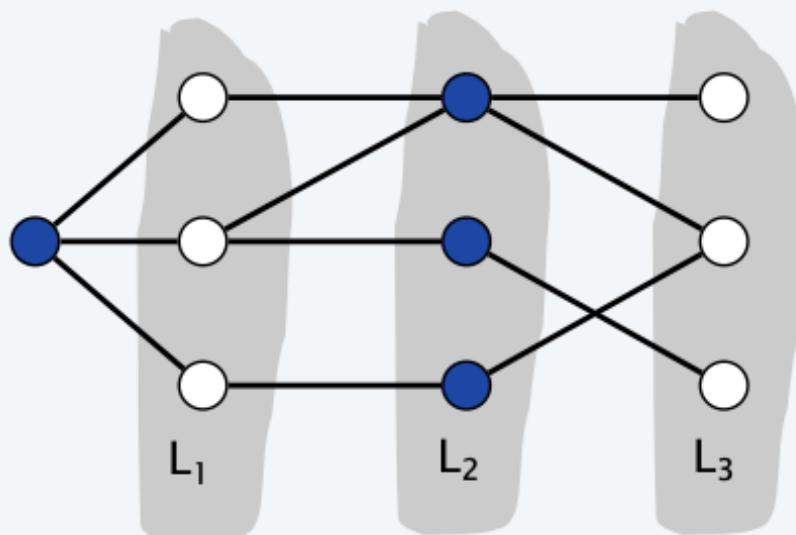


Case (i)



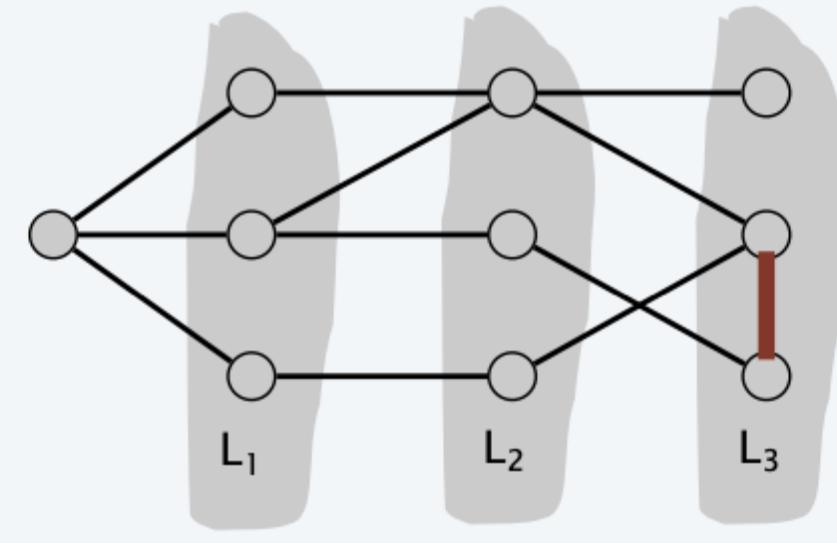
Case (ii)

Problem: Bipartite Graph



Case (i)

Is bipartite!

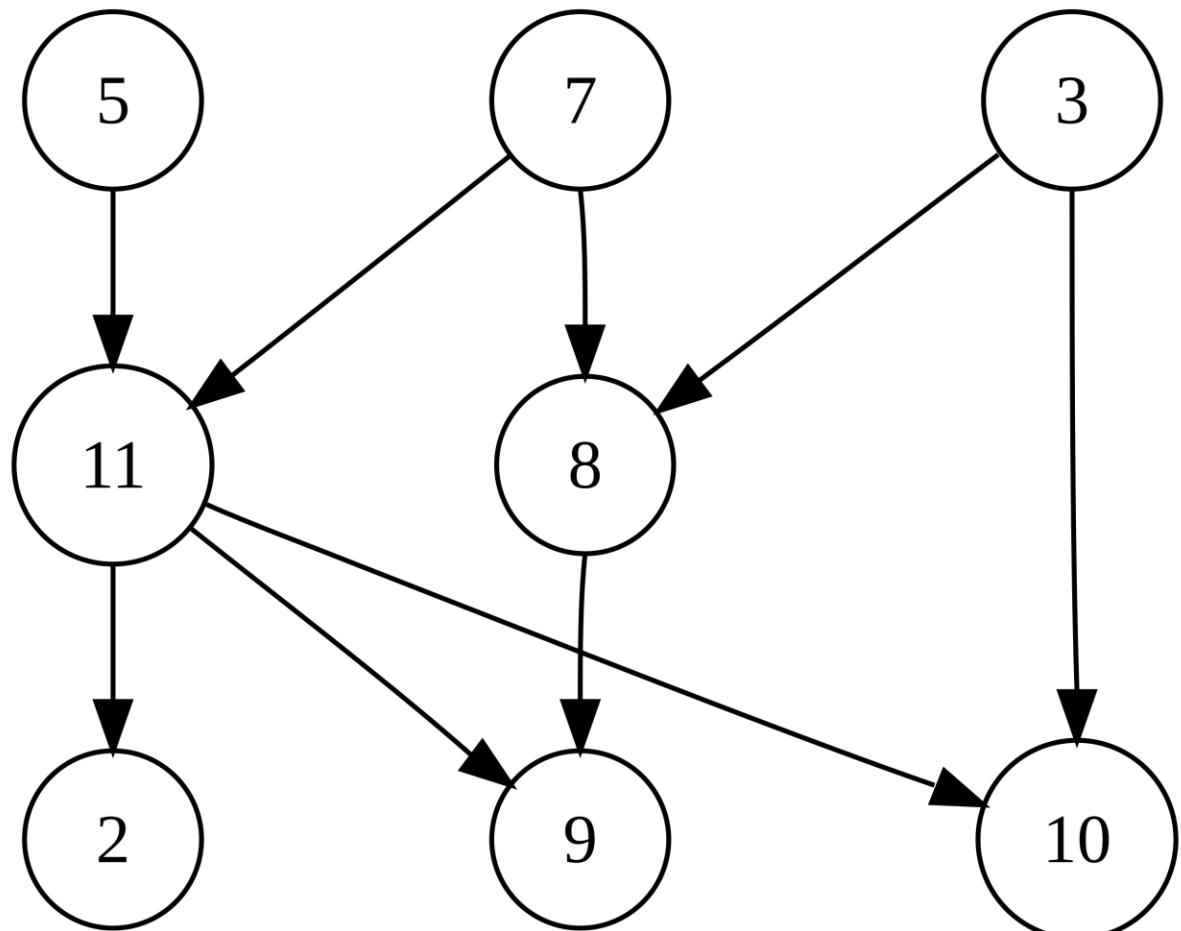


Case (ii)

Is not bipartite!

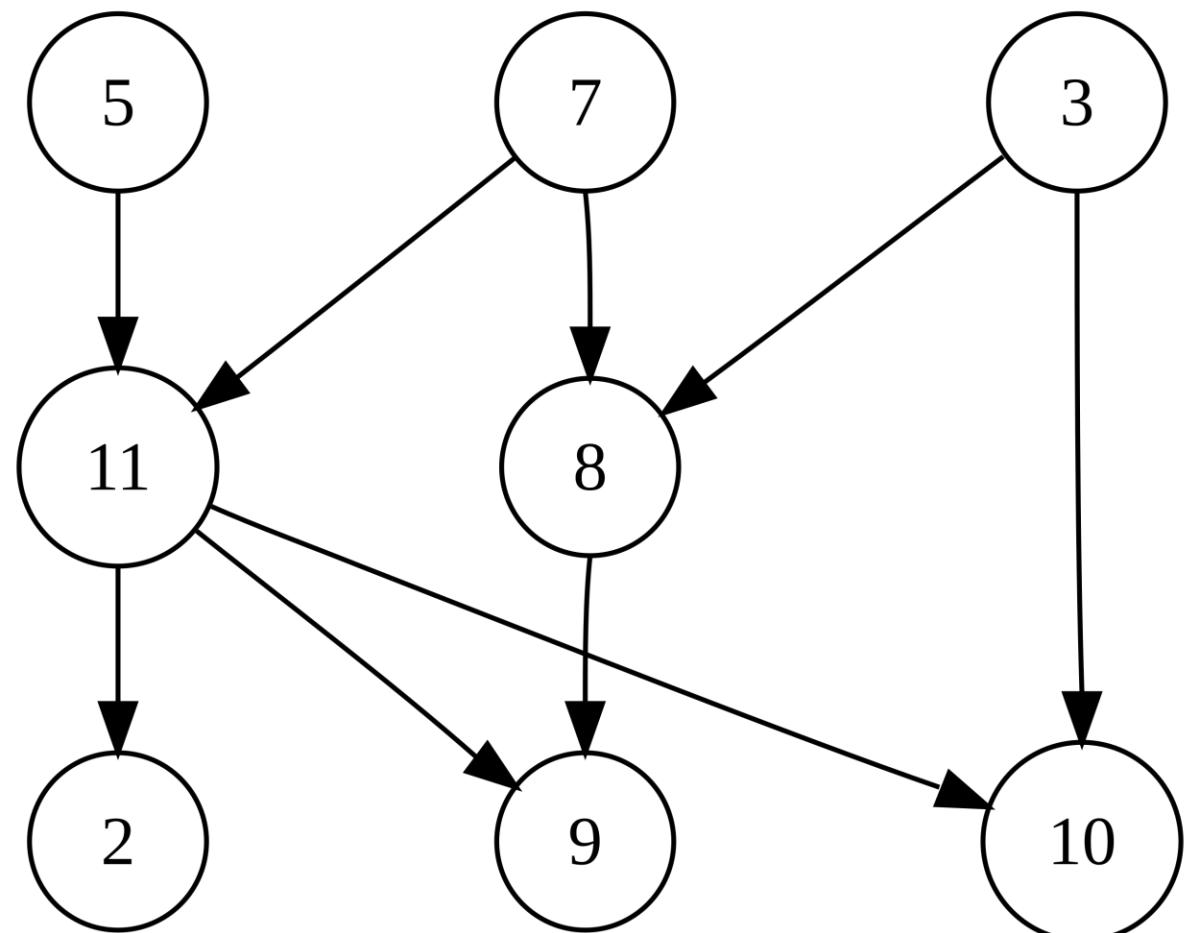
Directed Graphs

- A directed graph is a graph $G = (V, E)$ such that the edges are directed:
 - That is, each edge $(u, v) \in E$ has an ordering (i.e., a start and an end vertex).



Examples Directed Graphs

- What might the nodes represent?
- What might the edges represent?



By Johannes Rössel (talk) - Own work, Public Domain,
<https://commons.wikimedia.org/w/index.php?curid=5559952>