
CSE 331:
Algorithms & Complexity

Prof. Charlie Anne Carlson (She/Her)
Lecture 13

Friday September 26th, 2025

“BFS and DFS Runtime”

Schedule

1.Course Updates
2.Stacks & Queues
3.Another BFS
4.Runtime Analysis

1.BFS
2.DFS

5.Coloring

Course Updates

• HW 2 Solutions Soon
• HW 3 Out
• Group Project

• Team Emails Soon
• No Autolab Registration

• First Quiz NEXT Monday!
• Quiz Solutions Soon

• Sample Midterms Soon-ish
Soon = Today… or before I go to sleep

Q: What is a stack?

• A data structure for
maintaining a set of elements.

• We can add and remove
elements from the stack in
constant time.

• When we remove an element,
we get the last element that
was added.
• “last-in, first-out” or LIFO

Q: What is Queue?

• A data structure for maintaining a
set of elements.

• We can add and remove
elements from the stack in
constant time.

• When we remove an element, we
get the first element that was
added (and is still in the set).
• “first-in, first-out” or FIFO

Stack vs Queue

• Both can be implemented with a
(doubly) linked list.

• Let’s assume that both
implement the remove function
to take the first element of the
linked list.

• Q: How do we implement the add
function for Stack vs Queue?

Stack vs Queue

• Both can be implemented with a
(doubly) linked list.

• Let’s assume that both
implement the remove function
to take the first element of the
linked list.

• A: For a Stack we insert at the
front and for a Queue we insert at
the end.

Breadth First Search

• Input: 𝐺 = (𝑉, 𝐸) and 𝑠 ∈ 𝑉

• Output: BFS Tree
• Let 𝐿0 = {s}

• Assume 𝐿0, … , 𝐿𝑖 have been constructed:
• Let 𝐿i+1 be nodes do not appear in 𝐿0, … , 𝐿𝑖 and have

an edge to 𝐿𝑖.
• If 𝐿i+1 is empty, stop.

• Return all layers.

A more specific BFS
BFS(s):

Initialize Discovered to be a node index array of false

Set Discovered[s] = true

Initialize L[0] to be a linked list with one element s

Initialize i to be 0

While L[i] is not empty:

 Initialize L[i+1] to be empty linked list

For u in L[i]:

 For each edge (u, v) incident to u:

 If Discovered[v] = false:

 Set Discovered[u] = true

 Add v to L[i+1]

++i

Q: What is the runtime?
BFS(s):

Initialize Discovered to be a node index array of false

Set Discovered[s] = true

Initialize L[0] to be a linked list with one element s

Initialize i to be 0

While L[i] is not empty:

 Initialize L[i+1] to be empty linked list

For u in L[i]:

 For each edge (u, v) incident to u:

 If Discovered[v] = false:

 Set Discovered[u] = true

 Add v to L[i+1]

++i

Q: What is the runtime?
BFS(s):

Initialize Discovered to be a node index array of false

Set Discovered[s] = true

Initialize L[0] to be a linked list with one element s

Initialize i to be 0

While L[i] is not empty:

 Initialize L[i+1] to be empty linked list

For u in L[i]:

 For each edge (u, v) incident to u:

 If Discovered[v] = false:

 Set Discovered[u] = true

 Add v to L[i+1]

++i

O(n)

Total Tim
e:

Q: What is the runtime?
BFS(s):

Initialize Discovered to be a node index array of false

Set Discovered[s] = true

Initialize L[0] to be a linked list with one element s

Initialize i to be 0

While L[i] is not empty:

 Initialize L[i+1] to be empty linked list

For u in L[i]:

 For each edge (u, v) incident to u:

 If Discovered[v] = false:

 Set Discovered[u] = true

 Add v to L[i+1]

++i

O(n)
O(1)

Total Tim
e:

Q: What is the runtime?
BFS(s):

Initialize Discovered to be a node index array of false

Set Discovered[s] = true

Initialize L[0] to be a linked list with one element s

Initialize i to be 0

While L[i] is not empty:

 Initialize L[i+1] to be empty linked list

For u in L[i]:

 For each edge (u, v) incident to u:

 If Discovered[v] = false:

 Set Discovered[u] = true

 Add v to L[i+1]

++i

O(n)
O(1)
O(1)

Total Tim
e:

Q: What is the runtime?
BFS(s):

Initialize Discovered to be a node index array of false

Set Discovered[s] = true

Initialize L[0] to be a linked list with one element s

Initialize i to be 0

While L[i] is not empty:

 Initialize L[i+1] to be empty linked list

For u in L[i]:

 For each edge (u, v) incident to u:

 If Discovered[v] = false:

 Set Discovered[u] = true

 Add v to L[i+1]

++i

O(n)
O(1)
O(1)
O(1)

Total Tim
e:

Q: What is the runtime?
BFS(s):

Initialize Discovered to be a node index array of false

Set Discovered[s] = true

Initialize L[0] to be a linked list with one element s

Initialize i to be 0

While L[i] is not empty:

 Initialize L[i+1] to be empty linked list

For u in L[i]:

 For each edge (u, v) incident to u:

 If Discovered[v] = false:

 Set Discovered[u] = true

 Add v to L[i+1]

++i

O(n)
O(1)
O(1)
O(1)

Q: How many times does this loop run?

Total Tim
e:

Q: What is the runtime?
BFS(s):

Initialize Discovered to be a node index array of false

Set Discovered[s] = true

Initialize L[0] to be a linked list with one element s

Initialize i to be 0

While L[i] is not empty:

 Initialize L[i+1] to be empty linked list

For u in L[i]:

 For each edge (u, v) incident to u:

 If Discovered[v] = false:

 Set Discovered[u] = true

 Add v to L[i+1]

++i

O(n)
O(1)
O(1)
O(1)

A: ڂ𝑖 𝐿𝑖 ≤ n

Total Tim
e:

Q: What is the runtime?
BFS(s):

Initialize Discovered to be a node index array of false

Set Discovered[s] = true

Initialize L[0] to be a linked list with one element s

Initialize i to be 0

While L[i] is not empty:

 Initialize L[i+1] to be empty linked list

For u in L[i]:

 For each edge (u, v) incident to u:

 If Discovered[v] = false:

 Set Discovered[u] = true

 Add v to L[i+1]

++i

O(n)
O(1)
O(1)
O(1)
O(n)

Q: How many layers max?

Total Tim
e:

Q: What is the runtime?
BFS(s):

Initialize Discovered to be a node index array of false

Set Discovered[s] = true

Initialize L[0] to be a linked list with one element s

Initialize i to be 0

While L[i] is not empty:

 Initialize L[i+1] to be empty linked list

For u in L[i]:

 For each edge (u, v) incident to u:

 If Discovered[v] = false:

 Set Discovered[u] = true

 Add v to L[i+1]

++i

O(n)
O(1)
O(1)
O(1)
O(n)

A: One for each vertex. O(n)

Total Tim
e:

Q: What is the runtime?
BFS(s):

Initialize Discovered to be a node index array of false

Set Discovered[s] = true

Initialize L[0] to be a linked list with one element s

Initialize i to be 0

While L[i] is not empty:

 Initialize L[i+1] to be empty linked list

For u in L[i]:

 For each edge (u, v) incident to u:

 If Discovered[v] = false:

 Set Discovered[u] = true

 Add v to L[i+1]

++i

O(n)
O(1)
O(1)
O(1)
O(n)
O(n)

Q: How many times does this loop run?

Total Tim
e:

Q: What is the runtime?
BFS(s):

Initialize Discovered to be a node index array of false

Set Discovered[s] = true

Initialize L[0] to be a linked list with one element s

Initialize i to be 0

While L[i] is not empty:

 Initialize L[i+1] to be empty linked list

For u in L[i]:

 For each edge (u, v) incident to u:

 If Discovered[v] = false:

 Set Discovered[u] = true

 Add v to L[i+1]

++i

O(n)
O(1)
O(1)
O(1)
O(n)
O(n)

A: ڂ𝑖 𝐿𝑖 ≤ nO(n)

Total Tim
e:

Q: What is the runtime?
BFS(s):

Initialize Discovered to be a node index array of false

Set Discovered[s] = true

Initialize L[0] to be a linked list with one element s

Initialize i to be 0

While L[i] is not empty:

 Initialize L[i+1] to be empty linked list

For u in L[i]:

 For each edge (u, v) incident to u:

 If Discovered[v] = false:

 Set Discovered[u] = true

 Add v to L[i+1]

++i

O(n)
O(1)
O(1)
O(1)
O(n)
O(n)

Q: How do we do this?
O(n)

Total Tim
e:

Q: Which should we use?

N[1] : [2] -> [3]
N[2] : [1] -> [3] -> [5] -> [4]
N[3] : [1] -> [2] -> [5] -> [7] -> [8]
N[4] : [2] -> [5]
N[5] : [2] -> [3] -> [4] -> [6]
N[6] : [5]
N[7] : [3] -> [8]
N[8] : [3] -> [7]

Space: O(n^2)
Lookup: O(1)
List Neighbors: O(n)

Space: O(n + m)
Lookup: O(𝑑𝑢)
List Neighbors: O(𝑑𝑢)

Adjacency List vs Adjacency Matrix

N[1] : [2] -> [3]
N[2] : [1] -> [3] -> [5] -> [4]
N[3] : [1] -> [2] -> [5] -> [7] -> [8]
N[4] : [2] -> [5]
N[5] : [2] -> [3] -> [4] -> [6]
N[6] : [5]
N[7] : [3] -> [8]
N[8] : [3] -> [7]

Space: O(n^2)
Lookup: O(1)
List Neighbors: O(n)

Space: O(n + m)
Lookup: O(𝑑𝑢)
List Neighbors: O(𝑑𝑢)

Q: What is the runtime?
BFS(s):

Initialize Discovered to be a node index array of false

Set Discovered[s] = true

Initialize L[0] to be a linked list with one element s

Initialize i to be 0

While L[i] is not empty:

 Initialize L[i+1] to be empty linked list

For u in L[i]:

 For each edge (u, v) incident to u:

 If Discovered[v] = false:

 Set Discovered[u] = true

 Add v to L[i+1]

++i

O(n)
O(1)
O(1)
O(1)
O(n)
O(n)

A: Linked List
O(n)

Total Tim
e:

Q: What is the runtime?
BFS(s):

Initialize Discovered to be a node index array of false

Set Discovered[s] = true

Initialize L[0] to be a linked list with one element s

Initialize i to be 0

While L[i] is not empty:

 Initialize L[i+1] to be empty linked list

For u in L[i]:

 For each edge (u, v) incident to u:

 If Discovered[v] = false:

 Set Discovered[u] = true

 Add v to L[i+1]

++i

O(n)
O(1)
O(1)
O(1)
O(n)
O(n)

O(𝑑𝑢)
O(n)

Q: How many times does
this loop run for u?

Total Tim
e:

Q: What is the runtime?
BFS(s):

Initialize Discovered to be a node index array of false

Set Discovered[s] = true

Initialize L[0] to be a linked list with one element s

Initialize i to be 0

While L[i] is not empty:

 Initialize L[i+1] to be empty linked list

For u in L[i]:

 For each edge (u, v) incident to u:

 If Discovered[v] = false:

 Set Discovered[u] = true

 Add v to L[i+1]

++i

O(n)
O(1)
O(1)
O(1)
O(n)
O(n)

O(∑𝑑𝑢)
O(n)

A: One time for each u!

Total Tim
e:

Q: What is the runtime?
BFS(s):

Initialize Discovered to be a node index array of false

Set Discovered[s] = true

Initialize L[0] to be a linked list with one element s

Initialize i to be 0

While L[i] is not empty:

 Initialize L[i+1] to be empty linked list

For u in L[i]:

 For each edge (u, v) incident to u:

 If Discovered[v] = false:

 Set Discovered[u] = true

 Add v to L[i+1]

++i

O(n)
O(1)
O(1)
O(1)
O(n)
O(n)

O(m)
O(n)

Total Tim
e:

Q: What is the runtime?
BFS(s):

Initialize Discovered to be a node index array of false

Set Discovered[s] = true

Initialize L[0] to be a linked list with one element s

Initialize i to be 0

While L[i] is not empty:

 Initialize L[i+1] to be empty linked list

For u in L[i]:

 For each edge (u, v) incident to u:

 If Discovered[v] = false:

 Set Discovered[u] = true

 Add v to L[i+1]

++i

O(n)
O(1)
O(1)
O(1)
O(n)
O(n)

O(m)
O(n)

O(1)
O(1)
O(1)

O(1)

Total Tim
e:

Q: What is the runtime?
BFS(s):

Initialize Discovered to be a node index array of false

Set Discovered[s] = true

Initialize L[0] to be a linked list with one element s

Initialize i to be 0

While L[i] is not empty:

 Initialize L[i+1] to be empty linked list

For u in L[i]:

 For each edge (u, v) incident to u:

 If Discovered[v] = false:

 Set Discovered[u] = true

 Add v to L[i+1]

++i

O(n)
O(1)
O(1)
O(1)
O(n)
O(n)

O(m)
O(n)

O(n)

O(m)
O(m)
O(m)

Total Tim
e:

Q: What is the runtime?
BFS(s):

Initialize Discovered to be a node index array of false

Set Discovered[s] = true

Initialize L[0] to be a linked list with one element s

Initialize i to be 0

While L[i] is not empty:

 Initialize L[i+1] to be empty linked list

For u in L[i]:

 For each edge (u, v) incident to u:

 If Discovered[v] = false:

 Set Discovered[u] = true

 Add v to L[i+1]

++i

O(n)
O(1)
O(1)
O(1)
O(n)
O(n)

O(m)
O(n)

O(n)

O(m)
O(m)
O(m)

O(n + m)

Total Tim
e:

Q: What if I use a matrix?
BFS(s):

Initialize Discovered to be a node index array of false

Set Discovered[s] = true

Initialize L[0] to be a linked list with one element s

Initialize i to be 0

While L[i] is not empty:

 Initialize L[i+1] to be empty linked list

For u in L[i]:

 For each edge (u, v) incident to u:

 If Discovered[v] = false:

 Set Discovered[u] = true

 Add v to L[i+1]

++i

Q: What if I use a matrix?
BFS(s):

Initialize Discovered to be a node index array of false

Set Discovered[s] = true

Initialize L[0] to be a linked list with one element s

Initialize i to be 0

While L[i] is not empty:

 Initialize L[i+1] to be empty linked list

For u in L[i]:

 For each edge (u, v) incident to u:

 If Discovered[v] = false:

 Set Discovered[u] = true

 Add v to L[i+1]

++i

O(n^2)

O(n^2)
O(n^2)
O(n^2)
O(n^2)

A New BFS
BFS(s):

Initialize Discovered to be a node index array of false

Set Discovered[s] = true

Initialize Q to be a Queue with one element s

While Q is not empty:

u = Q.dequeue()

 For each edge (u, v) incident to u:

 If Discovered[v] = false:

 Set Discovered[u] = true

 Add v to Q

Discovered :
Queue :
u :
v :

A New BFS
BFS(s):

Initialize Discovered to be a node index array of false

Set Discovered[s] = true

Initialize Q to be a Queue with one element s

While Q is not empty:

u = Q.dequeue()

 For each edge (u, v) incident to u:

 If Discovered[v] = false:

 Set Discovered[u] = true

 Add v to Q

Discovered : {1}
Queue : {1}
u :
v :

A New BFS
BFS(s):

Initialize Discovered to be a node index array of false

Set Discovered[s] = true

Initialize Q to be a Queue with one element s

While Q is not empty:

u = Q.dequeue()

 For each edge (u, v) incident to u:

 If Discovered[v] = false:

 Set Discovered[u] = true

 Add v to Q

Discovered : {1}
Queue : {1}
u :
v :

A New BFS
BFS(s):

Initialize Discovered to be a node index array of false

Set Discovered[s] = true

Initialize Q to be a Queue with one element s

While Q is not empty:

u = Q.dequeue()

 For each edge (u, v) incident to u:

 If Discovered[v] = false:

 Set Discovered[u] = true

 Add v to Q

Discovered : {1}
Queue : {}
u : {1}
v :

A New BFS
BFS(s):

Initialize Discovered to be a node index array of false

Set Discovered[s] = true

Initialize Q to be a Queue with one element s

While Q is not empty:

u = Q.dequeue()

 For each edge (u, v) incident to u:

 If Discovered[v] = false:

 Set Discovered[u] = true

 Add v to Q

Discovered : {1}
Queue : {}
u : 1
v : 2

A New BFS
BFS(s):

Initialize Discovered to be a node index array of false

Set Discovered[s] = true

Initialize Q to be a Queue with one element s

While Q is not empty:

u = Q.dequeue()

 For each edge (u, v) incident to u:

 If Discovered[v] = false:

 Set Discovered[u] = true

 Add v to Q

Discovered : {1}
Queue : {}
u : 1
v : 2

A New BFS
BFS(s):

Initialize Discovered to be a node index array of false

Set Discovered[s] = true

Initialize Q to be a Queue with one element s

While Q is not empty:

u = Q.dequeue()

 For each edge (u, v) incident to u:

 If Discovered[v] = false:

 Set Discovered[u] = true

 Add v to Q

Discovered : {1,2}
Queue : {}
u : 1
v : 2

A New BFS
BFS(s):

Initialize Discovered to be a node index array of false

Set Discovered[s] = true

Initialize Q to be a Queue with one element s

While Q is not empty:

u = Q.dequeue()

 For each edge (u, v) incident to u:

 If Discovered[v] = false:

 Set Discovered[u] = true

 Add v to Q

Discovered : {1,2}
Queue : {2}
u : 1
v : 2

A New BFS
BFS(s):

Initialize Discovered to be a node index array of false

Set Discovered[s] = true

Initialize Q to be a Queue with one element s

While Q is not empty:

u = Q.dequeue()

 For each edge (u, v) incident to u:

 If Discovered[v] = false:

 Set Discovered[u] = true

 Add v to Q

Discovered : {1,2}
Queue : {2}
u : 1
v : 3

A New BFS
BFS(s):

Initialize Discovered to be a node index array of false

Set Discovered[s] = true

Initialize Q to be a Queue with one element s

While Q is not empty:

u = Q.dequeue()

 For each edge (u, v) incident to u:

 If Discovered[v] = false:

 Set Discovered[u] = true

 Add v to Q

Discovered : {1,2}
Queue : {2}
u : 1
v : 3

A New BFS
BFS(s):

Initialize Discovered to be a node index array of false

Set Discovered[s] = true

Initialize Q to be a Queue with one element s

While Q is not empty:

u = Q.dequeue()

 For each edge (u, v) incident to u:

 If Discovered[v] = false:

 Set Discovered[u] = true

 Add v to Q

Discovered : {1,2,3}
Queue : {2}
u : 1
v : 3

A New BFS
BFS(s):

Initialize Discovered to be a node index array of false

Set Discovered[s] = true

Initialize Q to be a Queue with one element s

While Q is not empty:

u = Q.dequeue()

 For each edge (u, v) incident to u:

 If Discovered[v] = false:

 Set Discovered[u] = true

 Add v to Q

Discovered : {1,2,3}
Queue : {2, 3}
u : 1
v : 3

A New BFS
BFS(s):

Initialize Discovered to be a node index array of false

Set Discovered[s] = true

Initialize Q to be a Queue with one element s

While Q is not empty:

u = Q.dequeue()

 For each edge (u, v) incident to u:

 If Discovered[v] = false:

 Set Discovered[u] = true

 Add v to Q

Discovered : {1,2,3}
Queue : {3}
u : 2
v : …

A New BFS
BFS(s):

Initialize Discovered to be a node index array of false

Set Discovered[s] = true

Initialize Q to be a Queue with one element s

While Q is not empty:

u = Q.dequeue()

 For each edge (u, v) incident to u:

 If Discovered[v] = false:

 Set Discovered[u] = true

 Add v to Q

Discovered : {1,2,3, 4, 5}
Queue : {3, 4, 5}
u : 2
v : …

A New BFS
BFS(s):

Initialize Discovered to be a node index array of false

Set Discovered[s] = true

Initialize Q to be a Queue with one element s

While Q is not empty:

u = Q.dequeue()

 For each edge (u, v) incident to u:

 If Discovered[v] = false:

 Set Discovered[u] = true

 Add v to Q

Discovered : {1,2,3, 4, 5}
Queue : {4, 5}
u : 3
v : …

A New BFS
BFS(s):

Initialize Discovered to be a node index array of false

Set Discovered[s] = true

Initialize Q to be a Queue with one element s

While Q is not empty:

u = Q.dequeue()

 For each edge (u, v) incident to u:

 If Discovered[v] = false:

 Set Discovered[u] = true

 Add v to Q

Discovered : {1,2,3,4,5,7,8,6}
Queue : {7, 8}
u : 5
v : …

A New BFS
BFS(s):

Initialize Discovered to be a node index array of false

Set Discovered[s] = true

Initialize Q to be a Queue with one element s

While Q is not empty:

u = Q.dequeue()

 For each edge (u, v) incident to u:

 If Discovered[v] = false:

 Set Discovered[u] = true

 Add v to Q

Discovered : {1,2,3,4,5,7,8,6}
Queue : {}
u : …
v : …

Note: We never visit anything in level i before i – 1.

Q: What is the runtime? (Assume Linked List)
BFS(s):

Initialize Discovered to be a node index array of false

Set Discovered[s] = true

Initialize Q to be a Queue with one element s

While Q is not empty:

u = Q.dequeue()

 For each edge (u, v) incident to u:

 If Discovered[v] = false:

 Set Discovered[u] = true

 Add v to Q

Q: What is the runtime? O(m+n)
BFS(s):

Initialize Discovered to be a node index array of false

Set Discovered[s] = true

Initialize Q to be a Queue with one element s

While Q is not empty:

u = Q.dequeue()

 For each edge (u, v) incident to u:

 If Discovered[v] = false:

 Set Discovered[u] = true

 Add v to Q

Note: We only do this inner loop
at most twice per edge.

Note: We only do this outer loop at most once
per vertex.

Q: What if we change the queue to a stack?
???(s):

Initialize Explored to be a node index array of false

Set Explored[s] = true

Initialize Q to be a Stack with one element s

While Q is not empty:

u = Q.remove()

If Explored[u] = false:

 Explored[u] = true

 For each edge (u, v) incident to u:

 Add v to Q

Q: What if we change the queue to a stack?
???(s):

Initialize Explored to be a node index array of false

Set Explored[s] = true

Initialize Q to be a Stack with one element s

While Q is not empty:

u = Q.remove()

If Explored[u] = false:

 Explored[u] = true

 For each edge (u, v) incident to u:

 Add v to Q

Q: What if we change the queue to a stack?
???(s):

Initialize Explored to be a node index array of false

Set Explored[s] = true

Initialize Q to be a Stack with one element s

While Q is not empty:

u = Q.remove()

If Explored[u] = false:

 Explored[u] = true

 For each edge (u, v) incident to u:

 Add v to Q

A: We DFS
DFS(s):

Initialize Explored to be a node index array of false

Set Explored[s] = true

Initialize Q to be a Stack with one element s

While Q is not empty:

u = Q.remove()

If Explored[u] = false:

 Explored[u] = true

 For each edge (u, v) incident to u:

 Add v to Q

Q: What is the runtime of DFS?
DFSs):

Initialize Explored to be a node index array of false

Set Explored[s] = true

Initialize Q to be a Stack with one element s

While Q is not empty:

u = Q.remove()

If Explored[u] = false:

 Explored[u] = true

 For each edge (u, v) incident to u:

 Add v to Q

Q: What is the runtime of DFS? O(m+n)
DFSs):

Initialize Explored to be a node index array of false

Set Explored[s] = true

Initialize Q to be a Stack with one element s

While Q is not empty:

u = Q.remove()

If Explored[u] = false:

 Explored[u] = true

 For each edge (u, v) incident to u:

 Add v to Q

Q: How many times does this loop run for u?

Q: What is the runtime of DFS? O(m+n)
DFSs):

Initialize Explored to be a node index array of false

Set Explored[s] = true

Initialize Q to be a Stack with one element s

While Q is not empty:

u = Q.remove()

If Explored[u] = false:

 Explored[u] = true

 For each edge (u, v) incident to u:

 Add v to Q

A: At most once for each edge

Problem: Bipartite Graph

Input: A graph G = (V, E)

Output: True if G is bipartite and False otherwise.

Def: We say that a graph is bipartite if we can partition the
vertices V into two groups L and R such that each edge has one
endpoint in 𝐿 and the other endpoint in 𝑅.

Problem: Bipartite Graph

Def: We say that a graph is bipartite if we can partition the
vertices V into two groups L and R such that each edge has one
endpoint in 𝐿 and the other endpoint in 𝑅.

Bipartite Not Bipartite

Problem: Bipartite Graph

Input: A graph G = (V, E)

Output: True if G is bipartite and False otherwise.

Algorithm Ideas:

Problem: Bipartite Graph

Input: A graph G = (V, E)

Output: True if G is bipartite and False otherwise.

Algorithm Ideas: We will find the layering produced by BFS and
color odd levels Red and even layers Blue.

Q: When will this fail?

Problem: Bipartite Graph

Input: A graph G = (V, E)

Output: True if G is bipartite and False otherwise.

Algorithm Ideas: We will find the layering produced by BFS and
color odd levels Red and even layers Blue. This will fail if there is
a cross edge in one of the layers.

Q: What does this imply?

Problem: Bipartite Graph

Input: A graph G = (V, E)

Output: True if G is bipartite and False otherwise.

Algorithm Ideas: We will find the layering produced by BFS and
color odd levels Red and even layers Blue. This will fail if there is
a cross edge in one of the layers. This implies there is an odd
cycle in the graph.

Q: Is that a problem?

Problem: Bipartite Graph

Input: A graph G = (V, E)

Output: True if G is bipartite and False otherwise.

Algorithm Ideas: We will find the layering produced by BFS and
color odd levels Red and even layers Blue. This will fail if there is
a cross edge in one of the layers. This implies there is an odd
cycle in the graph. We can show that a graph is not bipartite if it
contains an odd cycle.

Problem: Bipartite Graph

Problem: Bipartite Graph

Is bipartite! Is not bipartite!

Directed Graphs

• A directed graph is a graph
G = (V, E) such that the
edges are directed:
• That is, each edge

(u, v) ∈ E has an
ordering (i.e., a start and
an end vertex).

By Johannes Rössel (talk) - Own work, Public Domain,
https://commons.wikimedia.org/w/index.php?curid=5559952

Examples Directed Graphs

By Johannes Rössel (talk) - Own work, Public Domain,
https://commons.wikimedia.org/w/index.php?curid=5559952

• What might the nodes
represent?

• What might the edges
represent?

	Slide 1: CSE 331: Algorithms & Complexity
	Slide 2: Schedule
	Slide 3: Course Updates
	Slide 4: Q: What is a stack?
	Slide 5: Q: What is Queue?
	Slide 6: Stack vs Queue
	Slide 7: Stack vs Queue
	Slide 8: Breadth First Search
	Slide 9: A more specific BFS
	Slide 10: Q: What is the runtime?
	Slide 11: Q: What is the runtime?
	Slide 12: Q: What is the runtime?
	Slide 13: Q: What is the runtime?
	Slide 14: Q: What is the runtime?
	Slide 15: Q: What is the runtime?
	Slide 16: Q: What is the runtime?
	Slide 17: Q: What is the runtime?
	Slide 18: Q: What is the runtime?
	Slide 19: Q: What is the runtime?
	Slide 20: Q: What is the runtime?
	Slide 21: Q: What is the runtime?
	Slide 22: Q: Which should we use?
	Slide 23: Adjacency List vs Adjacency Matrix
	Slide 24: Q: What is the runtime?
	Slide 25: Q: What is the runtime?
	Slide 26: Q: What is the runtime?
	Slide 27: Q: What is the runtime?
	Slide 28: Q: What is the runtime?
	Slide 29: Q: What is the runtime?
	Slide 30: Q: What is the runtime?
	Slide 31: Q: What if I use a matrix?
	Slide 32: Q: What if I use a matrix?
	Slide 33: A New BFS
	Slide 34: A New BFS
	Slide 35: A New BFS
	Slide 36: A New BFS
	Slide 37: A New BFS
	Slide 38: A New BFS
	Slide 39: A New BFS
	Slide 40: A New BFS
	Slide 41: A New BFS
	Slide 42: A New BFS
	Slide 43: A New BFS
	Slide 44: A New BFS
	Slide 45: A New BFS
	Slide 46: A New BFS
	Slide 47: A New BFS
	Slide 48: A New BFS
	Slide 49: A New BFS
	Slide 50: Q: What is the runtime? (Assume Linked List)
	Slide 51: Q: What is the runtime? O(m+n)
	Slide 52: Q: What if we change the queue to a stack?
	Slide 53: Q: What if we change the queue to a stack?
	Slide 54: Q: What if we change the queue to a stack?
	Slide 55: A: We DFS
	Slide 56: Q: What is the runtime of DFS?
	Slide 57: Q: What is the runtime of DFS? O(m+n)
	Slide 58: Q: What is the runtime of DFS? O(m+n)
	Slide 59: Problem: Bipartite Graph
	Slide 60: Problem: Bipartite Graph
	Slide 61: Problem: Bipartite Graph
	Slide 62: Problem: Bipartite Graph
	Slide 63: Problem: Bipartite Graph
	Slide 64: Problem: Bipartite Graph
	Slide 65: Problem: Bipartite Graph
	Slide 66: Problem: Bipartite Graph
	Slide 67: Problem: Bipartite Graph
	Slide 68: Directed Graphs
	Slide 69: Examples Directed Graphs

