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Schedule

1.Quiz #1
2.Course Updates
3.Bipartite Graph

4.Directed Graphs




Quiz #1

You will have 10 minutes once |
say start.

| will remind you at 5,2, and 1
minute.

Do not cheat!




Course Updates

HW 2 Grading Out Soon
HW 3 Solutions Out Wednesday
HW 4 Out Tomorrow

Group Project

e Team Emails Out

* First Autolab Up Soon
Sample Midterms Out
Midterms Oct 6 and Oct 8



Midterms

* Two days during normal lecture
times in this room.

* What doyou need to know?
e KT Chapters1-3
 Stable Matchings
* Algorithm Analysis
* Graph Basics

* Lectures up until
Today/Wednesday



Midterms

* There are sample midterms on
Piazza along with solutions

* These tell youthe format and
give you some nice sample
problems but don’t tell you
everything you need to know.

* Youget areference sheet!



Problem: Bipartite Graph

Input: Agraph G = (V,E)
Output: True if G is bipartite and False otherwise.

Def: We say that a graph is bipartite if we can partition the
vertices V into two groups L and R such that each edge has one

endpoint in L and the other endpointin R.



Problem: Bipartite Graph

Def: We say that a graph is bipartite if we can partition the
vertices V into two groups L and R such that each edge has one
endpoint in L and the other endpointin R.

eme

Bipartite Not Bipartite



Problem: Bipartite Graph

Input: Agraph G = (V,E)
Output: True if G is bipartite and False otherwise.

Algorithm Ideas:



Problem: Bipartite Graph

Input: Agraph G = (V,E)
Output: True if G is bipartite and False otherwise.

Algorithm ldeas: We will find the layering produced by BFS and
color odd levels Red and even layers Blue.

Q: When will this fail?



Problem: Bipartite Graph
Input: Agraph G = (V,E)

Output: True if G is bipartite and False otherwise.

Algorithm ldeas: We will find the layering produced by BFS and

color odd levels Red and even layers Blue. This will fail if there is
a cross edge in one of the layers.

Q: What does this imply?



Problem: Bipartite Graph

Input: Agraph G = (V,E)

Output: True if G is bipartite and False otherwise.

Algorithm ldeas: We will find the layering produced by BFS and
color odd levels Red and even layers Blue. This will fail if there is

a cross edge in one of the layers. This implies there is an odd
cycle in the graph.

Q: Is that a problem?



Problem: Bipartite Graph

Input: Agraph G = (V,E)
Output: True if G is bipartite and False otherwise.

Algorithm ldeas: We will find the layering produced by BFS and
color odd levels Red and even layers Blue. This will fail if there is
a cross edge in one of the layers. This implies there is an odd

cycle in the graph. We can show that a graph is not bipartite if it
contains an odd cycle.



Problem: Connected Components

Input: Agraph G = (V,E)
Output: Return the number of connected components.

Algorithm Ideas:



Problem: Connected Components

Algorithm Ideas:
* Use an array to track of which nodes have been discovered.

* Use an array of arrays to keep track of connected
components.

* While thereis an undiscovered node, run BFS (or DFS) on
node.

* Mark nodesin connected component as discovered.

* Add connected component to the array of connected
components.



Question: What is the runtime?

Algorithm Ideas:
* Use an array to track of which nodes have been discovered.

* Use an array of arrays to keep track of connected
components.

* While thereis an undiscovered node, run BFS (or DFS) on
node.

* Mark nodesin connected component as discovered.

* Add connected component to the array of connected
components.



Answer: O(m+n)

Algorithm Ideas:
* Use an array to track of which nodes have been discovered. O(n)

* Use an array of arrays to keep track of connected
components. O(1)

* While there is an undiscovered node s O(n)
* Run BFS (or DFS) on node s to find CC(S). >O(CC(s)) = O(n)

“)

* Mark nodesin connected component as discovered.

* Add connected component to the array of connected ™
components.



Question: What do graphs represent?
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Answer: Symmetric relationships

E.g.: Each node represents a player, and an edge represents if they
have played a game together today.
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Question: How can we make graphs more general?
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~ 0
ST



Answer: Asymmetric relationships

E.g.: Each node represents a player, and an edge represents if they
have played a game together today and who won!

= @

S o



Answer: Asymmetric relationships

Definition: A directed graphisa graph G = (V, E) such that
each edge has a direction (e.g. (u,v) is an edge from u to v).

@ 2. QO C
~ O
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Answer: Asymmetric relationships

Notes: Adj. matrix is not symmetric, and adj. list has two lists
per vertex.

@ 2. QO C
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Question: Can we do BFS and DFS?

C Q. QO C
~ 0
S FTTO



Answer: BFS and DFS mostly work.

* Only look at outgoing edges from a vertex.
* BFS and DFSreturn the nodes that can be reached from a
starting vertex s but not every node in that set can reach s.

(& 2. QO C
~ O
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Strong Connectivity

Definition: We say that a directed graph is strongly
connected if for every two vertices u,v € V, there exists a
directed path from u to v and a directed path from v to u.

ST



Strong Connectivity

Definition: We say that a directed graph is strongly
connected if for every two vertices u,v € V, there exists a
directed path from u to v and a directed path from v to u.

IOQBOR

NOT STRONGLY CONNECTED

U~ O O



Strong Connectivity Property

Claim: If u and v are mutually reachable, and vand w are
mutually reachable, then u and w are mutually reachable.

Proof Idea:

O OO



Strong Connectivity Property

Claim: If u and v are mutually reachable, and vand w are
mutually reachable, then u and w are mutually reachable.

Proof Idea:



Strong Connectivity Property

Claim: If u and v are mutually reachable, and vand w are
mutually reachable, then u and w are mutually reachable.

Proof Idea:

h—-\



Strong Connectivity Algorithm

Input: Directed graph G = (V,E)
Output: True if strongly connected and False otherwise.

Proof Idea:

* PickavertexsinV

* Use BFSto find all vertices | can reach from s.

e Use to find all vertices that can reach s.

* |f both sets are equal return true and otherwise return
false.




Strong Connectivity Algorithm

Input: Directed graph G = (V,E)
Output: True if strongly connected and False otherwise.

Proof ldea:

* PickavertexsinV

* Use BFSto find all vertices | can reach from s.

* Use BFS on “Reversed Graph” to find all vertices that can
reach s.

* |f both sets are equal return true and otherwise return
false.




Strong Connectivity Algorithm

Input: Directed graph G = (V,E)
Output: True if strongly connected and False otherwise.

Proof Ildea:

* PickavertexsinV

e Use BFSto find all vertices | can reach from s.

* Use BFS on “Reversed Graph” to find all vertices that can
reach s. For each edge (u,v) replace with edge (v,u)

* |f both sets are equal return true and otherwise return
false.




Directed Acyclic Graphs (DAGSs)

Definition: A directed graph is a DAG if it has no directed

cycles.
Definition: A topological ordering of a directed graph ¢ =

(V,E) is an ordering of its nodes as vy, v, ..., 1, so that for
every edge (v;, vj), we have i <j.

OJOSONOFOSORE




Directed Acyclic Graphs (DAGSs)

Definition: A directed graph is a DAG if it has no directed

cycles.
Definition: A topological ordering of a directed graph ¢ =

(V,E) is an ordering of its nodes as vy, v, ..., 1, so that for
every edge (v;, vj), we have i <j.

OJOSONOFOSORE

All edges are going “forward”




Directed Acyclic Graphs (DAGSs)

Definition: A directed graph is a DAG if it has no directed
cycles.
S afini

Read K Sectio 3.6 and eview Cre
1Packaged on Topological Ordering

@'@‘@ () O

o V) All edges are going “forward”




Midterm Check Point




What is next?

* Greedy Algorithms

* Divide and Conquer

* Dynamic Programming

* Network Flows (maybe)

* Computation Complexity




“How do we design new algorithms?”

* Greedy Algorithms
 Divide and Conquer

* Dynamic Programming
* Network Flows (maybe)
e Computation Complexity




“How do we use reduce another problem?”

* Greedy Algorithms

* Divide and Conquer

* Dynamic Programming

* Network Flows (maybe)

« Computation Complexity




“How do we know when to give up?”

* Greedy Algorithms

* Divide and Conquer

* Dynamic Programming

* Network Flows (maybe)

« Computation Complexity




What are Greedy Algorithm?




What are Greedy Algorithm?

* Build solution one
piece at a time.

* Onlylook atimmediate
Information to make
choices.

* Never go backona

decision.
e NOT ALWAYS THE BEST
CHOICE!




Coin Change Problem

Problem: Given U.S. currency
denominations {1.00, 0.25, 0.10,
0.05, 0.01} find an algorithm to pay
an amount to a customer using the
fewest coins possible.




Coin Change Problem

* Problem: Given U.S. currency
denominations {1.00, 0.25, 0.10,
0.05, 0.01} find an algorithm to pay
an amount to a customer using the
fewest coins possible.

* Algorithm: At each iteration, add a
coin of the largest value that is less
than the amount needed to be
paid.




Q: Is this algorithm always optimal?

* Problem: Given U.S. currency G\
denominations {1.00, 0.25, 0.10, (€=
0.05, 0.01} find an algorithm to pay e
an amount to a customer using the
fewest coins possible.

* Algorithm: At each iteration, add a
coin of the largest value that is less
than the amount needed to be
paid.
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