

# CSE 331: Algorithms & Complexity “More BFS and DFS”

Prof. Charlie Anne Carlson (She/Her)

**Lecture 14**

Monday September 29th, 2025



**University at Buffalo®**

# Schedule

---

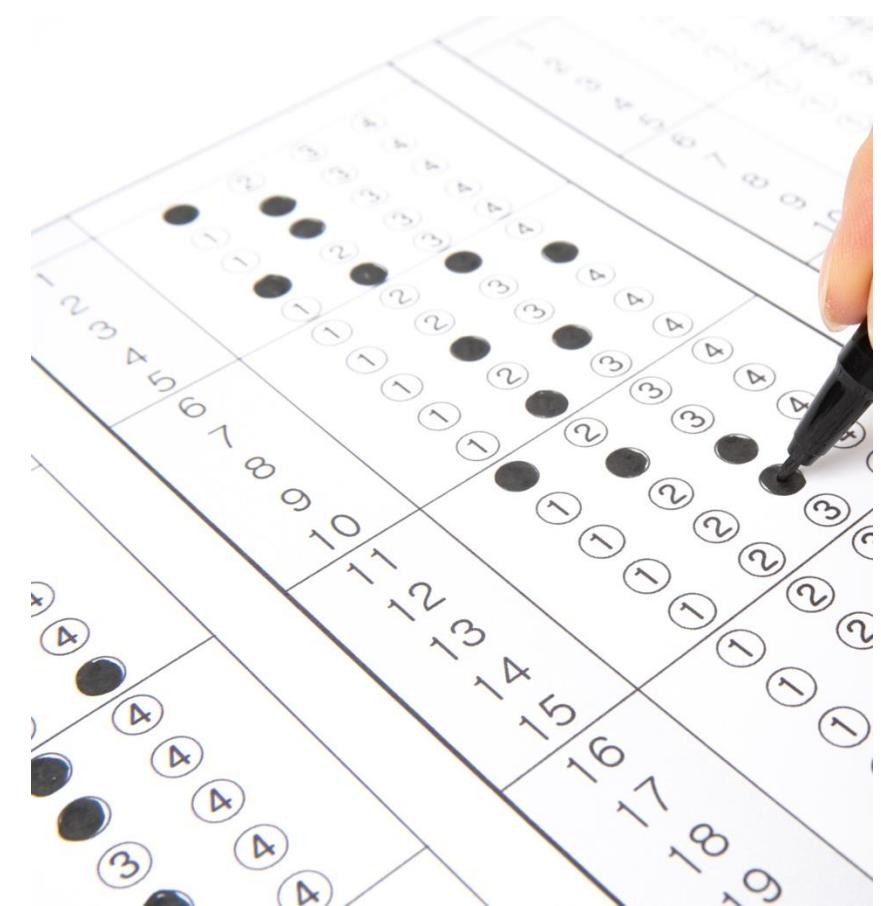
1. Quiz #1
2. Course Updates
3. Bipartite Graph
4. Directed Graphs



# Quiz #1

---

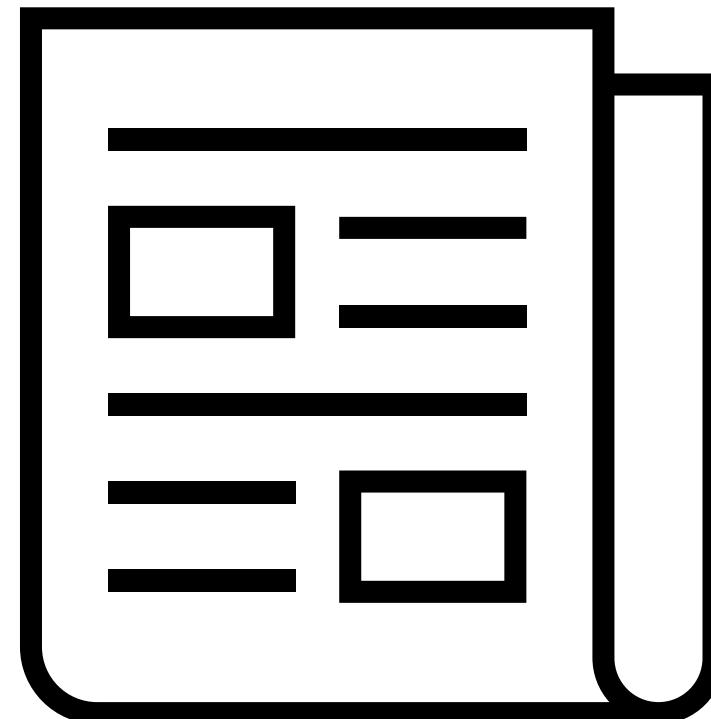
- You will have 10 minutes once I say start.
- I will remind you at 5, 2, and 1 minute.
- Do not cheat!



# Course Updates

---

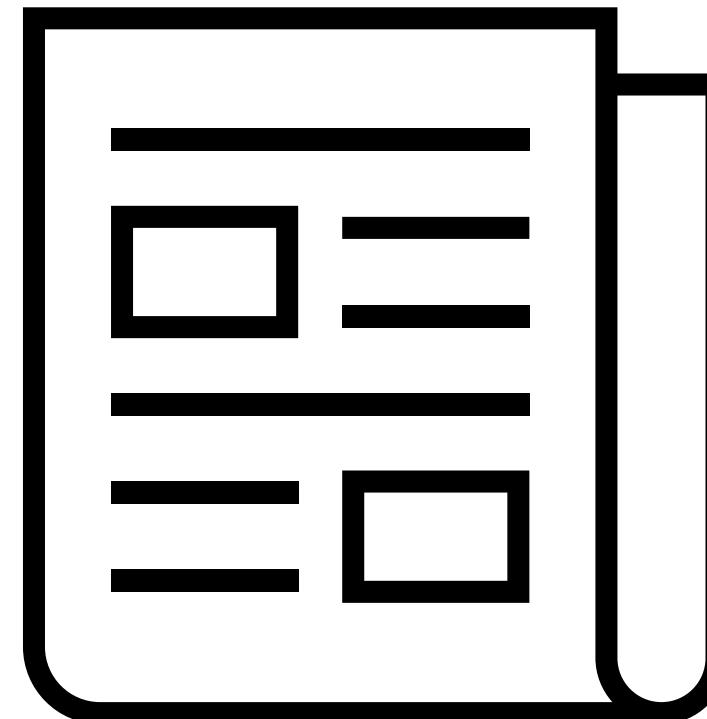
- HW 2 Grading Out Soon
- HW 3 Solutions Out Wednesday
- HW 4 Out Tomorrow
- Group Project
  - Team Emails Out
  - First Autolab Up Soon
- Sample Midterms Out
- Midterms Oct 6 and Oct 8



# Midterms

---

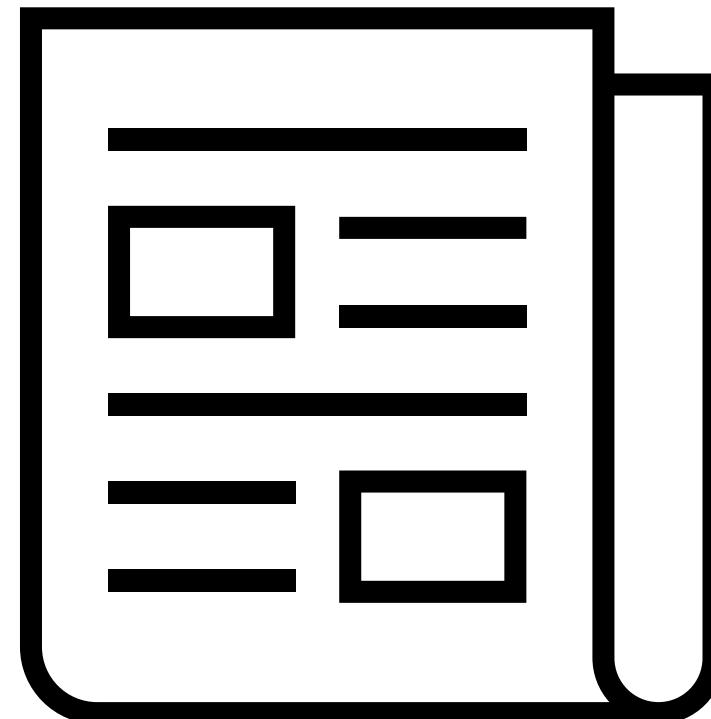
- Two days during normal lecture times in this room.
- What do you need to know?
  - KT Chapters 1 – 3
    - Stable Matchings
    - Algorithm Analysis
    - Graph Basics
  - Lectures up until Today/Wednesday



# Midterms

---

- There are sample midterms on Piazza along with solutions
  - These tell you the format and give you some nice sample problems but don't tell you everything you need to know.
- You get a reference sheet!



# Problem: Bipartite Graph

---

**Input:** A graph  $G = (V, E)$

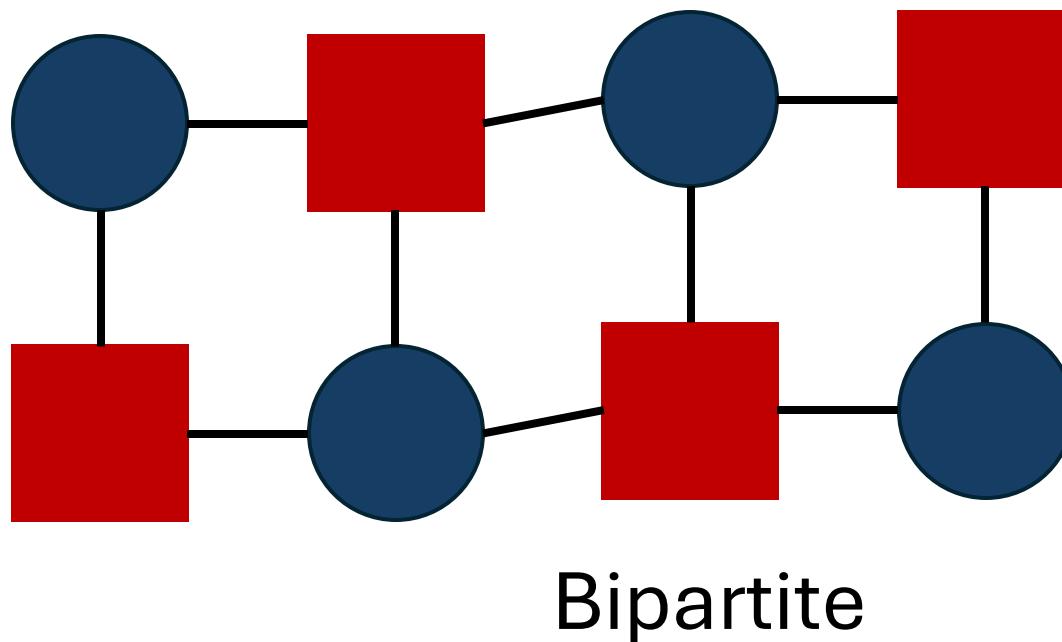
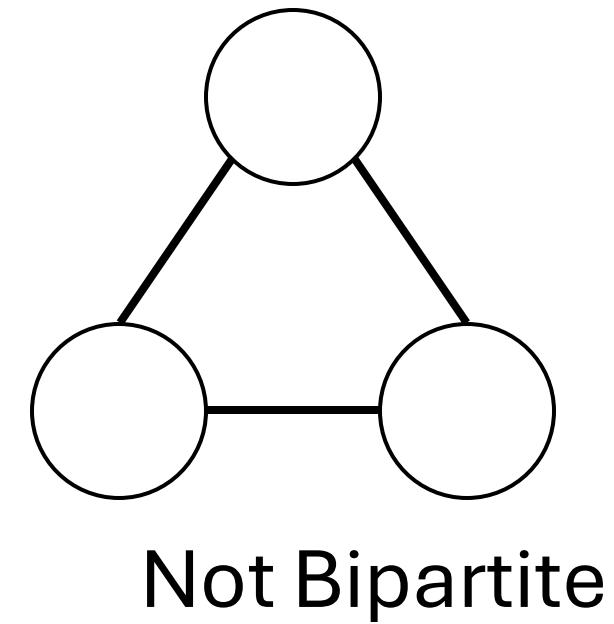
**Output:** True if  $G$  is bipartite and False otherwise.

**Def:** We say that a graph is bipartite if we can partition the vertices  $V$  into two groups  $L$  and  $R$  such that each edge has one endpoint in  $L$  and the other endpoint in  $R$ .

# Problem: Bipartite Graph

---

**Def:** We say that a graph is bipartite if we can partition the vertices  $V$  into two groups  $L$  and  $R$  such that each edge has one endpoint in  $L$  and the other endpoint in  $R$ .



# Problem: Bipartite Graph

---

**Input:** A graph  $G = (V, E)$

**Output:** True if  $G$  is bipartite and False otherwise.

**Algorithm Ideas:**

# Problem: Bipartite Graph

---

**Input:** A graph  $G = (V, E)$

**Output:** True if  $G$  is bipartite and False otherwise.

**Algorithm Ideas:** We will find the layering produced by BFS and color odd levels Red and even layers Blue.

Q: When will this fail?

# Problem: Bipartite Graph

---

**Input:** A graph  $G = (V, E)$

**Output:** True if  $G$  is bipartite and False otherwise.

**Algorithm Ideas:** We will find the layering produced by BFS and color odd levels Red and even layers Blue. This will fail if there is a cross edge in one of the layers.

**Q:** What does this imply?

# Problem: Bipartite Graph

---

**Input:** A graph  $G = (V, E)$

**Output:** True if  $G$  is bipartite and False otherwise.

**Algorithm Ideas:** We will find the layering produced by BFS and color odd levels Red and even layers Blue. This will fail if there is a cross edge in one of the layers. This implies there is an odd cycle in the graph.

Q: Is that a problem?

# Problem: Bipartite Graph

---

**Input:** A graph  $G = (V, E)$

**Output:** True if  $G$  is bipartite and False otherwise.

**Algorithm Ideas:** We will find the layering produced by BFS and color odd levels Red and even layers Blue. This will fail if there is a cross edge in one of the layers. This implies there is an odd cycle in the graph. We can show that a graph is not bipartite if it contains an odd cycle.

# Problem: Connected Components

---

**Input:** A graph  $G = (V, E)$

**Output:** Return the number of connected components.

**Algorithm Ideas:**

# Problem: Connected Components

---

## Algorithm Ideas:

- Use an array to track of which nodes have been discovered.
- Use an array of arrays to keep track of connected components.
- While there is an undiscovered node, run BFS (or DFS) on node.
  - Mark nodes in connected component as discovered.
  - Add connected component to the array of connected components.

# Question: What is the runtime?

---

## Algorithm Ideas:

- Use an array to track of which nodes have been discovered.
- Use an array of arrays to keep track of connected components.
- While there is an undiscovered node, run BFS (or DFS) on node.
  - Mark nodes in connected component as discovered.
  - Add connected component to the array of connected components.

# Answer: $O(m+n)$

---

## Algorithm Ideas:

- Use an array to track of which nodes have been discovered.  $O(n)$
- Use an array of arrays to keep track of connected components.  $O(1)$
- While there is an undiscovered node  $s$   $O(n)$ 
  - Run BFS (or DFS) on node  $s$  to find  $CC(s)$ .  $\sum O(CC(s)) = O(n)$
  - Mark nodes in connected component as discovered. “”
  - Add connected component to the array of connected components. “”

# Question: What do graphs represent?

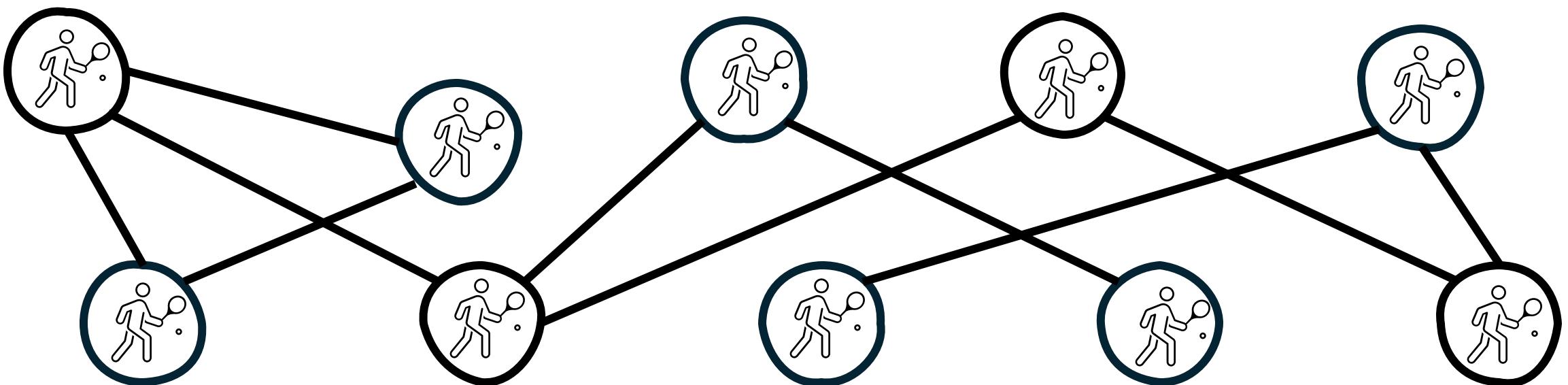
---



# Answer: Symmetric relationships

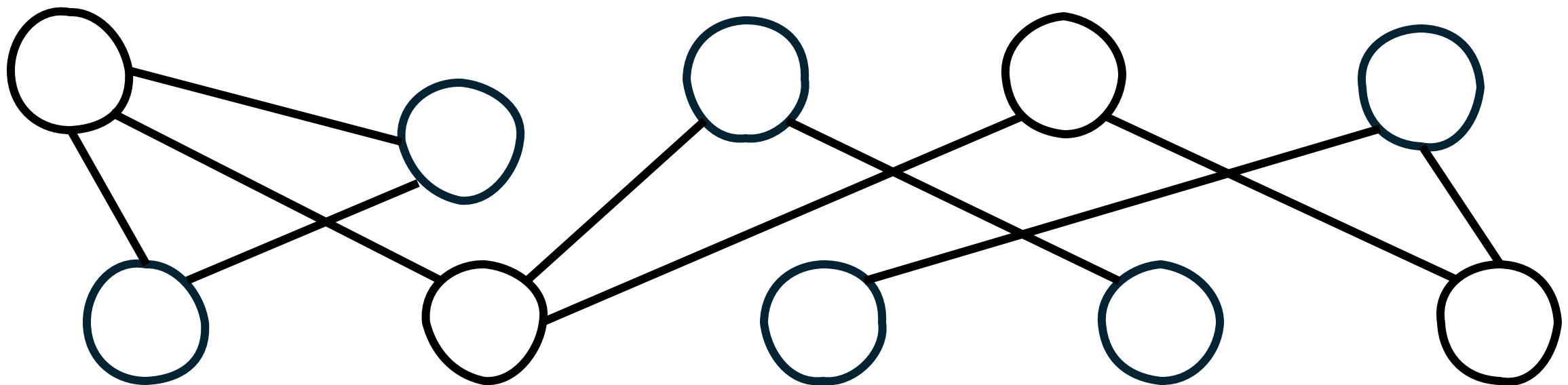
---

E.g.: Each node represents a player, and an edge represents if they have played a game together today.



# Question: How can we make graphs more general?

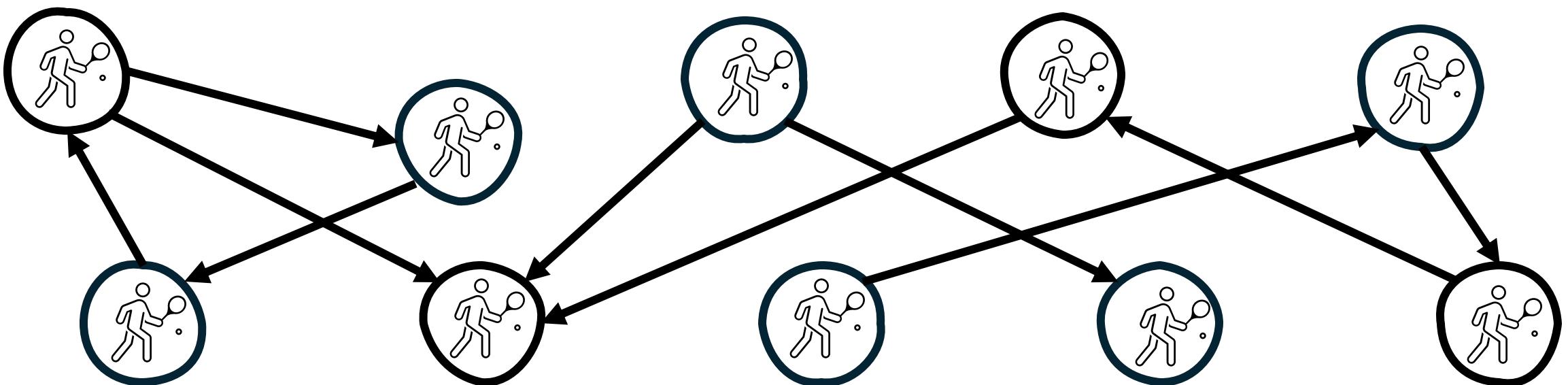
---



# Answer: Asymmetric relationships

---

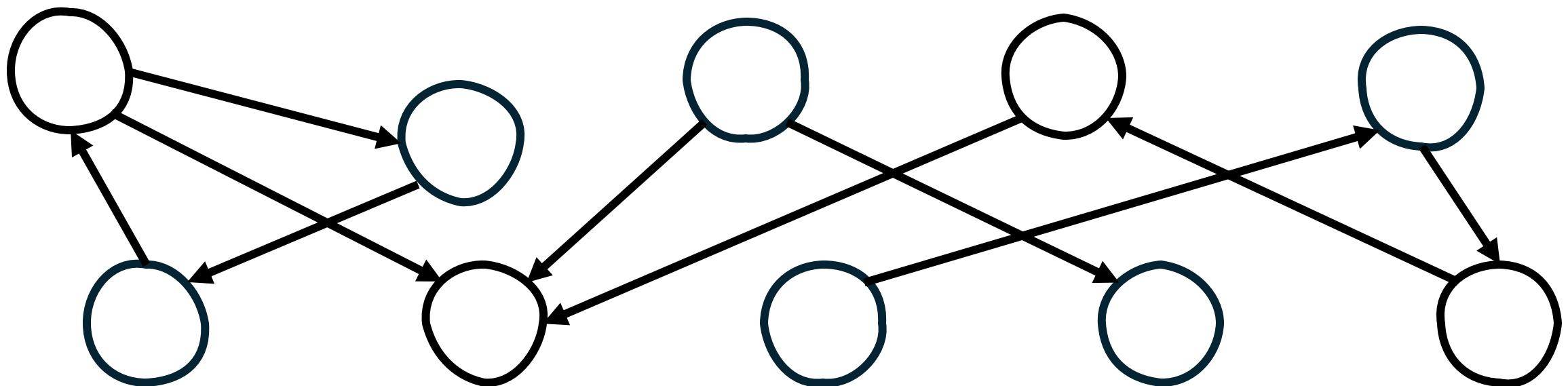
E.g.: Each node represents a player, and an edge represents if they have played a game together today and who won!



# Answer: Asymmetric relationships

---

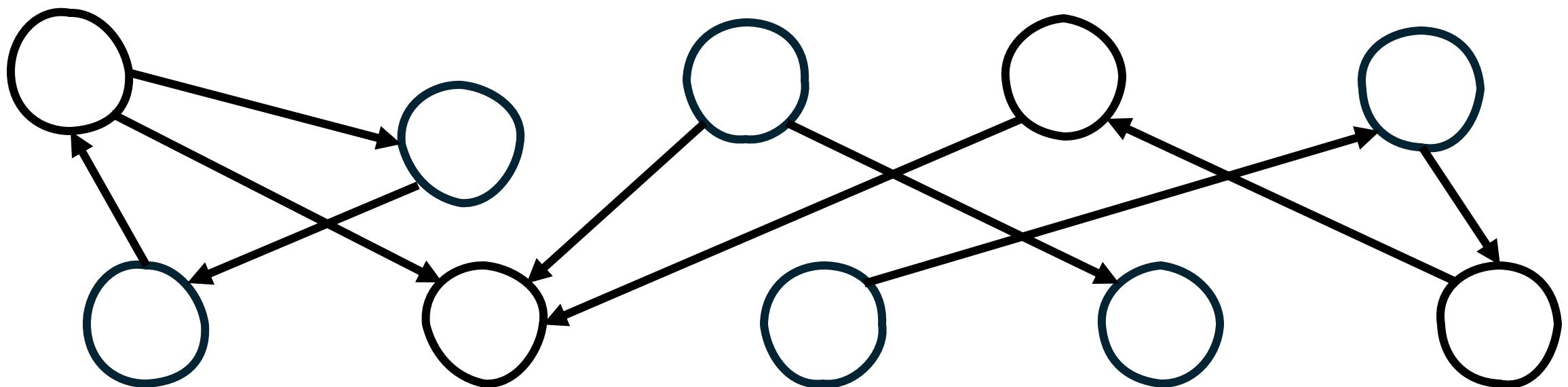
**Definition:** A directed graph is a graph  $G = (V, E)$  such that each edge has a direction (e.g.  $(u, v)$  is an edge from  $u$  to  $v$ ).



# Answer: Asymmetric relationships

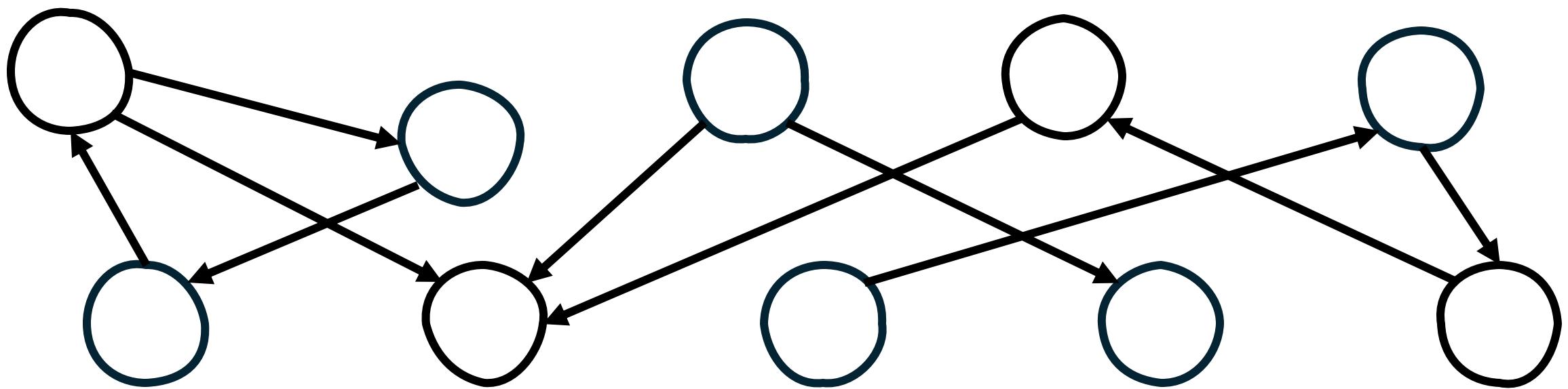
---

**Notes:** Adj. matrix is not symmetric, and adj. list has two lists per vertex.



# Question: Can we do BFS and DFS?

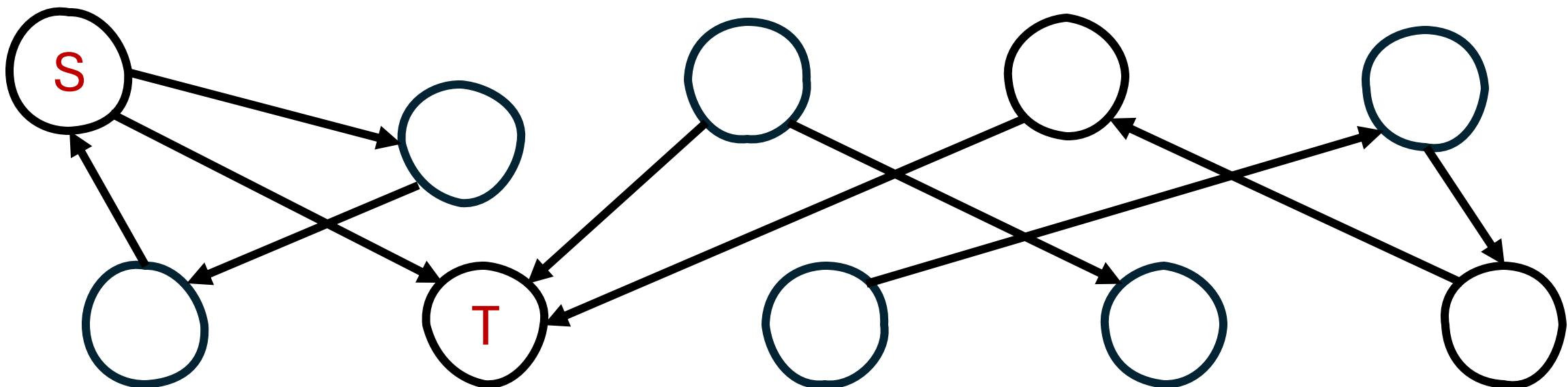
---



# Answer: BFS and DFS mostly work.

---

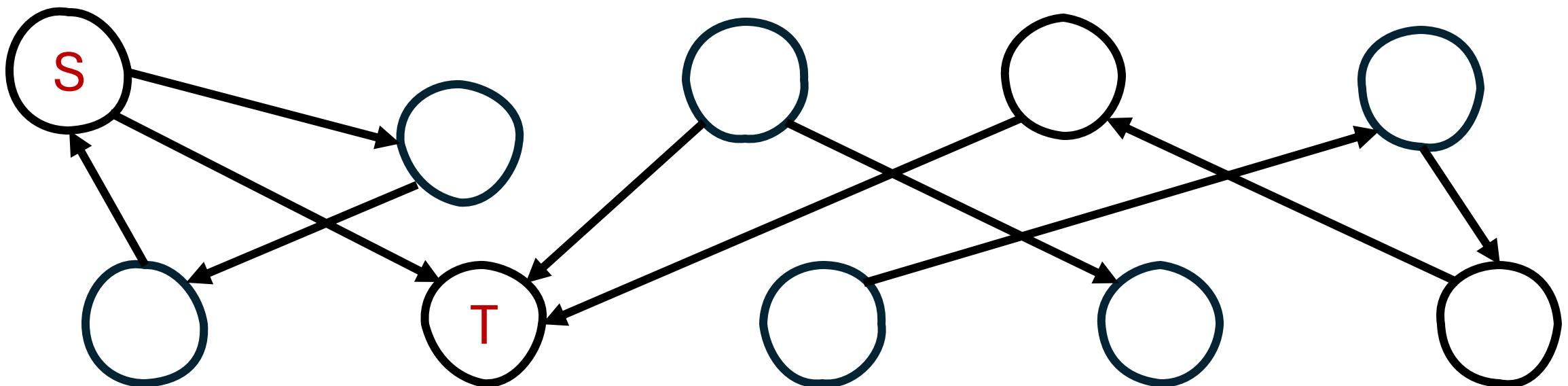
- Only look at outgoing edges from a vertex.
- BFS and DFS return the nodes that can be reached from a starting vertex  $s$  but not every node in that set can reach  $s$ .



# Strong Connectivity

---

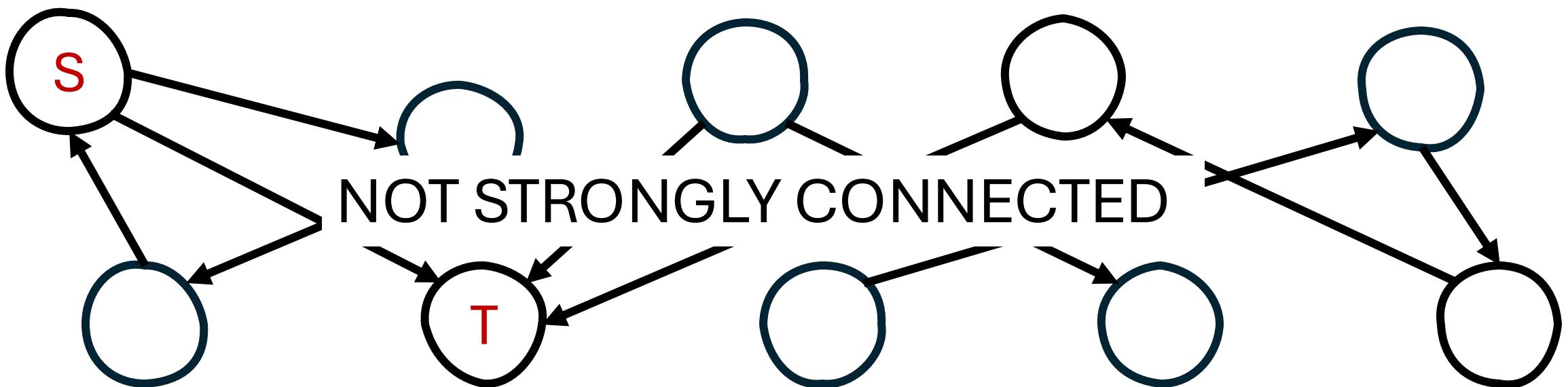
**Definition:** We say that a directed graph is **strongly connected** if for every two vertices  $u, v \in V$ , there exists a directed path from  $u$  to  $v$  and a directed path from  $v$  to  $u$ .



# Strong Connectivity

---

**Definition:** We say that a directed graph is **strongly connected** if for every two vertices  $u, v \in V$ , there exists a directed path from  $u$  to  $v$  and a directed path from  $v$  to  $u$ .

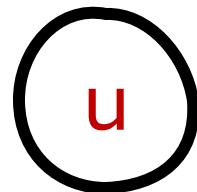
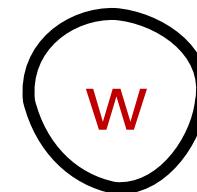


# Strong Connectivity Property

---

**Claim:** If  $u$  and  $v$  are mutually reachable, and  $v$  and  $w$  are mutually reachable, then  $u$  and  $w$  are mutually reachable.

**Proof Idea:**

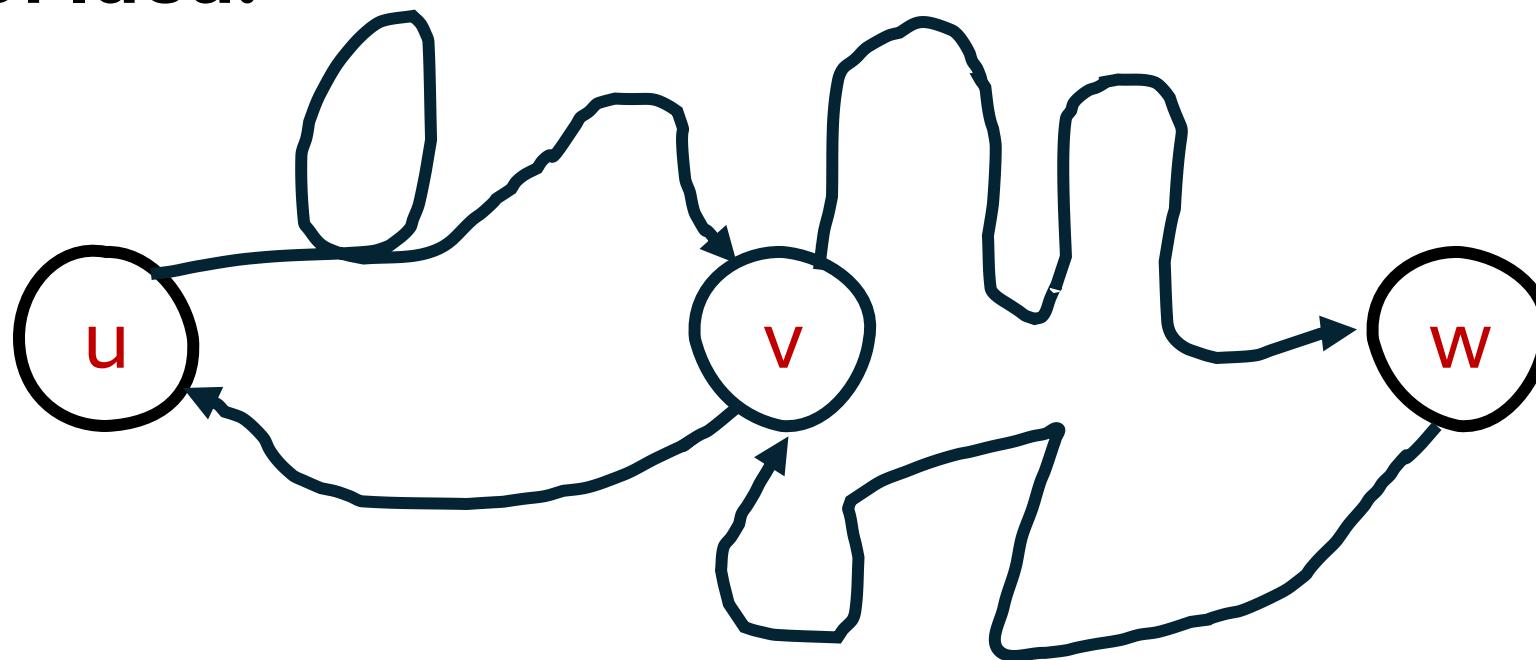


# Strong Connectivity Property

---

**Claim:** If  $u$  and  $v$  are mutually reachable, and  $v$  and  $w$  are mutually reachable, then  $u$  and  $w$  are mutually reachable.

**Proof Idea:**

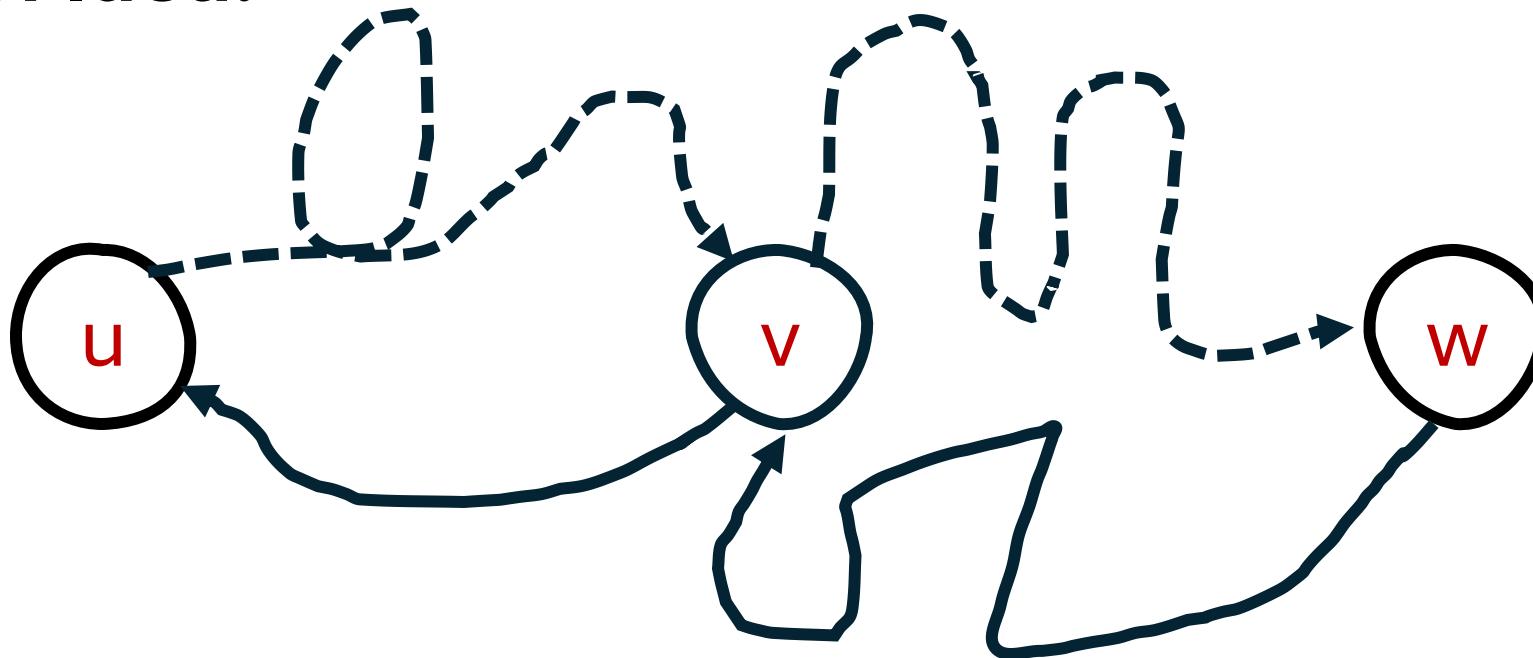


# Strong Connectivity Property

---

**Claim:** If  $u$  and  $v$  are mutually reachable, and  $v$  and  $w$  are mutually reachable, then  $u$  and  $w$  are mutually reachable.

**Proof Idea:**



# Strong Connectivity Algorithm

---

**Input:** Directed graph  $G = (V, E)$

**Output:** True if strongly connected and False otherwise.

**Proof Idea:**

- Pick a vertex  $s$  in  $V$
- Use BFS to find all vertices I can reach from  $s$ .
- Use \_\_\_\_\_ to find all vertices that can reach  $s$ .
- If both sets are equal return true and otherwise return false.

# Strong Connectivity Algorithm

---

**Input:** Directed graph  $G = (V, E)$

**Output:** True if strongly connected and False otherwise.

## Proof Idea:

- Pick a vertex  $s$  in  $V$
- Use BFS to find all vertices I can reach from  $s$ .
- Use BFS on “Reversed Graph” to find all vertices that can reach  $s$ .
- If both sets are equal return true and otherwise return false.

# Strong Connectivity Algorithm

---

**Input:** Directed graph  $G = (V, E)$

**Output:** True if strongly connected and False otherwise.

**Proof Idea:**

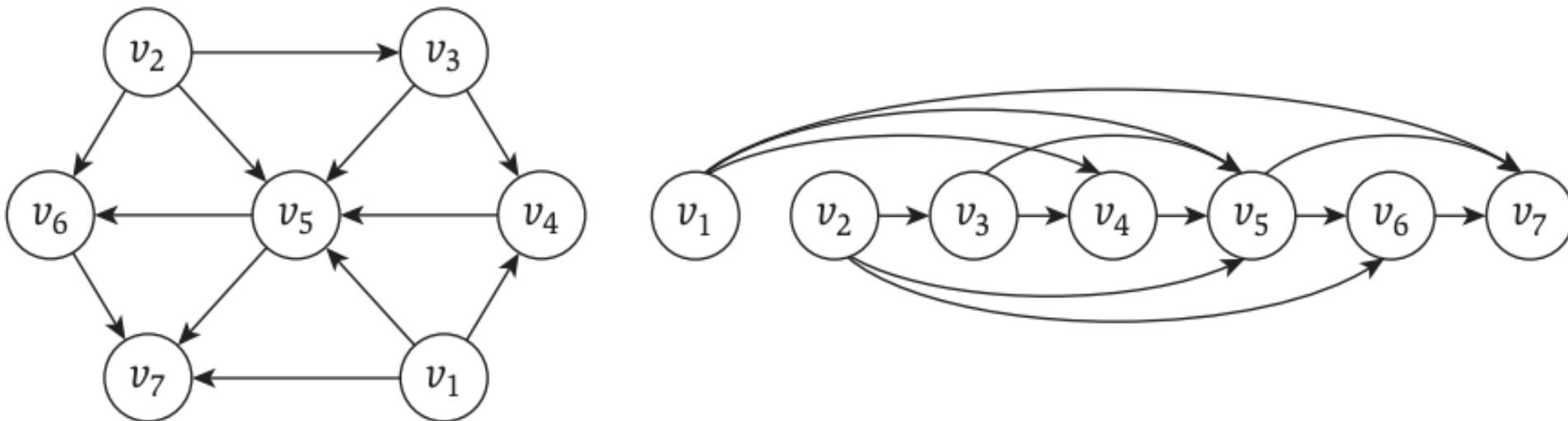
- Pick a vertex  $s$  in  $V$
- Use BFS to find all vertices I can reach from  $s$ .
- Use BFS on “Reversed Graph” to find all vertices that can reach  $s$ . For each edge  $(u,v)$  replace with edge  $(v,u)$
- If both sets are equal return true and otherwise return false.

# Directed Acyclic Graphs (DAGs)

---

**Definition:** A directed graph is a DAG if it has no directed cycles.

**Definition:** A topological ordering of a directed graph  $G = (V, E)$  is an ordering of its nodes as  $v_1, v_2, \dots, v_n$  so that for every edge  $(v_i, v_j)$ , we have  $i < j$ .

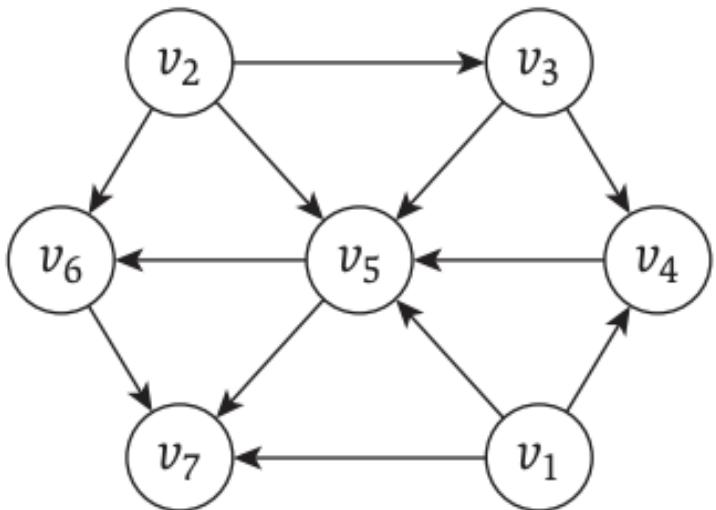
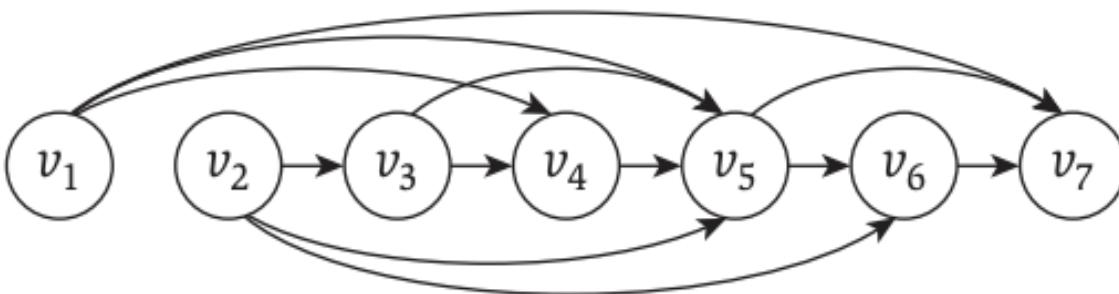


# Directed Acyclic Graphs (DAGs)

---

**Definition:** A directed graph is a DAG if it has no directed cycles.

**Definition:** A topological ordering of a directed graph  $G = (V, E)$  is an ordering of its nodes as  $v_1, v_2, \dots, v_n$  so that for every edge  $(v_i, v_j)$ , we have  $i < j$ .



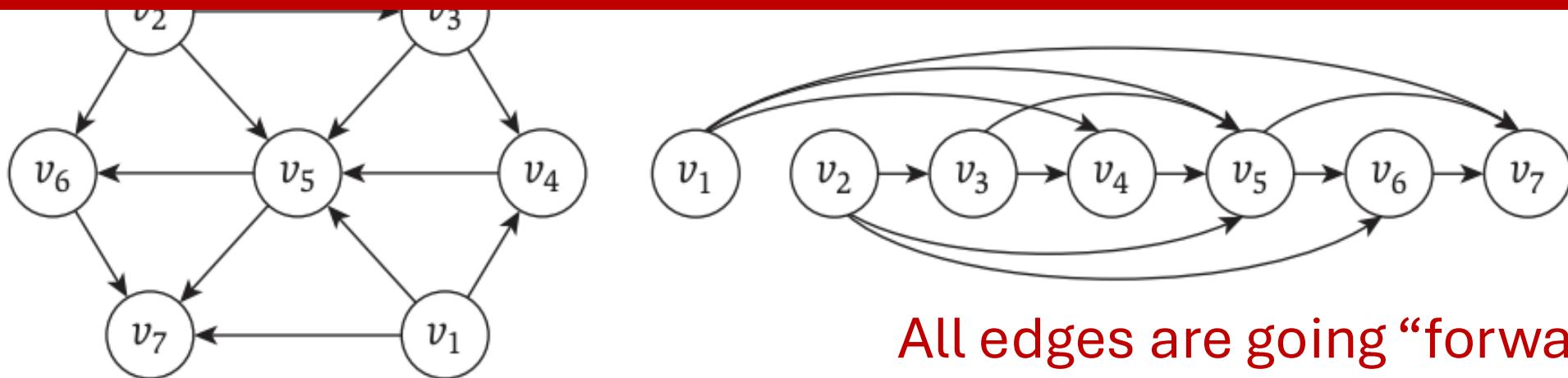
All edges are going “forward”

# Directed Acyclic Graphs (DAGs)

**Definition:** A directed graph is a DAG if it has no directed cycles.

**Definition:** A topological ordering of a directed graph  $G =$

• Read KT Section 3.6 and Review Care  
• Packaged on Topological Ordering



# Midterm Check Point

---



# What is next?

---

- Greedy Algorithms
- Divide and Conquer
- Dynamic Programming
- Network Flows (maybe)
- Computation Complexity



# “How do we design new algorithms?”

---

- **Greedy Algorithms**
- **Divide and Conquer**
- **Dynamic Programming**
- **Network Flows (maybe)**
- Computation Complexity



# “How do we use reduce another problem?”

---

- Greedy Algorithms
- Divide and Conquer
- Dynamic Programming
- **Network Flows (maybe)**
- **Computation Complexity**



# “How do we know when to give up?”

---

- Greedy Algorithms
- Divide and Conquer
- Dynamic Programming
- Network Flows (maybe)
- **Computation Complexity**



# What are Greedy Algorithm?

---



# What are Greedy Algorithm?

---

- Build solution one piece at a time.
- Only look at immediate information to make choices.
- Never go back on a decision.
- NOT ALWAYS THE BEST CHOICE!



# Coin Change Problem

---

- **Problem:** Given U.S. currency denominations  $\{1.00, 0.25, 0.10, 0.05, 0.01\}$  find an algorithm to pay an amount to a customer using the fewest coins possible.



# Coin Change Problem

---

- **Problem:** Given U.S. currency denominations  $\{1.00, 0.25, 0.10, 0.05, 0.01\}$  find an algorithm to pay an amount to a customer using the fewest coins possible.
- **Algorithm:** At each iteration, add a coin of the largest value that is less than the amount needed to be paid.



# Q: Is this algorithm always optimal?

---

- **Problem:** Given U.S. currency denominations  $\{1.00, 0.25, 0.10, 0.05, 0.01\}$  find an algorithm to pay an amount to a customer using the fewest coins possible.
- **Algorithm:** At each iteration, add a coin of the largest value that is less than the amount needed to be paid.

