
CSE 331: 
Algorithms & Complexity

Prof. Charlie Anne Carlson (She/Her)
Lecture 14 

Monday September 29th, 2025

“More BFS and DFS”



Schedule

1.Quiz #1
2.Course Updates
3.Bipartite Graph
4.Directed Graphs



Quiz #1

• You will have 10 minutes once I 
say start. 

• I will remind you at 5,2, and 1 
minute. 

• Do not cheat!



Course Updates

• HW 2 Grading Out Soon
• HW 3 Solutions Out Wednesday
• HW 4 Out Tomorrow
• Group Project

• Team Emails Out
• First Autolab Up Soon

• Sample Midterms Out
• Midterms Oct 6 and Oct 8



Midterms

• Two days during normal lecture 
times in this room. 

• What do you need to know?
• KT Chapters 1 – 3

• Stable Matchings
• Algorithm Analysis
• Graph Basics

• Lectures up until 
Today/Wednesday



Midterms

• There are sample midterms on 
Piazza along with solutions
• These tell you the format and 

give you some nice sample 
problems but don’t tell you 
everything you need to know.

• You get a reference sheet!



Problem: Bipartite Graph

Input: A graph G =  (V, E)

Output: True if G is bipartite and False otherwise.

Def: We say that a graph is bipartite if we can partition the 
vertices V into two groups L and R such that each edge has one 
endpoint in 𝐿 and the other endpoint in 𝑅. 



Problem: Bipartite Graph

Def: We say that a graph is bipartite if we can partition the 
vertices V into two groups L and R such that each edge has one 
endpoint in 𝐿 and the other endpoint in 𝑅. 

Bipartite Not Bipartite



Problem: Bipartite Graph

Input: A graph G =  (V, E)

Output: True if G is bipartite and False otherwise.

Algorithm Ideas: 



Problem: Bipartite Graph

Input: A graph G =  (V, E)

Output: True if G is bipartite and False otherwise.

Algorithm Ideas: We will find the layering produced by BFS and 
color odd levels Red and even layers Blue.

Q: When will this fail? 



Problem: Bipartite Graph

Input: A graph G =  (V, E)

Output: True if G is bipartite and False otherwise.

Algorithm Ideas: We will find the layering produced by BFS and 
color odd levels Red and even layers Blue. This will fail if there is 
a cross edge in one of the layers.

Q: What does this imply?



Problem: Bipartite Graph

Input: A graph G =  (V, E)

Output: True if G is bipartite and False otherwise.

Algorithm Ideas: We will find the layering produced by BFS and 
color odd levels Red and even layers Blue. This will fail if there is 
a cross edge in one of the layers. This implies there is an odd 
cycle in the graph.

Q: Is that a problem?



Problem: Bipartite Graph

Input: A graph G =  (V, E)

Output: True if G is bipartite and False otherwise.

Algorithm Ideas: We will find the layering produced by BFS and 
color odd levels Red and even layers Blue. This will fail if there is 
a cross edge in one of the layers. This implies there is an odd 
cycle in the graph. We can show that a graph is not bipartite if it 
contains an odd cycle. 



Problem: Connected Components

Input: A graph G =  (V, E)

Output: Return the number of connected components.

Algorithm Ideas:



Problem: Connected Components

Algorithm Ideas:
• Use an array to track of which nodes have been discovered.
• Use an array of arrays to keep track of connected 

components.
• While there is an undiscovered node, run BFS (or DFS) on 

node.
• Mark nodes in connected component as discovered.
• Add connected component to the array of connected 

components.



Question: What is the runtime?

Algorithm Ideas:
• Use an array to track of which nodes have been discovered.
• Use an array of arrays to keep track of connected 

components.
• While there is an undiscovered node, run BFS (or DFS) on 

node.
• Mark nodes in connected component as discovered.
• Add connected component to the array of connected 

components.



Answer: O(m+n)

Algorithm Ideas:
• Use an array to track of which nodes have been discovered.
• Use an array of arrays to keep track of connected 

components.
• While there is an undiscovered node s 

• Run BFS (or DFS) on node s to find CC(S).
• Mark nodes in connected component as discovered.
• Add connected component to the array of connected 

components.

O(n)

O(1)
O(n) 

∑O(CC(s)) = O(n) 
“”

“”



Question: What do graphs represent?



Answer: Symmetric relationships
E.g.: Each node represents a player, and an edge represents if they 
have played a game together today.



Question: How can we make graphs more general?



Answer: Asymmetric relationships
E.g.: Each node represents a player, and an edge represents if they 
have played a game together today and who won!



Answer: Asymmetric relationships

Definition: A directed graph is a graph G =  (V, E) such that 
each edge has a direction (e.g. (u,v) is an edge from u to v).  



Answer: Asymmetric relationships
Notes: Adj. matrix is not symmetric, and adj. list has two lists 
per vertex. 



Question: Can we do BFS and DFS?



Answer: BFS and DFS mostly work.

S

T

• Only look at outgoing edges from a vertex.
• BFS and DFS return the nodes that can be reached from a 

starting vertex s but not every node in that set can reach s.



Strong Connectivity

S

T

Definition: We say that a directed graph is strongly 
connected if for every two vertices 𝑢, 𝑣 ∈  𝑉, there exists a 
directed path from 𝑢 to 𝑣 and a directed path from 𝑣 to 𝑢.



Strong Connectivity

S

T

Definition: We say that a directed graph is strongly 
connected if for every two vertices 𝑢, 𝑣 ∈  𝑉, there exists a 
directed path from 𝑢 to 𝑣 and a directed path from 𝑣 to 𝑢.

NOT STRONGLY CONNECTED 



Strong Connectivity Property

u v w

Claim: If u and v are mutually reachable, and v and w are 
mutually reachable, then u and w are mutually reachable.

Proof Idea:
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Strong Connectivity Property

u v w

Claim: If u and v are mutually reachable, and v and w are 
mutually reachable, then u and w are mutually reachable.

Proof Idea:



Strong Connectivity Algorithm

Input: Directed graph 𝐺 = 𝑉, 𝐸
Output: True if strongly connected and False otherwise.

Proof Idea:
• Pick a vertex s in V
• Use BFS to find all vertices I can reach from s.
• Use _____________ to find all vertices that can reach s.
• If both sets are equal return true and otherwise return 

false. 



Strong Connectivity Algorithm

Input: Directed graph 𝐺 = 𝑉, 𝐸
Output: True if strongly connected and False otherwise.

Proof Idea:
• Pick a vertex s in V
• Use BFS to find all vertices I can reach from s.
• Use BFS on “Reversed Graph” to find all vertices that can 

reach s.
• If both sets are equal return true and otherwise return 

false. 



Strong Connectivity Algorithm

Input: Directed graph 𝐺 = 𝑉, 𝐸
Output: True if strongly connected and False otherwise.

Proof Idea:
• Pick a vertex s in V
• Use BFS to find all vertices I can reach from s.
• Use BFS on “Reversed Graph” to find all vertices that can 

reach s.
• If both sets are equal return true and otherwise return 

false. 

For each edge (u,v) replace with edge (v,u)



Directed Acyclic Graphs (DAGs)
Definition: A directed graph is a DAG if it has no directed 
cycles. 
Definition: A topological ordering of a directed graph 𝐺 =
 (𝑉, 𝐸) is an ordering of its nodes as 𝑣1, 𝑣2, … , 𝑣𝑛 so that for 
every edge (𝑣𝑖 , 𝑣𝑗), we have i < j. 



Directed Acyclic Graphs (DAGs)
Definition: A directed graph is a DAG if it has no directed 
cycles. 
Definition: A topological ordering of a directed graph 𝐺 =
 (𝑉, 𝐸) is an ordering of its nodes as 𝑣1, 𝑣2, … , 𝑣𝑛 so that for 
every edge (𝑣𝑖 , 𝑣𝑗), we have i < j. 

All edges are going “forward”



Directed Acyclic Graphs (DAGs)
Definition: A directed graph is a DAG if it has no directed 
cycles. 
Definition: A topological ordering of a directed graph 𝐺 =
 (𝑉, 𝐸) is an ordering of its nodes as 𝑣1, 𝑣2, … , 𝑣𝑛 so that for 
every edge (𝑣𝑖 , 𝑣𝑗), we have i < j. 

All edges are going “forward”

Read KT Section 3.6 and Review Care 
Packaged on Topological Ordering



Midterm Check Point



What is next?
• Greedy Algorithms
• Divide and Conquer 
• Dynamic Programming
• Network Flows (maybe)
• Computation Complexity



“How do we design new algorithms?”
• Greedy Algorithms
• Divide and Conquer 
• Dynamic Programming
• Network Flows (maybe)
• Computation Complexity



“How do we use reduce another problem?”
• Greedy Algorithms
• Divide and Conquer 
• Dynamic Programming
• Network Flows (maybe)
• Computation Complexity



“How do we know when to give up?”
• Greedy Algorithms
• Divide and Conquer 
• Dynamic Programming
• Network Flows (maybe)
• Computation Complexity



What are Greedy Algorithm?



What are Greedy Algorithm?
• Build solution one 

piece at a time.
• Only look at immediate 

information to make 
choices.

• Never go back on a 
decision. 

• NOT ALWAYS THE BEST 
CHOICE!



Coin Change Problem
• Problem: Given U.S. currency 

denominations {1.00, 0.25, 0.10, 
0.05, 0.01} find an algorithm to pay 
an amount to a customer using the 
fewest coins possible.



Coin Change Problem
• Problem: Given U.S. currency 

denominations {1.00, 0.25, 0.10, 
0.05, 0.01} find an algorithm to pay 
an amount to a customer using the 
fewest coins possible.

• Algorithm: At each iteration, add a 
coin of the largest value that is less 
than the amount needed to be 
paid. 



Q: Is this algorithm always optimal?
• Problem: Given U.S. currency 

denominations {1.00, 0.25, 0.10, 
0.05, 0.01} find an algorithm to pay 
an amount to a customer using the 
fewest coins possible.

• Algorithm: At each iteration, add a 
coin of the largest value that is less 
than the amount needed to be 
paid. 
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