
CSE 331:
Algorithms & Complexity

Prof. Charlie Anne Carlson (She/Her)
Lecture 14

Monday September 29th, 2025

“More BFS and DFS”

Schedule

1.Quiz #1
2.Course Updates
3.Bipartite Graph
4.Directed Graphs

Quiz #1

• You will have 10 minutes once I
say start.

• I will remind you at 5,2, and 1
minute.

• Do not cheat!

Course Updates

• HW 2 Grading Out Soon
• HW 3 Solutions Out Wednesday
• HW 4 Out Tomorrow
• Group Project

• Team Emails Out
• First Autolab Up Soon

• Sample Midterms Out
• Midterms Oct 6 and Oct 8

Midterms

• Two days during normal lecture
times in this room.

• What do you need to know?
• KT Chapters 1 – 3

• Stable Matchings
• Algorithm Analysis
• Graph Basics

• Lectures up until
Today/Wednesday

Midterms

• There are sample midterms on
Piazza along with solutions
• These tell you the format and

give you some nice sample
problems but don’t tell you
everything you need to know.

• You get a reference sheet!

Problem: Bipartite Graph

Input: A graph G = (V, E)

Output: True if G is bipartite and False otherwise.

Def: We say that a graph is bipartite if we can partition the
vertices V into two groups L and R such that each edge has one
endpoint in 𝐿 and the other endpoint in 𝑅.

Problem: Bipartite Graph

Def: We say that a graph is bipartite if we can partition the
vertices V into two groups L and R such that each edge has one
endpoint in 𝐿 and the other endpoint in 𝑅.

Bipartite Not Bipartite

Problem: Bipartite Graph

Input: A graph G = (V, E)

Output: True if G is bipartite and False otherwise.

Algorithm Ideas:

Problem: Bipartite Graph

Input: A graph G = (V, E)

Output: True if G is bipartite and False otherwise.

Algorithm Ideas: We will find the layering produced by BFS and
color odd levels Red and even layers Blue.

Q: When will this fail?

Problem: Bipartite Graph

Input: A graph G = (V, E)

Output: True if G is bipartite and False otherwise.

Algorithm Ideas: We will find the layering produced by BFS and
color odd levels Red and even layers Blue. This will fail if there is
a cross edge in one of the layers.

Q: What does this imply?

Problem: Bipartite Graph

Input: A graph G = (V, E)

Output: True if G is bipartite and False otherwise.

Algorithm Ideas: We will find the layering produced by BFS and
color odd levels Red and even layers Blue. This will fail if there is
a cross edge in one of the layers. This implies there is an odd
cycle in the graph.

Q: Is that a problem?

Problem: Bipartite Graph

Input: A graph G = (V, E)

Output: True if G is bipartite and False otherwise.

Algorithm Ideas: We will find the layering produced by BFS and
color odd levels Red and even layers Blue. This will fail if there is
a cross edge in one of the layers. This implies there is an odd
cycle in the graph. We can show that a graph is not bipartite if it
contains an odd cycle.

Problem: Connected Components

Input: A graph G = (V, E)

Output: Return the number of connected components.

Algorithm Ideas:

Problem: Connected Components

Algorithm Ideas:
• Use an array to track of which nodes have been discovered.
• Use an array of arrays to keep track of connected

components.
• While there is an undiscovered node, run BFS (or DFS) on

node.
• Mark nodes in connected component as discovered.
• Add connected component to the array of connected

components.

Question: What is the runtime?

Algorithm Ideas:
• Use an array to track of which nodes have been discovered.
• Use an array of arrays to keep track of connected

components.
• While there is an undiscovered node, run BFS (or DFS) on

node.
• Mark nodes in connected component as discovered.
• Add connected component to the array of connected

components.

Answer: O(m+n)

Algorithm Ideas:
• Use an array to track of which nodes have been discovered.
• Use an array of arrays to keep track of connected

components.
• While there is an undiscovered node s

• Run BFS (or DFS) on node s to find CC(S).
• Mark nodes in connected component as discovered.
• Add connected component to the array of connected

components.

O(n)

O(1)
O(n)

∑O(CC(s)) = O(n)
“”

“”

Question: What do graphs represent?

Answer: Symmetric relationships
E.g.: Each node represents a player, and an edge represents if they
have played a game together today.

Question: How can we make graphs more general?

Answer: Asymmetric relationships
E.g.: Each node represents a player, and an edge represents if they
have played a game together today and who won!

Answer: Asymmetric relationships

Definition: A directed graph is a graph G = (V, E) such that
each edge has a direction (e.g. (u,v) is an edge from u to v).

Answer: Asymmetric relationships
Notes: Adj. matrix is not symmetric, and adj. list has two lists
per vertex.

Question: Can we do BFS and DFS?

Answer: BFS and DFS mostly work.

S

T

• Only look at outgoing edges from a vertex.
• BFS and DFS return the nodes that can be reached from a

starting vertex s but not every node in that set can reach s.

Strong Connectivity

S

T

Definition: We say that a directed graph is strongly
connected if for every two vertices 𝑢, 𝑣 ∈ 𝑉, there exists a
directed path from 𝑢 to 𝑣 and a directed path from 𝑣 to 𝑢.

Strong Connectivity

S

T

Definition: We say that a directed graph is strongly
connected if for every two vertices 𝑢, 𝑣 ∈ 𝑉, there exists a
directed path from 𝑢 to 𝑣 and a directed path from 𝑣 to 𝑢.

NOT STRONGLY CONNECTED

Strong Connectivity Property

u v w

Claim: If u and v are mutually reachable, and v and w are
mutually reachable, then u and w are mutually reachable.

Proof Idea:

Strong Connectivity Property

u v w

Claim: If u and v are mutually reachable, and v and w are
mutually reachable, then u and w are mutually reachable.

Proof Idea:

Strong Connectivity Property

u v w

Claim: If u and v are mutually reachable, and v and w are
mutually reachable, then u and w are mutually reachable.

Proof Idea:

Strong Connectivity Algorithm

Input: Directed graph 𝐺 = 𝑉, 𝐸
Output: True if strongly connected and False otherwise.

Proof Idea:
• Pick a vertex s in V
• Use BFS to find all vertices I can reach from s.
• Use _____________ to find all vertices that can reach s.
• If both sets are equal return true and otherwise return

false.

Strong Connectivity Algorithm

Input: Directed graph 𝐺 = 𝑉, 𝐸
Output: True if strongly connected and False otherwise.

Proof Idea:
• Pick a vertex s in V
• Use BFS to find all vertices I can reach from s.
• Use BFS on “Reversed Graph” to find all vertices that can

reach s.
• If both sets are equal return true and otherwise return

false.

Strong Connectivity Algorithm

Input: Directed graph 𝐺 = 𝑉, 𝐸
Output: True if strongly connected and False otherwise.

Proof Idea:
• Pick a vertex s in V
• Use BFS to find all vertices I can reach from s.
• Use BFS on “Reversed Graph” to find all vertices that can

reach s.
• If both sets are equal return true and otherwise return

false.

For each edge (u,v) replace with edge (v,u)

Directed Acyclic Graphs (DAGs)
Definition: A directed graph is a DAG if it has no directed
cycles.
Definition: A topological ordering of a directed graph 𝐺 =
 (𝑉, 𝐸) is an ordering of its nodes as 𝑣1, 𝑣2, … , 𝑣𝑛 so that for
every edge (𝑣𝑖 , 𝑣𝑗), we have i < j.

Directed Acyclic Graphs (DAGs)
Definition: A directed graph is a DAG if it has no directed
cycles.
Definition: A topological ordering of a directed graph 𝐺 =
 (𝑉, 𝐸) is an ordering of its nodes as 𝑣1, 𝑣2, … , 𝑣𝑛 so that for
every edge (𝑣𝑖 , 𝑣𝑗), we have i < j.

All edges are going “forward”

Directed Acyclic Graphs (DAGs)
Definition: A directed graph is a DAG if it has no directed
cycles.
Definition: A topological ordering of a directed graph 𝐺 =
 (𝑉, 𝐸) is an ordering of its nodes as 𝑣1, 𝑣2, … , 𝑣𝑛 so that for
every edge (𝑣𝑖 , 𝑣𝑗), we have i < j.

All edges are going “forward”

Read KT Section 3.6 and Review Care
Packaged on Topological Ordering

Midterm Check Point

What is next?
• Greedy Algorithms
• Divide and Conquer
• Dynamic Programming
• Network Flows (maybe)
• Computation Complexity

“How do we design new algorithms?”
• Greedy Algorithms
• Divide and Conquer
• Dynamic Programming
• Network Flows (maybe)
• Computation Complexity

“How do we use reduce another problem?”
• Greedy Algorithms
• Divide and Conquer
• Dynamic Programming
• Network Flows (maybe)
• Computation Complexity

“How do we know when to give up?”
• Greedy Algorithms
• Divide and Conquer
• Dynamic Programming
• Network Flows (maybe)
• Computation Complexity

What are Greedy Algorithm?

What are Greedy Algorithm?
• Build solution one

piece at a time.
• Only look at immediate

information to make
choices.

• Never go back on a
decision.

• NOT ALWAYS THE BEST
CHOICE!

Coin Change Problem
• Problem: Given U.S. currency

denominations {1.00, 0.25, 0.10,
0.05, 0.01} find an algorithm to pay
an amount to a customer using the
fewest coins possible.

Coin Change Problem
• Problem: Given U.S. currency

denominations {1.00, 0.25, 0.10,
0.05, 0.01} find an algorithm to pay
an amount to a customer using the
fewest coins possible.

• Algorithm: At each iteration, add a
coin of the largest value that is less
than the amount needed to be
paid.

Q: Is this algorithm always optimal?
• Problem: Given U.S. currency

denominations {1.00, 0.25, 0.10,
0.05, 0.01} find an algorithm to pay
an amount to a customer using the
fewest coins possible.

• Algorithm: At each iteration, add a
coin of the largest value that is less
than the amount needed to be
paid.

	Slide 1: CSE 331: Algorithms & Complexity
	Slide 2: Schedule
	Slide 3: Quiz #1
	Slide 4: Course Updates
	Slide 5: Midterms
	Slide 6: Midterms
	Slide 7: Problem: Bipartite Graph
	Slide 8: Problem: Bipartite Graph
	Slide 9: Problem: Bipartite Graph
	Slide 10: Problem: Bipartite Graph
	Slide 11: Problem: Bipartite Graph
	Slide 12: Problem: Bipartite Graph
	Slide 13: Problem: Bipartite Graph
	Slide 14: Problem: Connected Components
	Slide 15: Problem: Connected Components
	Slide 16: Question: What is the runtime?
	Slide 17: Answer: O(m+n)
	Slide 18: Question: What do graphs represent?
	Slide 19: Answer: Symmetric relationships
	Slide 20: Question: How can we make graphs more general?
	Slide 21: Answer: Asymmetric relationships
	Slide 22: Answer: Asymmetric relationships
	Slide 23: Answer: Asymmetric relationships
	Slide 24: Question: Can we do BFS and DFS?
	Slide 25: Answer: BFS and DFS mostly work.
	Slide 26: Strong Connectivity
	Slide 27: Strong Connectivity
	Slide 28: Strong Connectivity Property
	Slide 29: Strong Connectivity Property
	Slide 30: Strong Connectivity Property
	Slide 31: Strong Connectivity Algorithm
	Slide 32: Strong Connectivity Algorithm
	Slide 33: Strong Connectivity Algorithm
	Slide 34: Directed Acyclic Graphs (DAGs)
	Slide 35: Directed Acyclic Graphs (DAGs)
	Slide 36: Directed Acyclic Graphs (DAGs)
	Slide 37: Midterm Check Point
	Slide 38: What is next?
	Slide 39: “How do we design new algorithms?”
	Slide 40: “How do we use reduce another problem?”
	Slide 41: “How do we know when to give up?”
	Slide 42: What are Greedy Algorithm?
	Slide 43: What are Greedy Algorithm?
	Slide 44: Coin Change Problem
	Slide 45: Coin Change Problem
	Slide 46: Q: Is this algorithm always optimal?

