CSE 331:
Allg(o)r[itt]hunnlg & (C<o>lnnqp>ll<ex[i1ty

“More BFS and DFS”

Prof. Charlie Anne Carlson (She/Her)
Lecture 14
Monday September 29th, 2025

L]

G5

University at Buffalo

Schedule

1.Quiz #1
2.Course Updates
3.Bipartite Graph

4.Directed Graphs

Quiz #1

You will have 10 minutes once |
say start.

| will remind you at 5,2, and 1
minute.

Do not cheat!

Course Updates

HW 2 Grading Out Soon
HW 3 Solutions Out Wednesday
HW 4 Out Tomorrow

Group Project

e Team Emails Out

* First Autolab Up Soon
Sample Midterms Out
Midterms Oct 6 and Oct 8

Midterms

* Two days during normal lecture
times in this room.

* What doyou need to know?
e KT Chapters1-3
 Stable Matchings
* Algorithm Analysis
* Graph Basics

* Lectures up until
Today/Wednesday

Midterms

* There are sample midterms on
Piazza along with solutions

* These tell youthe format and
give you some nice sample
problems but don’t tell you
everything you need to know.

* Youget areference sheet!

Problem: Bipartite Graph

Input: Agraph G = (V,E)
Output: True if G is bipartite and False otherwise.

Def: We say that a graph is bipartite if we can partition the
vertices V into two groups L and R such that each edge has one

endpoint in L and the other endpointin R.

Problem: Bipartite Graph

Def: We say that a graph is bipartite if we can partition the
vertices V into two groups L and R such that each edge has one
endpoint in L and the other endpointin R.

eme

Bipartite Not Bipartite

Problem: Bipartite Graph

Input: Agraph G = (V,E)
Output: True if G is bipartite and False otherwise.

Algorithm Ideas:

Problem: Bipartite Graph

Input: Agraph G = (V,E)
Output: True if G is bipartite and False otherwise.

Algorithm ldeas: We will find the layering produced by BFS and
color odd levels Red and even layers Blue.

Q: When will this fail?

Problem: Bipartite Graph
Input: Agraph G = (V,E)

Output: True if G is bipartite and False otherwise.

Algorithm ldeas: We will find the layering produced by BFS and

color odd levels Red and even layers Blue. This will fail if there is
a cross edge in one of the layers.

Q: What does this imply?

Problem: Bipartite Graph

Input: Agraph G = (V,E)

Output: True if G is bipartite and False otherwise.

Algorithm ldeas: We will find the layering produced by BFS and
color odd levels Red and even layers Blue. This will fail if there is

a cross edge in one of the layers. This implies there is an odd
cycle in the graph.

Q: Is that a problem?

Problem: Bipartite Graph

Input: Agraph G = (V,E)
Output: True if G is bipartite and False otherwise.

Algorithm ldeas: We will find the layering produced by BFS and
color odd levels Red and even layers Blue. This will fail if there is
a cross edge in one of the layers. This implies there is an odd

cycle in the graph. We can show that a graph is not bipartite if it
contains an odd cycle.

Problem: Connected Components

Input: Agraph G = (V,E)
Output: Return the number of connected components.

Algorithm Ideas:

Problem: Connected Components

Algorithm Ideas:
* Use an array to track of which nodes have been discovered.

* Use an array of arrays to keep track of connected
components.

* While thereis an undiscovered node, run BFS (or DFS) on
node.

* Mark nodesin connected component as discovered.

* Add connected component to the array of connected
components.

Question: What is the runtime?

Algorithm Ideas:
* Use an array to track of which nodes have been discovered.

* Use an array of arrays to keep track of connected
components.

* While thereis an undiscovered node, run BFS (or DFS) on
node.

* Mark nodesin connected component as discovered.

* Add connected component to the array of connected
components.

Answer: O(m+n)

Algorithm Ideas:
* Use an array to track of which nodes have been discovered. O(n)

* Use an array of arrays to keep track of connected
components. O(1)

* While there is an undiscovered node s O(n)
* Run BFS (or DFS) on node s to find CC(S). >O(CC(s)) = O(n)

“)

* Mark nodesin connected component as discovered.

* Add connected component to the array of connected ™
components.

Question: What do graphs represent?

C oe
C
ST T

Answer: Symmetric relationships

E.g.: Each node represents a player, and an edge represents if they
have played a game together today.

® ®__@
G
5 F T T

Question: How can we make graphs more general?

@ 2. Q. C
~ 0
ST

Answer: Asymmetric relationships

E.g.: Each node represents a player, and an edge represents if they
have played a game together today and who won!

= @

S o

Answer: Asymmetric relationships

Definition: A directed graphisa graph G = (V, E) such that
each edge has a direction (e.g. (u,v) is an edge from u to v).

@ 2. QO C
~ O
S FTTO

Answer: Asymmetric relationships

Notes: Adj. matrix is not symmetric, and adj. list has two lists
per vertex.

@ 2. QO C
~ O
S FTTO

Question: Can we do BFS and DFS?

C Q. QO C
~ 0
S FTTO

Answer: BFS and DFS mostly work.

* Only look at outgoing edges from a vertex.
* BFS and DFSreturn the nodes that can be reached from a
starting vertex s but not every node in that set can reach s.

(& 2. QO C
~ O
FFTTO

Strong Connectivity

Definition: We say that a directed graph is strongly
connected if for every two vertices u,v € V, there exists a
directed path from u to v and a directed path from v to u.

ST

Strong Connectivity

Definition: We say that a directed graph is strongly
connected if for every two vertices u,v € V, there exists a
directed path from u to v and a directed path from v to u.

IOQBOR

NOT STRONGLY CONNECTED

U~ O O

Strong Connectivity Property

Claim: If u and v are mutually reachable, and vand w are
mutually reachable, then u and w are mutually reachable.

Proof Idea:

O OO

Strong Connectivity Property

Claim: If u and v are mutually reachable, and vand w are
mutually reachable, then u and w are mutually reachable.

Proof Idea:

Strong Connectivity Property

Claim: If u and v are mutually reachable, and vand w are
mutually reachable, then u and w are mutually reachable.

Proof Idea:

h—-\

Strong Connectivity Algorithm

Input: Directed graph G = (V,E)
Output: True if strongly connected and False otherwise.

Proof Idea:

* PickavertexsinV

* Use BFSto find all vertices | can reach from s.

e Use to find all vertices that can reach s.

* |f both sets are equal return true and otherwise return
false.

Strong Connectivity Algorithm

Input: Directed graph G = (V,E)
Output: True if strongly connected and False otherwise.

Proof ldea:

* PickavertexsinV

* Use BFSto find all vertices | can reach from s.

* Use BFS on “Reversed Graph” to find all vertices that can
reach s.

* |f both sets are equal return true and otherwise return
false.

Strong Connectivity Algorithm

Input: Directed graph G = (V,E)
Output: True if strongly connected and False otherwise.

Proof Ildea:

* PickavertexsinV

e Use BFSto find all vertices | can reach from s.

* Use BFS on “Reversed Graph” to find all vertices that can
reach s. For each edge (u,v) replace with edge (v,u)

* |f both sets are equal return true and otherwise return
false.

Directed Acyclic Graphs (DAGSs)

Definition: A directed graph is a DAG if it has no directed

cycles.
Definition: A topological ordering of a directed graph ¢ =

(V,E) is an ordering of its nodes as vy, v, ..., 1, so that for
every edge (v;, vj), we have i <j.

OJOSONOFOSORE

Directed Acyclic Graphs (DAGSs)

Definition: A directed graph is a DAG if it has no directed

cycles.
Definition: A topological ordering of a directed graph ¢ =

(V,E) is an ordering of its nodes as vy, v, ..., 1, so that for
every edge (v;, vj), we have i <j.

OJOSONOFOSORE

All edges are going “forward”

Directed Acyclic Graphs (DAGSs)

Definition: A directed graph is a DAG if it has no directed
cycles.
S afini

Read K Sectio 3.6 and eview Cre
1Packaged on Topological Ordering

@'@‘@ () O

o V) All edges are going “forward”

Midterm Check Point

What is next?

* Greedy Algorithms

* Divide and Conquer

* Dynamic Programming

* Network Flows (maybe)

* Computation Complexity

“How do we design new algorithms?”

* Greedy Algorithms
 Divide and Conquer

* Dynamic Programming
* Network Flows (maybe)
e Computation Complexity

“How do we use reduce another problem?”

* Greedy Algorithms

* Divide and Conquer

* Dynamic Programming

* Network Flows (maybe)

« Computation Complexity

“How do we know when to give up?”

* Greedy Algorithms

* Divide and Conquer

* Dynamic Programming

* Network Flows (maybe)

« Computation Complexity

What are Greedy Algorithm?

What are Greedy Algorithm?

* Build solution one
piece at a time.

* Onlylook atimmediate
Information to make
choices.

* Never go backona

decision.
e NOT ALWAYS THE BEST
CHOICE!

Coin Change Problem

Problem: Given U.S. currency
denominations {1.00, 0.25, 0.10,
0.05, 0.01} find an algorithm to pay
an amount to a customer using the
fewest coins possible.

Coin Change Problem

* Problem: Given U.S. currency
denominations {1.00, 0.25, 0.10,
0.05, 0.01} find an algorithm to pay
an amount to a customer using the
fewest coins possible.

* Algorithm: At each iteration, add a
coin of the largest value that is less
than the amount needed to be
paid.

Q: Is this algorithm always optimal?

* Problem: Given U.S. currency G\
denominations {1.00, 0.25, 0.10, (€=
0.05, 0.01} find an algorithm to pay e
an amount to a customer using the
fewest coins possible.

* Algorithm: At each iteration, add a
coin of the largest value that is less
than the amount needed to be
paid.

	Slide 1: CSE 331: Algorithms & Complexity
	Slide 2: Schedule
	Slide 3: Quiz #1
	Slide 4: Course Updates
	Slide 5: Midterms
	Slide 6: Midterms
	Slide 7: Problem: Bipartite Graph
	Slide 8: Problem: Bipartite Graph
	Slide 9: Problem: Bipartite Graph
	Slide 10: Problem: Bipartite Graph
	Slide 11: Problem: Bipartite Graph
	Slide 12: Problem: Bipartite Graph
	Slide 13: Problem: Bipartite Graph
	Slide 14: Problem: Connected Components
	Slide 15: Problem: Connected Components
	Slide 16: Question: What is the runtime?
	Slide 17: Answer: O(m+n)
	Slide 18: Question: What do graphs represent?
	Slide 19: Answer: Symmetric relationships
	Slide 20: Question: How can we make graphs more general?
	Slide 21: Answer: Asymmetric relationships
	Slide 22: Answer: Asymmetric relationships
	Slide 23: Answer: Asymmetric relationships
	Slide 24: Question: Can we do BFS and DFS?
	Slide 25: Answer: BFS and DFS mostly work.
	Slide 26: Strong Connectivity
	Slide 27: Strong Connectivity
	Slide 28: Strong Connectivity Property
	Slide 29: Strong Connectivity Property
	Slide 30: Strong Connectivity Property
	Slide 31: Strong Connectivity Algorithm
	Slide 32: Strong Connectivity Algorithm
	Slide 33: Strong Connectivity Algorithm
	Slide 34: Directed Acyclic Graphs (DAGs)
	Slide 35: Directed Acyclic Graphs (DAGs)
	Slide 36: Directed Acyclic Graphs (DAGs)
	Slide 37: Midterm Check Point
	Slide 38: What is next?
	Slide 39: “How do we design new algorithms?”
	Slide 40: “How do we use reduce another problem?”
	Slide 41: “How do we know when to give up?”
	Slide 42: What are Greedy Algorithm?
	Slide 43: What are Greedy Algorithm?
	Slide 44: Coin Change Problem
	Slide 45: Coin Change Problem
	Slide 46: Q: Is this algorithm always optimal?

