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Schedule

1.Course Updates
2.5trong Connectivity
3.Greedy Algorithms
4.Change Making
5.Interval Scheduling




Course Updates

HW 2 Grading Out

HW 3 Solutions Out
HW 4 Out Soon

* Not Due Next Week!
Group Project

* First Problems Oct 31¢t

Sample Midterms Out
Midterms Oct 6 and Oct 8




Midterms

* Advice:
e Start Studying
* Goto Recitations this Week
* Review Book Chapters
e Review Solutions to HW/Quiz
* Try Sample Midterm
* Make Good Use of Time



Strong Connectivity Problem

Input: Directed graph G = (V,E)
Output: True if strongly connected and False otherwise.

Proof Idea:

* PickavertexsinV

* Use BFSto find all vertices | can reach from s.

e Use to find all vertices that can reach s.

* |f both sets are equal return true and otherwise return
false.




Strong Connectivity Algorithm

* Definition: We say that a directed graph is strongly
connected if for any two vertices in the graph, there exists
a directed path from one to the other.

* Observation: If uand v are mutually reachable, and v and
w are mutually reachable, then u and w are mutually
reachable.

* Strong Connectivity Problem:
e Input: Directed graph G = (V,E)
* Output: True 1f strongly connected and False
otherwise.



Strong Connectivity Algorithm

Input: Directed graph G = (V,E)
Output: True if strongly connected and False otherwise.

Proof Ildea:

* PickavertexsinV

e Use BFSto find all vertices | can reach from s.

* Use BFS on “Reversed Graph” to find all vertices that can
reach s. For each edge (u,v) replace with edge (v,u)

* |f both sets are equal return true and otherwise return
false.




Directed Acyclic Graphs (DAGSs)

* Definition: A directed graph is a DAG if it has no directed

cycles.
* Definition: Atopological ordering of a directed graph G =

(V,E) is an ordering of its nodes as vy, v, ..., 1, so that for
every edge (v;, vj), we have i <j.

OJOSONOFOSORE




Directed Acyclic Graphs (DAGSs)

Definition: A directed graph is a DAG if it has no directed

cycles.
Definition: A topological ordering of a directed graph ¢ =

(V,E) is an ordering of its nodes as vy, v, ..., 1, so that for
every edge (v;, vj), we have i <j.

OJOSONOFOSORE

All edges are going “forward”




Directed Acyclic Graphs (DAGSs)

Definition: A directed graph is a DAG if it has no directed
cycles.
S afini

Read K Sectio 3.6 and eview Cre
1Packaged on Topological Ordering
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o V) All edges are going “forward”




Midterm Check Point




What is next?

* Greedy Algorithms

* Divide and Conquer

* Dynamic Programming

* Network Flows (maybe)

* Computation Complexity




“How do we design new algorithms?”

* Greedy Algorithms
 Divide and Conquer

* Dynamic Programming
* Network Flows (maybe)
e Computation Complexity




“How do we use reduce another problem?”

* Greedy Algorithms

* Divide and Conquer

* Dynamic Programming

* Network Flows (maybe)

« Computation Complexity




“How do we know when to give up?”

* Greedy Algorithms

* Divide and Conquer

* Dynamic Programming

* Network Flows (maybe)

« Computation Complexity




What are Greedy Algorithm?




What are Greedy Algorithm?

* Build solution one
piece at a time.

* Onlylook atimmediate
Information to make
choices.

* Never go backona

decision.
e NOT ALWAYS THE BEST
CHOICE!




Coin Change Problem

Problem: Given U.S. currency
denominations {1.00, 0.25, 0.10,
0.05, 0.01} find an algorithm to pay
an amount to a customer using the
fewest coins possible.




Coin Change Problem

* Problem: Given U.S. currency
denominations {1.00, 0.25, 0.10,
0.05, 0.01} find an algorithm to pay
an amount to a customer using the
fewest coins possible.

* Algorithm: At each iteration, add a
coin of the largest value that is less
than the amount needed to be
paid.




Q: Is this algorithm always optimal?

* Problem: Given U.S. currency G\
denominations {1.00, 0.25, 0.10, (€=
0.05, 0.01} find an algorithm to pay e
an amount to a customer using the
fewest coins possible.

* Algorithm: At each iteration, add a
coin of the largest value that is less
than the amount needed to be
paid.




Proof Ideas for Optimality

* Proofldea:
* Suppose there it wasn’t optimal.
* Thenthere exists a budget B
such that the algorithm
returns S and the answeris S’
(S!=9).




Proof Ideas for Optimality

* Proofldeas:
* Suppose there it wasn’t optimal.
* Thenthere exists a budget B
such that the algorithm
returns a set S(B) and the
answer is a different set S’(B).
 |fS’(B) hasthe largest coin that
S(B) has, then you can remove it
and you get a smaller bad
budget B’ = B - <large coin value>




Proof Ideas for Optimality

* Proofldeas:
* Suppose there it wasn’t optimal.
* Thenthere exists a budget B
such that the algorithm
returns a set S(B) and the £gile
answer is a different set S’(B). b iy
 |fS’(B) hasthe largest coin that
S(B) has, then you can remove it
and you get a smaller bad
budget B’ = B - <large coin value>¢_ | Indtion on That!




Proof Ideas for Optimality

* Proofldeas:
 |fS’(B) hasthe largest coin that
S(B) has, then you can remove it
and you get a smaller bad
budget B’ = B - <large coin value>
* We now show that S’(B) has to
have the largest coin that S(B)

has.
* Thatis, the greedy choice was

good!




Proof Ideas for Optimality

* Proofldeas:

* We now show that S’(B) has to
nave the largest coin that S(B)
nas.
 |fS’(B) doesn’t have the largest

coin that can fit in the budget,

then it must be replaced with
smaller coins.

* We can check optimal for

restricted settings of coins. «

Sounds like a few base cases



Proof Ideas for Optimality

* Proofldeas:

* We can show that in an optimal
solution we have:
* At most4 pennies
* At most 1 nickel
* At most 2 nickels + dimes 3
* At most 3 quarters fien®> s

» We show these by contradicting S
the optimality!

¥~ Sounds like a few base cases



Proof Ideas for Optimality

* Proofldeas:

* We can show that in an optimal
solution we have:
* At most4 pennies
* At most 1 nickel
* At most 2 nickels + dimes 3
* At most 3 quarters fien®> s

» We show these by contradicting S
the optimality!

¥~ Sounds like a few base cases



Big Ideas

* Sometimes Greedy Works but
sometimes it doesn’t...

* |[fyou use a different set of coins,
you may not be able to use the
cashier algorithm.

 Consider
{1,10,21,34,70,100,350,1225} and
the budget 140.




Big Ideas

* Sometimes Greedy Works but
sometimes it doesn’t...

If you use a different set of coins,
you may not be able to use the
cashier algorithm.

Consider
{1,10,21,34,70,100,350,1225} and
the budget 140.

* Algorithm Output: 100, 34, 1x6
* Answer: 70x 2




Interval Scheduling

* Consider aninterval of time (e.g. Wednesday).



Interval Scheduling

* Consider aninterval of time (e.g. Wednesday)
* Considertasks that need to be completed during specific
times (e.g. classes)

ENG 110

CSE 331 EE 312 MATH 610
Time I ------------------------------------------------------------------------------------------------------------------------------------------ I-

CSE 9001



Interval Scheduling

* Consider aninterval of time (e.g. Wednesday).
* Considertasks that need to be completed during specific

times (e.g. classes).
* We wantto fit as many tasks as possible into the day such

that no two overlap.

CSE 9001

ENG 110

CSE 331 EE 312 MATH 610
Time I ------------------------------------------------------------------------------------------------------------------------------------------ I-



Interval Scheduling

* Consider aninterval of time (e.g. Wednesday).
* Considertasks that need to be completed during specific

times (e.g. classes).
* We wantto fit as many tasks as possible into the day such

that no two overlap.

CSE 9001
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Interval Scheduling

* Consider aninterval of time (e.g. Wednesday).
* Considertasks that need to be completed during specific times

(e.g. classes).
* We wantto fit as many tasks as possible into the day such that no

two overlap.

Q: Do we ever pick CSE 90017

CSE 9001

ENG 110

CSE 331 EE 312 MATH 610
Time I ------------------------------------------------------------------------------------------------------------------------------------------ I-



Interval Scheduling

* Consider aninterval of time (e.g. Wednesday).
* Considertasks that need to be completed during specific times

(e.g. classes).
* We wantto fit as many tasks as possible into the day such that no

two overlap.

A: No, because it blocks two classes!

CSE 9001

ENG 110

CSE 331 EE 312 MATH 610
Time I ------------------------------------------------------------------------------------------------------------------------------------------ I-



Optimal Solution #1

* Consider aninterval of time (e.g. Wednesday).
* Considertasks that need to be completed during specific times

(e.g. classes).
* We wantto fit as many tasks as possible into the day such that no

two overlap.

CSE 331 EE 312 MATH 610
Time: -I ------------------------------------------------------------------------------------------------------------------------------------------ I-



Optimal Solution #2

* Consider aninterval of time (e.g. Wednesday).
* Considertasks that need to be completed during specific times

(e.g. classes).
* We wantto fit as many tasks as possible into the day such that no

two overlap.

ENG 110
Time: -I ------------------------------------------------------------------------------------------------------------------------------------------ I-

EE 312 MATH 610




Interval Scheduling Problem (Support Page)

Interval Scheduling via examples

In which we derive an algorithm that solves the Interval Scheduling problem via a sequence of examples.

The problem

In these notes we will solve the following problem:

Interval Scheduling Problem
An input of n intervals [s(i),f(1)), or in other words, {s(i), ...,
represents the finish time.

A schedule S of n intervals where no two intervals in S conflict, and the total number of intervals in S is maximized.

f(i) — 1} for 1 =i < n where i represents the intervals, s(i) represents the start time, and f(i)



Interval Scheduling Problem

* Input: A set of n intervals with start and finish times.
* Forl <i <n,|[s(i),f(i)) where s(i) and f(i) are start and finish
times of task i respectively.
* Output: A schedule (subset of intervals) S such that no two

intervals in S conflict and the total number of intervals is
maximized.

EE 312 MATH 610
Time: -I ------------------------------------------------------------------------------------------------------------------------------------------ I-

EE 312 and MATH 610 don’t conflict end




Interval Scheduling Problem

* Input: A set of n intervals with start and finish times.
* Forl <i <n,|[s(i),f(i)) where s(i) and f(i) are start and finish
times of task i respectively.
* Output: A schedule (subset of intervals) S such that no two

intervals in S conflict and the total number of intervals is
maximized.

CSE 9001

Start CSE 9001 and EE 312 Conflict



Q: How should we try to solve this?

* Input: A set of n intervals R with start and finish times.
* Forl <i <n,|[s(i),f(i)) where s(i) and f(i) are start and finish
times of task i respectively.
* Output: A schedule (subset of intervals) S such that no two
intervals in S conflict and the total number of intervals is
maximized.




Q: How should we try to solve this?

A: Let’s try to generate some examples and see what works
and what doesn’t.




Build an Algorithm

* Basic Algorithm Outline:
e Sisempty
* While R is not empty:
* PickiinR
e AdditoS
* RemoveifromR




Build an Algorithm

* Basic Algorithm Outline:
* Sisempty
* While R is not empty:
* PickiinR
e AdditoS You mightadd conflicts!
* RemoveifromR




Build an Algorithm

* Basic Algorithm Outline:
e Sisempty
* While R is not empty:
* PickiinR
 AdditoS
* Remove all tasks that conflict with i from R




Build an Algorithm

* Basic Algorithm Outline:
e Sisempty
* While R is not empty:
e PickiinR Q:How dowe do this?
 AdditoS
* Remove all tasks that conflict with i from R




Build a Greedy Algorithm

* Basic Algorithm Outline:
e Sisempty
* While R is not empty:
* Pickiin R that minimizes v(i)
* AdditoS
* Remove all tasks that conflict with i from R




Q: What should we pick for v(i)?

* Basic Algorithm Outline:
e Sisempty
* While R is not empty:
* Pickiin R that minimizes v(i)
* AdditoS
* Remove all tasks that conflict with i from R




Attempt I: Interval Length (Okay)

* Basic Algorithm Outline:
e Sisempty
* While R is not empty:
* Pickiin R that minimizes v(i)
* AdditoS
* Remove all tasks that conflict with i from R
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Attempt I: Interval Length (Oh no!)

* Basic Algorithm Outline:
e Sisempty
* While R is not empty:
* Pickiin R that minimizes v(i)
* AdditoS
* Remove all tasks that conflict with i from R

ART 322
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Attempt ll: Start Time (Okay)

* Basic Algorithm Outline:
e Sisempty
* While R is not empty:
* Pickiin R that minimizes v(i)
 AdditoS
* Remove all tasks that conflict with i from R




Attempt lI: Start Time (Oh no!)

* Basic Algorithm Outline:
e Sisempty
* While R is not empty:
* Pickiin R that minimizes v(i)
* AdditoS
* Remove all tasks that conflict with i from R

LIT 101 ART 322




Attempt lll: Min Conflicts (Okay)

* Basic Algorithm Outline:
e Sisempty
* While R is not empty:
* Pickiin R that minimizes v(i)
* AdditoS
* Remove all tasks that conflict with i from R




Attempt lll: Min Conflicts (Okay)

* Basic Algorithm Outline:
e Sisempty
* While R is not empty:
* Pickiin R that minimizes v(i)
* AdditoS
* Remove all tasks that conflict with i from R




Attempt lll: Min Conflicts (Okay)

* Basic Algorithm Outline:
e Sisempty
* While R is not empty:
* Pickiin R that minimizes v(i)
* AdditoS
* Remove all tasks that conflict with i from R




Attempt lll: Min Conflicts (Okay)

* Basic Algorithm Outline:
e Sisempty
* While R is not empty:
* Pickiin R that minimizes v(i)
* AdditoS
* Remove all tasks that conflict with i from R




Attempt lll: Min Conflicts (Okay)

* Basic Algorithm Outline:
e Sisempty
* While R is not empty:
* Pickiin R that minimizes v(i)
 AdditoS
* Remove all tasks that conflict with i from R




Attempt lll: Min Conflicts (Oh no!)

JPN 203

GEO 189
PHYS 311

HIST 345

LIT 101

ART 322 CHEM 405
CSE 331 EE 312 MATH 610 BIO 810

. |




Attempt lll: Min Conflicts (Oh no!)

ART 322

Time: -I- -----------------------------------------------------------------------------------------------------------------------------------

Foreach intervali, v(i) = # conflicts (and min s(i))

....... I



Attempt lll: Min Conflicts (Oh no!)

ART 322




Attempt lll: Min Conflicts (Oh no!)
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Attempt lll: Min Conflicts (Oh no!)

GEO 189

ART 322




Attempt lll: Min Conflicts (Oh no!)

GEO 189

ART 322




Attempt lll: Min Conflicts (Oh no!)

JPN 203

GEO 189
PHYS 311

HIST 345

LIT 101

ART 322 CHEM 405
CSE 331 EE 312 MATH 610 BIO 810

. |




| GIVE UP

ART 322
MATH 610 BIO 810

GEO 189
PHYS 311
CHEM 405

I.



Attempt [V: Finish Time (Okay)

JPN 203

GEO 189
PHYS 311

HIST 345

LIT 101

ART 322 CHEM 405
CSE 331 EE 312 MATH 610 BIO 810

. |




Attempt IV: Finish Time (....)

Wait... does that actually work?

JPN 203

GEO 189
PHYS 311

HIST 345

LIT 101

ART 322 CHEM 405
CSE 331 EE 312 MATH 610 BIO 810

. |




Claim: The Finish First Algorithm is Optimal

Proof Ideas:
* Let Abethe setreturned by the algorithm and O be

the optimal list.

* Leti_1,\ldots, i_k be the tasks in A sorted by add
time.

* Letj_1,\l¢ 1e tasks in O sorted | L
time.

CSE 331 EE 312 MATH 610 BIO 810



Claim: The Finish First Algorithm is Optimal

Proof ldeas:
* Letiy,..., I bethe tasks returned by algorithm (sorted by

finish/add time).
* Letjq,...,J De the tasks in optimal solution (sorted by finish

time)
e We wantto showk=m

Q: What can we say about the first job in each list?



Claim: The Finish First Algorithm is Optimal

Proof Ideas:
* Letiy,..., I bethe tasks returned by algorithm (sorted by
finish/add time).
* Letjq,...,J De the tasks in optimal solution (sorted by finish
time)

Observation: f(i;) < f(j;)




Claim: The Finish First Algorithm is Optimal

Proof Ideas:
* Assume nowthat f(i,) < f(j,) for some p.

* Thatis, assume the pthin the algorithms list ends before the
pth job in the optimal list.

Q: What can we say about the p + 1 job in each list?




Claim: The Finish First Algorithm is Optimal

Proof ldeas:

* Assume nowthat f(i,) < f(j,) for some p.

e Thatis,

pth job

Observation: T

assume the pth in the algorithms list ends before the
In the optimal list.

ne algorithm could have added j; 44!




Claim: The Finish First Algorithm is Optimal

Proof Ideas:
* Assume nowthat f(iy) < f(jx) and m >k.

Q: Why is this a problem?




Claim: The Finish First Algorithm is Optimal

Proof Ideas:
* Assume nowthat f(iy) < f(jx) and m >k.

Observation: The algorithm could have added jy 1!
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