
CSE 331:
Algorithms & Complexity

Prof. Charlie Anne Carlson (She/Her)
Lecture 15

Wednesday October 1st, 2025

“Greedy Algorithms”

Schedule

1.Course Updates
2.Strong Connectivity
3.Greedy Algorithms
4.Change Making
5.Interval Scheduling

Course Updates

• HW 2 Grading Out
• HW 3 Solutions Out
• HW 4 Out Soon

• Not Due Next Week!
• Group Project

• First Problems Oct 31st

• Sample Midterms Out
• Midterms Oct 6 and Oct 8

Midterms

• Advice:
• Start Studying
• Go to Recitations this Week
• Review Book Chapters
• Review Solutions to HW/Quiz
• Try Sample Midterm
• Make Good Use of Time

Strong Connectivity Problem

Input: Directed graph 𝐺 = 𝑉, 𝐸
Output: True if strongly connected and False otherwise.

Proof Idea:
• Pick a vertex s in V
• Use BFS to find all vertices I can reach from s.
• Use _____________ to find all vertices that can reach s.
• If both sets are equal return true and otherwise return

false.

Strong Connectivity Algorithm
• Definition: We say that a directed graph is strongly

connected if for any two vertices in the graph, there exists
a directed path from one to the other.

• Observation: If u and v are mutually reachable, and v and
w are mutually reachable, then u and w are mutually
reachable.

• Strong Connectivity Problem:
• Input: Directed graph 𝐺 = 𝑉, 𝐸
• Output: True if strongly connected and False

otherwise.

Strong Connectivity Algorithm

Input: Directed graph 𝐺 = 𝑉, 𝐸
Output: True if strongly connected and False otherwise.

Proof Idea:
• Pick a vertex s in V
• Use BFS to find all vertices I can reach from s.
• Use BFS on “Reversed Graph” to find all vertices that can

reach s.
• If both sets are equal return true and otherwise return

false.

For each edge (u,v) replace with edge (v,u)

Directed Acyclic Graphs (DAGs)
• Definition: A directed graph is a DAG if it has no directed

cycles.
• Definition: A topological ordering of a directed graph 𝐺 =

 (𝑉, 𝐸) is an ordering of its nodes as 𝑣1, 𝑣2, … , 𝑣𝑛 so that for
every edge (𝑣𝑖 , 𝑣𝑗), we have i < j.

Directed Acyclic Graphs (DAGs)
Definition: A directed graph is a DAG if it has no directed
cycles.
Definition: A topological ordering of a directed graph 𝐺 =
 (𝑉, 𝐸) is an ordering of its nodes as 𝑣1, 𝑣2, … , 𝑣𝑛 so that for
every edge (𝑣𝑖 , 𝑣𝑗), we have i < j.

All edges are going “forward”

Directed Acyclic Graphs (DAGs)
Definition: A directed graph is a DAG if it has no directed
cycles.
Definition: A topological ordering of a directed graph 𝐺 =
 (𝑉, 𝐸) is an ordering of its nodes as 𝑣1, 𝑣2, … , 𝑣𝑛 so that for
every edge (𝑣𝑖 , 𝑣𝑗), we have i < j.

All edges are going “forward”

Read KT Section 3.6 and Review Care
Packaged on Topological Ordering

Midterm Check Point

What is next?
• Greedy Algorithms
• Divide and Conquer
• Dynamic Programming
• Network Flows (maybe)
• Computation Complexity

“How do we design new algorithms?”
• Greedy Algorithms
• Divide and Conquer
• Dynamic Programming
• Network Flows (maybe)
• Computation Complexity

“How do we use reduce another problem?”
• Greedy Algorithms
• Divide and Conquer
• Dynamic Programming
• Network Flows (maybe)
• Computation Complexity

“How do we know when to give up?”
• Greedy Algorithms
• Divide and Conquer
• Dynamic Programming
• Network Flows (maybe)
• Computation Complexity

What are Greedy Algorithm?

What are Greedy Algorithm?
• Build solution one

piece at a time.
• Only look at immediate

information to make
choices.

• Never go back on a
decision.

• NOT ALWAYS THE BEST
CHOICE!

Coin Change Problem
• Problem: Given U.S. currency

denominations {1.00, 0.25, 0.10,
0.05, 0.01} find an algorithm to pay
an amount to a customer using the
fewest coins possible.

Coin Change Problem
• Problem: Given U.S. currency

denominations {1.00, 0.25, 0.10,
0.05, 0.01} find an algorithm to pay
an amount to a customer using the
fewest coins possible.

• Algorithm: At each iteration, add a
coin of the largest value that is less
than the amount needed to be
paid.

Q: Is this algorithm always optimal?
• Problem: Given U.S. currency

denominations {1.00, 0.25, 0.10,
0.05, 0.01} find an algorithm to pay
an amount to a customer using the
fewest coins possible.

• Algorithm: At each iteration, add a
coin of the largest value that is less
than the amount needed to be
paid.

Proof Ideas for Optimality
• Proof Idea:

• Suppose there it wasn’t optimal.
• Then there exists a budget B

such that the algorithm
returns S and the answer is S’
(S != S’).

Proof Ideas for Optimality
• Proof Ideas:

• Suppose there it wasn’t optimal.
• Then there exists a budget B

such that the algorithm
returns a set S(B) and the
answer is a different set S’(B).

• If S’(B) has the largest coin that
S(B) has, then you can remove it
and you get a smaller bad
budget B’ = B - <large coin value>

Proof Ideas for Optimality
• Proof Ideas:

• Suppose there it wasn’t optimal.
• Then there exists a budget B

such that the algorithm
returns a set S(B) and the
answer is a different set S’(B).

• If S’(B) has the largest coin that
S(B) has, then you can remove it
and you get a smaller bad
budget B’ = B - <large coin value> Use Induction on That!

Proof Ideas for Optimality
• Proof Ideas:

• If S’(B) has the largest coin that
S(B) has, then you can remove it
and you get a smaller bad
budget B’ = B - <large coin value>

• We now show that S’(B) has to
have the largest coin that S(B)
has.
• That is, the greedy choice was

good!

Proof Ideas for Optimality
• Proof Ideas:

• We now show that S’(B) has to
have the largest coin that S(B)
has.

• If S’(B) doesn’t have the largest
coin that can fit in the budget,
then it must be replaced with
smaller coins.
• We can check optimal for

restricted settings of coins. Sounds like a few base cases

Proof Ideas for Optimality
• Proof Ideas:

• We can show that in an optimal
solution we have:
• At most 4 pennies
• At most 1 nickel
• At most 2 nickels + dimes
• At most 3 quarters

• We show these by contradicting
the optimality!

Sounds like a few base cases

Proof Ideas for Optimality
• Proof Ideas:

• We can show that in an optimal
solution we have:
• At most 4 pennies
• At most 1 nickel
• At most 2 nickels + dimes
• At most 3 quarters

• We show these by contradicting
the optimality!

Sounds like a few base cases

Big Ideas
• Sometimes Greedy Works but

sometimes it doesn’t…
• If you use a different set of coins,

you may not be able to use the
cashier algorithm.

• Consider
{1,10,21,34,70,100,350,1225} and
the budget 140.

Big Ideas
• Sometimes Greedy Works but

sometimes it doesn’t…
• If you use a different set of coins,

you may not be able to use the
cashier algorithm.

• Consider
{1,10,21,34,70,100,350,1225} and
the budget 140.
• Algorithm Output: 100, 34, 1x6
• Answer: 70 x 2

Interval Scheduling
• Consider an interval of time (e.g. Wednesday).

Start End

Time:

Interval Scheduling
• Consider an interval of time (e.g. Wednesday)
• Consider tasks that need to be completed during specific

times (e.g. classes)

Start End

Time:

CSE 331

ENG 110

EE 312 MATH 610

CSE 9001

Interval Scheduling
• Consider an interval of time (e.g. Wednesday).
• Consider tasks that need to be completed during specific

times (e.g. classes).
• We want to fit as many tasks as possible into the day such

that no two overlap.

Start End

Time:

CSE 331

ENG 110

EE 312 MATH 610

CSE 9001

Interval Scheduling
• Consider an interval of time (e.g. Wednesday).
• Consider tasks that need to be completed during specific

times (e.g. classes).
• We want to fit as many tasks as possible into the day such

that no two overlap.

Start End

Time:

CSE 331

ENG 110

EE 312 MATH 610

CSE 9001

Interval Scheduling
• Consider an interval of time (e.g. Wednesday).
• Consider tasks that need to be completed during specific times

(e.g. classes).
• We want to fit as many tasks as possible into the day such that no

two overlap.

Start End

Time:

CSE 331

ENG 110

EE 312 MATH 610

CSE 9001

Q: Do we ever pick CSE 9001?

Interval Scheduling
• Consider an interval of time (e.g. Wednesday).
• Consider tasks that need to be completed during specific times

(e.g. classes).
• We want to fit as many tasks as possible into the day such that no

two overlap.

Start End

Time:

CSE 331

ENG 110

EE 312 MATH 610

CSE 9001

A: No, because it blocks two classes!

Optimal Solution #1
• Consider an interval of time (e.g. Wednesday).
• Consider tasks that need to be completed during specific times

(e.g. classes).
• We want to fit as many tasks as possible into the day such that no

two overlap.

Start End

Time:

CSE 331

ENG 110

EE 312 MATH 610

CSE 9001

Optimal Solution #2
• Consider an interval of time (e.g. Wednesday).
• Consider tasks that need to be completed during specific times

(e.g. classes).
• We want to fit as many tasks as possible into the day such that no

two overlap.

Start End

Time:

CSE 331

ENG 110

EE 312 MATH 610

CSE 9001

Interval Scheduling Problem (Support Page)

Interval Scheduling Problem
• Input: A set of 𝑛 intervals with start and finish times.

• For 1 ≤ i ≤ n, [s(i), f(i)) where s(i) and f(i) are start and finish
times of task 𝑖 respectively.

• Output: A schedule (subset of intervals) S such that no two
intervals in S conflict and the total number of intervals is
maximized.

Start End

Time:

CSE 331

ENG 110

EE 312 MATH 610

CSE 9001

EE 312 and MATH 610 don’t conflict

Interval Scheduling Problem
• Input: A set of 𝑛 intervals with start and finish times.

• For 1 ≤ i ≤ n, [s(i), f(i)) where s(i) and f(i) are start and finish
times of task 𝑖 respectively.

• Output: A schedule (subset of intervals) S such that no two
intervals in S conflict and the total number of intervals is
maximized.

Start End

Time:

CSE 331

ENG 110

EE 312 MATH 610

CSE 9001

CSE 9001 and EE 312 Conflict

Q: How should we try to solve this?
• Input: A set of 𝑛 intervals R with start and finish times.

• For 1 ≤ i ≤ n, [s(i), f(i)) where s(i) and f(i) are start and finish
times of task 𝑖 respectively.

• Output: A schedule (subset of intervals) S such that no two
intervals in S conflict and the total number of intervals is
maximized.

Start End

Time:

CSE 331

ENG 110

EE 312 MATH 610

CSE 9001

Q: How should we try to solve this?
A: Let’s try to generate some examples and see what works
and what doesn’t.

Start End

Time:

CSE 331 EE 312 MATH 610

Build an Algorithm
• Basic Algorithm Outline:

• S is empty
• While R is not empty:

• Pick i in R
• Add i to S
• Remove i from R

Start End

Time:

CSE 331 EE 312 MATH 610

Build an Algorithm
• Basic Algorithm Outline:

• S is empty
• While R is not empty:

• Pick i in R
• Add i to S
• Remove i from R

Start End

Time:

CSE 331 EE 312 MATH 610

LIT 101

You might add conflicts!

LIT 101

Build an Algorithm
• Basic Algorithm Outline:

• S is empty
• While R is not empty:

• Pick i in R
• Add i to S
• Remove all tasks that conflict with i from R

Start End

Time:

CSE 331 EE 312 MATH 610

LIT 101LIT 101

Build an Algorithm
• Basic Algorithm Outline:

• S is empty
• While R is not empty:

• Pick i in R
• Add i to S
• Remove all tasks that conflict with i from R

Start End

Time:

CSE 331 EE 312 MATH 610

LIT 101

Q: How do we do this?

LIT 101

Build a Greedy Algorithm
• Basic Algorithm Outline:

• S is empty
• While R is not empty:

• Pick i in R that minimizes v(i)
• Add i to S
• Remove all tasks that conflict with i from R

Start End

Time:

CSE 331 EE 312 MATH 610

LIT 101

For each interval i, we assign a value v(i).

LIT 101

Q: What should we pick for v(i)?
• Basic Algorithm Outline:

• S is empty
• While R is not empty:

• Pick i in R that minimizes v(i)
• Add i to S
• Remove all tasks that conflict with i from R

Start End

Time:

CSE 331 EE 312 MATH 610

LIT 101

For each interval i, v(i) = ?

LIT 101

Attempt I: Interval Length (Okay)
• Basic Algorithm Outline:

• S is empty
• While R is not empty:

• Pick i in R that minimizes v(i)
• Add i to S
• Remove all tasks that conflict with i from R

Start End

Time:

CSE 331 EE 312 MATH 610

LIT 101

For each interval i, v(i) = s(i) – f(i)

Attempt I: Interval Length (Oh no!)
• Basic Algorithm Outline:

• S is empty
• While R is not empty:

• Pick i in R that minimizes v(i)
• Add i to S
• Remove all tasks that conflict with i from R

Start End

Time:

CSE 331 EE 312 MATH 610

LIT 101

For each interval i, v(i) = s(i) – f(i)

ART 322

Attempt II: Start Time (Okay)
• Basic Algorithm Outline:

• S is empty
• While R is not empty:

• Pick i in R that minimizes v(i)
• Add i to S
• Remove all tasks that conflict with i from R

Start End

Time:

CSE 331 EE 312 MATH 610

LIT 101

For each interval i, v(i) = s(i)

ART 322

Attempt II: Start Time (Oh no!)
• Basic Algorithm Outline:

• S is empty
• While R is not empty:

• Pick i in R that minimizes v(i)
• Add i to S
• Remove all tasks that conflict with i from R

Start End

Time:

CSE 331 EE 312 MATH 610

LIT 101

For each interval i, v(i) = s(i)

ART 322

Attempt III: Min Conflicts (Okay)
• Basic Algorithm Outline:

• S is empty
• While R is not empty:

• Pick i in R that minimizes v(i)
• Add i to S
• Remove all tasks that conflict with i from R

Start End

Time:

CSE 331 EE 312 MATH 610

LIT 101

For each interval i, v(i) = # conflicts (and min s(i))

ART 322

Attempt III: Min Conflicts (Okay)
• Basic Algorithm Outline:

• S is empty
• While R is not empty:

• Pick i in R that minimizes v(i)
• Add i to S
• Remove all tasks that conflict with i from R

Start End

Time:

CSE 331 EE 312 MATH 610

For each interval i, v(i) = # conflicts (and min s(i))

ART 322

Attempt III: Min Conflicts (Okay)
• Basic Algorithm Outline:

• S is empty
• While R is not empty:

• Pick i in R that minimizes v(i)
• Add i to S
• Remove all tasks that conflict with i from R

Start End

Time:

CSE 331 EE 312 MATH 610

For each interval i, v(i) = # conflicts (and min s(i))

ART 322

Attempt III: Min Conflicts (Okay)
• Basic Algorithm Outline:

• S is empty
• While R is not empty:

• Pick i in R that minimizes v(i)
• Add i to S
• Remove all tasks that conflict with i from R

Start End

Time:

CSE 331 EE 312 MATH 610

For each interval i, v(i) = # conflicts (and min s(i))

Attempt III: Min Conflicts (Okay)
• Basic Algorithm Outline:

• S is empty
• While R is not empty:

• Pick i in R that minimizes v(i)
• Add i to S
• Remove all tasks that conflict with i from R

Start End

Time:

CSE 331 EE 312 MATH 610

For each interval i, v(i) = # conflicts (and min s(i))

LIT 101 ART 322

Attempt III: Min Conflicts (Oh no!)

Start End

Time:

CSE 331 EE 312 MATH 610

For each interval i, v(i) = # conflicts (and min s(i))

LIT 101 ART 322

BIO 810

CHEM 405

HIST 345 PHYS 311

JPN 203 GEO 189

Attempt III: Min Conflicts (Oh no!)

Start End

Time:

CSE 331

For each interval i, v(i) = # conflicts (and min s(i))

LIT 101 ART 322

BIO 810

CHEM 405

HIST 345 PHYS 311

JPN 203 GEO 189

Attempt III: Min Conflicts (Oh no!)

Start End

Time:

CSE 331

For each interval i, v(i) = # conflicts (and min s(i))

LIT 101 ART 322

BIO 810

CHEM 405

HIST 345 PHYS 311

JPN 203 GEO 189

Attempt III: Min Conflicts (Oh no!)

Start End

Time:

CSE 331

For each interval i, v(i) = # conflicts (and min s(i))

ART 322

BIO 810

CHEM 405

PHYS 311

GEO 189

Attempt III: Min Conflicts (Oh no!)

Start End

Time:

CSE 331

For each interval i, v(i) = # conflicts (and min s(i))

ART 322

BIO 810

CHEM 405

PHYS 311

GEO 189

Attempt III: Min Conflicts (Oh no!)

Start End

Time:

CSE 331

For each interval i, v(i) = # conflicts (and min s(i))

ART 322

GEO 189

EE 312 MATH 610

LIT 101

BIO 810

CHEM 405

HIST 345 PHYS 311

JPN 203

Attempt III: Min Conflicts (Oh no!)

Start End

Time:

CSE 331

For each interval i, v(i) = # conflicts (and min s(i))

ART 322

GEO 189

EE 312 MATH 610

LIT 101

BIO 810

CHEM 405

HIST 345 PHYS 311

JPN 203

I GIVE UP!!!!

Start End

Time:

CSE 331

For each interval i, v(i) = # conflicts (and min s(i))

ART 322

GEO 189

EE 312 MATH 610

LIT 101

BIO 810

CHEM 405

HIST 345 PHYS 311

JPN 203

Attempt IV: Finish Time (Okay)

Start End

Time:

CSE 331

For each interval i, v(i) = f(i)

ART 322

GEO 189

EE 312 MATH 610

LIT 101

BIO 810

CHEM 405

HIST 345 PHYS 311

JPN 203

Attempt IV: Finish Time (….)

Wait… does that actually work?

Start End

Time:

CSE 331

For each interval i, v(i) = f(i)

ART 322

GEO 189

EE 312 MATH 610

LIT 101

BIO 810

CHEM 405

HIST 345 PHYS 311

JPN 203

Claim: The Finish First Algorithm is Optimal
Proof Ideas:

• Let A be the set returned by the algorithm and O be
the optimal list.

• Let i_1, \ldots, i_k be the tasks in A sorted by add
time.

• Let j_1, \ldots, j_m be the tasks in O sorted by finish
time.

Start End

Time:

CSE 331

For each interval i, v(i) = f(i)

ART 322

GEO 189

EE 312 MATH 610

LIT 101

BIO 810

CHEM 405

HIST 345 PHYS 311

JPN 203

Claim: The Finish First Algorithm is Optimal
Proof Ideas:

• Let 𝑖1, … , 𝑖𝑘 be the tasks returned by algorithm (sorted by
finish/add time).

• Let j1, … , jm be the tasks in optimal solution (sorted by finish
time)

• We want to show k = m

Start End

Time:

Q: What can we say about the first job in each list?

Claim: The Finish First Algorithm is Optimal
Proof Ideas:

• Let 𝑖1, … , 𝑖𝑘 be the tasks returned by algorithm (sorted by
finish/add time).

• Let j1, … , jm be the tasks in optimal solution (sorted by finish
time)

Start End

Time:

j1

𝑖1 Observation: 𝑓(𝑖1) ≤ 𝑓(𝑗1)

Claim: The Finish First Algorithm is Optimal
Proof Ideas:

• Assume now that 𝑓(𝑖p) ≤ 𝑓(𝑗p) for some p.
• That is, assume the pth in the algorithms list ends before the

pth job in the optimal list.

Start End

Time:

jp

𝑖p

Q: What can we say about the p + 1 job in each list?

Claim: The Finish First Algorithm is Optimal
Proof Ideas:

• Assume now that 𝑓(𝑖p) ≤ 𝑓(𝑗p) for some p.
• That is, assume the pth in the algorithms list ends before the

pth job in the optimal list.

Start End

Time:

jp

𝑖p

Observation: The algorithm could have added jp+1!

𝑖p+1

jp+1

Claim: The Finish First Algorithm is Optimal
Proof Ideas:

• Assume now that 𝑓(𝑖k) ≤ 𝑓(𝑗k) and m > k.

Start End

Time:

jk

𝑖k

Q: Why is this a problem?

jk+1

Claim: The Finish First Algorithm is Optimal
Proof Ideas:

• Assume now that 𝑓(𝑖k) ≤ 𝑓(𝑗k) and m > k.

Start End

Time:

jk

𝑖k

jk+1

Observation: The algorithm could have added jk+1!

	Slide 1: CSE 331: Algorithms & Complexity
	Slide 2: Schedule
	Slide 3: Course Updates
	Slide 4: Midterms
	Slide 5: Strong Connectivity Problem
	Slide 6: Strong Connectivity Algorithm
	Slide 7: Strong Connectivity Algorithm
	Slide 8: Directed Acyclic Graphs (DAGs)
	Slide 9: Directed Acyclic Graphs (DAGs)
	Slide 10: Directed Acyclic Graphs (DAGs)
	Slide 11: Midterm Check Point
	Slide 12: What is next?
	Slide 13: “How do we design new algorithms?”
	Slide 14: “How do we use reduce another problem?”
	Slide 15: “How do we know when to give up?”
	Slide 16: What are Greedy Algorithm?
	Slide 17: What are Greedy Algorithm?
	Slide 18: Coin Change Problem
	Slide 19: Coin Change Problem
	Slide 20: Q: Is this algorithm always optimal?
	Slide 21: Proof Ideas for Optimality
	Slide 22: Proof Ideas for Optimality
	Slide 23: Proof Ideas for Optimality
	Slide 24: Proof Ideas for Optimality
	Slide 25: Proof Ideas for Optimality
	Slide 26: Proof Ideas for Optimality
	Slide 27: Proof Ideas for Optimality
	Slide 28: Big Ideas
	Slide 29: Big Ideas
	Slide 30: Interval Scheduling
	Slide 31: Interval Scheduling
	Slide 32: Interval Scheduling
	Slide 33: Interval Scheduling
	Slide 34: Interval Scheduling
	Slide 35: Interval Scheduling
	Slide 36: Optimal Solution #1
	Slide 37: Optimal Solution #2
	Slide 38: Interval Scheduling Problem (Support Page)
	Slide 39: Interval Scheduling Problem
	Slide 40: Interval Scheduling Problem
	Slide 41: Q: How should we try to solve this?
	Slide 42: Q: How should we try to solve this?
	Slide 43: Build an Algorithm
	Slide 44: Build an Algorithm
	Slide 45: Build an Algorithm
	Slide 46: Build an Algorithm
	Slide 47: Build a Greedy Algorithm
	Slide 48: Q: What should we pick for v open paren i close paren ?
	Slide 49: Attempt I: Interval Length (Okay)
	Slide 50: Attempt I: Interval Length (Oh no!)
	Slide 51: Attempt II: Start Time (Okay)
	Slide 52: Attempt II: Start Time (Oh no!)
	Slide 53: Attempt III: Min Conflicts (Okay)
	Slide 54: Attempt III: Min Conflicts (Okay)
	Slide 55: Attempt III: Min Conflicts (Okay)
	Slide 56: Attempt III: Min Conflicts (Okay)
	Slide 57: Attempt III: Min Conflicts (Okay)
	Slide 58: Attempt III: Min Conflicts (Oh no!)
	Slide 59: Attempt III: Min Conflicts (Oh no!)
	Slide 60: Attempt III: Min Conflicts (Oh no!)
	Slide 61: Attempt III: Min Conflicts (Oh no!)
	Slide 62: Attempt III: Min Conflicts (Oh no!)
	Slide 63: Attempt III: Min Conflicts (Oh no!)
	Slide 64: Attempt III: Min Conflicts (Oh no!)
	Slide 65: I GIVE UP!!!!
	Slide 66: Attempt IV: Finish Time (Okay)
	Slide 67: Attempt IV: Finish Time (….)
	Slide 68: Claim: The Finish First Algorithm is Optimal
	Slide 69: Claim: The Finish First Algorithm is Optimal
	Slide 70: Claim: The Finish First Algorithm is Optimal
	Slide 71: Claim: The Finish First Algorithm is Optimal
	Slide 72: Claim: The Finish First Algorithm is Optimal
	Slide 73: Claim: The Finish First Algorithm is Optimal
	Slide 74: Claim: The Finish First Algorithm is Optimal

