CSE 331:
Allg(o)r[itt]hunnlg & (C<o>lnnqp>ll<ex[i1ty

“Greedy Algorithms”

Prof. Charlie Anne Carlson (She/Her)
Lecture 15
Wednesday October 15t, 2025

L]

G5

University at Buffalo

Schedule

1.Course Updates
2.5trong Connectivity
3.Greedy Algorithms
4.Change Making
5.Interval Scheduling

Course Updates

HW 2 Grading Out

HW 3 Solutions Out
HW 4 Out Soon

* Not Due Next Week!
Group Project

* First Problems Oct 31¢t

Sample Midterms Out
Midterms Oct 6 and Oct 8

Midterms

* Advice:
e Start Studying
* Goto Recitations this Week
* Review Book Chapters
e Review Solutions to HW/Quiz
* Try Sample Midterm
* Make Good Use of Time

Strong Connectivity Problem

Input: Directed graph G = (V,E)
Output: True if strongly connected and False otherwise.

Proof Idea:

* PickavertexsinV

* Use BFSto find all vertices | can reach from s.

e Use to find all vertices that can reach s.

* |f both sets are equal return true and otherwise return
false.

Strong Connectivity Algorithm

* Definition: We say that a directed graph is strongly
connected if for any two vertices in the graph, there exists
a directed path from one to the other.

* Observation: If uand v are mutually reachable, and v and
w are mutually reachable, then u and w are mutually
reachable.

* Strong Connectivity Problem:
e Input: Directed graph G = (V,E)
* Output: True 1f strongly connected and False
otherwise.

Strong Connectivity Algorithm

Input: Directed graph G = (V,E)
Output: True if strongly connected and False otherwise.

Proof Ildea:

* PickavertexsinV

e Use BFSto find all vertices | can reach from s.

* Use BFS on “Reversed Graph” to find all vertices that can
reach s. For each edge (u,v) replace with edge (v,u)

* |f both sets are equal return true and otherwise return
false.

Directed Acyclic Graphs (DAGSs)

* Definition: A directed graph is a DAG if it has no directed

cycles.
* Definition: Atopological ordering of a directed graph G =

(V,E) is an ordering of its nodes as vy, v, ..., 1, so that for
every edge (v;, vj), we have i <j.

OJOSONOFOSORE

Directed Acyclic Graphs (DAGSs)

Definition: A directed graph is a DAG if it has no directed

cycles.
Definition: A topological ordering of a directed graph ¢ =

(V,E) is an ordering of its nodes as vy, v, ..., 1, so that for
every edge (v;, vj), we have i <j.

OJOSONOFOSORE

All edges are going “forward”

Directed Acyclic Graphs (DAGSs)

Definition: A directed graph is a DAG if it has no directed
cycles.
S afini

Read K Sectio 3.6 and eview Cre
1Packaged on Topological Ordering

@'@‘@ () O

o V) All edges are going “forward”

Midterm Check Point

What is next?

* Greedy Algorithms

* Divide and Conquer

* Dynamic Programming

* Network Flows (maybe)

* Computation Complexity

“How do we design new algorithms?”

* Greedy Algorithms
 Divide and Conquer

* Dynamic Programming
* Network Flows (maybe)
e Computation Complexity

“How do we use reduce another problem?”

* Greedy Algorithms

* Divide and Conquer

* Dynamic Programming

* Network Flows (maybe)

« Computation Complexity

“How do we know when to give up?”

* Greedy Algorithms

* Divide and Conquer

* Dynamic Programming

* Network Flows (maybe)

« Computation Complexity

What are Greedy Algorithm?

What are Greedy Algorithm?

* Build solution one
piece at a time.

* Onlylook atimmediate
Information to make
choices.

* Never go backona

decision.
e NOT ALWAYS THE BEST
CHOICE!

Coin Change Problem

Problem: Given U.S. currency
denominations {1.00, 0.25, 0.10,
0.05, 0.01} find an algorithm to pay
an amount to a customer using the
fewest coins possible.

Coin Change Problem

* Problem: Given U.S. currency
denominations {1.00, 0.25, 0.10,
0.05, 0.01} find an algorithm to pay
an amount to a customer using the
fewest coins possible.

* Algorithm: At each iteration, add a
coin of the largest value that is less
than the amount needed to be
paid.

Q: Is this algorithm always optimal?

* Problem: Given U.S. currency G\
denominations {1.00, 0.25, 0.10, (€=
0.05, 0.01} find an algorithm to pay e
an amount to a customer using the
fewest coins possible.

* Algorithm: At each iteration, add a
coin of the largest value that is less
than the amount needed to be
paid.

Proof Ideas for Optimality

* Proofldea:
* Suppose there it wasn’t optimal.
* Thenthere exists a budget B
such that the algorithm
returns S and the answeris S’
(S!=9).

Proof Ideas for Optimality

* Proofldeas:
* Suppose there it wasn’t optimal.
* Thenthere exists a budget B
such that the algorithm
returns a set S(B) and the
answer is a different set S’(B).
 |fS’(B) hasthe largest coin that
S(B) has, then you can remove it
and you get a smaller bad
budget B’ = B - <large coin value>

Proof Ideas for Optimality

* Proofldeas:
* Suppose there it wasn’t optimal.
* Thenthere exists a budget B
such that the algorithm
returns a set S(B) and the £gile
answer is a different set S’(B). b iy
 |fS’(B) hasthe largest coin that
S(B) has, then you can remove it
and you get a smaller bad
budget B’ = B - <large coin value>¢_ | Indtion on That!

Proof Ideas for Optimality

* Proofldeas:
 |fS’(B) hasthe largest coin that
S(B) has, then you can remove it
and you get a smaller bad
budget B’ = B - <large coin value>
* We now show that S’(B) has to
have the largest coin that S(B)

has.
* Thatis, the greedy choice was

good!

Proof Ideas for Optimality

* Proofldeas:

* We now show that S’(B) has to
nave the largest coin that S(B)
nas.
 |fS’(B) doesn’t have the largest

coin that can fit in the budget,

then it must be replaced with
smaller coins.

* We can check optimal for

restricted settings of coins. «

Sounds like a few base cases

Proof Ideas for Optimality

* Proofldeas:

* We can show that in an optimal
solution we have:
* At most4 pennies
* At most 1 nickel
* At most 2 nickels + dimes 3
* At most 3 quarters fien®> s

» We show these by contradicting S
the optimality!

¥~ Sounds like a few base cases

Proof Ideas for Optimality

* Proofldeas:

* We can show that in an optimal
solution we have:
* At most4 pennies
* At most 1 nickel
* At most 2 nickels + dimes 3
* At most 3 quarters fien®> s

» We show these by contradicting S
the optimality!

¥~ Sounds like a few base cases

Big Ideas

* Sometimes Greedy Works but
sometimes it doesn’t...

* |[fyou use a different set of coins,
you may not be able to use the
cashier algorithm.

 Consider
{1,10,21,34,70,100,350,1225} and
the budget 140.

Big Ideas

* Sometimes Greedy Works but
sometimes it doesn’t...

If you use a different set of coins,
you may not be able to use the
cashier algorithm.

Consider
{1,10,21,34,70,100,350,1225} and
the budget 140.

* Algorithm Output: 100, 34, 1x6
* Answer: 70x 2

Interval Scheduling

* Consider aninterval of time (e.g. Wednesday).

Interval Scheduling

* Consider aninterval of time (e.g. Wednesday)
* Considertasks that need to be completed during specific
times (e.g. classes)

ENG 110

CSE 331 EE 312 MATH 610
Time I -- I-

CSE 9001

Interval Scheduling

* Consider aninterval of time (e.g. Wednesday).
* Considertasks that need to be completed during specific

times (e.g. classes).
* We wantto fit as many tasks as possible into the day such

that no two overlap.

CSE 9001

ENG 110

CSE 331 EE 312 MATH 610
Time I -- I-

Interval Scheduling

* Consider aninterval of time (e.g. Wednesday).
* Considertasks that need to be completed during specific

times (e.g. classes).
* We wantto fit as many tasks as possible into the day such

that no two overlap.

CSE 9001

ENG 110

CSE 331 EE 312 MATH 610
Time I -- I-

Interval Scheduling

* Consider aninterval of time (e.g. Wednesday).
* Considertasks that need to be completed during specific times

(e.g. classes).
* We wantto fit as many tasks as possible into the day such that no

two overlap.

Q: Do we ever pick CSE 90017

CSE 9001

ENG 110

CSE 331 EE 312 MATH 610
Time I -- I-

Interval Scheduling

* Consider aninterval of time (e.g. Wednesday).
* Considertasks that need to be completed during specific times

(e.g. classes).
* We wantto fit as many tasks as possible into the day such that no

two overlap.

A: No, because it blocks two classes!

CSE 9001

ENG 110

CSE 331 EE 312 MATH 610
Time I -- I-

Optimal Solution #1

* Consider aninterval of time (e.g. Wednesday).
* Considertasks that need to be completed during specific times

(e.g. classes).
* We wantto fit as many tasks as possible into the day such that no

two overlap.

CSE 331 EE 312 MATH 610
Time: -I -- I-

Optimal Solution #2

* Consider aninterval of time (e.g. Wednesday).
* Considertasks that need to be completed during specific times

(e.g. classes).
* We wantto fit as many tasks as possible into the day such that no

two overlap.

ENG 110
Time: -I -- I-

EE 312 MATH 610

Interval Scheduling Problem (Support Page)

Interval Scheduling via examples

In which we derive an algorithm that solves the Interval Scheduling problem via a sequence of examples.

The problem

In these notes we will solve the following problem:

Interval Scheduling Problem
An input of n intervals [s(i),f(1)), or in other words, {s(i), ...,
represents the finish time.

A schedule S of n intervals where no two intervals in S conflict, and the total number of intervals in S is maximized.

f(i) — 1} for 1 =i < n where i represents the intervals, s(i) represents the start time, and f(i)

Interval Scheduling Problem

* Input: A set of n intervals with start and finish times.
* Forl <i <n,|[s(i),f(i)) where s(i) and f(i) are start and finish
times of task i respectively.
* Output: A schedule (subset of intervals) S such that no two

intervals in S conflict and the total number of intervals is
maximized.

EE 312 MATH 610
Time: -I -- I-

EE 312 and MATH 610 don’t conflict end

Interval Scheduling Problem

* Input: A set of n intervals with start and finish times.
* Forl <i <n,|[s(i),f(i)) where s(i) and f(i) are start and finish
times of task i respectively.
* Output: A schedule (subset of intervals) S such that no two

intervals in S conflict and the total number of intervals is
maximized.

CSE 9001

Start CSE 9001 and EE 312 Conflict

Q: How should we try to solve this?

* Input: A set of n intervals R with start and finish times.
* Forl <i <n,|[s(i),f(i)) where s(i) and f(i) are start and finish
times of task i respectively.
* Output: A schedule (subset of intervals) S such that no two
intervals in S conflict and the total number of intervals is
maximized.

Q: How should we try to solve this?

A: Let’s try to generate some examples and see what works
and what doesn’t.

Build an Algorithm

* Basic Algorithm Outline:
e Sisempty
* While R is not empty:
* PickiinR
e AdditoS
* RemoveifromR

Build an Algorithm

* Basic Algorithm Outline:
* Sisempty
* While R is not empty:
* PickiinR
e AdditoS You mightadd conflicts!
* RemoveifromR

Build an Algorithm

* Basic Algorithm Outline:
e Sisempty
* While R is not empty:
* PickiinR
 AdditoS
* Remove all tasks that conflict with i from R

Build an Algorithm

* Basic Algorithm Outline:
e Sisempty
* While R is not empty:
e PickiinR Q:How dowe do this?
 AdditoS
* Remove all tasks that conflict with i from R

Build a Greedy Algorithm

* Basic Algorithm Outline:
e Sisempty
* While R is not empty:
* Pickiin R that minimizes v(i)
* AdditoS
* Remove all tasks that conflict with i from R

Q: What should we pick for v(i)?

* Basic Algorithm Outline:
e Sisempty
* While R is not empty:
* Pickiin R that minimizes v(i)
* AdditoS
* Remove all tasks that conflict with i from R

Attempt I: Interval Length (Okay)

* Basic Algorithm Outline:
e Sisempty
* While R is not empty:
* Pickiin R that minimizes v(i)
* AdditoS
* Remove all tasks that conflict with i from R

s(i) - £(D) T

T
O
-
0
Q
O
>
=
(o
®
-
<
O
<

=

\—r/

|

Attempt I: Interval Length (Oh no!)

* Basic Algorithm Outline:
e Sisempty
* While R is not empty:
* Pickiin R that minimizes v(i)
* AdditoS
* Remove all tasks that conflict with i from R

ART 322

s(i) - £(D) T

'I'I
@)
-
Q)
Ab)
O
o
=
—
D
-
<
Q
<

=

—

|

Attempt ll: Start Time (Okay)

* Basic Algorithm Outline:
e Sisempty
* While R is not empty:
* Pickiin R that minimizes v(i)
 AdditoS
* Remove all tasks that conflict with i from R

Attempt lI: Start Time (Oh no!)

* Basic Algorithm Outline:
e Sisempty
* While R is not empty:
* Pickiin R that minimizes v(i)
* AdditoS
* Remove all tasks that conflict with i from R

LIT 101 ART 322

Attempt lll: Min Conflicts (Okay)

* Basic Algorithm Outline:
e Sisempty
* While R is not empty:
* Pickiin R that minimizes v(i)
* AdditoS
* Remove all tasks that conflict with i from R

Attempt lll: Min Conflicts (Okay)

* Basic Algorithm Outline:
e Sisempty
* While R is not empty:
* Pickiin R that minimizes v(i)
* AdditoS
* Remove all tasks that conflict with i from R

Attempt lll: Min Conflicts (Okay)

* Basic Algorithm Outline:
e Sisempty
* While R is not empty:
* Pickiin R that minimizes v(i)
* AdditoS
* Remove all tasks that conflict with i from R

Attempt lll: Min Conflicts (Okay)

* Basic Algorithm Outline:
e Sisempty
* While R is not empty:
* Pickiin R that minimizes v(i)
* AdditoS
* Remove all tasks that conflict with i from R

Attempt lll: Min Conflicts (Okay)

* Basic Algorithm Outline:
e Sisempty
* While R is not empty:
* Pickiin R that minimizes v(i)
 AdditoS
* Remove all tasks that conflict with i from R

Attempt lll: Min Conflicts (Oh no!)

JPN 203

GEO 189
PHYS 311

HIST 345

LIT 101

ART 322 CHEM 405
CSE 331 EE 312 MATH 610 BIO 810

. |

Attempt lll: Min Conflicts (Oh no!)

ART 322

Time: -I- ---

Foreach intervali, v(i) = # conflicts (and min s(i))

....... I

Attempt lll: Min Conflicts (Oh no!)

ART 322

Attempt lll: Min Conflicts (Oh no!)

ART 322

Attempt lll: Min Conflicts (Oh no!)

GEO 189

ART 322

Attempt lll: Min Conflicts (Oh no!)

GEO 189

ART 322

Attempt lll: Min Conflicts (Oh no!)

JPN 203

GEO 189
PHYS 311

HIST 345

LIT 101

ART 322 CHEM 405
CSE 331 EE 312 MATH 610 BIO 810

. |

| GIVE UP

ART 322
MATH 610 BIO 810

GEO 189
PHYS 311
CHEM 405

I.

Attempt [V: Finish Time (Okay)

JPN 203

GEO 189
PHYS 311

HIST 345

LIT 101

ART 322 CHEM 405
CSE 331 EE 312 MATH 610 BIO 810

. |

Attempt IV: Finish Time (....)

Wait... does that actually work?

JPN 203

GEO 189
PHYS 311

HIST 345

LIT 101

ART 322 CHEM 405
CSE 331 EE 312 MATH 610 BIO 810

. |

Claim: The Finish First Algorithm is Optimal

Proof Ideas:
* Let Abethe setreturned by the algorithm and O be

the optimal list.

* Leti_1,\ldots, i_k be the tasks in A sorted by add
time.

* Letj_1,\l¢ 1e tasks in O sorted | L
time.

CSE 331 EE 312 MATH 610 BIO 810

Claim: The Finish First Algorithm is Optimal

Proof ldeas:
* Letiy,..., I bethe tasks returned by algorithm (sorted by

finish/add time).
* Letjq,...,J De the tasks in optimal solution (sorted by finish

time)
e We wantto showk=m

Q: What can we say about the first job in each list?

Claim: The Finish First Algorithm is Optimal

Proof Ideas:
* Letiy,..., I bethe tasks returned by algorithm (sorted by
finish/add time).
* Letjq,...,J De the tasks in optimal solution (sorted by finish
time)

Observation: f(i;) < f(j;)

Claim: The Finish First Algorithm is Optimal

Proof Ideas:
* Assume nowthat f(i,) < f(j,) for some p.

* Thatis, assume the pthin the algorithms list ends before the
pth job in the optimal list.

Q: What can we say about the p + 1 job in each list?

Claim: The Finish First Algorithm is Optimal

Proof ldeas:

* Assume nowthat f(i,) < f(j,) for some p.

e Thatis,

pth job

Observation: T

assume the pth in the algorithms list ends before the
In the optimal list.

ne algorithm could have added j; 44!

Claim: The Finish First Algorithm is Optimal

Proof Ideas:
* Assume nowthat f(iy) < f(jx) and m >k.

Q: Why is this a problem?

Claim: The Finish First Algorithm is Optimal

Proof Ideas:
* Assume nowthat f(iy) < f(jx) and m >k.

Observation: The algorithm could have added jy 1!

	Slide 1: CSE 331: Algorithms & Complexity
	Slide 2: Schedule
	Slide 3: Course Updates
	Slide 4: Midterms
	Slide 5: Strong Connectivity Problem
	Slide 6: Strong Connectivity Algorithm
	Slide 7: Strong Connectivity Algorithm
	Slide 8: Directed Acyclic Graphs (DAGs)
	Slide 9: Directed Acyclic Graphs (DAGs)
	Slide 10: Directed Acyclic Graphs (DAGs)
	Slide 11: Midterm Check Point
	Slide 12: What is next?
	Slide 13: “How do we design new algorithms?”
	Slide 14: “How do we use reduce another problem?”
	Slide 15: “How do we know when to give up?”
	Slide 16: What are Greedy Algorithm?
	Slide 17: What are Greedy Algorithm?
	Slide 18: Coin Change Problem
	Slide 19: Coin Change Problem
	Slide 20: Q: Is this algorithm always optimal?
	Slide 21: Proof Ideas for Optimality
	Slide 22: Proof Ideas for Optimality
	Slide 23: Proof Ideas for Optimality
	Slide 24: Proof Ideas for Optimality
	Slide 25: Proof Ideas for Optimality
	Slide 26: Proof Ideas for Optimality
	Slide 27: Proof Ideas for Optimality
	Slide 28: Big Ideas
	Slide 29: Big Ideas
	Slide 30: Interval Scheduling
	Slide 31: Interval Scheduling
	Slide 32: Interval Scheduling
	Slide 33: Interval Scheduling
	Slide 34: Interval Scheduling
	Slide 35: Interval Scheduling
	Slide 36: Optimal Solution #1
	Slide 37: Optimal Solution #2
	Slide 38: Interval Scheduling Problem (Support Page)
	Slide 39: Interval Scheduling Problem
	Slide 40: Interval Scheduling Problem
	Slide 41: Q: How should we try to solve this?
	Slide 42: Q: How should we try to solve this?
	Slide 43: Build an Algorithm
	Slide 44: Build an Algorithm
	Slide 45: Build an Algorithm
	Slide 46: Build an Algorithm
	Slide 47: Build a Greedy Algorithm
	Slide 48: Q: What should we pick for v open paren i close paren ?
	Slide 49: Attempt I: Interval Length (Okay)
	Slide 50: Attempt I: Interval Length (Oh no!)
	Slide 51: Attempt II: Start Time (Okay)
	Slide 52: Attempt II: Start Time (Oh no!)
	Slide 53: Attempt III: Min Conflicts (Okay)
	Slide 54: Attempt III: Min Conflicts (Okay)
	Slide 55: Attempt III: Min Conflicts (Okay)
	Slide 56: Attempt III: Min Conflicts (Okay)
	Slide 57: Attempt III: Min Conflicts (Okay)
	Slide 58: Attempt III: Min Conflicts (Oh no!)
	Slide 59: Attempt III: Min Conflicts (Oh no!)
	Slide 60: Attempt III: Min Conflicts (Oh no!)
	Slide 61: Attempt III: Min Conflicts (Oh no!)
	Slide 62: Attempt III: Min Conflicts (Oh no!)
	Slide 63: Attempt III: Min Conflicts (Oh no!)
	Slide 64: Attempt III: Min Conflicts (Oh no!)
	Slide 65: I GIVE UP!!!!
	Slide 66: Attempt IV: Finish Time (Okay)
	Slide 67: Attempt IV: Finish Time (….)
	Slide 68: Claim: The Finish First Algorithm is Optimal
	Slide 69: Claim: The Finish First Algorithm is Optimal
	Slide 70: Claim: The Finish First Algorithm is Optimal
	Slide 71: Claim: The Finish First Algorithm is Optimal
	Slide 72: Claim: The Finish First Algorithm is Optimal
	Slide 73: Claim: The Finish First Algorithm is Optimal
	Slide 74: Claim: The Finish First Algorithm is Optimal

