
CSE 331: 
Algorithms & Complexity

Prof. Charlie Anne Carlson (She/Her)
Lecture 15

Wednesday October 1st, 2025

“Greedy Algorithms”



Schedule

1.Course Updates
2.Strong Connectivity
3.Greedy Algorithms
4.Change Making
5.Interval Scheduling



Course Updates

• HW 2 Grading Out
• HW 3 Solutions Out
• HW 4 Out Soon 

• Not Due Next Week!
• Group Project

• First Problems Oct 31st

• Sample Midterms Out
• Midterms Oct 6 and Oct 8



Midterms

• Advice:
• Start Studying
• Go to Recitations this Week
• Review Book Chapters
• Review Solutions to HW/Quiz
• Try Sample Midterm
• Make Good Use of Time



Strong Connectivity Problem

Input: Directed graph 𝐺 = 𝑉, 𝐸
Output: True if strongly connected and False otherwise.

Proof Idea:
• Pick a vertex s in V
• Use BFS to find all vertices I can reach from s.
• Use _____________ to find all vertices that can reach s.
• If both sets are equal return true and otherwise return 

false. 



Strong Connectivity Algorithm
• Definition: We say that a directed graph is strongly 

connected if for any two vertices in the graph, there exists 
a directed path from one to the other.

• Observation: If u and v are mutually reachable, and v and 
w are mutually reachable, then u and w are mutually 
reachable.

• Strong Connectivity Problem:
• Input: Directed graph 𝐺 = 𝑉, 𝐸
• Output: True if strongly connected and False 

otherwise.



Strong Connectivity Algorithm

Input: Directed graph 𝐺 = 𝑉, 𝐸
Output: True if strongly connected and False otherwise.

Proof Idea:
• Pick a vertex s in V
• Use BFS to find all vertices I can reach from s.
• Use BFS on “Reversed Graph” to find all vertices that can 

reach s.
• If both sets are equal return true and otherwise return 

false. 

For each edge (u,v) replace with edge (v,u)



Directed Acyclic Graphs (DAGs)
• Definition: A directed graph is a DAG if it has no directed 

cycles. 
• Definition: A topological ordering of a directed graph 𝐺 =

 (𝑉, 𝐸) is an ordering of its nodes as 𝑣1, 𝑣2, … , 𝑣𝑛 so that for 
every edge (𝑣𝑖 , 𝑣𝑗), we have i < j. 



Directed Acyclic Graphs (DAGs)
Definition: A directed graph is a DAG if it has no directed 
cycles. 
Definition: A topological ordering of a directed graph 𝐺 =
 (𝑉, 𝐸) is an ordering of its nodes as 𝑣1, 𝑣2, … , 𝑣𝑛 so that for 
every edge (𝑣𝑖 , 𝑣𝑗), we have i < j. 

All edges are going “forward”



Directed Acyclic Graphs (DAGs)
Definition: A directed graph is a DAG if it has no directed 
cycles. 
Definition: A topological ordering of a directed graph 𝐺 =
 (𝑉, 𝐸) is an ordering of its nodes as 𝑣1, 𝑣2, … , 𝑣𝑛 so that for 
every edge (𝑣𝑖 , 𝑣𝑗), we have i < j. 

All edges are going “forward”

Read KT Section 3.6 and Review Care 
Packaged on Topological Ordering



Midterm Check Point



What is next?
• Greedy Algorithms
• Divide and Conquer 
• Dynamic Programming
• Network Flows (maybe)
• Computation Complexity



“How do we design new algorithms?”
• Greedy Algorithms
• Divide and Conquer 
• Dynamic Programming
• Network Flows (maybe)
• Computation Complexity



“How do we use reduce another problem?”
• Greedy Algorithms
• Divide and Conquer 
• Dynamic Programming
• Network Flows (maybe)
• Computation Complexity



“How do we know when to give up?”
• Greedy Algorithms
• Divide and Conquer 
• Dynamic Programming
• Network Flows (maybe)
• Computation Complexity



What are Greedy Algorithm?



What are Greedy Algorithm?
• Build solution one 

piece at a time.
• Only look at immediate 

information to make 
choices.

• Never go back on a 
decision. 

• NOT ALWAYS THE BEST 
CHOICE!



Coin Change Problem
• Problem: Given U.S. currency 

denominations {1.00, 0.25, 0.10, 
0.05, 0.01} find an algorithm to pay 
an amount to a customer using the 
fewest coins possible.



Coin Change Problem
• Problem: Given U.S. currency 

denominations {1.00, 0.25, 0.10, 
0.05, 0.01} find an algorithm to pay 
an amount to a customer using the 
fewest coins possible.

• Algorithm: At each iteration, add a 
coin of the largest value that is less 
than the amount needed to be 
paid. 



Q: Is this algorithm always optimal?
• Problem: Given U.S. currency 

denominations {1.00, 0.25, 0.10, 
0.05, 0.01} find an algorithm to pay 
an amount to a customer using the 
fewest coins possible.

• Algorithm: At each iteration, add a 
coin of the largest value that is less 
than the amount needed to be 
paid. 



Proof Ideas for Optimality
• Proof Idea:

• Suppose there it wasn’t optimal. 
• Then there exists a budget B 

such that the algorithm 
returns S and the answer is S’ 
(S != S’). 



Proof Ideas for Optimality
• Proof Ideas:

• Suppose there it wasn’t optimal. 
• Then there exists a budget B 

such that the algorithm 
returns a set S(B) and the 
answer is a different set S’(B).

• If S’(B) has the largest coin that 
S(B) has, then you can remove it 
and you get a smaller bad 
budget B’ = B - <large coin value>



Proof Ideas for Optimality
• Proof Ideas:

• Suppose there it wasn’t optimal. 
• Then there exists a budget B 

such that the algorithm 
returns a set S(B) and the 
answer is a different set S’(B).

• If S’(B) has the largest coin that 
S(B) has, then you can remove it 
and you get a smaller bad 
budget B’ = B - <large coin value> Use Induction on That!



Proof Ideas for Optimality
• Proof Ideas:

• If S’(B) has the largest coin that 
S(B) has, then you can remove it 
and you get a smaller bad 
budget B’ = B - <large coin value>

• We now show that S’(B) has to 
have the largest coin that S(B) 
has.
• That is, the greedy choice was 

good!



Proof Ideas for Optimality
• Proof Ideas:

• We now show that S’(B) has to 
have the largest coin that S(B) 
has.

• If S’(B) doesn’t have the largest 
coin that can fit in the budget, 
then it must be replaced with 
smaller coins. 
• We can check optimal for 

restricted settings of coins. Sounds like a few base cases



Proof Ideas for Optimality
• Proof Ideas:

• We can show that in an optimal 
solution we have:
• At most 4 pennies
• At most 1 nickel
• At most 2 nickels + dimes
• At most 3 quarters

• We show these by contradicting 
the optimality! 

Sounds like a few base cases



Proof Ideas for Optimality
• Proof Ideas:

• We can show that in an optimal 
solution we have:
• At most 4 pennies
• At most 1 nickel
• At most 2 nickels + dimes
• At most 3 quarters

• We show these by contradicting 
the optimality! 

Sounds like a few base cases



Big Ideas
• Sometimes Greedy Works but 

sometimes it doesn’t…
• If you use a different set of coins, 

you may not be able to use the 
cashier algorithm.

• Consider 
{1,10,21,34,70,100,350,1225} and 
the budget 140.



Big Ideas
• Sometimes Greedy Works but 

sometimes it doesn’t…
• If you use a different set of coins, 

you may not be able to use the 
cashier algorithm.

• Consider 
{1,10,21,34,70,100,350,1225} and 
the budget 140.
• Algorithm Output: 100, 34, 1x6
• Answer: 70 x 2



Interval Scheduling
• Consider an interval of time (e.g. Wednesday).

Start End

Time:



Interval Scheduling
• Consider an interval of time (e.g. Wednesday)
• Consider tasks that need to be completed during specific 

times (e.g. classes) 

Start End

Time:

CSE 331

ENG 110

EE 312 MATH 610

CSE 9001



Interval Scheduling
• Consider an interval of time (e.g. Wednesday).
• Consider tasks that need to be completed during specific 

times (e.g. classes).
• We want to fit as many tasks as possible into the day such 

that no two overlap.

Start End

Time:

CSE 331

ENG 110

EE 312 MATH 610

CSE 9001



Interval Scheduling
• Consider an interval of time (e.g. Wednesday).
• Consider tasks that need to be completed during specific 

times (e.g. classes).
• We want to fit as many tasks as possible into the day such 

that no two overlap.

Start End

Time:

CSE 331

ENG 110

EE 312 MATH 610

CSE 9001



Interval Scheduling
• Consider an interval of time (e.g. Wednesday).
• Consider tasks that need to be completed during specific times 

(e.g. classes).
• We want to fit as many tasks as possible into the day such that no 

two overlap.

Start End

Time:

CSE 331

ENG 110

EE 312 MATH 610

CSE 9001

Q: Do we ever pick CSE 9001?



Interval Scheduling
• Consider an interval of time (e.g. Wednesday).
• Consider tasks that need to be completed during specific times 

(e.g. classes).
• We want to fit as many tasks as possible into the day such that no 

two overlap.

Start End

Time:

CSE 331

ENG 110

EE 312 MATH 610

CSE 9001

A: No, because it blocks two classes!



Optimal Solution #1
• Consider an interval of time (e.g. Wednesday).
• Consider tasks that need to be completed during specific times 

(e.g. classes).
• We want to fit as many tasks as possible into the day such that no 

two overlap.

Start End

Time:

CSE 331

ENG 110

EE 312 MATH 610

CSE 9001



Optimal Solution #2
• Consider an interval of time (e.g. Wednesday).
• Consider tasks that need to be completed during specific times 

(e.g. classes).
• We want to fit as many tasks as possible into the day such that no 

two overlap.

Start End

Time:

CSE 331

ENG 110

EE 312 MATH 610

CSE 9001



Interval Scheduling Problem (Support Page)



Interval Scheduling Problem
• Input: A set of 𝑛 intervals with start and finish times.

• For 1 ≤ i ≤ n, [s(i), f(i)) where s(i) and f(i) are start and finish 
times of task 𝑖 respectively. 

• Output: A schedule (subset of intervals) S such that no two 
intervals in S conflict and the total number of intervals is 
maximized.

Start End

Time:

CSE 331

ENG 110

EE 312 MATH 610

CSE 9001

EE 312 and MATH 610 don’t conflict



Interval Scheduling Problem
• Input: A set of 𝑛 intervals with start and finish times.

• For 1 ≤ i ≤ n, [s(i), f(i)) where s(i) and f(i) are start and finish 
times of task 𝑖 respectively. 

• Output: A schedule (subset of intervals) S such that no two 
intervals in S conflict and the total number of intervals is 
maximized.

Start End

Time:

CSE 331

ENG 110

EE 312 MATH 610

CSE 9001

CSE 9001 and EE 312 Conflict



Q: How should we try to solve this?
• Input: A set of 𝑛 intervals R with start and finish times.

• For 1 ≤ i ≤ n, [s(i), f(i)) where s(i) and f(i) are start and finish 
times of task 𝑖 respectively. 

• Output: A schedule (subset of intervals) S such that no two 
intervals in S conflict and the total number of intervals is 
maximized.

Start End

Time:

CSE 331

ENG 110

EE 312 MATH 610

CSE 9001



Q: How should we try to solve this?
A: Let’s try to generate some examples and see what works 
and what doesn’t.

Start End

Time:

CSE 331 EE 312 MATH 610



Build an Algorithm
• Basic Algorithm Outline: 

• S is empty
• While R is not empty:

• Pick i in R
• Add i to S
• Remove i from R 

Start End

Time:

CSE 331 EE 312 MATH 610



Build an Algorithm 
• Basic Algorithm Outline: 

• S is empty
• While R is not empty:

• Pick i in R
• Add i to S
• Remove i from R 

Start End

Time:

CSE 331 EE 312 MATH 610

LIT 101

You might add conflicts!

LIT 101



Build an Algorithm 
• Basic Algorithm Outline: 

• S is empty
• While R is not empty:

• Pick i in R
• Add i to S
• Remove all tasks that conflict with i from R 

Start End

Time:

CSE 331 EE 312 MATH 610

LIT 101LIT 101



Build an Algorithm 
• Basic Algorithm Outline: 

• S is empty
• While R is not empty:

• Pick i in R
• Add i to S
• Remove all tasks that conflict with i from R 

Start End

Time:

CSE 331 EE 312 MATH 610

LIT 101

Q: How do we do this?

LIT 101



Build a Greedy Algorithm 
• Basic Algorithm Outline: 

• S is empty
• While R is not empty:

• Pick i in R that minimizes v(i)
• Add i to S
• Remove all tasks that conflict with i from R 

Start End

Time:

CSE 331 EE 312 MATH 610

LIT 101

For each interval i, we assign a value v(i).

LIT 101



Q: What should we pick for v(i)?
• Basic Algorithm Outline: 

• S is empty
• While R is not empty:

• Pick i in R that minimizes v(i)
• Add i to S
• Remove all tasks that conflict with i from R 

Start End

Time:

CSE 331 EE 312 MATH 610

LIT 101

For each interval i, v(i)  = ?

LIT 101



Attempt I: Interval Length (Okay)
• Basic Algorithm Outline: 

• S is empty
• While R is not empty:

• Pick i in R that minimizes v(i)
• Add i to S
• Remove all tasks that conflict with i from R 

Start End

Time:

CSE 331 EE 312 MATH 610

LIT 101

For each interval i, v(i)  =  s(i) –  f(i)



Attempt I: Interval Length (Oh no!)
• Basic Algorithm Outline: 

• S is empty
• While R is not empty:

• Pick i in R that minimizes v(i)
• Add i to S
• Remove all tasks that conflict with i from R 

Start End

Time:

CSE 331 EE 312 MATH 610

LIT 101

For each interval i, v(i)  =  s(i) –  f(i)

ART 322



Attempt II: Start Time (Okay)
• Basic Algorithm Outline: 

• S is empty
• While R is not empty:

• Pick i in R that minimizes v(i)
• Add i to S
• Remove all tasks that conflict with i from R 

Start End

Time:

CSE 331 EE 312 MATH 610

LIT 101

For each interval i, v(i)  =  s(i)

ART 322



Attempt II: Start Time (Oh no!)
• Basic Algorithm Outline: 

• S is empty
• While R is not empty:

• Pick i in R that minimizes v(i)
• Add i to S
• Remove all tasks that conflict with i from R 

Start End

Time:

CSE 331 EE 312 MATH 610

LIT 101

For each interval i, v(i)  =  s(i)

ART 322



Attempt III: Min Conflicts (Okay)
• Basic Algorithm Outline: 

• S is empty
• While R is not empty:

• Pick i in R that minimizes v(i)
• Add i to S
• Remove all tasks that conflict with i from R 

Start End

Time:

CSE 331 EE 312 MATH 610

LIT 101

For each interval i, v(i)  =  # conflicts (and min s(i))

ART 322



Attempt III: Min Conflicts (Okay)
• Basic Algorithm Outline: 

• S is empty
• While R is not empty:

• Pick i in R that minimizes v(i)
• Add i to S
• Remove all tasks that conflict with i from R 

Start End

Time:

CSE 331 EE 312 MATH 610

For each interval i, v(i)  =  # conflicts (and min s(i))

ART 322



Attempt III: Min Conflicts (Okay)
• Basic Algorithm Outline: 

• S is empty
• While R is not empty:

• Pick i in R that minimizes v(i)
• Add i to S
• Remove all tasks that conflict with i from R 

Start End

Time:

CSE 331 EE 312 MATH 610

For each interval i, v(i)  =  # conflicts (and min s(i))

ART 322



Attempt III: Min Conflicts (Okay)
• Basic Algorithm Outline: 

• S is empty
• While R is not empty:

• Pick i in R that minimizes v(i)
• Add i to S
• Remove all tasks that conflict with i from R 

Start End

Time:

CSE 331 EE 312 MATH 610

For each interval i, v(i)  =  # conflicts (and min s(i))



Attempt III: Min Conflicts (Okay)
• Basic Algorithm Outline: 

• S is empty
• While R is not empty:

• Pick i in R that minimizes v(i)
• Add i to S
• Remove all tasks that conflict with i from R 

Start End

Time:

CSE 331 EE 312 MATH 610

For each interval i, v(i)  =  # conflicts (and min s(i))

LIT 101 ART 322



Attempt III: Min Conflicts (Oh no!)

Start End

Time:

CSE 331 EE 312 MATH 610

For each interval i, v(i)  =  # conflicts (and min s(i))

LIT 101 ART 322

BIO 810

CHEM 405

HIST 345 PHYS 311

JPN 203 GEO 189



Attempt III: Min Conflicts (Oh no!)

Start End

Time:

CSE 331

For each interval i, v(i)  =  # conflicts (and min s(i))

LIT 101 ART 322

BIO 810

CHEM 405

HIST 345 PHYS 311

JPN 203 GEO 189



Attempt III: Min Conflicts (Oh no!)

Start End

Time:

CSE 331

For each interval i, v(i)  =  # conflicts (and min s(i))

LIT 101 ART 322

BIO 810

CHEM 405

HIST 345 PHYS 311

JPN 203 GEO 189



Attempt III: Min Conflicts (Oh no!)

Start End

Time:

CSE 331

For each interval i, v(i)  =  # conflicts (and min s(i))
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BIO 810

CHEM 405

PHYS 311

GEO 189



Attempt III: Min Conflicts (Oh no!)

Start End

Time:

CSE 331

For each interval i, v(i)  =  # conflicts (and min s(i))

ART 322

BIO 810

CHEM 405

PHYS 311

GEO 189



Attempt III: Min Conflicts (Oh no!)

Start End

Time:

CSE 331

For each interval i, v(i)  =  # conflicts (and min s(i))

ART 322

GEO 189

EE 312 MATH 610

LIT 101

BIO 810

CHEM 405

HIST 345 PHYS 311

JPN 203



Attempt III: Min Conflicts (Oh no!)

Start End

Time:

CSE 331

For each interval i, v(i)  =  # conflicts (and min s(i))

ART 322

GEO 189

EE 312 MATH 610

LIT 101

BIO 810

CHEM 405

HIST 345 PHYS 311

JPN 203



I GIVE UP!!!!

Start End

Time:

CSE 331

For each interval i, v(i)  =  # conflicts (and min s(i))

ART 322

GEO 189

EE 312 MATH 610

LIT 101

BIO 810

CHEM 405

HIST 345 PHYS 311

JPN 203



Attempt IV: Finish Time (Okay)

Start End

Time:

CSE 331

For each interval i, v(i)  =  f(i)

ART 322

GEO 189

EE 312 MATH 610

LIT 101

BIO 810

CHEM 405

HIST 345 PHYS 311

JPN 203



Attempt IV: Finish Time (….)

Wait… does that actually work?

Start End

Time:

CSE 331

For each interval i, v(i)  =  f(i)

ART 322

GEO 189

EE 312 MATH 610

LIT 101

BIO 810

CHEM 405

HIST 345 PHYS 311

JPN 203



Claim: The Finish First Algorithm is Optimal
Proof Ideas:

• Let A be the set returned by the algorithm and O be 
the optimal list.

• Let i_1, \ldots, i_k be the tasks in A sorted by add 
time.

• Let j_1, \ldots, j_m be the tasks in O sorted by finish 
time.

Start End

Time:

CSE 331

For each interval i, v(i)  =  f(i)

ART 322

GEO 189

EE 312 MATH 610

LIT 101

BIO 810

CHEM 405

HIST 345 PHYS 311

JPN 203



Claim: The Finish First Algorithm is Optimal
Proof Ideas:

• Let 𝑖1, … , 𝑖𝑘  be the tasks returned by algorithm (sorted by 
finish/add time).

• Let j1, … , jm be the tasks in optimal solution (sorted by finish 
time)

• We want to show k = m

Start End

Time:

Q: What can we say about the first job in each list? 



Claim: The Finish First Algorithm is Optimal
Proof Ideas:

• Let 𝑖1, … , 𝑖𝑘  be the tasks returned by algorithm (sorted by 
finish/add time).

• Let j1, … , jm be the tasks in optimal solution (sorted by finish 
time)

Start End

Time:

j1

𝑖1 Observation: 𝑓(𝑖1)  ≤ 𝑓(𝑗1)
 



Claim: The Finish First Algorithm is Optimal
Proof Ideas:

• Assume now that 𝑓(𝑖p)  ≤ 𝑓(𝑗p) for some p.
• That is, assume the pth in the algorithms list ends before the 

pth job in the optimal list.

Start End

Time:

jp

𝑖p

Q: What can we say about the p + 1 job in each list? 



Claim: The Finish First Algorithm is Optimal
Proof Ideas:

• Assume now that 𝑓(𝑖p)  ≤ 𝑓(𝑗p) for some p.
• That is, assume the pth in the algorithms list ends before the 

pth job in the optimal list.

Start End

Time:

jp

𝑖p

Observation: The algorithm could have added jp+1!

𝑖p+1

jp+1



Claim: The Finish First Algorithm is Optimal
Proof Ideas:

• Assume now that 𝑓(𝑖k)  ≤ 𝑓(𝑗k) and m > k.

Start End

Time:

jk

𝑖k

Q: Why is this a problem?

jk+1



Claim: The Finish First Algorithm is Optimal
Proof Ideas:

• Assume now that 𝑓(𝑖k)  ≤ 𝑓(𝑗k) and m > k.

Start End

Time:

jk

𝑖k

jk+1

Observation: The algorithm could have added jk+1!
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