
CSE 331: 
Algorithms & Complexity

Prof. Charlie Anne Carlson (She/Her)
Lecture 16

Wednesday October 3rd, 2025

“Greedy Algorithms II”



Schedule

1.Course Updates
2.Greedy Algorithms
3.Interval Scheduling
4.Greedy Algorithm
5.Runtime Analysis 



Course Updates

• HW 3 & Quiz #1 Grading
• HW 4 Out Soon 

• Not Due Next Week!
• Group Project

• First Problems Oct 31st

• Sample Midterms Out
• Midterms Oct 6 and Oct 8



Midterm Advice

• Midterms Oct 6 and Oct 8.
• You get a reference sheet.
• Exams are in class during 

regular class time.
• Don’t panic!

• Sleep, eat, drink water, and 
study what you can even it 
that isn’t everything!



What are Greedy Algorithm?
• Build solution one 

piece at a time.
• Only look at immediate 

information to make 
choices.

• Never go back on a 
decision. 

• NOT ALWAYS THE BEST 
CHOICE!



Interval Scheduling
• Consider an interval of time (e.g. Wednesday).
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Interval Scheduling
• Consider an interval of time (e.g. Wednesday).
• Consider tasks that need to be completed during specific times 

(e.g. classes).
• We want to fit as many tasks as possible into the day such that no 

two overlap.
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A: No, because it blocks two classes!



Optimal Solution #1
• Consider an interval of time (e.g. Wednesday).
• Consider tasks that need to be completed during specific times 

(e.g. classes).
• We want to fit as many tasks as possible into the day such that no 

two overlap.
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Optimal Solution #2
• Consider an interval of time (e.g. Wednesday).
• Consider tasks that need to be completed during specific times 

(e.g. classes).
• We want to fit as many tasks as possible into the day such that no 

two overlap.
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Interval Scheduling Problem (Support Page)



Interval Scheduling Problem
• Input: A set of 𝑛 intervals with start and finish times.

• For 1 ≤ i ≤ n, [s(i), f(i)) where s(i) and f(i) are start and finish 
times of task 𝑖 respectively. 

• Output: A schedule (subset of intervals) S such that no two 
intervals in S conflict and the total number of intervals is 
maximized.
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Interval Scheduling Problem
• Input: A set of 𝑛 intervals with start and finish times.

• For 1 ≤ i ≤ n, [s(i), f(i)) where s(i) and f(i) are start and finish 
times of task 𝑖 respectively. 

• Output: A schedule (subset of intervals) S such that no two 
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Q: How should we try to solve this?
• Input: A set of 𝑛 intervals R with start and finish times.

• For 1 ≤ i ≤ n, [s(i), f(i)) where s(i) and f(i) are start and finish 
times of task 𝑖 respectively. 

• Output: A schedule (subset of intervals) S such that no two 
intervals in S conflict and the total number of intervals is 
maximized.
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Q: How should we try to solve this?
A: Let’s try to generate some examples and see what works 
and what doesn’t.
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Build an Algorithm
• Basic Algorithm Outline: 

• S is empty
• While R is not empty:

• Pick i in R
• Add i to S
• Remove i from R 
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Build an Algorithm 
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Build a Greedy Algorithm 
• Basic Algorithm Outline: 

• S is empty
• While R is not empty:

• Pick i in R that minimizes v(i)
• Add i to S
• Remove all tasks that conflict with i from R 

Start End

Time:
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For each interval i, we assign a value v(i).
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Q: What should we pick for v(i)?
• Basic Algorithm Outline: 

• S is empty
• While R is not empty:

• Pick i in R that minimizes v(i)
• Add i to S
• Remove all tasks that conflict with i from R 

Start End

Time:
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For each interval i, v(i)  = ?

LIT 101



Attempt I: Interval Length (Okay)
• Basic Algorithm Outline: 

• S is empty
• While R is not empty:

• Pick i in R that minimizes v(i)
• Add i to S
• Remove all tasks that conflict with i from R 

Start End

Time:
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For each interval i, v(i)  =  s(i) –  f(i)



Attempt I: Interval Length (Oh no!)
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Attempt III: Min Conflicts (Oh no!)
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I GIVE UP!!!!
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Attempt IV: Finish Time (Okay)
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Attempt IV: Finish Time (….)

Wait… does that actually work?

Start End
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CSE 331

For each interval i, v(i)  =  f(i)

ART 322

GEO 189

EE 312 MATH 610

LIT 101

BIO 810

CHEM 405

HIST 345 PHYS 311

JPN 203



Claim: The Finish First Algorithm is Optimal
Proof Ideas:

• Let A be the set returned by the algorithm and O be 
the optimal list.

• Let i_1, \ldots, i_k be the tasks in A sorted by add 
time.

• Let j_1, \ldots, j_m be the tasks in O sorted by finish 
time.
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Claim: The Finish First Algorithm is Optimal
Proof Ideas:

• Let 𝑖1, … , 𝑖𝑘  be the tasks returned by algorithm (sorted by 
finish/add time).

• Let j1, … , jm be the tasks in optimal solution (sorted by finish 
time)

• We want to show k = m

Start End

Time:

Q: What can we say about the first job in each list? 



Claim: The Finish First Algorithm is Optimal
Proof Ideas:

• Let 𝑖1, … , 𝑖𝑘  be the tasks returned by algorithm (sorted by 
finish/add time).

• Let j1, … , jm be the tasks in optimal solution (sorted by finish 
time)
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Claim: The Finish First Algorithm is Optimal
Proof Ideas:

• Assume now that 𝑓(𝑖p)  ≤ 𝑓(𝑗p) for some p.
• That is, assume the pth in the algorithms list ends before the 

pth job in the optimal list.

Start End

Time:

jp

𝑖p

Q: What can we say about the p + 1 job in each list? 



Claim: The Finish First Algorithm is Optimal
Proof Ideas:

• Assume now that 𝑓(𝑖p)  ≤ 𝑓(𝑗p) for some p.
• That is, assume the pth in the algorithms list ends before the 

pth job in the optimal list.
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Claim: The Finish First Algorithm is Optimal
Proof Ideas:

• Assume now that 𝑓(𝑖k)  ≤ 𝑓(𝑗k) and m > k.

Start End

Time:

jk

𝑖k

Q: Why is this a problem?

jk+1



Claim: The Finish First Algorithm is Optimal
Proof Ideas:

• Assume now that 𝑓(𝑖k)  ≤ 𝑓(𝑗k) and m > k.
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Observation: The algorithm could have added jk+1!



Runtime Analysis
• Basic Algorithm Outline: 

• S is empty
• While R is not empty:

• Pick i in R
• Add i to S
• Remove all tasks that conflict with i from R 
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Runtime Analysis
• Input: List of tasks R 

• S is empty 
• While R is not empty:

• Find i in R with earliest finish time
• Add i to S
• Remove all tasks that conflict with i from R

• Return S 
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Time:
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Runtime Analysis
• Input: List of tasks R 

• S is empty list <- O(1) time
• While R is not empty: <- O(n) iterations

• Find i in R with earliest finish time <- O(n) time to search
• Add i to S <- O(1) time
• Remove all tasks that conflict with i from R <- O(n) time

• Return S <- O(1) time

Start End

Time:
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Runtime Analysis: O(n^2)
• Input: List of tasks R 

• S is empty list <- O(1) time
• While R is not empty: <- O(n) iterations

• Find i in R with earliest finish time <- O(n) time to search
• Add i to S <- O(1) time
• Remove all tasks that conflict with i from R <- O(n) time

• Return S <- O(1) time

Start End

Time:
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Runtime Analysis: O(nlog(n))
• Input: List of tasks R 

• Sort R by finish time <- O(nlog(n)) time
• S is empty list <- O(1) time
• Set last_job_fin to be 0 <- O(1) time
• For j = 1 up to n: <- O(n) iterations

• if s(j) > last_job_fin: <- O(1) time
• Add i to S <- O(1) time
• Set last_job_fin to be f(i) <- O(1) time

• Return S <- O(1) time
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