CSE 331:
Allg(o)r[itt]hunnlg & (C<o>lnnqp>ll<ex[i1ty

\>

“Greedy Algorithms II”

Prof. Charlie Anne Carlson (She/Her)
Lecture 16
Wednesday October 39, 2025

L]

G5

University at Buffalo

Schedule

1.Course Updates
2.Greedy Algorithms
3.Interval Scheduling
4.Greedy Algorithm
5.Runtime Analysis

Course Updates

HW 3 & Quiz #1 Grading
HW 4 Out Soon

Not Due Next Week!
Group Project

First Problems Oct 315!
Sample Midterms Out
Midterms Oct 6 and Oct 8

Midterm Advice

e Midterms Oct 6 and Oct 8.
* You get areference sheet.

* Exams are in class during
regular class time.

* Don’tpanic!
 Sleep, eat, drink water, and

study what you can even it
that isn’t everything!

What are Greedy Algorithm?

* Build solution one
piece at a time.

* Onlylook atimmediate
Information to make
choices.

* Never go backona

decision.
e NOT ALWAYS THE BEST
CHOICE!

Interval Scheduling

* Consider aninterval of time (e.g. Wednesday).

Interval Scheduling

* Consider aninterval of time (e.g. Wednesday)
* Considertasks that need to be completed during specific
times (e.g. classes)

ENG 110

CSE 331 EE 312 MATH 610
Time I -- I-

CSE 9001

Interval Scheduling

* Consider aninterval of time (e.g. Wednesday).
* Considertasks that need to be completed during specific

times (e.g. classes).
* We wantto fit as many tasks as possible into the day such

that no two overlap.

CSE 9001

ENG 110

CSE 331 EE 312 MATH 610
Time I -- I-

Interval Scheduling

* Consider aninterval of time (e.g. Wednesday).
* Considertasks that need to be completed during specific

times (e.g. classes).
* We wantto fit as many tasks as possible into the day such

that no two overlap.

CSE 9001

ENG 110

CSE 331 EE 312 MATH 610
Time I -- I-

Interval Scheduling

* Consider aninterval of time (e.g. Wednesday).
* Considertasks that need to be completed during specific times

(e.g. classes).
* We wantto fit as many tasks as possible into the day such that no

two overlap.

Q: Do we ever pick CSE 90017

CSE 9001

ENG 110

CSE 331 EE 312 MATH 610
Time I -- I-

Interval Scheduling

* Consider aninterval of time (e.g. Wednesday).
* Considertasks that need to be completed during specific times

(e.g. classes).
* We wantto fit as many tasks as possible into the day such that no

two overlap.

A: No, because it blocks two classes!

CSE 9001

ENG 110

CSE 331 EE 312 MATH 610
Time I -- I-

Optimal Solution #1

* Consider aninterval of time (e.g. Wednesday).
* Considertasks that need to be completed during specific times

(e.g. classes).
* We wantto fit as many tasks as possible into the day such that no

two overlap.

CSE 331 EE 312 MATH 610
Time: -I -- I-

Optimal Solution #2

* Consider aninterval of time (e.g. Wednesday).
* Considertasks that need to be completed during specific times

(e.g. classes).
* We wantto fit as many tasks as possible into the day such that no

two overlap.

ENG 110
Time: -I -- I-

EE 312 MATH 610

Interval Scheduling Problem (Support Page)

Interval Scheduling via examples

In which we derive an algorithm that solves the Interval Scheduling problem via a sequence of examples.

The problem

In these notes we will solve the following problem:

Interval Scheduling Problem
An input of n intervals [s(i),f(1)), or in other words, {s(i), ...,
represents the finish time.

A schedule S of n intervals where no two intervals in S conflict, and the total number of intervals in S is maximized.

f(i) — 1} for 1 =i < n where i represents the intervals, s(i) represents the start time, and f(i)

Interval Scheduling Problem

* Input: A set of n intervals with start and finish times.
* Forl <i <n,|[s(i),f(i)) where s(i) and f(i) are start and finish
times of task i respectively.
* Output: A schedule (subset of intervals) S such that no two

intervals in S conflict and the total number of intervals is
maximized.

EE 312 MATH 610
Time: -I -- I-

EE 312 and MATH 610 don’t conflict end

Interval Scheduling Problem

* Input: A set of n intervals with start and finish times.
* Forl <i <n,|[s(i),f(i)) where s(i) and f(i) are start and finish
times of task i respectively.
* Output: A schedule (subset of intervals) S such that no two

intervals in S conflict and the total number of intervals is
maximized.

CSE 9001

Start CSE 9001 and EE 312 Conflict

Q: How should we try to solve this?

* Input: A set of n intervals R with start and finish times.
* Forl <i <n,|[s(i),f(i)) where s(i) and f(i) are start and finish
times of task i respectively.
* Output: A schedule (subset of intervals) S such that no two
intervals in S conflict and the total number of intervals is
maximized.

Q: How should we try to solve this?

A: Let’s try to generate some examples and see what works
and what doesn’t.

Build an Algorithm

* Basic Algorithm Outline:
e Sisempty
* While R is not empty:
* PickiinR
e AdditoS
* RemoveifromR

Build an Algorithm

* Basic Algorithm Outline:
* Sisempty
* While R is not empty:
* PickiinR
e AdditoS You mightadd conflicts!
* RemoveifromR

Build an Algorithm

* Basic Algorithm Outline:
e Sisempty
* While R is not empty:
* PickiinR
 AdditoS
* Remove all tasks that conflict with i from R

Build an Algorithm

* Basic Algorithm Outline:
e Sisempty
* While R is not empty:
e PickiinR Q:How dowe do this?
 AdditoS
* Remove all tasks that conflict with i from R

Build a Greedy Algorithm

* Basic Algorithm Outline:
e Sisempty
* While R is not empty:
* Pickiin R that minimizes v(i)
* AdditoS
* Remove all tasks that conflict with i from R

Q: What should we pick for v(i)?

* Basic Algorithm Outline:
e Sisempty
* While R is not empty:
* Pickiin R that minimizes v(i)
* AdditoS
* Remove all tasks that conflict with i from R

Attempt I: Interval Length (Okay)

* Basic Algorithm Outline:
e Sisempty
* While R is not empty:
* Pickiin R that minimizes v(i)
* AdditoS
* Remove all tasks that conflict with i from R

s(i) - £(D) T

T
O
-
0
Q
O
>
=
(o
®
-
<
O
<

=

\—r/

|

Attempt I: Interval Length (Oh no!)

* Basic Algorithm Outline:
e Sisempty
* While R is not empty:
* Pickiin R that minimizes v(i)
* AdditoS
* Remove all tasks that conflict with i from R

ART 322

s(i) - £(D) T

'I'I
@)
-
Q)
Ab)
O
o
=
—
D
-
<
Q
<

=

—

|

Attempt ll: Start Time (Okay)

* Basic Algorithm Outline:
e Sisempty
* While R is not empty:
* Pickiin R that minimizes v(i)
 AdditoS
* Remove all tasks that conflict with i from R

Attempt lI: Start Time (Oh no!)

* Basic Algorithm Outline:
e Sisempty
* While R is not empty:
* Pickiin R that minimizes v(i)
* AdditoS
* Remove all tasks that conflict with i from R

LIT 101 ART 322

Attempt lll: Min Conflicts (Okay)

* Basic Algorithm Outline:
e Sisempty
* While R is not empty:
* Pickiin R that minimizes v(i)
* AdditoS
* Remove all tasks that conflict with i from R

Attempt lll: Min Conflicts (Okay)

* Basic Algorithm Outline:
e Sisempty
* While R is not empty:
* Pickiin R that minimizes v(i)
* AdditoS
* Remove all tasks that conflict with i from R

Attempt lll: Min Conflicts (Okay)

* Basic Algorithm Outline:
e Sisempty
* While R is not empty:
* Pickiin R that minimizes v(i)
* AdditoS
* Remove all tasks that conflict with i from R

Attempt lll: Min Conflicts (Okay)

* Basic Algorithm Outline:
e Sisempty
* While R is not empty:
* Pickiin R that minimizes v(i)
* AdditoS
* Remove all tasks that conflict with i from R

Attempt lll: Min Conflicts (Okay)

* Basic Algorithm Outline:
e Sisempty
* While R is not empty:
* Pickiin R that minimizes v(i)
 AdditoS
* Remove all tasks that conflict with i from R

Attempt lll: Min Conflicts (Oh no!)

JPN 203

GEO 189
PHYS 311

HIST 345

LIT 101

ART 322 CHEM 405
CSE 331 EE 312 MATH 610 BIO 810

. |

Attempt lll: Min Conflicts (Oh no!)

ART 322

Time: -I- ---

Foreach intervali, v(i) = # conflicts (and min s(i))

....... I

Attempt lll: Min Conflicts (Oh no!)

ART 322

Attempt lll: Min Conflicts (Oh no!)

ART 322

Attempt lll: Min Conflicts (Oh no!)

GEO 189

ART 322

Attempt lll: Min Conflicts (Oh no!)

GEO 189

ART 322

Attempt lll: Min Conflicts (Oh no!)

JPN 203

GEO 189
PHYS 311

HIST 345

LIT 101

ART 322 CHEM 405
CSE 331 EE 312 MATH 610 BIO 810

. |

| GIVE UP

ART 322
MATH 610 BIO 810

GEO 189
PHYS 311
CHEM 405

I.

Attempt [V: Finish Time (Okay)

JPN 203

GEO 189
PHYS 311

HIST 345

LIT 101

ART 322 CHEM 405
CSE 331 EE 312 MATH 610 BIO 810

. |

Attempt IV: Finish Time (....)

Wait... does that actually work?

JPN 203

GEO 189
PHYS 311

HIST 345

LIT 101

ART 322 CHEM 405
CSE 331 EE 312 MATH 610 BIO 810

. |

Claim: The Finish First Algorithm is Optimal

Proof Ideas:
* Let Abethe setreturned by the algorithm and O be

the optimal list.

* Leti_1,\ldots, i_k be the tasks in A sorted by add
time.

* Letj_1,\l¢ 1e tasks in O sorted | L
time.

CSE 331 EE 312 MATH 610 BIO 810

Claim: The Finish First Algorithm is Optimal

Proof ldeas:
* Letiy,..., I bethe tasks returned by algorithm (sorted by

finish/add time).
* Letjq,...,J De the tasks in optimal solution (sorted by finish

time)
e We wantto showk=m

Q: What can we say about the first job in each list?

Claim: The Finish First Algorithm is Optimal

Proof Ideas:
* Letiy,..., I bethe tasks returned by algorithm (sorted by
finish/add time).
* Letjq,...,J De the tasks in optimal solution (sorted by finish
time)

Observation: f(i;) < f(j;)

Claim: The Finish First Algorithm is Optimal

Proof Ideas:
* Assume nowthat f(i,) < f(j,) for some p.

* Thatis, assume the pthin the algorithms list ends before the
pth job in the optimal list.

Q: What can we say about the p + 1 job in each list?

Claim: The Finish First Algorithm is Optimal

Proof ldeas:

* Assume nowthat f(i,) < f(j,) for some p.

e Thatis,

pth job

Observation: T

assume the pth in the algorithms list ends before the
In the optimal list.

ne algorithm could have added j; 44!

Claim: The Finish First Algorithm is Optimal

Proof Ideas:
* Assume nowthat f(iy) < f(jx) and m >k.

Q: Why is this a problem?

Claim: The Finish First Algorithm is Optimal

Proof Ideas:
* Assume nowthat f(iy) < f(jx) and m >k.

Observation: The algorithm could have added jy 1!

Runtime Analysis

* Basic Algorithm Outline:
e Sisempty
* While R is not empty:
* PickiinR
 AdditoS
* Remove all tasks that conflict with i from R

Runtime Analysis

 Input: List of tasks R
e Sisempty
* While R is not empty:
* Findiin Rwith earliest finish time
e AdditoS

* Remove all tasks that conflict with i from R
e Return$S

Runtime Analysis

 Input: List of tasks R
e Sisemptylist<-O(1) time
* While Ris not empty: <- O(n) iterations
* Findiin Rwith earliest finish time <- O(n) time to search
* AdditoS<-0(1)time
* Remove all tasks that conflict with 1 from R <- O(n) time
* Return S<-0(1) time

i Q: Can we do this faster?

Runtime Analysis: O(n"2)

Input: List of tasks R
e Sisemptylist<-O(1) time
* While Ris not empty: <- O(n) iterations
* Findiin Rwith earliest finish time <- O(n) time to search
<° AdditoS<-0(1)time
* Remove all tasks that conflict with 1 from R <- O(n) time
* Return S<-0(1) time

Runtime Analysis: O(nlog(n))

Input: List of tasks R

Sort R by finish time <- O(nlog(n)) time
S is empty list <- O(1) time
Set last_job_fin to be 0 <- O(1) time
Forj=1up ton: <- O(n) iterations
* if s(j) > last_job_fin: <- O(1) time
e AdditoS<-0(1)time
 Setlast_job_fin to be f(i) <- O(1) time
Return S<- O(1) time

	Slide 1: CSE 331: Algorithms & Complexity
	Slide 2: Schedule
	Slide 3: Course Updates
	Slide 4: Midterm Advice
	Slide 5: What are Greedy Algorithm?
	Slide 6: Interval Scheduling
	Slide 7: Interval Scheduling
	Slide 8: Interval Scheduling
	Slide 9: Interval Scheduling
	Slide 10: Interval Scheduling
	Slide 11: Interval Scheduling
	Slide 12: Optimal Solution #1
	Slide 13: Optimal Solution #2
	Slide 14: Interval Scheduling Problem (Support Page)
	Slide 15: Interval Scheduling Problem
	Slide 16: Interval Scheduling Problem
	Slide 17: Q: How should we try to solve this?
	Slide 18: Q: How should we try to solve this?
	Slide 19: Build an Algorithm
	Slide 20: Build an Algorithm
	Slide 21: Build an Algorithm
	Slide 22: Build an Algorithm
	Slide 23: Build a Greedy Algorithm
	Slide 24: Q: What should we pick for v open paren i close paren ?
	Slide 25: Attempt I: Interval Length (Okay)
	Slide 26: Attempt I: Interval Length (Oh no!)
	Slide 27: Attempt II: Start Time (Okay)
	Slide 28: Attempt II: Start Time (Oh no!)
	Slide 29: Attempt III: Min Conflicts (Okay)
	Slide 30: Attempt III: Min Conflicts (Okay)
	Slide 31: Attempt III: Min Conflicts (Okay)
	Slide 32: Attempt III: Min Conflicts (Okay)
	Slide 33: Attempt III: Min Conflicts (Okay)
	Slide 34: Attempt III: Min Conflicts (Oh no!)
	Slide 35: Attempt III: Min Conflicts (Oh no!)
	Slide 36: Attempt III: Min Conflicts (Oh no!)
	Slide 37: Attempt III: Min Conflicts (Oh no!)
	Slide 38: Attempt III: Min Conflicts (Oh no!)
	Slide 39: Attempt III: Min Conflicts (Oh no!)
	Slide 40: Attempt III: Min Conflicts (Oh no!)
	Slide 41: I GIVE UP!!!!
	Slide 42: Attempt IV: Finish Time (Okay)
	Slide 43: Attempt IV: Finish Time (….)
	Slide 44: Claim: The Finish First Algorithm is Optimal
	Slide 45: Claim: The Finish First Algorithm is Optimal
	Slide 46: Claim: The Finish First Algorithm is Optimal
	Slide 47: Claim: The Finish First Algorithm is Optimal
	Slide 48: Claim: The Finish First Algorithm is Optimal
	Slide 49: Claim: The Finish First Algorithm is Optimal
	Slide 50: Claim: The Finish First Algorithm is Optimal
	Slide 51: Runtime Analysis
	Slide 52: Runtime Analysis
	Slide 53: Runtime Analysis
	Slide 54: Runtime Analysis: O(n^2)
	Slide 55: Runtime Analysis: O(nlog(n))

