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Schedule

1.Course Updates
2.Greedy Algorithms
3.Interval Scheduling
4.Greedy Algorithm
5.Runtime Analysis




Course Updates

HW 3 & Quiz #1 Grading
HW 4 Out Soon

Not Due Next Week!
Group Project

First Problems Oct 315!
Sample Midterms Out
Midterms Oct 6 and Oct 8



Midterm Advice

e Midterms Oct 6 and Oct 8.
* You get areference sheet.

* Exams are in class during
regular class time.

* Don’tpanic!
 Sleep, eat, drink water, and

study what you can even it
that isn’t everything!




What are Greedy Algorithm?

* Build solution one
piece at a time.

* Onlylook atimmediate
Information to make
choices.

* Never go backona

decision.
e NOT ALWAYS THE BEST
CHOICE!




Interval Scheduling

* Consider aninterval of time (e.g. Wednesday).



Interval Scheduling

* Consider aninterval of time (e.g. Wednesday)
* Considertasks that need to be completed during specific
times (e.g. classes)
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Interval Scheduling

* Consider aninterval of time (e.g. Wednesday).
* Considertasks that need to be completed during specific

times (e.g. classes).
* We wantto fit as many tasks as possible into the day such

that no two overlap.
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Interval Scheduling

* Consider aninterval of time (e.g. Wednesday).
* Considertasks that need to be completed during specific times

(e.g. classes).
* We wantto fit as many tasks as possible into the day such that no

two overlap.

Q: Do we ever pick CSE 90017
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Interval Scheduling

* Consider aninterval of time (e.g. Wednesday).
* Considertasks that need to be completed during specific times

(e.g. classes).
* We wantto fit as many tasks as possible into the day such that no

two overlap.

A: No, because it blocks two classes!

CSE 9001
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Time I ------------------------------------------------------------------------------------------------------------------------------------------ I-



Optimal Solution #1

* Consider aninterval of time (e.g. Wednesday).
* Considertasks that need to be completed during specific times

(e.g. classes).
* We wantto fit as many tasks as possible into the day such that no

two overlap.
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Optimal Solution #2

* Consider aninterval of time (e.g. Wednesday).
* Considertasks that need to be completed during specific times

(e.g. classes).
* We wantto fit as many tasks as possible into the day such that no

two overlap.

ENG 110
Time: -I ------------------------------------------------------------------------------------------------------------------------------------------ I-
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Interval Scheduling Problem (Support Page)

Interval Scheduling via examples

In which we derive an algorithm that solves the Interval Scheduling problem via a sequence of examples.

The problem

In these notes we will solve the following problem:

Interval Scheduling Problem
An input of n intervals [s(i),f(1)), or in other words, {s(i), ...,
represents the finish time.

A schedule S of n intervals where no two intervals in S conflict, and the total number of intervals in S is maximized.

f(i) — 1} for 1 =i < n where i represents the intervals, s(i) represents the start time, and f(i)



Interval Scheduling Problem

* Input: A set of n intervals with start and finish times.
* Forl <i <n,|[s(i),f(i)) where s(i) and f(i) are start and finish
times of task i respectively.
* Output: A schedule (subset of intervals) S such that no two

intervals in S conflict and the total number of intervals is
maximized.

EE 312 MATH 610
Time: -I ------------------------------------------------------------------------------------------------------------------------------------------ I-

EE 312 and MATH 610 don’t conflict end




Interval Scheduling Problem

* Input: A set of n intervals with start and finish times.
* Forl <i <n,|[s(i),f(i)) where s(i) and f(i) are start and finish
times of task i respectively.
* Output: A schedule (subset of intervals) S such that no two

intervals in S conflict and the total number of intervals is
maximized.

CSE 9001

Start CSE 9001 and EE 312 Conflict



Q: How should we try to solve this?

* Input: A set of n intervals R with start and finish times.
* Forl <i <n,|[s(i),f(i)) where s(i) and f(i) are start and finish
times of task i respectively.
* Output: A schedule (subset of intervals) S such that no two
intervals in S conflict and the total number of intervals is
maximized.




Q: How should we try to solve this?

A: Let’s try to generate some examples and see what works
and what doesn’t.




Build an Algorithm

* Basic Algorithm Outline:
e Sisempty
* While R is not empty:
* PickiinR
e AdditoS
* RemoveifromR




Build an Algorithm

* Basic Algorithm Outline:
* Sisempty
* While R is not empty:
* PickiinR
e AdditoS You mightadd conflicts!
* RemoveifromR




Build an Algorithm

* Basic Algorithm Outline:
e Sisempty
* While R is not empty:
* PickiinR
 AdditoS
* Remove all tasks that conflict with i from R




Build an Algorithm

* Basic Algorithm Outline:
e Sisempty
* While R is not empty:
e PickiinR Q:How dowe do this?
 AdditoS
* Remove all tasks that conflict with i from R




Build a Greedy Algorithm

* Basic Algorithm Outline:
e Sisempty
* While R is not empty:
* Pickiin R that minimizes v(i)
* AdditoS
* Remove all tasks that conflict with i from R




Q: What should we pick for v(i)?

* Basic Algorithm Outline:
e Sisempty
* While R is not empty:
* Pickiin R that minimizes v(i)
* AdditoS
* Remove all tasks that conflict with i from R




Attempt I: Interval Length (Okay)

* Basic Algorithm Outline:
e Sisempty
* While R is not empty:
* Pickiin R that minimizes v(i)
* AdditoS
* Remove all tasks that conflict with i from R
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Attempt I: Interval Length (Oh no!)

* Basic Algorithm Outline:
e Sisempty
* While R is not empty:
* Pickiin R that minimizes v(i)
* AdditoS
* Remove all tasks that conflict with i from R
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Attempt ll: Start Time (Okay)

* Basic Algorithm Outline:
e Sisempty
* While R is not empty:
* Pickiin R that minimizes v(i)
 AdditoS
* Remove all tasks that conflict with i from R




Attempt lI: Start Time (Oh no!)

* Basic Algorithm Outline:
e Sisempty
* While R is not empty:
* Pickiin R that minimizes v(i)
* AdditoS
* Remove all tasks that conflict with i from R

LIT 101 ART 322




Attempt lll: Min Conflicts (Okay)

* Basic Algorithm Outline:
e Sisempty
* While R is not empty:
* Pickiin R that minimizes v(i)
* AdditoS
* Remove all tasks that conflict with i from R
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Attempt lll: Min Conflicts (Okay)

* Basic Algorithm Outline:
e Sisempty
* While R is not empty:
* Pickiin R that minimizes v(i)
 AdditoS
* Remove all tasks that conflict with i from R




Attempt lll: Min Conflicts (Oh no!)
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Attempt lll: Min Conflicts (Oh no!)

ART 322

Time: -I- -----------------------------------------------------------------------------------------------------------------------------------

Foreach intervali, v(i) = # conflicts (and min s(i))

....... I



Attempt lll: Min Conflicts (Oh no!)
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Attempt lll: Min Conflicts (Oh no!)
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| GIVE UP

ART 322
MATH 610 BIO 810

GEO 189
PHYS 311
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Attempt [V: Finish Time (Okay)

JPN 203

GEO 189
PHYS 311
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Attempt IV: Finish Time (....)

Wait... does that actually work?

JPN 203
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Claim: The Finish First Algorithm is Optimal

Proof Ideas:
* Let Abethe setreturned by the algorithm and O be

the optimal list.

* Leti_1,\ldots, i_k be the tasks in A sorted by add
time.

* Letj_1,\l¢ 1e tasks in O sorted | L
time.

CSE 331 EE 312 MATH 610 BIO 810



Claim: The Finish First Algorithm is Optimal

Proof ldeas:
* Letiy,..., I bethe tasks returned by algorithm (sorted by

finish/add time).
* Letjq,...,J De the tasks in optimal solution (sorted by finish

time)
e We wantto showk=m

Q: What can we say about the first job in each list?



Claim: The Finish First Algorithm is Optimal

Proof Ideas:
* Letiy,..., I bethe tasks returned by algorithm (sorted by
finish/add time).
* Letjq,...,J De the tasks in optimal solution (sorted by finish
time)

Observation: f(i;) < f(j;)




Claim: The Finish First Algorithm is Optimal

Proof Ideas:
* Assume nowthat f(i,) < f(j,) for some p.

* Thatis, assume the pthin the algorithms list ends before the
pth job in the optimal list.

Q: What can we say about the p + 1 job in each list?




Claim: The Finish First Algorithm is Optimal

Proof ldeas:

* Assume nowthat f(i,) < f(j,) for some p.

e Thatis,

pth job

Observation: T

assume the pth in the algorithms list ends before the
In the optimal list.

ne algorithm could have added j; 44!




Claim: The Finish First Algorithm is Optimal

Proof Ideas:
* Assume nowthat f(iy) < f(jx) and m >k.

Q: Why is this a problem?




Claim: The Finish First Algorithm is Optimal

Proof Ideas:
* Assume nowthat f(iy) < f(jx) and m >k.

Observation: The algorithm could have added jy 1!




Runtime Analysis

* Basic Algorithm Outline:
e Sisempty
* While R is not empty:
* PickiinR
 AdditoS
* Remove all tasks that conflict with i from R




Runtime Analysis

 Input: List of tasks R
e Sisempty
* While R is not empty:
* Findiin Rwith earliest finish time
e AdditoS

* Remove all tasks that conflict with i from R
e Return$S




Runtime Analysis

 Input: List of tasks R
e Sisemptylist<-O(1) time
* While Ris not empty: <- O(n) iterations
* Findiin Rwith earliest finish time <- O(n) time to search
* AdditoS<-0(1)time
* Remove all tasks that conflict with 1 from R <- O(n) time
* Return S<-0(1) time




i Q: Can we do this faster?

Runtime Analysis: O(n"2)

Input: List of tasks R
e Sisemptylist<-O(1) time
* While Ris not empty: <- O(n) iterations
* Findiin Rwith earliest finish time <- O(n) time to search
<° AdditoS<-0(1)time
* Remove all tasks that conflict with 1 from R <- O(n) time
* Return S<-0(1) time




Runtime Analysis: O(nlog(n))

Input: List of tasks R

Sort R by finish time <- O(nlog(n)) time
S is empty list <- O(1) time
Set last_job_fin to be 0 <- O(1) time
Forj=1up ton: <- O(n) iterations
* if s(j) > last_job_fin: <- O(1) time
e AdditoS<-0(1)time
 Setlast_job_fin to be f(i) <- O(1) time
Return S<- O(1) time
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