
CSE 331:
Algorithms & Complexity

Prof. Charlie Anne Carlson (She/Her)
Lecture 16

Wednesday October 3rd, 2025

“Greedy Algorithms II”

Schedule

1.Course Updates
2.Greedy Algorithms
3.Interval Scheduling
4.Greedy Algorithm
5.Runtime Analysis

Course Updates

• HW 3 & Quiz #1 Grading
• HW 4 Out Soon

• Not Due Next Week!
• Group Project

• First Problems Oct 31st

• Sample Midterms Out
• Midterms Oct 6 and Oct 8

Midterm Advice

• Midterms Oct 6 and Oct 8.
• You get a reference sheet.
• Exams are in class during

regular class time.
• Don’t panic!

• Sleep, eat, drink water, and
study what you can even it
that isn’t everything!

What are Greedy Algorithm?
• Build solution one

piece at a time.
• Only look at immediate

information to make
choices.

• Never go back on a
decision.

• NOT ALWAYS THE BEST
CHOICE!

Interval Scheduling
• Consider an interval of time (e.g. Wednesday).

Start End

Time:

Interval Scheduling
• Consider an interval of time (e.g. Wednesday)
• Consider tasks that need to be completed during specific

times (e.g. classes)

Start End

Time:

CSE 331

ENG 110

EE 312 MATH 610

CSE 9001

Interval Scheduling
• Consider an interval of time (e.g. Wednesday).
• Consider tasks that need to be completed during specific

times (e.g. classes).
• We want to fit as many tasks as possible into the day such

that no two overlap.

Start End

Time:

CSE 331

ENG 110

EE 312 MATH 610

CSE 9001

Interval Scheduling
• Consider an interval of time (e.g. Wednesday).
• Consider tasks that need to be completed during specific

times (e.g. classes).
• We want to fit as many tasks as possible into the day such

that no two overlap.

Start End

Time:

CSE 331

ENG 110

EE 312 MATH 610

CSE 9001

Interval Scheduling
• Consider an interval of time (e.g. Wednesday).
• Consider tasks that need to be completed during specific times

(e.g. classes).
• We want to fit as many tasks as possible into the day such that no

two overlap.

Start End

Time:

CSE 331

ENG 110

EE 312 MATH 610

CSE 9001

Q: Do we ever pick CSE 9001?

Interval Scheduling
• Consider an interval of time (e.g. Wednesday).
• Consider tasks that need to be completed during specific times

(e.g. classes).
• We want to fit as many tasks as possible into the day such that no

two overlap.

Start End

Time:

CSE 331

ENG 110

EE 312 MATH 610

CSE 9001

A: No, because it blocks two classes!

Optimal Solution #1
• Consider an interval of time (e.g. Wednesday).
• Consider tasks that need to be completed during specific times

(e.g. classes).
• We want to fit as many tasks as possible into the day such that no

two overlap.

Start End

Time:

CSE 331

ENG 110

EE 312 MATH 610

CSE 9001

Optimal Solution #2
• Consider an interval of time (e.g. Wednesday).
• Consider tasks that need to be completed during specific times

(e.g. classes).
• We want to fit as many tasks as possible into the day such that no

two overlap.

Start End

Time:

CSE 331

ENG 110

EE 312 MATH 610

CSE 9001

Interval Scheduling Problem (Support Page)

Interval Scheduling Problem
• Input: A set of 𝑛 intervals with start and finish times.

• For 1 ≤ i ≤ n, [s(i), f(i)) where s(i) and f(i) are start and finish
times of task 𝑖 respectively.

• Output: A schedule (subset of intervals) S such that no two
intervals in S conflict and the total number of intervals is
maximized.

Start End

Time:

CSE 331

ENG 110

EE 312 MATH 610

CSE 9001

EE 312 and MATH 610 don’t conflict

Interval Scheduling Problem
• Input: A set of 𝑛 intervals with start and finish times.

• For 1 ≤ i ≤ n, [s(i), f(i)) where s(i) and f(i) are start and finish
times of task 𝑖 respectively.

• Output: A schedule (subset of intervals) S such that no two
intervals in S conflict and the total number of intervals is
maximized.

Start End

Time:

CSE 331

ENG 110

EE 312 MATH 610

CSE 9001

CSE 9001 and EE 312 Conflict

Q: How should we try to solve this?
• Input: A set of 𝑛 intervals R with start and finish times.

• For 1 ≤ i ≤ n, [s(i), f(i)) where s(i) and f(i) are start and finish
times of task 𝑖 respectively.

• Output: A schedule (subset of intervals) S such that no two
intervals in S conflict and the total number of intervals is
maximized.

Start End

Time:

CSE 331

ENG 110

EE 312 MATH 610

CSE 9001

Q: How should we try to solve this?
A: Let’s try to generate some examples and see what works
and what doesn’t.

Start End

Time:

CSE 331 EE 312 MATH 610

Build an Algorithm
• Basic Algorithm Outline:

• S is empty
• While R is not empty:

• Pick i in R
• Add i to S
• Remove i from R

Start End

Time:

CSE 331 EE 312 MATH 610

Build an Algorithm
• Basic Algorithm Outline:

• S is empty
• While R is not empty:

• Pick i in R
• Add i to S
• Remove i from R

Start End

Time:

CSE 331 EE 312 MATH 610

LIT 101

You might add conflicts!

LIT 101

Build an Algorithm
• Basic Algorithm Outline:

• S is empty
• While R is not empty:

• Pick i in R
• Add i to S
• Remove all tasks that conflict with i from R

Start End

Time:

CSE 331 EE 312 MATH 610

LIT 101LIT 101

Build an Algorithm
• Basic Algorithm Outline:

• S is empty
• While R is not empty:

• Pick i in R
• Add i to S
• Remove all tasks that conflict with i from R

Start End

Time:

CSE 331 EE 312 MATH 610

LIT 101

Q: How do we do this?

LIT 101

Build a Greedy Algorithm
• Basic Algorithm Outline:

• S is empty
• While R is not empty:

• Pick i in R that minimizes v(i)
• Add i to S
• Remove all tasks that conflict with i from R

Start End

Time:

CSE 331 EE 312 MATH 610

LIT 101

For each interval i, we assign a value v(i).

LIT 101

Q: What should we pick for v(i)?
• Basic Algorithm Outline:

• S is empty
• While R is not empty:

• Pick i in R that minimizes v(i)
• Add i to S
• Remove all tasks that conflict with i from R

Start End

Time:

CSE 331 EE 312 MATH 610

LIT 101

For each interval i, v(i) = ?

LIT 101

Attempt I: Interval Length (Okay)
• Basic Algorithm Outline:

• S is empty
• While R is not empty:

• Pick i in R that minimizes v(i)
• Add i to S
• Remove all tasks that conflict with i from R

Start End

Time:

CSE 331 EE 312 MATH 610

LIT 101

For each interval i, v(i) = s(i) – f(i)

Attempt I: Interval Length (Oh no!)
• Basic Algorithm Outline:

• S is empty
• While R is not empty:

• Pick i in R that minimizes v(i)
• Add i to S
• Remove all tasks that conflict with i from R

Start End

Time:

CSE 331 EE 312 MATH 610

LIT 101

For each interval i, v(i) = s(i) – f(i)

ART 322

Attempt II: Start Time (Okay)
• Basic Algorithm Outline:

• S is empty
• While R is not empty:

• Pick i in R that minimizes v(i)
• Add i to S
• Remove all tasks that conflict with i from R

Start End

Time:

CSE 331 EE 312 MATH 610

LIT 101

For each interval i, v(i) = s(i)

ART 322

Attempt II: Start Time (Oh no!)
• Basic Algorithm Outline:

• S is empty
• While R is not empty:

• Pick i in R that minimizes v(i)
• Add i to S
• Remove all tasks that conflict with i from R

Start End

Time:

CSE 331 EE 312 MATH 610

LIT 101

For each interval i, v(i) = s(i)

ART 322

Attempt III: Min Conflicts (Okay)
• Basic Algorithm Outline:

• S is empty
• While R is not empty:

• Pick i in R that minimizes v(i)
• Add i to S
• Remove all tasks that conflict with i from R

Start End

Time:

CSE 331 EE 312 MATH 610

LIT 101

For each interval i, v(i) = # conflicts (and min s(i))

ART 322

Attempt III: Min Conflicts (Okay)
• Basic Algorithm Outline:

• S is empty
• While R is not empty:

• Pick i in R that minimizes v(i)
• Add i to S
• Remove all tasks that conflict with i from R

Start End

Time:

CSE 331 EE 312 MATH 610

For each interval i, v(i) = # conflicts (and min s(i))

ART 322

Attempt III: Min Conflicts (Okay)
• Basic Algorithm Outline:

• S is empty
• While R is not empty:

• Pick i in R that minimizes v(i)
• Add i to S
• Remove all tasks that conflict with i from R

Start End

Time:

CSE 331 EE 312 MATH 610

For each interval i, v(i) = # conflicts (and min s(i))

ART 322

Attempt III: Min Conflicts (Okay)
• Basic Algorithm Outline:

• S is empty
• While R is not empty:

• Pick i in R that minimizes v(i)
• Add i to S
• Remove all tasks that conflict with i from R

Start End

Time:

CSE 331 EE 312 MATH 610

For each interval i, v(i) = # conflicts (and min s(i))

Attempt III: Min Conflicts (Okay)
• Basic Algorithm Outline:

• S is empty
• While R is not empty:

• Pick i in R that minimizes v(i)
• Add i to S
• Remove all tasks that conflict with i from R

Start End

Time:

CSE 331 EE 312 MATH 610

For each interval i, v(i) = # conflicts (and min s(i))

LIT 101 ART 322

Attempt III: Min Conflicts (Oh no!)

Start End

Time:

CSE 331 EE 312 MATH 610

For each interval i, v(i) = # conflicts (and min s(i))

LIT 101 ART 322

BIO 810

CHEM 405

HIST 345 PHYS 311

JPN 203 GEO 189

Attempt III: Min Conflicts (Oh no!)

Start End

Time:

CSE 331

For each interval i, v(i) = # conflicts (and min s(i))

LIT 101 ART 322

BIO 810

CHEM 405

HIST 345 PHYS 311

JPN 203 GEO 189

Attempt III: Min Conflicts (Oh no!)

Start End

Time:

CSE 331

For each interval i, v(i) = # conflicts (and min s(i))

LIT 101 ART 322

BIO 810

CHEM 405

HIST 345 PHYS 311

JPN 203 GEO 189

Attempt III: Min Conflicts (Oh no!)

Start End

Time:

CSE 331

For each interval i, v(i) = # conflicts (and min s(i))

ART 322

BIO 810

CHEM 405

PHYS 311

GEO 189

Attempt III: Min Conflicts (Oh no!)

Start End

Time:

CSE 331

For each interval i, v(i) = # conflicts (and min s(i))

ART 322

BIO 810

CHEM 405

PHYS 311

GEO 189

Attempt III: Min Conflicts (Oh no!)

Start End

Time:

CSE 331

For each interval i, v(i) = # conflicts (and min s(i))

ART 322

GEO 189

EE 312 MATH 610

LIT 101

BIO 810

CHEM 405

HIST 345 PHYS 311

JPN 203

Attempt III: Min Conflicts (Oh no!)

Start End

Time:

CSE 331

For each interval i, v(i) = # conflicts (and min s(i))

ART 322

GEO 189

EE 312 MATH 610

LIT 101

BIO 810

CHEM 405

HIST 345 PHYS 311

JPN 203

I GIVE UP!!!!

Start End

Time:

CSE 331

For each interval i, v(i) = # conflicts (and min s(i))

ART 322

GEO 189

EE 312 MATH 610

LIT 101

BIO 810

CHEM 405

HIST 345 PHYS 311

JPN 203

Attempt IV: Finish Time (Okay)

Start End

Time:

CSE 331

For each interval i, v(i) = f(i)

ART 322

GEO 189

EE 312 MATH 610

LIT 101

BIO 810

CHEM 405

HIST 345 PHYS 311

JPN 203

Attempt IV: Finish Time (….)

Wait… does that actually work?

Start End

Time:

CSE 331

For each interval i, v(i) = f(i)

ART 322

GEO 189

EE 312 MATH 610

LIT 101

BIO 810

CHEM 405

HIST 345 PHYS 311

JPN 203

Claim: The Finish First Algorithm is Optimal
Proof Ideas:

• Let A be the set returned by the algorithm and O be
the optimal list.

• Let i_1, \ldots, i_k be the tasks in A sorted by add
time.

• Let j_1, \ldots, j_m be the tasks in O sorted by finish
time.

Start End

Time:

CSE 331

For each interval i, v(i) = f(i)

ART 322

GEO 189

EE 312 MATH 610

LIT 101

BIO 810

CHEM 405

HIST 345 PHYS 311

JPN 203

Claim: The Finish First Algorithm is Optimal
Proof Ideas:

• Let 𝑖1, … , 𝑖𝑘 be the tasks returned by algorithm (sorted by
finish/add time).

• Let j1, … , jm be the tasks in optimal solution (sorted by finish
time)

• We want to show k = m

Start End

Time:

Q: What can we say about the first job in each list?

Claim: The Finish First Algorithm is Optimal
Proof Ideas:

• Let 𝑖1, … , 𝑖𝑘 be the tasks returned by algorithm (sorted by
finish/add time).

• Let j1, … , jm be the tasks in optimal solution (sorted by finish
time)

Start End

Time:

j1

𝑖1 Observation: 𝑓(𝑖1) ≤ 𝑓(𝑗1)

Claim: The Finish First Algorithm is Optimal
Proof Ideas:

• Assume now that 𝑓(𝑖p) ≤ 𝑓(𝑗p) for some p.
• That is, assume the pth in the algorithms list ends before the

pth job in the optimal list.

Start End

Time:

jp

𝑖p

Q: What can we say about the p + 1 job in each list?

Claim: The Finish First Algorithm is Optimal
Proof Ideas:

• Assume now that 𝑓(𝑖p) ≤ 𝑓(𝑗p) for some p.
• That is, assume the pth in the algorithms list ends before the

pth job in the optimal list.

Start End

Time:

jp

𝑖p

Observation: The algorithm could have added jp+1!

𝑖p+1

jp+1

Claim: The Finish First Algorithm is Optimal
Proof Ideas:

• Assume now that 𝑓(𝑖k) ≤ 𝑓(𝑗k) and m > k.

Start End

Time:

jk

𝑖k

Q: Why is this a problem?

jk+1

Claim: The Finish First Algorithm is Optimal
Proof Ideas:

• Assume now that 𝑓(𝑖k) ≤ 𝑓(𝑗k) and m > k.

Start End

Time:

jk

𝑖k

jk+1

Observation: The algorithm could have added jk+1!

Runtime Analysis
• Basic Algorithm Outline:

• S is empty
• While R is not empty:

• Pick i in R
• Add i to S
• Remove all tasks that conflict with i from R

Start End

Time:

CSE 331 EE 312 MATH 610

Runtime Analysis
• Input: List of tasks R

• S is empty
• While R is not empty:

• Find i in R with earliest finish time
• Add i to S
• Remove all tasks that conflict with i from R

• Return S

Start End

Time:

CSE 331 EE 312 MATH 610

Runtime Analysis
• Input: List of tasks R

• S is empty list <- O(1) time
• While R is not empty: <- O(n) iterations

• Find i in R with earliest finish time <- O(n) time to search
• Add i to S <- O(1) time
• Remove all tasks that conflict with i from R <- O(n) time

• Return S <- O(1) time

Start End

Time:

CSE 331 EE 312 MATH 610

Runtime Analysis: O(n^2)
• Input: List of tasks R

• S is empty list <- O(1) time
• While R is not empty: <- O(n) iterations

• Find i in R with earliest finish time <- O(n) time to search
• Add i to S <- O(1) time
• Remove all tasks that conflict with i from R <- O(n) time

• Return S <- O(1) time

Start End

Time:

CSE 331 EE 312 MATH 610Q
: C

an
 w

e
do

 th
is

 fa
st

er
?

Runtime Analysis: O(nlog(n))
• Input: List of tasks R

• Sort R by finish time <- O(nlog(n)) time
• S is empty list <- O(1) time
• Set last_job_fin to be 0 <- O(1) time
• For j = 1 up to n: <- O(n) iterations

• if s(j) > last_job_fin: <- O(1) time
• Add i to S <- O(1) time
• Set last_job_fin to be f(i) <- O(1) time

• Return S <- O(1) time

	Slide 1: CSE 331: Algorithms & Complexity
	Slide 2: Schedule
	Slide 3: Course Updates
	Slide 4: Midterm Advice
	Slide 5: What are Greedy Algorithm?
	Slide 6: Interval Scheduling
	Slide 7: Interval Scheduling
	Slide 8: Interval Scheduling
	Slide 9: Interval Scheduling
	Slide 10: Interval Scheduling
	Slide 11: Interval Scheduling
	Slide 12: Optimal Solution #1
	Slide 13: Optimal Solution #2
	Slide 14: Interval Scheduling Problem (Support Page)
	Slide 15: Interval Scheduling Problem
	Slide 16: Interval Scheduling Problem
	Slide 17: Q: How should we try to solve this?
	Slide 18: Q: How should we try to solve this?
	Slide 19: Build an Algorithm
	Slide 20: Build an Algorithm
	Slide 21: Build an Algorithm
	Slide 22: Build an Algorithm
	Slide 23: Build a Greedy Algorithm
	Slide 24: Q: What should we pick for v open paren i close paren ?
	Slide 25: Attempt I: Interval Length (Okay)
	Slide 26: Attempt I: Interval Length (Oh no!)
	Slide 27: Attempt II: Start Time (Okay)
	Slide 28: Attempt II: Start Time (Oh no!)
	Slide 29: Attempt III: Min Conflicts (Okay)
	Slide 30: Attempt III: Min Conflicts (Okay)
	Slide 31: Attempt III: Min Conflicts (Okay)
	Slide 32: Attempt III: Min Conflicts (Okay)
	Slide 33: Attempt III: Min Conflicts (Okay)
	Slide 34: Attempt III: Min Conflicts (Oh no!)
	Slide 35: Attempt III: Min Conflicts (Oh no!)
	Slide 36: Attempt III: Min Conflicts (Oh no!)
	Slide 37: Attempt III: Min Conflicts (Oh no!)
	Slide 38: Attempt III: Min Conflicts (Oh no!)
	Slide 39: Attempt III: Min Conflicts (Oh no!)
	Slide 40: Attempt III: Min Conflicts (Oh no!)
	Slide 41: I GIVE UP!!!!
	Slide 42: Attempt IV: Finish Time (Okay)
	Slide 43: Attempt IV: Finish Time (….)
	Slide 44: Claim: The Finish First Algorithm is Optimal
	Slide 45: Claim: The Finish First Algorithm is Optimal
	Slide 46: Claim: The Finish First Algorithm is Optimal
	Slide 47: Claim: The Finish First Algorithm is Optimal
	Slide 48: Claim: The Finish First Algorithm is Optimal
	Slide 49: Claim: The Finish First Algorithm is Optimal
	Slide 50: Claim: The Finish First Algorithm is Optimal
	Slide 51: Runtime Analysis
	Slide 52: Runtime Analysis
	Slide 53: Runtime Analysis
	Slide 54: Runtime Analysis: O(n^2)
	Slide 55: Runtime Analysis: O(nlog(n))

