
CSE 331: 
Algorithms & Complexity

Prof. Charlie Anne Carlson (She/Her)
Lecture 17

Wednesday October 10th, 2025

“Shortest Path”



Schedule

1.Course Updates
2.Interval Scheduling
3.Stay Ahead
4.Runtime Analysis
5.Shortest Path 



Course Updates

• All Grading Before Tuesday
• HW 4 Out

• Not Due Next Week!
• Group Project

• First Problems Oct 31st



Interval Scheduling
• Consider an interval of time (e.g. Wednesday).
• Consider tasks that need to be completed during specific 

times (e.g. classes).
• We want to fit as many tasks as possible into the day such 

that no two overlap.
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Finish First Algorithm

• Input: List of n tasks 𝑅
• For each 𝑖 ∈ 𝑅, let 𝑠(𝑖) and 𝑓(𝑖) be start and finish times.

• Output: List of non-conflicting tasks of maximum length
• Let 𝑆 be empty
• While 𝑅 is not empty:

• Find i ∈ 𝑅 with earliest finish time (argmin f(i))
• Add i to 𝑆
• Remove all tasks that conflict with i from 𝑅

• Return 𝑆 



Claim: The Finish First Algorithm is Optimal
Proof Ideas:

• Let 𝑆 be the set returned by the algorithm.
• Let 𝑖1, 𝑖2, … , 𝑖k be the elements in 𝑆 sorted by finish 

times. 
• Let 𝑆∗ be the optimal list.

• Let j1, j2, … , jm be the elements in 𝑆∗ sorted by finish 
times. 

• We want to show that for every index 1 ≤ ℓ ≤ k, 
𝑓(𝑖ℓ) ≤ f(jℓ). 



Claim: The Finish First Algorithm is Optimal
Proof Ideas:

• We want to show that for every index 1 ≤ ℓ ≤  k, 
𝑓(𝑖ℓ) ≤ f(jℓ). 
• That is, we want to show that our algorithm is always 

doing better than the optimal solution! “Stay Ahead”
• If this is true, then it must be the case that m =  k.



Claim: The Finish First Algorithm is Optimal
Proof Ideas:

• We want to show that for every index 1 ≤ ℓ ≤  m, 
𝑓(𝑖ℓ) ≤ f(jℓ). 
• That is, we want to show that our algorithm is always 

doing better than the optimal solution! “Stay Ahead”
• If this is true, then it must be the case that m =  k.

• If not, then our algorithm would have added 𝑗k+1 to 𝑆.



Claim: The Finish First Algorithm is Optimal
Proof Ideas:

• We want to show that for every index 1 ≤ ℓ ≤  m, 
𝑓(𝑖ℓ) ≤ f(jℓ). 
• That is, we want to show that our algorithm is always 

doing better than the optimal solution! “Stay Ahead”
• If this is true, then it must be the case that m =  k.

• If not, then our algorithm would have added 𝑗k+1 to 𝑆.



Claim: The Finish First Algorithm is Optimal
Base Case:

• We observe that 𝑓(𝑖1)  ≤ f(j1) since the algorithm 
always takes the element with the quickest finish time. 

Start End

Time:

j1

𝑖1



Claim: The Finish First Algorithm is Optimal
Inductive Hypothesis:

• Assume that 𝑓(𝑖p)  ≤ 𝑓(𝑗p) for some 1 ≤ p < k.
• We will prove that 𝑓(𝑖p+1)  ≤ 𝑓(𝑗p+1)

Start End

Time:

jp

𝑖p 𝑖p+1

jp+1



Claim: The Finish First Algorithm is Optimal
Inductive Case:

• Observe that since 𝑓(𝑖p)  ≤ 𝑓(𝑗p), 𝑗p+1 was in the set R 
when we added 𝑖p+1.
• Hence, 𝑓(𝑖p+1)  ≤ 𝑓(𝑗p+1)

Start End

Time:

jp

𝑖p 𝑖p+1

jp+1



Finish First Algorithm

• Input: List of n tasks 𝑅
• For each 𝑖 ∈ 𝑅, let 𝑠(𝑖) and 𝑓(𝑖) be start and finish times.

• Output: List of non-conflicting tasks of maximum length
• Let 𝑆 be empty
• While 𝑅 is not empty:

• Find 𝒊 ∈ 𝑹 with earliest finish time (argmin 𝒇(𝒊))
• Add i to 𝑆
• Remove all tasks that conflict with i from 𝑅

• Return 𝑆 



Claim: The Finish First Algorithm is Optimal
Conclusion:

• We have shown 𝑓(𝑖ℓ)  ≤ 𝑓(𝑗ℓ) for all 1 ≤ ℓ ≤ k as 
desired.

• If k ≤ m, then we could add jk+1 to S which contradicts 
the while loop exit condition.

Start End

Time:
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Finish First Algorithm

• Input: List of n tasks 𝑅
• For each 𝑖 ∈ 𝑅, let 𝑠(𝑖) and 𝑓(𝑖) be start and finish times.

• Output: List of non-conflicting tasks of maximum length
• Let 𝑆 be empty
• While 𝑹 is not empty:

• Find 𝑖 ∈ 𝑅 with earliest finish time (argmin 𝑓(𝑖))
• Add i to 𝑆
• Remove all tasks that conflict with i from 𝑅

• Return 𝑆 



Runtime

• Input: List of n tasks 𝑅
• For each 𝑖 ∈ 𝑅, let 𝑠(𝑖) and 𝑓(𝑖) be start and finish times.

• Output: List of non-conflicting tasks of maximum length
• Let 𝑆 be empty
• While 𝑅 is not empty:

• Find 𝑖 ∈ 𝑅 with earliest finish time (argmin 𝑓(𝑖))
• Add i to 𝑆
• Remove all tasks that conflict with i from 𝑅

• Return 𝑆 



Runtime

• Input: List of n tasks 𝑅
• For each 𝑖 ∈ 𝑅, let 𝑠(𝑖) and 𝑓(𝑖) be start and finish times.

• Output: List of non-conflicting tasks of maximum length
• Let 𝑆 be empty
• While 𝑅 is not empty:

• Find 𝑖 ∈ 𝑅 with earliest finish time (argmin 𝑓(𝑖))
• Add i to 𝑆
• Remove all tasks that conflict with i from 𝑅

• Return 𝑆 
These look like O(n) steps!



Runtime

• Input: List of n tasks 𝑅
• For each 𝑖 ∈ 𝑅, let 𝑠(𝑖) and 𝑓(𝑖) be start and finish times.

• Output: List of non-conflicting tasks of maximum length
• Let 𝑆 be empty
• Sort 𝑅 by finish time
• Let last_finished = 0
• For i ∈ [n]:

• If s(i)  ≥ last_finished:
• Add i to 𝑆
• Set last_finished = f(i)

• Return 𝑆 

Because we sorted, this is next 
task to finish that won’t conflict!



Runtime

• Input: List of n tasks 𝑅
• For each 𝑖 ∈ 𝑅, let 𝑠(𝑖) and 𝑓(𝑖) be start and finish times.

• Output: List of non-conflicting tasks of maximum length
• Let 𝑆 be empty
• Sort 𝑅 by finish time
• Let last_finished = 0
• For i ∈ [n]:

• If s(i)  ≥ last_finished:
• Add i to 𝑆
• Set last_finished = f(i)

• Return 𝑆 

This only takes O(nlog(n)) time!



Runtime O(nlog(n)) 

• Input: List of n tasks 𝑅
• For each 𝑖 ∈ 𝑅, let 𝑠(𝑖) and 𝑓(𝑖) be start and finish times.

• Output: List of non-conflicting tasks of maximum length
• Let 𝑆 be empty
• Sort 𝑅 by finish time
• Let last_finished = 0
• For i ∈ [n]:

• If s(i)  ≥ last_finished:
• Add i to 𝑆
• Set last_finished = f(i)

• Return 𝑆 

Each step in this loop is 
constant time!



Shortest Path

• Input: Directed graph 𝐺 =  (𝑉, 𝐸), edge lengths ℓ: 𝐸 → 𝑅≥0, 
a source vertex 𝑠 ∈ 𝑉, and a destination vertex 𝑡 ∈ 𝑉.

• Output: Find the shortest directed path from s to t in 𝐺.
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Single Pair Shortest Path

• Input: Directed graph 𝐺 =  (𝑉, 𝐸), edge lengths ℓ: 𝐸 → 𝑅≥0, 
a source vertex 𝑠 ∈ 𝑉, and a destination vertex 𝑡 ∈ 𝑉.

• Output: Find the shortest directed path from s to t in 𝐺.
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Single Pair Shortest Path

• Input: Directed graph 𝐺 =  (𝑉, 𝐸), edge lengths ℓ: 𝐸 → 𝑅≥0, 
and a source vertex 𝑠 ∈ 𝑉.

• Output: Find the shortest directed path from s to all 
vertices in 𝐺.
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Single Pair Shortest Path

• Input: Directed graph 𝐺 =  (𝑉, 𝐸), edge lengths ℓ: 𝐸 → 𝑅≥0, 
and a source vertex 𝑠 ∈ 𝑉.

• Output: Find the shortest directed path from s to all 
vertices in 𝐺.
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Shortest Path Tree



Questions
• Q1: How do you solve one problem with the answer to the 

other?
• Q2: What happens to the tree when you add 100 to each 

edge?
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Questions
• A1: You can lookup t or run with t for each vertex.) 
• A2: The shortest paths may change!
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Questions
• Q3: How can you solve this if each edge has length 1?
• Q2: What happens to the tree when you multiply each 

length by 2?
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Questions
• Q3: You can run BFS.
• Q2: The shortest path is still the shortest path but twice as 

long.
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Dijkstra’s Greedy Algorithm
• We will describe a greedy algorithm 

that is named after its discoverer, 
Edsger Wybe Dijkstra. ->

• The algorithm runs in O(|E| + |V|log(|V|)) 
time when implemented with a priority 
queue. 

• We will assume no negative edge 
weights. 



Dijkstra’s Algorithm Idea
• Prompt: What edge do we always know is going to be part 

of a shortest path?
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Dijkstra’s Algorithm Idea
• Observation: The shortest edge leaving the source vertex is 

always in a shortest path.
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Dijkstra’s Algorithm Idea
• Motivation: You know that the shortest path from where you 

are to anywhere else is important. 
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Dijkstra’s Algorithm Idea
• Proof: Suppose the shortest edge leaving s went to w. Now suppose 

there is another path from s to w. It must use another edge leaving s.  
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Dijkstra’s Algorithm Idea
• If it uses another edge leaving s then it must be just as long or 

longer of a path!
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Dijkstra’s Algorithm Idea
• Prompt: What can we say about the shortest path tree with 

respect to s and w?
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Dijkstra’s Algorithm Idea
• Observation: The shortest path tree must include an edge 

leaving s and/or w. Otherwise, you can’t reach everything.
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Dijkstra’s Algorithm Idea
• Prompt: Which is closer to s?
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Dijkstra’s Algorithm Idea
• Observation: There are both 5 away from s. We don’t want 

to assume that the distance from w is the same as the 
distance from s.
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Dijkstra’s Algorithm Idea
• Observation: The s to x edge and the w to y edge should 

both be in the shortest path tree. (We need non-negative 
edge weights) 
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Dijkstra’s Algorithm Idea
• Prompt: How do we generalize these observation as a 

greedy rule?
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Dijkstra’s Algorithm Idea
• Algorithm Idea: In each iteration, pick an edge from my 

shortest path tree to the “nearest” vertex not yet in the tree.
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Dijkstra’s Algorithm Idea
• Algorithm Idea: Keep track of the shortest path tree. In each 

iteration, add an edge from the tree to the nearest neighbor 
(with respect to s). 
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Dijkstra’s Algorithm
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Dijkstra’s Algorithm Idea

𝑠

y

x

z

S

• Look at all neighbors of S. Determine which has the 
shortest path from s. Add that to S. Repeat. 



Dijkstra’s Algorithm Idea

𝑠

y

x

z

S

• Key Idea: We guess the distance from s to a neighbor is 
𝑚𝑖𝑛𝑒= 𝑢,𝑣 :𝑢∈𝑆𝑑 𝑢 + ℓ𝑒  where 𝑑 𝑢  is the distance from s 
to u. 



Dijkstra’s Algorithm Idea
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Dijkstra’s Algorithm Idea
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Dijkstra’s Algorithm Idea
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Dijkstra’s Algorithm Idea
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Dijkstra’s Algorithm Idea
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Dijkstra’s Algorithm Idea
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Dijkstra’s Algorithm Idea
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Paths?
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Q: How do we return the 
paths?
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Paths?
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Q: How do we return the 
paths?
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Paths?
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A: When we add v to S, we 
can also keep track of what 
edge was used. 
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Set P[v] = u such that (u,v) was min.

Let P a n length array.

Set P[s] to be -1.



Paths?
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Q: How do we get the 
shortest path from s to w?
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Set P[v] = u such that (u,v) was min.

Let P a n length array.

Set P[s] to be -1.



Paths?
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A: We can recursively construct 
it by looking at taking the edge 
(P[w],w) and the shortest path 
from s to P[w]. 
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Set P[v] = u such that (u,v) was min.

Let P a n length array.

Set P[s] to be Null.



Paths
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Let 𝑃𝑢 be the path found 
from s to u using these 
modifications. 
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Set P[v] = u such that (u,v) was min.

Let P a n length array.

Set P[s] to be -1.



Correctness
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Claim: At the start of each 
loop, 𝑃𝑢 is the shortest path 
from s to u for all u ∈ S.

v1

v2

v3

v4

v5

v6

v7

v0



Proof Idea
• We proceed with induction on the size of 𝑆.
• If |S| =  1, then…



Proof Idea

𝑠

• We proceed with induction on the size of 𝑆.
• If |S| =  1, then it is true because the shortest path from s to s is 

empty set. 



Proof Idea

S

• We proceed with induction on the size of 𝑆.
• Suppose for all 𝑆 such that |𝑆|  ≤  k, 𝑃𝑢 is the shortest path from s to 

u for all u ∈ S.

𝑠



Proof Idea

S

• We proceed with induction on the size of 𝑆.
• Suppose for all 𝑆 such that |𝑆|  ≤  k, 𝑃𝑢 is the shortest path from s to 

u for all u ∈ S.

𝑠

v

• Let v be the k+1 vertex added to S and 
let (u,v) be the edge minimized 
𝑚𝑖𝑛𝑒= 𝑢,𝑣 :𝑢∈𝑆𝑑 𝑢 + ℓ𝑒  .

u



Proof Idea

S

• We proceed with induction on the size of 𝑆.
• Suppose for all 𝑆 such that |𝑆|  ≤  k, 𝑃𝑢 is the shortest path from s to 

u for all u ∈ S.

𝑠

v

• Let v be the k+1 vertex added to S and 
let (u,v) be the edge minimized 
𝑚𝑖𝑛𝑒= 𝑢,𝑣 :𝑢∈𝑆𝑑 𝑢 + ℓ𝑒  .

• Suppose 𝑃𝑢  ∪  {(u, v)} is not the 
shortest path. Then there exists a path 
that must leave S via some edge (x,y).
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Proof Idea

S

• We proceed with induction on the size of 𝑆.
• Suppose for all 𝑆 such that |𝑆|  ≤  k, 𝑃𝑢 is the shortest path from s to 

u for all u ∈ S.

𝑠

v

• Let v be the k+1 vertex added to S and 
let (u,v) be the edge minimized 
𝑚𝑖𝑛𝑒= 𝑢,𝑣 :𝑢∈𝑆𝑑 𝑢 + ℓ𝑒  .

• Suppose 𝑃𝑢  ∪  {(u, v)} is not the 
shortest path. Then there exists a path 
that must leave S via some edge (x,y).

• However, the algo picked v and so the 
path from s to y must be just as long. ><
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Q: What about negative edge weights?
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