
CSE 331:
Algorithms & Complexity

Prof. Charlie Anne Carlson (She/Her)
Lecture 17

Wednesday October 10th, 2025

“Shortest Path”

Schedule

1.Course Updates
2.Interval Scheduling
3.Stay Ahead
4.Runtime Analysis
5.Shortest Path

Course Updates

• All Grading Before Tuesday
• HW 4 Out

• Not Due Next Week!
• Group Project

• First Problems Oct 31st

Interval Scheduling
• Consider an interval of time (e.g. Wednesday).
• Consider tasks that need to be completed during specific

times (e.g. classes).
• We want to fit as many tasks as possible into the day such

that no two overlap.

Start End

Time:

CSE 331

ENG 110

EE 312 MATH 610

CSE 9001

Finish First Algorithm

• Input: List of n tasks 𝑅
• For each 𝑖 ∈ 𝑅, let 𝑠(𝑖) and 𝑓(𝑖) be start and finish times.

• Output: List of non-conflicting tasks of maximum length
• Let 𝑆 be empty
• While 𝑅 is not empty:

• Find i ∈ 𝑅 with earliest finish time (argmin f(i))
• Add i to 𝑆
• Remove all tasks that conflict with i from 𝑅

• Return 𝑆

Claim: The Finish First Algorithm is Optimal
Proof Ideas:

• Let 𝑆 be the set returned by the algorithm.
• Let 𝑖1, 𝑖2, … , 𝑖k be the elements in 𝑆 sorted by finish

times.
• Let 𝑆∗ be the optimal list.

• Let j1, j2, … , jm be the elements in 𝑆∗ sorted by finish
times.

• We want to show that for every index 1 ≤ ℓ ≤ k,
𝑓(𝑖ℓ) ≤ f(jℓ).

Claim: The Finish First Algorithm is Optimal
Proof Ideas:

• We want to show that for every index 1 ≤ ℓ ≤ k,
𝑓(𝑖ℓ) ≤ f(jℓ).
• That is, we want to show that our algorithm is always

doing better than the optimal solution! “Stay Ahead”
• If this is true, then it must be the case that m = k.

Claim: The Finish First Algorithm is Optimal
Proof Ideas:

• We want to show that for every index 1 ≤ ℓ ≤ m,
𝑓(𝑖ℓ) ≤ f(jℓ).
• That is, we want to show that our algorithm is always

doing better than the optimal solution! “Stay Ahead”
• If this is true, then it must be the case that m = k.

• If not, then our algorithm would have added 𝑗k+1 to 𝑆.

Claim: The Finish First Algorithm is Optimal
Proof Ideas:

• We want to show that for every index 1 ≤ ℓ ≤ m,
𝑓(𝑖ℓ) ≤ f(jℓ).
• That is, we want to show that our algorithm is always

doing better than the optimal solution! “Stay Ahead”
• If this is true, then it must be the case that m = k.

• If not, then our algorithm would have added 𝑗k+1 to 𝑆.

Claim: The Finish First Algorithm is Optimal
Base Case:

• We observe that 𝑓(𝑖1) ≤ f(j1) since the algorithm
always takes the element with the quickest finish time.

Start End

Time:

j1

𝑖1

Claim: The Finish First Algorithm is Optimal
Inductive Hypothesis:

• Assume that 𝑓(𝑖p) ≤ 𝑓(𝑗p) for some 1 ≤ p < k.
• We will prove that 𝑓(𝑖p+1) ≤ 𝑓(𝑗p+1)

Start End

Time:

jp

𝑖p 𝑖p+1

jp+1

Claim: The Finish First Algorithm is Optimal
Inductive Case:

• Observe that since 𝑓(𝑖p) ≤ 𝑓(𝑗p), 𝑗p+1 was in the set R
when we added 𝑖p+1.
• Hence, 𝑓(𝑖p+1) ≤ 𝑓(𝑗p+1)

Start End

Time:

jp

𝑖p 𝑖p+1

jp+1

Finish First Algorithm

• Input: List of n tasks 𝑅
• For each 𝑖 ∈ 𝑅, let 𝑠(𝑖) and 𝑓(𝑖) be start and finish times.

• Output: List of non-conflicting tasks of maximum length
• Let 𝑆 be empty
• While 𝑅 is not empty:

• Find 𝒊 ∈ 𝑹 with earliest finish time (argmin 𝒇(𝒊))
• Add i to 𝑆
• Remove all tasks that conflict with i from 𝑅

• Return 𝑆

Claim: The Finish First Algorithm is Optimal
Conclusion:

• We have shown 𝑓(𝑖ℓ) ≤ 𝑓(𝑗ℓ) for all 1 ≤ ℓ ≤ k as
desired.

• If k ≤ m, then we could add jk+1 to S which contradicts
the while loop exit condition.

Start End

Time:

jp

𝑖p 𝑖p+1

jp+1

Finish First Algorithm

• Input: List of n tasks 𝑅
• For each 𝑖 ∈ 𝑅, let 𝑠(𝑖) and 𝑓(𝑖) be start and finish times.

• Output: List of non-conflicting tasks of maximum length
• Let 𝑆 be empty
• While 𝑹 is not empty:

• Find 𝑖 ∈ 𝑅 with earliest finish time (argmin 𝑓(𝑖))
• Add i to 𝑆
• Remove all tasks that conflict with i from 𝑅

• Return 𝑆

Runtime

• Input: List of n tasks 𝑅
• For each 𝑖 ∈ 𝑅, let 𝑠(𝑖) and 𝑓(𝑖) be start and finish times.

• Output: List of non-conflicting tasks of maximum length
• Let 𝑆 be empty
• While 𝑅 is not empty:

• Find 𝑖 ∈ 𝑅 with earliest finish time (argmin 𝑓(𝑖))
• Add i to 𝑆
• Remove all tasks that conflict with i from 𝑅

• Return 𝑆

Runtime

• Input: List of n tasks 𝑅
• For each 𝑖 ∈ 𝑅, let 𝑠(𝑖) and 𝑓(𝑖) be start and finish times.

• Output: List of non-conflicting tasks of maximum length
• Let 𝑆 be empty
• While 𝑅 is not empty:

• Find 𝑖 ∈ 𝑅 with earliest finish time (argmin 𝑓(𝑖))
• Add i to 𝑆
• Remove all tasks that conflict with i from 𝑅

• Return 𝑆
These look like O(n) steps!

Runtime

• Input: List of n tasks 𝑅
• For each 𝑖 ∈ 𝑅, let 𝑠(𝑖) and 𝑓(𝑖) be start and finish times.

• Output: List of non-conflicting tasks of maximum length
• Let 𝑆 be empty
• Sort 𝑅 by finish time
• Let last_finished = 0
• For i ∈ [n]:

• If s(i) ≥ last_finished:
• Add i to 𝑆
• Set last_finished = f(i)

• Return 𝑆

Because we sorted, this is next
task to finish that won’t conflict!

Runtime

• Input: List of n tasks 𝑅
• For each 𝑖 ∈ 𝑅, let 𝑠(𝑖) and 𝑓(𝑖) be start and finish times.

• Output: List of non-conflicting tasks of maximum length
• Let 𝑆 be empty
• Sort 𝑅 by finish time
• Let last_finished = 0
• For i ∈ [n]:

• If s(i) ≥ last_finished:
• Add i to 𝑆
• Set last_finished = f(i)

• Return 𝑆

This only takes O(nlog(n)) time!

Runtime O(nlog(n))

• Input: List of n tasks 𝑅
• For each 𝑖 ∈ 𝑅, let 𝑠(𝑖) and 𝑓(𝑖) be start and finish times.

• Output: List of non-conflicting tasks of maximum length
• Let 𝑆 be empty
• Sort 𝑅 by finish time
• Let last_finished = 0
• For i ∈ [n]:

• If s(i) ≥ last_finished:
• Add i to 𝑆
• Set last_finished = f(i)

• Return 𝑆

Each step in this loop is
constant time!

Shortest Path

• Input: Directed graph 𝐺 = (𝑉, 𝐸), edge lengths ℓ: 𝐸 → 𝑅≥0,
a source vertex 𝑠 ∈ 𝑉, and a destination vertex 𝑡 ∈ 𝑉.

• Output: Find the shortest directed path from s to t in 𝐺.

5

3
5

2

1

11
6

3

12

5

2

4

𝑠

t

Single Pair Shortest Path

• Input: Directed graph 𝐺 = (𝑉, 𝐸), edge lengths ℓ: 𝐸 → 𝑅≥0,
a source vertex 𝑠 ∈ 𝑉, and a destination vertex 𝑡 ∈ 𝑉.

• Output: Find the shortest directed path from s to t in 𝐺.

5

3
5

2

1

11
6

3

12

5

2

4

𝑠

t

Single Pair Shortest Path

• Input: Directed graph 𝐺 = (𝑉, 𝐸), edge lengths ℓ: 𝐸 → 𝑅≥0,
and a source vertex 𝑠 ∈ 𝑉.

• Output: Find the shortest directed path from s to all
vertices in 𝐺.

5

3
5

2

1

11
6

3

12

5

2

4

𝑠

Single Pair Shortest Path

• Input: Directed graph 𝐺 = (𝑉, 𝐸), edge lengths ℓ: 𝐸 → 𝑅≥0,
and a source vertex 𝑠 ∈ 𝑉.

• Output: Find the shortest directed path from s to all
vertices in 𝐺.

5

3
5

2

1

11
6

3

12

5

2

4

𝑠

Shortest Path Tree

Questions
• Q1: How do you solve one problem with the answer to the

other?
• Q2: What happens to the tree when you add 100 to each

edge?

5

3
5

2

1

11
6

3

12

5

2

4

𝑠

Questions
• A1: You can lookup t or run with t for each vertex.)
• A2: The shortest paths may change!

105

105

102

111
106

103

112

105 104

𝑠

Questions
• Q3: How can you solve this if each edge has length 1?
• Q2: What happens to the tree when you multiply each

length by 2?

5

3
5

2

1

11
6

3

12

5

2

4

𝑠

Questions
• Q3: You can run BFS.
• Q2: The shortest path is still the shortest path but twice as

long.

10

6
10

4

2

22
12

6

24

10

4

8

𝑠

Dijkstra’s Greedy Algorithm
• We will describe a greedy algorithm

that is named after its discoverer,
Edsger Wybe Dijkstra. ->

• The algorithm runs in O(|E| + |V|log(|V|))
time when implemented with a priority
queue.

• We will assume no negative edge
weights.

Dijkstra’s Algorithm Idea
• Prompt: What edge do we always know is going to be part

of a shortest path?

5

3
5

2

1

11
6

3

12

5

2

4

𝑠

Dijkstra’s Algorithm Idea
• Observation: The shortest edge leaving the source vertex is

always in a shortest path.

5

3
5

2

1

11
6

3

12

5

2

4

𝑠

Dijkstra’s Algorithm Idea
• Motivation: You know that the shortest path from where you

are to anywhere else is important.

5

3
5

2

1

11
6

3

12

5

2

4

𝑠

Dijkstra’s Algorithm Idea
• Proof: Suppose the shortest edge leaving s went to w. Now suppose

there is another path from s to w. It must use another edge leaving s.

5

3

𝑠

5

5

w

Dijkstra’s Algorithm Idea
• If it uses another edge leaving s then it must be just as long or

longer of a path!

5

3

𝑠

5

5

w

Dijkstra’s Algorithm Idea
• Prompt: What can we say about the shortest path tree with

respect to s and w?

5

3
5

2

1

11
6

3

12

5

2

4

𝑠

w

Dijkstra’s Algorithm Idea
• Observation: The shortest path tree must include an edge

leaving s and/or w. Otherwise, you can’t reach everything.

5

3
5

2

1

11
6

3

12

5

2

4

𝑠

w

Dijkstra’s Algorithm Idea
• Prompt: Which is closer to s?

5

3
5

2

1

11
6

3

12

5

2

4

𝑠

w

x

y

Dijkstra’s Algorithm Idea
• Observation: There are both 5 away from s. We don’t want

to assume that the distance from w is the same as the
distance from s.

5

3
5

2

1

11
6

3

12

5

2

4

𝑠

w

x

y

Dijkstra’s Algorithm Idea
• Observation: The s to x edge and the w to y edge should

both be in the shortest path tree. (We need non-negative
edge weights)

5

3
5

2

1

11
6

3

12

5

2

4

𝑠

w

x

y

Dijkstra’s Algorithm Idea
• Prompt: How do we generalize these observation as a

greedy rule?

5

3
5

2

1

11
6

3

12

5

2

4

𝑠

w

x

y

Dijkstra’s Algorithm Idea
• Algorithm Idea: In each iteration, pick an edge from my

shortest path tree to the “nearest” vertex not yet in the tree.

5

3
5

2

1

11
6

3

12

5

2

4

𝑠

w

x

y

Dijkstra’s Algorithm Idea
• Algorithm Idea: Keep track of the shortest path tree. In each

iteration, add an edge from the tree to the nearest neighbor
(with respect to s).

5

3
5

2

1

11
6

3

12

5

2

4

𝑠

w

x

y

Dijkstra’s Algorithm

5

3
5

2

1

11
6

3

12

5

2

4

𝑠

w

x

y

Dijkstra’s Algorithm Idea

𝑠

y

x

z

S

• Look at all neighbors of S. Determine which has the
shortest path from s. Add that to S. Repeat.

Dijkstra’s Algorithm Idea

𝑠

y

x

z

S

• Key Idea: We guess the distance from s to a neighbor is
𝑚𝑖𝑛𝑒= 𝑢,𝑣 :𝑢∈𝑆𝑑 𝑢 + ℓ𝑒 where 𝑑 𝑢 is the distance from s
to u.

Dijkstra’s Algorithm Idea

5

3
5

2

1

11
6

3

12

5

2

4

𝑠

S = {s}
d = [0,∞, ∞, ∞, ∞, ∞, ∞, ∞]

v1

v2

v3

v4

v5

v6

v7

v0

Dijkstra’s Algorithm Idea

5

3
5

2

1

11
6

3

12

5

2

4

𝑠

S = {s}
d = [0, 3, 5, ∞, ∞, ∞, ∞, ∞]

v1

v2

v3

v4

v5

v6

v7

v0

Dijkstra’s Algorithm Idea

5

3
5

2

1

11
6

3

12

5

2

4

𝑠

S = {s}
d = [0, 3, 5, ∞, ∞, 5, ∞, ∞]

v1

v2

v3

v4

v5

v6

v7

v0

Dijkstra’s Algorithm Idea

5

3
5

2

1

11
6

3

12

5

2

4

𝑠

S = {s}
d = [0, 3, 5, 7, ∞, 5, ∞, ∞]

v1

v2

v3

v4

v5

v6

v7

v0

Dijkstra’s Algorithm Idea

5

3
5

2

1

11
6

3

12

5

2

4

𝑠

S = {s}
d = [0, 3, 5, 7, 8, 5, ∞, ∞]

v1

v2

v3

v4

v5

v6

v7

v0

Dijkstra’s Algorithm Idea

5

3
5

2

1

11
6

3

12

5

2

4

𝑠

S = {s}
d = [0, 3, 5, 7, 8, 5, 8, ∞]

v1

v2

v3

v4

v5

v6

v7

v0

Dijkstra’s Algorithm Idea

5

3
5

2

1

11
6

3

12

5

2

4

𝑠

S = {s}
d = [0, 3, 5, 7, 8, 5, 8, 12]

v1

v2

v3

v4

v5

v6

v7

v0

Paths?

5

3
5

2

1

11
6

3

12

5

2

4

𝑠

Q: How do we return the
paths?

v1

v2

v3

v4

v5

v6

v7

v0

Paths?

5

3
5

2

1

11
6

3

12

5

2

4

𝑠

Q: How do we return the
paths?

v1

v2

v3

v4

v5

v6

v7

v0

Paths?

5

3
5

2

1

11
6

3

12

5

2

4

𝑠

A: When we add v to S, we
can also keep track of what
edge was used.

v1

v2

v3

v4

v5

v6

v7

v0

Set P[v] = u such that (u,v) was min.

Let P a n length array.

Set P[s] to be -1.

Paths?

5

3
5

2

1

11
6

3

12

5

2

4

𝑠

Q: How do we get the
shortest path from s to w?

v1

v2

v3

v4

v5

v6

v7

v0

Set P[v] = u such that (u,v) was min.

Let P a n length array.

Set P[s] to be -1.

Paths?

5

3
5

2

1

11
6

3

12

5

2

4

𝑠

A: We can recursively construct
it by looking at taking the edge
(P[w],w) and the shortest path
from s to P[w].

v1

v2

v3

v4

v5

v6

v7

v0

Set P[v] = u such that (u,v) was min.

Let P a n length array.

Set P[s] to be Null.

Paths

5

3
5

2

1

11
6

3

12

5

2

4

𝑠

Let 𝑃𝑢 be the path found
from s to u using these
modifications.

v1

v2

v3

v4

v5

v6

v7

v0

Set P[v] = u such that (u,v) was min.

Let P a n length array.

Set P[s] to be -1.

Correctness

5

3
5

2

1

11
6

3

12

5

2

4

𝑠

Claim: At the start of each
loop, 𝑃𝑢 is the shortest path
from s to u for all u ∈ S.

v1

v2

v3

v4

v5

v6

v7

v0

Proof Idea
• We proceed with induction on the size of 𝑆.
• If |S| = 1, then…

Proof Idea

𝑠

• We proceed with induction on the size of 𝑆.
• If |S| = 1, then it is true because the shortest path from s to s is

empty set.

Proof Idea

S

• We proceed with induction on the size of 𝑆.
• Suppose for all 𝑆 such that |𝑆| ≤ k, 𝑃𝑢 is the shortest path from s to

u for all u ∈ S.

𝑠

Proof Idea

S

• We proceed with induction on the size of 𝑆.
• Suppose for all 𝑆 such that |𝑆| ≤ k, 𝑃𝑢 is the shortest path from s to

u for all u ∈ S.

𝑠

v

• Let v be the k+1 vertex added to S and
let (u,v) be the edge minimized
𝑚𝑖𝑛𝑒= 𝑢,𝑣 :𝑢∈𝑆𝑑 𝑢 + ℓ𝑒 .

u

Proof Idea

S

• We proceed with induction on the size of 𝑆.
• Suppose for all 𝑆 such that |𝑆| ≤ k, 𝑃𝑢 is the shortest path from s to

u for all u ∈ S.

𝑠

v

• Let v be the k+1 vertex added to S and
let (u,v) be the edge minimized
𝑚𝑖𝑛𝑒= 𝑢,𝑣 :𝑢∈𝑆𝑑 𝑢 + ℓ𝑒 .

• Suppose 𝑃𝑢 ∪ {(u, v)} is not the
shortest path. Then there exists a path
that must leave S via some edge (x,y).

u

x
y

Proof Idea

S

• We proceed with induction on the size of 𝑆.
• Suppose for all 𝑆 such that |𝑆| ≤ k, 𝑃𝑢 is the shortest path from s to

u for all u ∈ S.

𝑠

v

• Let v be the k+1 vertex added to S and
let (u,v) be the edge minimized
𝑚𝑖𝑛𝑒= 𝑢,𝑣 :𝑢∈𝑆𝑑 𝑢 + ℓ𝑒 .

• Suppose 𝑃𝑢 ∪ {(u, v)} is not the
shortest path. Then there exists a path
that must leave S via some edge (x,y).

• However, the algo picked v and so the
path from s to y must be just as long. ><

u

x
y

Q: What about negative edge weights?

5

3
5

2

1

11
6

3

12

5

2

4

𝑠

v1

v2

v3

v4

v5

v6

v7

v0

	Slide 1: CSE 331: Algorithms & Complexity
	Slide 2: Schedule
	Slide 3: Course Updates
	Slide 4: Interval Scheduling
	Slide 5: Finish First Algorithm
	Slide 6: Claim: The Finish First Algorithm is Optimal
	Slide 7: Claim: The Finish First Algorithm is Optimal
	Slide 8: Claim: The Finish First Algorithm is Optimal
	Slide 9: Claim: The Finish First Algorithm is Optimal
	Slide 10: Claim: The Finish First Algorithm is Optimal
	Slide 11: Claim: The Finish First Algorithm is Optimal
	Slide 12: Claim: The Finish First Algorithm is Optimal
	Slide 13: Finish First Algorithm
	Slide 14: Claim: The Finish First Algorithm is Optimal
	Slide 15: Finish First Algorithm
	Slide 16: Runtime
	Slide 17: Runtime
	Slide 18: Runtime
	Slide 19: Runtime
	Slide 20: Runtime O(nlog(n))
	Slide 21: Shortest Path
	Slide 22: Single Pair Shortest Path
	Slide 23: Single Pair Shortest Path
	Slide 24: Single Pair Shortest Path
	Slide 25: Questions
	Slide 26: Questions
	Slide 27: Questions
	Slide 28: Questions
	Slide 29: Dijkstra’s Greedy Algorithm
	Slide 30: Dijkstra’s Algorithm Idea
	Slide 31: Dijkstra’s Algorithm Idea
	Slide 32: Dijkstra’s Algorithm Idea
	Slide 33: Dijkstra’s Algorithm Idea
	Slide 34: Dijkstra’s Algorithm Idea
	Slide 35: Dijkstra’s Algorithm Idea
	Slide 36: Dijkstra’s Algorithm Idea
	Slide 37: Dijkstra’s Algorithm Idea
	Slide 38: Dijkstra’s Algorithm Idea
	Slide 39: Dijkstra’s Algorithm Idea
	Slide 40: Dijkstra’s Algorithm Idea
	Slide 41: Dijkstra’s Algorithm Idea
	Slide 42: Dijkstra’s Algorithm Idea
	Slide 43: Dijkstra’s Algorithm
	Slide 44: Dijkstra’s Algorithm Idea
	Slide 45: Dijkstra’s Algorithm Idea
	Slide 46: Dijkstra’s Algorithm Idea
	Slide 47: Dijkstra’s Algorithm Idea
	Slide 48: Dijkstra’s Algorithm Idea
	Slide 49: Dijkstra’s Algorithm Idea
	Slide 50: Dijkstra’s Algorithm Idea
	Slide 51: Dijkstra’s Algorithm Idea
	Slide 52: Dijkstra’s Algorithm Idea
	Slide 53: Paths?
	Slide 54: Paths?
	Slide 55: Paths?
	Slide 56: Paths?
	Slide 57: Paths?
	Slide 58: Paths
	Slide 59: Correctness
	Slide 60: Proof Idea
	Slide 61: Proof Idea
	Slide 62: Proof Idea
	Slide 63: Proof Idea
	Slide 64: Proof Idea
	Slide 65: Proof Idea
	Slide 66: Q: What about negative edge weights?

