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Schedule

1.Course Updates
2.Interval Scheduling
3.Stay Ahead
4.Runtime Analysis
5.Shortest Path




Course Updates

 All Grading Before Tuesday
e HW4Out

* Not Due Next Week!
* Group Project

* First Problems Oct 31¢t



Interval Scheduling

* Consider aninterval of time (e.g. Wednesday).
* Considertasks that need to be completed during specific

times (e.g. classes).
* We wantto fit as many tasks as possible into the day such

that no two overlap.
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Finish First Algorithm

* Input: Listof ntasks R
* Foreachi € R, lets(i) and f (i) be start and finish times.
* Output: List of non-conflicting tasks of maximum length
e LetS be empty
* While R is not empty:
* Findi € R with earliest finish time (argmin {(i))
* Addito$
* Remove all tasks that conflict with1from R
* Return$



Claim: The Finish First Algorithm is Optimal

Proof Ideas:
* LetS$ bethe setreturned by the algorithm.
 Letiq, o, ...,k bethe elementsin S sorted by finish

times.
e LetS™ bethe optimal list.
* Letjq,jo, .-, jm D€ the elementsin S sorted by finish

times.
 We want to show that foreveryindex1 < ¥ <k,

f (i) < 1(e).



Claim: The Finish First Algorithm is Optimal

Proof Ideas:
 We wantto show thatforeveryindex1 < ¥ < Kk,

f(e) = £(e).
* Thatis, we want to show that our algorithm is always
doing better than the optimal solution! “Stay Ahead”
e [fthisistrue, then it must be the casethatm = k.



Claim: The Finish First Algorithm is Optimal

Proof Ideas:
 We wantto show thatforeveryindex1 < < m,

f(e) = £(e).
* Thatis, we want to show that our algorithm is always
doing better than the optimal solution! “Stay Ahead”
e [fthisistrue, then it must be the casethatm = k.
* [f not, then our algorithm would have added ji,; t0 S.



Claim: The Finish First Algorithm is Optimal

Proof Ideas:
 We wantto show thatforeveryindex1 < < m,

f(e) = £(e).
* Thatis, we want to show that our algorithm is always
doing better than the optimal solution! “Stay Ahead”
e [fthisistrue, then it must be the casethatm = k.
* [f not, then our algorithm would have added ji,; t0 S.



Claim: The Finish First Algorithm is Optimal

Base Case:
 We observethat f(i;) < f(j;) since the algorithm
always takes the element with the quickest finish time.




Claim: The Finish First Algorithm is Optimal

Inductive Hypothesis:
* Assumethat f(i,) < f(jp)forsomel <p <k.

* Wewill prove that f(i;+1) < f(p+1)




Claim: The Finish First Algorithm is Optimal

Inductive Case:
* Observe thatsince f(i,) < f(p), jp+1 Was in the setR

when we added i, ;.
+ Hence, f(ip+1) < fUp+1)




Finish First Algorithm

* Input: Listof ntasks R
* Foreachi € R, lets(i) and f (i) be start and finish times.
* Output: List of non-conflicting tasks of maximum length
e LetS be empty
* While R is not empty:
* Findi € R with earliest finish time (argmin f(i))
e Addito S
* Remove all tasks that conflict with1from R
* Return$



Claim: The Finish First Algorithm is Optimal

Conclusion:
* We have shown f(iy) < f(j,) foralll <¥€ <kas
desired.
* Ifk < m, thenwe could add j,; to S which contradicts
the while loop exit condition.




Finish First Algorithm

* Input: Listof ntasks R
* Foreachi € R, lets(i) and f (i) be start and finish times.
* Output: List of non-conflicting tasks of maximum length
e LetS be empty
* While R is not empty:
* Findi € R with earliest finish time (argmin f (i))
* Addito$
* Remove all tasks that conflict with1from R
* Return$



Runtime

* Input: Listof ntasks R
* Foreachi € R, lets(i) and f (i) be start and finish times.
* Output: List of non-conflicting tasks of maximum length
e LetS be empty
* While R is not empty:
* Findi € R with earliest finish time (argmin f (i))
e Addito S
* Remove all tasks that conflict with1from R
* Return$



Runtime

* Input: Listof ntasks R
* Foreachi € R, lets(i) and f (i) be start and finish times.

* Output: List of non-conflicting tasks of maximum length
e LetS be empty
* While R is not empty:
* | Find i € R with earliest finish time (argmin f (i))
e Addito S

* | Remove all tasks that conflict with1 from R

e Return$S

These look like O(n) steps!



Runtime

Input: List of n tasks R

Foreachi € R, lets(i) and f (i) be start and finish times.

Output: List of non-conflicting tasks of maximum length

Let S be empty
Sort R by finish time
| et last finished =0 Because we sorted, this is next
Fori € [n]: task to finish that won’t conflict!
. If s(i) 2W

e Addito$

* Setlast_finished = (i)
Return S



Runtime

Input: List of n tasks R

Foreachi € R, lets(i) and f (i) be start and finish times.

Output: List of non-conflicting tasks of maximum length

Let S be empty
Sort R by finish time — . .
Let last finished =0 This only takes O(nlog(n)) time!
Fori € [n]:
* Ifs(i) = last_finished:
 Addito$
* Setlast_finished = (i)
Return S



Runtime O(nlog(n))

* Input: Listof ntasks R
* Foreachi € R, lets(i) and f (i) be start and finish times.

* Output: List of non-conflicting tasks of maximum length
e LetS be empty

* Sort R by finish time
e Letlast finished =0 Each step in this loop is

* Fori € [n]: ——  constant time!

* Ifs(i) = last_finished:
* Addito$
* Setlast_finished = (i)
e Return S



Shortest Path

* Input: Directed graph ¢ = (V,E), edge lengths £: E = R,
a source vertexs € I/, and a destination vertext € VI/.
* Output: Find the shortest directed path fromstotinG.

50/5/'0\”~»O_6_>O
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Single Pair Shortest Path

* Input: Directed graph ¢ = (V,E), edge lengths £: E = R,
a source vertexs € I/, and a destination vertext € VI/.
* Output: Find the shortest directed path fromstotinG.



Single Pair Shortest Path

* Input: Directed graph ¢ = (V,E), edge lengths £: E = R,
and a source vertexs € V.

* Output: Find the shortest directed path from s to all
verticesinG.

0/5 Q\11§*O—6—>O
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Single Pair Shortest Path

* Input: Directed graph ¢ = (V,E), edge lengths £: E = R,
and a source vertexs € V.
* Output: Find the shortest directed path from s to all

vertices in G.
§ __-VO N —
@

Shortest Path Tree



Questions

* Q1:How do you solve one problem with the answer to the
other?

* Q2: What happens to the tree when you add 100 to each
edge?

SO%"‘E’—:'O\C; "O‘ 6_’0
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Questions

* A1:You can lookup tor runwith t for each vertex.)
* A2: The shortest paths may change!
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Questions

* Q3: How canyou solve this if each edge has length 1?
* Q2: What happens to the tree when you multiply each
length by 27?



Questions

* Q3:YoucanrunBFS.
* Q2:The shortest path is still the shortest path but twice as
long.
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Dijkstra’s Greedy Algorithm

* We will describe a greedy algorithm
that is named after its discoverer,
Edsger Wybe Dijkstra. ->

* The algorithm runs in O(|E| + |V|log(|V]))
time when implemented with a priority
queue.

* We willassume no negative edge
weights.




Dijkstra’s Algorithm Idea

* Prompt: What edge do we always know is going to be part
of a shortest path?

50/5/'0\”~>O_6_>O

;O
O— 220



Dijkstra’s Algorithm Idea

* Observation: The shortest edge leaving the source vertex s
always in a shortest path.

50/5/'0\”~>O_6_>O
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Dijkstra’s Algorithm Idea

* Motivation: You know that the shortest path from where you
are to anywhere else is important.

50/5/'0\”~>O_6_>O
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Dijkstra’s Algorithm Idea

* Proof: Suppose the shortest edge leaving s went to w. Now suppose
there is another path from s to w. It must use another edge leaving s.



Dijkstra’s Algorithm Idea

* |fituses another edge leaving s then it must be just as long or
longer of a path!



Dijkstra’s Algorithm Idea

* Prompt: What can we say about the shortest path tree with
respectto s and w?
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Dijkstra’s Algorithm Idea

* Observation: The shortest path tree must include an edge
leaving s and/or w. Otherwise, you can’t reach everything.
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Dijkstra’s Algorithm Idea

* Prompt: Which is closerto s?
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Dijkstra’s Algorithm Idea

* Observation: There are both 5 away from s. We don’t want
to assume that the distance from w is the same as the
distance from s. <
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Dijkstra’s Algorithm Idea

* Observation: The s to x edge and the wto y edge should
both be in the shortest path tree. (We need non-negative
edge weights) <
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Dijkstra’s Algorithm Idea

* Prompt: How do we generalize these observation as a
greedy rule?
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Dijkstra’s Algorithm Idea

* Algorithm Idea: In each iteration, pick an edge from my
shortest path tree to the “nearest” vertex not yet in the tree.
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Dijkstra’s Algorithm Idea

* Algorithm lIdea: Keep track of the shortest path tree. In each
iteration, add an edge from the tree to the nearest neighbor
(with respectto s).
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Dijkstra’s Algorithm

Dijkstra's Algorithm (G, £)
Let S be the set of explored nodes
For each ueS, we store a distance d(u)
Initially S={s} and d(s)=0
While S#V
Select a node v¢$S with at least one edge from S for which
d'(v) =min,_¢, yyuesd(m) + £, is as small as possible
Add v to S and define d(v) =d'(v)
EndWhile

~ P
-~ -
i



Dijkstra’s Algorithm Idea

* Look at all neighbors of S. Determine which has the
shortest path from s. Add that to S. Repeat.

X

,,,,,,,,,,,,,, Dijkstra's Algorithm (G, £)
o RN ) Let S be the set of explored nodes
4
/" S \\ For each ueS, we store a distance d(u)

'/ 4 Initially S={s} and d(s)=0

:' ‘|| While S#V

=, ," Z Select a node v¢S with at least one edge from S for which
1

\

\

d'(v) =mine_(, yuesd(u) + £, is as small as possible
\ / Add v to S and define d(v) =d'(v)
4

\ 4 .
AN < EndWhile
\\\\\ 7/
\\\\\\ Q



Dijkstra’s Algorithm Idea

* Keyldea: We guess the distance from s to a neighbor is
MiNg=(yv)uesd(u) + €, where d(u) is the distance from's

to u.
--------------- X Dijkstra's Algorithm (G, ¢)
\\\\ N ) Let S be the set of explored nodes

S \\ For each ueS, we store a distance d(u)

/ Initially S={s} and d(s)=0
O | While S#V
," Z Select a node v¢S with at least one edge from S for which

"\} d'(v) =mine_(, yuesd(u) + £, is as small as possible
Y

Add v to S and define d(v) =d'(v)

1
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oo 9 o Dijkstra's Algorithm (G, £)
DIJ kSt ra S Algo rlth m Let S be the set of explored nodes
For each ueS, we store a distance d(u)
Initially S={s} and d(s)=0
S ={s} While S#V
Select a node v¢S with at least one edge from S for which
d =[0,00, 00, 00, 00, 00, 00, O] dr _ , ‘
(V) =ming_(; yyues d@) + €, is as small as possible
Add v to S and define d(v)=d'(v)
EndWhile




Dij kStra,S Al_g() rith m Dijkstra's Algorithm (G, £)

Let S be the set of explored nodes

For each ueS, we store a distance d(u)

Initially S={s} and d(s)=0
S ={s} While S#V

_ Select a node v¢S with at least one edge from S for which
d=]0, 3,5, 00, 00, 0, 00, 0]

d'(v) =min,_g,, y)uesd) + £, is as small as possible
Add v to S and define d(v)=d'(v)

EndWhile
S .-v:VZE\ﬂ\,‘
0“...¢ gunt?® 5 -"° e- — 6 q
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Dij kStra,S Al_g() rith m Dijkstra's Algorithm (G, £)

Let S be the set of explored nodes

For each ueS, we store a distance d(u)

Initially S={s} and d(s)=0
S ={s} While S#V

_ Select a node v¢S with at least one edge from S for which
d - [Oa 33 5’ o, O, 5’ o, OO]

d'(v) =min,_g,, y)uesd) + £, is as small as possible
Add v to S and define d(v)=d'(v)

EndWhile
S - e BV2F =11 ﬁ,‘
.‘tll..‘ ‘-““ - Qg — 6 ﬁ
0 VO.: / \2 / ‘
‘."‘,.‘ 5 D\ P 1 f / -
3 4
0“‘...“/ |5 / 3 *
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oo 9 o Dijkstra's Algorithm (G, £)
DIJ kSt ra S Algo rlth m Let S be the set of explored nodes

For each ueS, we store a distance d(u)
Initially S={s} and d(s)=0
S ={s} While S#V

_ Select a node v¢S with at least one edge from S for which
d=|[0,3,5,7, 00,5, oo, o0] .
O » = ) d'(v) = mine_g, yyuesd() + £, is as small as possible
Add v to S and define d(v)=d'(v)

EndWhile
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Dij kStra,S Al_g() rith m Dijkstra's Algorithm (G, £)

Let S be the set of explored nodes

For each ueS, we store a distance d(u)

Initially S={s} and d(s)=0
S ={s} While S#V

d — [O 3 5 7 8 5 00 OO] Select a node v¢S with at least one edge from S for which
O ’ d'(v) = mine_g, yyuesd() + £, is as small as possible
Add v to S and define d(v)=d'(v)
EndWhile
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oo 9 o Dijkstra's Algorithm (G, £)
DIJ kSt ra S Algo rlth m Let S be the set of explored nodes

For each ueS, we store a distance d(u)
Initially S={s} and d(s)=0
S ={s} While S#V

d — [O 3 5 7 8 5 8 OO] Select a node v ¢S with at least one edge from S for which
S d'(v) =min,_q, yyyesd(m) + £, is as small as possible
Add v to S and define d(v) =d'(v)

EndWhile
S Vo ¢ e— TN
> =" 5 L Al adl ”Q-?". 11 — . 4: 0“.'%
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oo 9 o Dijkstra's Algorithm (G, £)
DIJ kSt ra S Algo rlth m Let S be the set of explored nodes

For each ueS, we store a distance d(u)
Initially S={s} and d(s)=0
S ={s} While S#V

d = [O, 3, 5, 7’ 8’ 5, 8, 12] Select a node v ¢S with at least one edge from S for which

d'(v) =min,_g,, y)uesd) + £, is as small as possible
Add v to S and define d(v)=d'(v)

EndWhile
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&
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r? Dijkstra's Algorithm (G, £)
Paths ° Let S be the set of explored nodes
For each ueS, we store a distance d(u)
Initially S={s} and d(s)=0

Q: How do we return the While S#V

Select a node v¢S with at least one edge from S for which
paths?

d'(v) =min,_g,, y)uesd) + £, is as small as possible
Add v to S and define d(v)=d'(v)

EndWhile
“"..‘
PV 7 —

S “w, 5 “‘lll' ’0..?‘0. 11 * :‘ “ .0“..‘
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r? Dijkstra's Algorithm (G, £)
Paths ° Let S be the set of explored nodes
For each ueS, we store a distance d(u)
Initially S={s} and d(s)=0

Q: How do we return the While S#V

Select a node v¢S with at least one edge from S for which
paths?

d'(v) =min,_g,, y)uesd) + £, is as small as possible
Add v to S and define d(v)=d'(v)

EndWhile
“"..‘
PV 7 —
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Dijkstra's Algorithm (G, £)
Paths®

Let S be the set of explored nodes LetPan length array.
For each ueS, we store a distance d(u)

Initially S={s} and d(s)=0 Set P[s]to be -1.

A: Whenwe add vto S, we While S#V
Select a node v¢S with at least one edge from S for which
can alSO keep tl’aCk Of What d'(v) =min,_g,, y)uesd) + £, is as small as possible

Add v to S and define d(v) =d'(v) t PIvl = h that in.
edge was used. N t Se [V] U suc a (U,V) was min

EndWhile
“-'.“
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r? Dijkstra's Algorithm (G, £)
Paths ° Let S be the set of explored nodes Let P a n length array.

For each ueS, we store a distance d(u)
Initially S={s} and d(s)=0 Set P[s] to be -1.

Q: How do we get the While S#V
Select a node v¢S with at least one edge from S for which
shortest path from s to w?

d'(v) =min,_g,, y)uesd) + £, is as small as possible
Add v to § and define d(v)=d'(v) Set P[v]=u such that (u,v) was min.

EndWhile
L
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r? Dijkstra's Algorithm (G, £)
Paths ° Let S be the set of explored nodes LetPan length array.
For each ueS, we store a distance d(u)

Initially S={s} and d(s)=0 Set P[s]to be Null.
A: We can recursively construct While S#V

|t by lOOking at ta k|ng the edge Select a node v ¢S with at least one edge from S for which

d'(v) =min,_g,, y)uesd) + £, is as small as possible
(P[w],w) and the shortest path Add v to S and define d()=d'(v) Set P[v]= u such that (u,v) was min.

from s to P[w]. —
“--..‘
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Pat h S Dijkstra's Algorithm (G, £)

Let S be the set of explored nodes LetPan length array.
For each ueS, we store a distance d(u)

Initially S={s} and d(s)=0 Set P[s]to be -1.

Let P, be the path found While SV
. Select a node v¢S with at least one edge from S for which
from s to u using these

d'(v) =min,_g,, y)uesd) + £, is as small as possible

modifications. Endwi:lcliev to S and define d(v)=d'(v) Set P[v]=u such that (u,v) was min.
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Dijkstra's Algorithm (G, £)
Corre CtneSS Let S be the set of explored nodes
For each ueS, we store a distance d(u)
Initially S={s} and d(s)=0

Claim: At the start of each While S#V

Select a node v¢S with at least one edge from S for which

|.OO p, Pu |S the ShO I’teSt path d'(v) =min,_g,, y)uesd) + £, is as small as possible
v to S and define d(v)=d'(v
fromstouforallu € S. Lo Vo R md feine =AW

EndWhile
P V) —
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Proof Idea

* We proceed with induction on the size of S.
 If|S| = 1, then...



Proof Idea

* We proceed with induction on the size of S.
 If|S| = 1,thenitistrue because the shortest path from sto sis

empty set.



Proof Idea

* We proceed with induction on the size of S.
* Suppose forall S suchthat |S| < Kk, P, is the shortest path from s to
uforallu € S.



Proof Idea

* We proceed with induction on the size of S.
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Proof Idea

* We proceed with induction on the size of S.
Suppose forall S suchthat |S| < Kk, P, is the shortest path from s to

u for allu € S.

llllllll

......

Let v be the k+1 vertex added to S and
let (u,v) be the edge minimized
mine=(u,v):uesd(u) + 4.

Suppose P, U {(u,v)}is notthe
shortest path. Then there exists a path
that must leave S via some edge (x,y).
However, the algo picked v and so the
path from s to y must be just as long. ><



Q: What about negative edge weights?
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