CSE 331:
Allg(o)r[ilt]hunnls & (C<o>lnnqp>ll<exiilty
“Shortest Path”

Prof. Charlie Anne Carlson (She/Her)
Lecture 17
Wednesday October 10", 2025

L]

G5

University at Buffalo

Schedule

1.Course Updates
2.Interval Scheduling
3.Stay Ahead
4.Runtime Analysis
5.Shortest Path

Course Updates

 All Grading Before Tuesday
e HW4Out

* Not Due Next Week!
* Group Project

* First Problems Oct 31¢t

Interval Scheduling

* Consider aninterval of time (e.g. Wednesday).
* Considertasks that need to be completed during specific

times (e.g. classes).
* We wantto fit as many tasks as possible into the day such

that no two overlap.

CSE 9001

ENG 110

CSE 331 EE 312 MATH 610
Time I -- I-

Finish First Algorithm

* Input: Listof ntasks R
* Foreachi € R, lets(i) and f (i) be start and finish times.
* Output: List of non-conflicting tasks of maximum length
e LetS be empty
* While R is not empty:
* Findi € R with earliest finish time (argmin {(i))
* Addito$
* Remove all tasks that conflict with1from R
* Return$

Claim: The Finish First Algorithm is Optimal

Proof Ideas:
* LetS$ bethe setreturned by the algorithm.
 Letiq, o, ...,k bethe elementsin S sorted by finish

times.
e LetS™ bethe optimal list.
* Letjq,jo, .-, jm D€ the elementsin S sorted by finish

times.
 We want to show that foreveryindex1 < ¥ <k,

f (i) < 1(e).

Claim: The Finish First Algorithm is Optimal

Proof Ideas:
 We wantto show thatforeveryindex1 < ¥ < Kk,

f(e) = £(e).
* Thatis, we want to show that our algorithm is always
doing better than the optimal solution! “Stay Ahead”
e [fthisistrue, then it must be the casethatm = k.

Claim: The Finish First Algorithm is Optimal

Proof Ideas:
 We wantto show thatforeveryindex1 < < m,

f(e) = £(e).
* Thatis, we want to show that our algorithm is always
doing better than the optimal solution! “Stay Ahead”
e [fthisistrue, then it must be the casethatm = k.
* [f not, then our algorithm would have added ji,; t0 S.

Claim: The Finish First Algorithm is Optimal

Proof Ideas:
 We wantto show thatforeveryindex1 < < m,

f(e) = £(e).
* Thatis, we want to show that our algorithm is always
doing better than the optimal solution! “Stay Ahead”
e [fthisistrue, then it must be the casethatm = k.
* [f not, then our algorithm would have added ji,; t0 S.

Claim: The Finish First Algorithm is Optimal

Base Case:
 We observethat f(i;) < f(j;) since the algorithm
always takes the element with the quickest finish time.

Claim: The Finish First Algorithm is Optimal

Inductive Hypothesis:
* Assumethat f(i,) < f(jp)forsomel <p <k.

* Wewill prove that f(i;+1) < f(p+1)

Claim: The Finish First Algorithm is Optimal

Inductive Case:
* Observe thatsince f(i,) < f(p), jp+1 Was in the setR

when we added i, ;.
+ Hence, f(ip+1) < fUp+1)

Finish First Algorithm

* Input: Listof ntasks R
* Foreachi € R, lets(i) and f (i) be start and finish times.
* Output: List of non-conflicting tasks of maximum length
e LetS be empty
* While R is not empty:
* Findi € R with earliest finish time (argmin f(i))
e Addito S
* Remove all tasks that conflict with1from R
* Return$

Claim: The Finish First Algorithm is Optimal

Conclusion:
* We have shown f(iy) < f(j,) foralll <¥€ <kas
desired.
* Ifk < m, thenwe could add j,; to S which contradicts
the while loop exit condition.

Finish First Algorithm

* Input: Listof ntasks R
* Foreachi € R, lets(i) and f (i) be start and finish times.
* Output: List of non-conflicting tasks of maximum length
e LetS be empty
* While R is not empty:
* Findi € R with earliest finish time (argmin f (i))
* Addito$
* Remove all tasks that conflict with1from R
* Return$

Runtime

* Input: Listof ntasks R
* Foreachi € R, lets(i) and f (i) be start and finish times.
* Output: List of non-conflicting tasks of maximum length
e LetS be empty
* While R is not empty:
* Findi € R with earliest finish time (argmin f (i))
e Addito S
* Remove all tasks that conflict with1from R
* Return$

Runtime

* Input: Listof ntasks R
* Foreachi € R, lets(i) and f (i) be start and finish times.

* Output: List of non-conflicting tasks of maximum length
e LetS be empty
* While R is not empty:
* | Find i € R with earliest finish time (argmin f (i))
e Addito S

* | Remove all tasks that conflict with1 from R

e Return$S

These look like O(n) steps!

Runtime

Input: List of n tasks R

Foreachi € R, lets(i) and f (i) be start and finish times.

Output: List of non-conflicting tasks of maximum length

Let S be empty
Sort R by finish time
| et last finished =0 Because we sorted, this is next
Fori € [n]: task to finish that won’t conflict!
. If s(i) 2W

e Addito$

* Setlast_finished = (i)
Return S

Runtime

Input: List of n tasks R

Foreachi € R, lets(i) and f (i) be start and finish times.

Output: List of non-conflicting tasks of maximum length

Let S be empty
Sort R by finish time — . .
Let last finished =0 This only takes O(nlog(n)) time!
Fori € [n]:
* Ifs(i) = last_finished:
 Addito$
* Setlast_finished = (i)
Return S

Runtime O(nlog(n))

* Input: Listof ntasks R
* Foreachi € R, lets(i) and f (i) be start and finish times.

* Output: List of non-conflicting tasks of maximum length
e LetS be empty

* Sort R by finish time
e Letlast finished =0 Each step in this loop is

* Fori € [n]: —— constant time!

* Ifs(i) = last_finished:
* Addito$
* Setlast_finished = (i)
e Return S

Shortest Path

* Input: Directed graph ¢ = (V,E), edge lengths £: E = R,
a source vertexs € I/, and a destination vertext € VI/.
* Output: Find the shortest directed path fromstotinG.

50/5/'0\”~»O_6_>O

;O
O— 20200,

Single Pair Shortest Path

* Input: Directed graph ¢ = (V,E), edge lengths £: E = R,
a source vertexs € I/, and a destination vertext € VI/.
* Output: Find the shortest directed path fromstotinG.

Single Pair Shortest Path

* Input: Directed graph ¢ = (V,E), edge lengths £: E = R,
and a source vertexs € V.

* Output: Find the shortest directed path from s to all
verticesinG.

0/5 Q\11§*O—6—>O

;O
0\2\»0—12»0

Single Pair Shortest Path

* Input: Directed graph ¢ = (V,E), edge lengths £: E = R,
and a source vertexs € V.
* Output: Find the shortest directed path from s to all

vertices in G.
§ __-VO N —
@

Shortest Path Tree

Questions

* Q1:How do you solve one problem with the answer to the
other?

* Q2: What happens to the tree when you add 100 to each
edge?

SO%"‘E’—:'O\C; "O‘ 6_’0
O-----) .----><l> — 12 Q

Questions

* A1:You can lookup tor runwith t for each vertex.)
* A2: The shortest paths may change!

>\ 70,
% Q’) 104
Q 105
N 103
A / I ’
O----' 102 ™= um ’
Il —_— 112 >

Questions

* Q3: How canyou solve this if each edge has length 1?
* Q2: What happens to the tree when you multiply each
length by 27?

Questions

* Q3:YoucanrunBFS.
* Q2:The shortest path is still the shortest path but twice as
long.

S

10 -—"O T 22—y
O__\ i (U= —;O
2
10 t A
D] s’ v’ 8

‘s / Q 0 6 :
O----_ dEm———p OIIL- 24 = é

Dijkstra’s Greedy Algorithm

* We will describe a greedy algorithm
that is named after its discoverer,
Edsger Wybe Dijkstra. ->

* The algorithm runs in O(|E| + |V|log(|V]))
time when implemented with a priority
queue.

* We willassume no negative edge
weights.

Dijkstra’s Algorithm Idea

* Prompt: What edge do we always know is going to be part
of a shortest path?

50/5/'0\”~>O_6_>O

;O
O— 220

Dijkstra’s Algorithm Idea

* Observation: The shortest edge leaving the source vertex s
always in a shortest path.

50/5/'0\”~>O_6_>O

;O
O— 20200

Dijkstra’s Algorithm Idea

* Motivation: You know that the shortest path from where you
are to anywhere else is important.

50/5/'0\”~>O_6_>O

;O
O— 20200

Dijkstra’s Algorithm Idea

* Proof: Suppose the shortest edge leaving s went to w. Now suppose
there is another path from s to w. It must use another edge leaving s.

Dijkstra’s Algorithm Idea

* |fituses another edge leaving s then it must be just as long or
longer of a path!

Dijkstra’s Algorithm Idea

* Prompt: What can we say about the shortest path tree with
respectto s and w?

:'"S /,O\”§>
0/5 D-=0
‘ 3

N
~
~
S
\\\\\
S -7
~ -
———————

Dijkstra’s Algorithm Idea

* Observation: The shortest path tree must include an edge
leaving s and/or w. Otherwise, you can’t reach everything.

,,,,,
’ S
~
S
~

N
~
~
S
\\\\\
S~ -7
~ -
———————

Dijkstra’s Algorithm Idea

* Prompt: Which is closerto s?

N
~
~
S
\\\\\
S -7
~ -
———————

Dijkstra’s Algorithm Idea

* Observation: There are both 5 away from s. We don’t want
to assume that the distance from w is the same as the
distance from s. <

,,,,,
’ S
~
S
~

N
~
~
S
\\\\\
S~ -7
~ -
———————

Dijkstra’s Algorithm Idea

* Observation: The s to x edge and the wto y edge should
both be in the shortest path tree. (We need non-negative
edge weights) <

v ~
’ S
, ~
~
N
S
~

N
~
~
S
\\\\\
S~ -7
~ -
———————

Dijkstra’s Algorithm Idea

* Prompt: How do we generalize these observation as a
greedy rule?

N
~
~
S
\\\\\
S -7
~ -
———————

Dijkstra’s Algorithm Idea

* Algorithm Idea: In each iteration, pick an edge from my
shortest path tree to the “nearest” vertex not yet in the tree.

——————————
NNNNN
4 S
~
~\
~,

N
~
~
S
\\\\\
S~ -7
~ -
———————

Dijkstra’s Algorithm Idea

* Algorithm lIdea: Keep track of the shortest path tree. In each
iteration, add an edge from the tree to the nearest neighbor
(with respectto s).

,,,,,
’ S
~
S
~

~
~
~
~ R
S~ ’
~ ’
S -
-

Dijkstra’s Algorithm

Dijkstra's Algorithm (G, £)
Let S be the set of explored nodes
For each ueS, we store a distance d(u)
Initially S={s} and d(s)=0
While S#V
Select a node v¢$S with at least one edge from S for which
d'(v) =min,_¢, yyuesd(m) + £, is as small as possible
Add v to S and define d(v) =d'(v)
EndWhile

~ P
-~ -
i

Dijkstra’s Algorithm Idea

* Look at all neighbors of S. Determine which has the
shortest path from s. Add that to S. Repeat.

X

,,,,,,,,,,,,,, Dijkstra's Algorithm (G, £)
o RN) Let S be the set of explored nodes
4
/" S \\ For each ueS, we store a distance d(u)

'/ 4 Initially S={s} and d(s)=0

:' ‘|| While S#V

=, ," Z Select a node v¢S with at least one edge from S for which
1

\

\

d'(v) =mine_(, yuesd(u) + £, is as small as possible
\ / Add v to S and define d(v) =d'(v)
4

\ 4 .
AN < EndWhile
\\\\\ 7/
\\\\\\ Q

Dijkstra’s Algorithm Idea

* Keyldea: We guess the distance from s to a neighbor is
MiNg=(yv)uesd(u) + €, where d(u) is the distance from's

to u.
--------------- X Dijkstra's Algorithm (G, ¢)
\\\\ N) Let S be the set of explored nodes

S \\ For each ueS, we store a distance d(u)

/ Initially S={s} and d(s)=0
O | While S#V
," Z Select a node v¢S with at least one edge from S for which

"\} d'(v) =mine_(, yuesd(u) + £, is as small as possible
Y

Add v to S and define d(v) =d'(v)

1
1
‘\
\
\
\ 'I
\\ ,I .
" N EndWhile
~ s’
~ s’
So PRe

oo 9 o Dijkstra's Algorithm (G, £)
DIJ kSt ra S Algo rlth m Let S be the set of explored nodes
For each ueS, we store a distance d(u)
Initially S={s} and d(s)=0
S ={s} While S#V
Select a node v¢S with at least one edge from S for which
d =[0,00, 00, 00, 00, 00, 00, O] dr _ , ‘
(V) =ming_(; yyues d@) + €, is as small as possible
Add v to S and define d(v)=d'(v)
EndWhile

Dij kStra,S Al_g() rith m Dijkstra's Algorithm (G, £)

Let S be the set of explored nodes

For each ueS, we store a distance d(u)

Initially S={s} and d(s)=0
S ={s} While S#V

_ Select a node v¢S with at least one edge from S for which
d=]0, 3,5, 00, 00, 0, 00, 0]

d'(v) =min,_g,, y)uesd) + £, is as small as possible
Add v to S and define d(v)=d'(v)

EndWhile
S .-v:VZE\ﬂ\,‘
0“...¢ gunt?® 5 -"° e- — 6 q
. VO.: : / \2 / ‘
e, 5 b P 4 / :
3 4
‘A / > 3

Dij kStra,S Al_g() rith m Dijkstra's Algorithm (G, £)

Let S be the set of explored nodes

For each ueS, we store a distance d(u)

Initially S={s} and d(s)=0
S ={s} While S#V

_ Select a node v¢S with at least one edge from S for which
d - [Oa 33 5’ o, O, 5’ o, OO]

d'(v) =min,_g,, y)uesd) + £, is as small as possible
Add v to S and define d(v)=d'(v)

EndWhile
S - e BV2F =11 ﬁ,‘
.‘tll..‘ ‘-““ - Qg — 6 ﬁ
0 VO.: / \2 / ‘
‘."‘,.‘ 5 D\ P 1 f / -
3 4
0“‘...“/ |5 / 3 *
l‘ Vl.: lllll.ll..... 2“‘lhb‘
Cenns? b o l‘ VS.: — 10 =

oo 9 o Dijkstra's Algorithm (G, £)
DIJ kSt ra S Algo rlth m Let S be the set of explored nodes

For each ueS, we store a distance d(u)
Initially S={s} and d(s)=0
S ={s} While S#V

_ Select a node v¢S with at least one edge from S for which
d=|[0,3,5,7, 00,5, oo, o0] .
O » =) d'(v) = mine_g, yyuesd() + £, is as small as possible
Add v to S and define d(v)=d'(v)

EndWhile

.l

V K

n

\
S . ' ’0 2 v 11 *
" Wa 5 ne LN X A4
*

3
“".“ ‘enns’ l / *
| Vl Bt rEraaaaa,, 2 o %

t’..“’. ..ll.llllll.> I: VS.: — 12 »

Dij kStra,S Al_g() rith m Dijkstra's Algorithm (G, £)

Let S be the set of explored nodes

For each ueS, we store a distance d(u)

Initially S={s} and d(s)=0
S ={s} While S#V

d — [O 3 5 7 8 5 00 OO] Select a node v¢S with at least one edge from S for which
O ’ d'(v) = mine_g, yyuesd() + £, is as small as possible
Add v to S and define d(v)=d'(v)
EndWhile

‘A

‘en l“o‘ 5 .A.o“.'o“‘t‘ L f / |
3 / -‘Vg": | 3 f
l:‘ Vl::..........." “--,. /

2 Vo D e gy =

oo 9 o Dijkstra's Algorithm (G, £)
DIJ kSt ra S Algo rlth m Let S be the set of explored nodes

For each ueS, we store a distance d(u)
Initially S={s} and d(s)=0
S ={s} While S#V

d — [O 3 5 7 8 5 8 OO] Select a node v ¢S with at least one edge from S for which
S d'(v) =min,_q, yyyesd(m) + £, is as small as possible
Add v to S and define d(v) =d'(v)

EndWhile
S Vo ¢ e— TN
> =" 5 L Al adl ”Q-?". 11 — . 4: 0“.'%
"‘ ..‘ -““‘- *, “0 0. — 6 — =. V :
: VO: / 2. ¢“v Can? ‘. 6:
. ,' .A . 1 f "' an®
“an® 3 5 .‘t 4 “‘\ “‘ Z-
. : Vo = 5 \
l‘ Vlt: IRRRRLLELT ? "anaaa, n“‘..’t"
0..“0 llll..>) VS.: 12 »

oo 9 o Dijkstra's Algorithm (G, £)
DIJ kSt ra S Algo rlth m Let S be the set of explored nodes

For each ueS, we store a distance d(u)
Initially S={s} and d(s)=0
S ={s} While S#V

d = [O, 3, 5, 7’ 8’ 5, 8, 12] Select a node v ¢S with at least one edge from S for which

d'(v) =min,_g,, y)uesd) + £, is as small as possible
Add v to S and define d(v)=d'(v)

EndWhile
“‘..“
&
] - LIV
|) V n —— 0‘
S . 5 aunn® > ’0..?‘: 11 — ‘: 0“.'0‘
. L4 . 4
.‘ .‘ ‘-l‘nl‘ ., v ’0 4’. — 6 q - V :
n V n 2 ** Qg . 6.
-‘ O: '. * " ..l”
..“‘ A oW N, \ 1 “ |]
S 5 2 . s® o*)
3 2 V3 . 5 3 * 4
" ‘0 0. L'y u
“‘..‘ ..-‘ I “‘ v
N g TN
a ll.... ‘Il. ® “..
VWV R ST T N S
PAVg P =—— 12 =3 V7;
’..l" .

r? Dijkstra's Algorithm (G, £)
Paths ° Let S be the set of explored nodes
For each ueS, we store a distance d(u)
Initially S={s} and d(s)=0

Q: How do we return the While S#V

Select a node v¢S with at least one edge from S for which
paths?

d'(v) =min,_g,, y)uesd) + £, is as small as possible
Add v to S and define d(v)=d'(v)

EndWhile
“"..‘
PV 7 —

S “w, 5 “‘lll' ’0..?‘0. 11 * :‘ “ .0“..‘
:‘ \V4 .‘. gunne®”® / *, 9 “V "...4‘: — 6 =—> =‘ V6~:
-‘ O‘: "A . 1 * “' ? JEN

Gt , 5 :¢- 6 “‘\ f “¢ -

[u *
3 0‘ / -“VB ’: |5 . 3 ?‘
LN Qgu® D' v
K A “Q

l‘ Vl.: B LLLT T e D "aumag ,“‘..0“’ .“‘..%
’..“. lllllll> I‘ VS.: — 12 » =‘ V7.:
* 3 .

r? Dijkstra's Algorithm (G, £)
Paths ° Let S be the set of explored nodes
For each ueS, we store a distance d(u)
Initially S={s} and d(s)=0

Q: How do we return the While S#V

Select a node v¢S with at least one edge from S for which
paths?

d'(v) =min,_g,, y)uesd) + £, is as small as possible
Add v to S and define d(v)=d'(v)

EndWhile
“"..‘
PV 7 —

S “w, 5 “‘lll' ’0..?‘0. 11 * :‘ “ .0“..‘
:‘ \V4 .‘. gunne®”® / *, 9 “V "...4‘: — 6 =—> =‘ V6~:
-‘ O‘: "A . 1 * “' ? JEN

Gt , 5 :¢- 6 “‘\ f “¢ -

[u *
3 0‘ / -“VB ’: |5 . 3 ?‘
LN Qgu® D' v
K A “Q

l‘ Vl.: B LLLT T e D "aumag ,“‘..0“’ .“‘..%
’..“. lllllll> I‘ VS.: — 12 » =‘ V7.:
* 3 .

Dijkstra's Algorithm (G, £)
Paths®

Let S be the set of explored nodes LetPan length array.
For each ueS, we store a distance d(u)

Initially S={s} and d(s)=0 Set P[s]to be -1.

A: Whenwe add vto S, we While S#V
Select a node v¢S with at least one edge from S for which
can alSO keep tl’aCk Of What d'(v) =min,_g,, y)uesd) + £, is as small as possible

Add v to S and define d(v) =d'(v) t PIvl = h that in.
edge was used. N t Se [V] U suc a (U,V) was min

EndWhile
“-'.“

S aw, 5 l““" "’X?": 11 ‘ :“ ‘: .“‘..t
LV Rt L / " SV AT B =y
-‘ O‘: "A . 1 * “' ? JEN

Tant . 5 .0" Yo, o0 f R .

n - \¢

3 . VSN 5 3 4

‘ ‘0 0. . [

.“"'o‘ Cun?® I ““ \ 4
l‘ Vl.: llllllllll..l 2 "raaag '.".',“’ .“l'."
T Vg e— 12 =i vy
’..l" *

r? Dijkstra's Algorithm (G, £)
Paths ° Let S be the set of explored nodes Let P a n length array.

For each ueS, we store a distance d(u)
Initially S={s} and d(s)=0 Set P[s] to be -1.

Q: How do we get the While S#V
Select a node v¢S with at least one edge from S for which
shortest path from s to w?

d'(v) =min,_g,, y)uesd) + £, is as small as possible
Add v to § and define d(v)=d'(v) Set P[v]=u such that (u,v) was min.

EndWhile
L
h“ “_
. V . 0“..
S e ® 20 T T —yy S
. . .

S e . WA =6 =iy,
=‘ VO: 2' o* ' Q.-”.
'll“. 5 .A“". o' 1 f ‘0“ .

4 3 : V ‘$ “ 4
“--.. ’...t’ I ‘0‘ v
Py 2
l. Vl : -----Il-..... 2 “Il.. ‘Q‘ “-I.‘
. .
* *

IR ':’VS.: — 12 = iV

*
Yant Qg

r? Dijkstra's Algorithm (G, £)
Paths ° Let S be the set of explored nodes LetPan length array.
For each ueS, we store a distance d(u)

Initially S={s} and d(s)=0 Set P[s]to be Null.
A: We can recursively construct While S#V

|t by lOOking at ta k|ng the edge Select a node v ¢S with at least one edge from S for which

d'(v) =min,_g,, y)uesd) + £, is as small as possible
(P[w],w) and the shortest path Add v to S and define d()=d'(v) Set P[v]= u such that (u,v) was min.

from s to P[w]. —
“--..‘
: .
S s ' ¢’V2". ——— 11 * :0 “ “‘ .,‘
anm annt® Qg . & .
"‘ ..‘ annet® 5 * A At 40. -0 m—) V .
: Vo - 2 o tant s 'O
* O‘O '.A 1 " Yaur
Tant . 5 .0‘". . s% f ““ .
n - *
RCEER Cenns’ I o v
R .
l‘ Vl::llll.ll...... 2 “‘..’ ‘Q‘ “‘..‘
Yenss®

lllllllllll..> I:’VS,: — 12 » =: V7.:

*
..l’ ..-‘

Pat h S Dijkstra's Algorithm (G, £)

Let S be the set of explored nodes LetPan length array.
For each ueS, we store a distance d(u)

Initially S={s} and d(s)=0 Set P[s]to be -1.

Let P, be the path found While SV
. Select a node v¢S with at least one edge from S for which
from s to u using these

d'(v) =min,_g,, y)uesd) + £, is as small as possible

modifications. Endwi:lcliev to S and define d(v)=d'(v) Set P[v]=u such that (u,v) was min.
“".“

S lll" "OVZ": I 11 '» :“ “ 0“..‘
.“ ..‘- -l““‘ 5 / .4 ‘V "Q. 4‘0. — 6 ﬁ =: V6 :
=' VO . 2, ** . W e, oo

ans? a4 PR LIS 1 f o* :
an® 5 : “‘\ “0 :
N f Vg 5 3' 4
"y 0..-‘0) -
.“‘ “ I ‘0“ v
l‘ Vln:......."l..l 2 SEmgy ."‘.."" .0“'."
T A Vg i 12 =8 Vg
*

Dijkstra's Algorithm (G, £)
Corre CtneSS Let S be the set of explored nodes
For each ueS, we store a distance d(u)
Initially S={s} and d(s)=0

Claim: At the start of each While S#V

Select a node v¢S with at least one edge from S for which

|.OO p, Pu |S the ShO I’teSt path d'(v) =min,_g,, y)uesd) + £, is as small as possible
v to S and define d(v)=d'(v
fromstouforallu € S. Lo Vo R md feine =AW

EndWhile
P V) —

S anw 5 “““' ”'-?". 11 : 4: “‘...t
"‘ ..‘ -““‘- *, “0 0. — 6 q =. V :
P Vo : /o o e ", 8
% o a ... 1 f 0" .:’

Tente 5 .‘ .“‘\ ““ A
l: Vl.:l..l 2 "Emagy ,“‘..0“" .“‘..%
TR A Vg s == 12 >3 Vy:

*
Yape gt

Proof Idea

* We proceed with induction on the size of S.
 If|S| = 1, then...

Proof Idea

* We proceed with induction on the size of S.
 If|S| = 1,thenitistrue because the shortest path from sto sis

empty set.

Proof Idea

* We proceed with induction on the size of S.
* Suppose forall S suchthat |S| < Kk, P, is the shortest path from s to
uforallu € S.

Proof Idea

* We proceed with induction on the size of S.
* Suppose forall S suchthat |S| < Kk, P, is the shortest path from s to
uforallu € S.

S aeeeeen " e Letvbethe k+1 vertexadded to S and
o let (u,v) be the edge minimized

@ L ““‘ @ mine=(u,v):u65d(u) + fe .

......

Proof Idea

* We proceed with induction on the size of S.
* Suppose forall S suchthat |S| < Kk, P, is the shortest path from s to

u for allu € S.

llllllll

......

Let v be the k+1 vertex added to S and
let (u,v) be the edge minimized
mine=(u,v):uesd(u) + 4.

Suppose P, U {(u,v)}is notthe
shortest path. Then there exists a path
that must leave S via some edge (x,y).

Proof Idea

* We proceed with induction on the size of S.
Suppose forall S suchthat |S| < Kk, P, is the shortest path from s to

u for allu € S.

llllllll

......

Let v be the k+1 vertex added to S and
let (u,v) be the edge minimized
mine=(u,v):uesd(u) + 4.

Suppose P, U {(u,v)}is notthe
shortest path. Then there exists a path
that must leave S via some edge (x,y).
However, the algo picked v and so the
path from s to y must be just as long. ><

Q: What about negative edge weights?

| Vl. 2 0“..0 o* .0‘ IS
. .“’ lll.> I‘ VS —— 12 » =‘ V7

	Slide 1: CSE 331: Algorithms & Complexity
	Slide 2: Schedule
	Slide 3: Course Updates
	Slide 4: Interval Scheduling
	Slide 5: Finish First Algorithm
	Slide 6: Claim: The Finish First Algorithm is Optimal
	Slide 7: Claim: The Finish First Algorithm is Optimal
	Slide 8: Claim: The Finish First Algorithm is Optimal
	Slide 9: Claim: The Finish First Algorithm is Optimal
	Slide 10: Claim: The Finish First Algorithm is Optimal
	Slide 11: Claim: The Finish First Algorithm is Optimal
	Slide 12: Claim: The Finish First Algorithm is Optimal
	Slide 13: Finish First Algorithm
	Slide 14: Claim: The Finish First Algorithm is Optimal
	Slide 15: Finish First Algorithm
	Slide 16: Runtime
	Slide 17: Runtime
	Slide 18: Runtime
	Slide 19: Runtime
	Slide 20: Runtime O(nlog(n))
	Slide 21: Shortest Path
	Slide 22: Single Pair Shortest Path
	Slide 23: Single Pair Shortest Path
	Slide 24: Single Pair Shortest Path
	Slide 25: Questions
	Slide 26: Questions
	Slide 27: Questions
	Slide 28: Questions
	Slide 29: Dijkstra’s Greedy Algorithm
	Slide 30: Dijkstra’s Algorithm Idea
	Slide 31: Dijkstra’s Algorithm Idea
	Slide 32: Dijkstra’s Algorithm Idea
	Slide 33: Dijkstra’s Algorithm Idea
	Slide 34: Dijkstra’s Algorithm Idea
	Slide 35: Dijkstra’s Algorithm Idea
	Slide 36: Dijkstra’s Algorithm Idea
	Slide 37: Dijkstra’s Algorithm Idea
	Slide 38: Dijkstra’s Algorithm Idea
	Slide 39: Dijkstra’s Algorithm Idea
	Slide 40: Dijkstra’s Algorithm Idea
	Slide 41: Dijkstra’s Algorithm Idea
	Slide 42: Dijkstra’s Algorithm Idea
	Slide 43: Dijkstra’s Algorithm
	Slide 44: Dijkstra’s Algorithm Idea
	Slide 45: Dijkstra’s Algorithm Idea
	Slide 46: Dijkstra’s Algorithm Idea
	Slide 47: Dijkstra’s Algorithm Idea
	Slide 48: Dijkstra’s Algorithm Idea
	Slide 49: Dijkstra’s Algorithm Idea
	Slide 50: Dijkstra’s Algorithm Idea
	Slide 51: Dijkstra’s Algorithm Idea
	Slide 52: Dijkstra’s Algorithm Idea
	Slide 53: Paths?
	Slide 54: Paths?
	Slide 55: Paths?
	Slide 56: Paths?
	Slide 57: Paths?
	Slide 58: Paths
	Slide 59: Correctness
	Slide 60: Proof Idea
	Slide 61: Proof Idea
	Slide 62: Proof Idea
	Slide 63: Proof Idea
	Slide 64: Proof Idea
	Slide 65: Proof Idea
	Slide 66: Q: What about negative edge weights?

