

CSE 331: Algorithms & Complexity “Shortest Path”

Prof. Charlie Anne Carlson (She/Her)

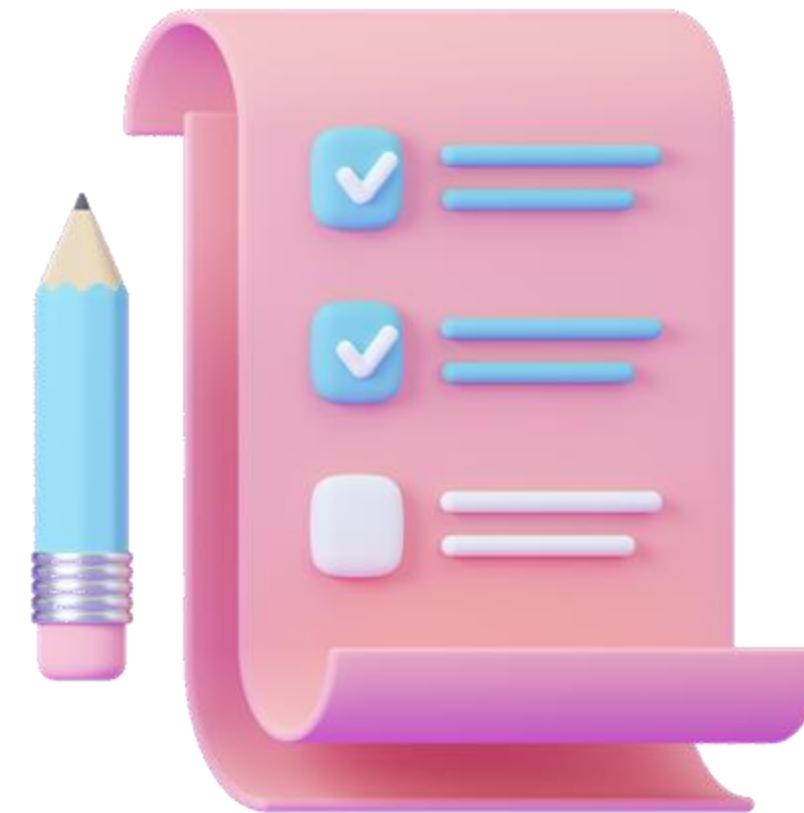
Lecture 17

Wednesday October 10th, 2025

University at Buffalo®

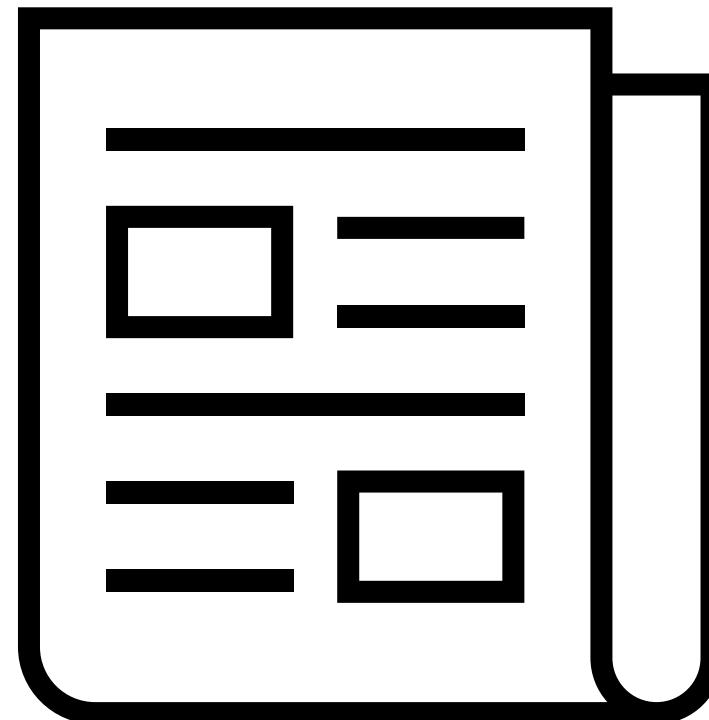
Schedule

1. Course Updates
2. Interval Scheduling
3. Stay Ahead
4. Runtime Analysis
5. Shortest Path



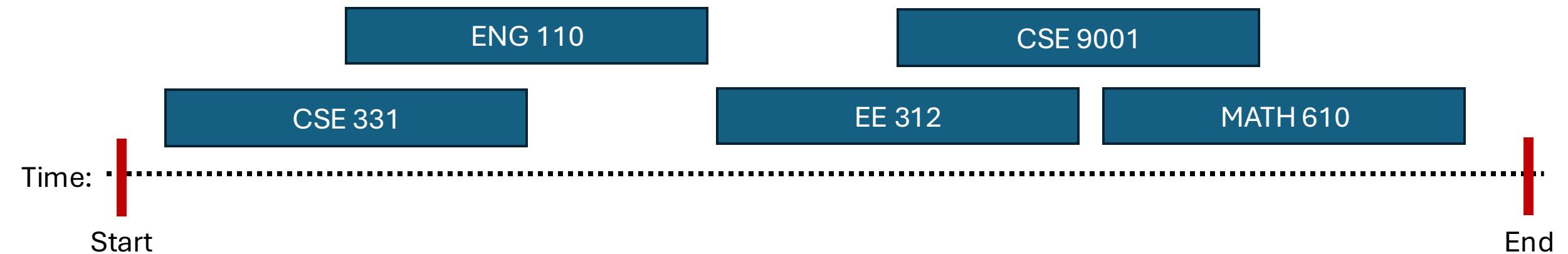
Course Updates

- All Grading Before Tuesday
- HW 4 Out
 - Not Due Next Week!
- Group Project
 - First Problems Oct 31st



Interval Scheduling

- Consider an interval of time (e.g. Wednesday).
- Consider tasks that need to be completed during specific times (e.g. classes).
- We want to fit as many tasks as possible into the day such that no two overlap.



Finish First Algorithm

- **Input:** List of n tasks R
 - For each $i \in R$, let $s(i)$ and $f(i)$ be start and finish times.
- **Output:** List of non-conflicting tasks of maximum length
 - Let S be empty
 - While R is not empty:
 - Find $i \in R$ with earliest finish time ($\operatorname{argmin} f(i)$)
 - Add i to S
 - Remove all tasks that conflict with i from R
 - Return S

Claim: The Finish First Algorithm is Optimal

Proof Ideas:

- Let S be the set returned by the algorithm.
 - Let i_1, i_2, \dots, i_k be the elements in S sorted by finish times.
- Let S^* be the optimal list.
 - Let j_1, j_2, \dots, j_m be the elements in S^* sorted by finish times.
- We want to show that for every index $1 \leq \ell \leq k$, $f(i_\ell) \leq f(j_\ell)$.

Claim: The Finish First Algorithm is Optimal

Proof Ideas:

- We want to show that for every index $1 \leq \ell \leq k$,
 $f(i_\ell) \leq f(j_\ell)$.
 - That is, we want to show that our algorithm is always doing better than the optimal solution! “Stay Ahead”
- If this is true, then it must be the case that $m = k$.

Claim: The Finish First Algorithm is Optimal

Proof Ideas:

- We want to show that for every index $1 \leq \ell \leq m$,
 $f(i_\ell) \leq f(j_\ell)$.
 - That is, we want to show that our algorithm is always doing better than the optimal solution! “Stay Ahead”
- If this is true, then it must be the case that $m = k$.
 - If not, then our algorithm would have added j_{k+1} to S .

Claim: The Finish First Algorithm is Optimal

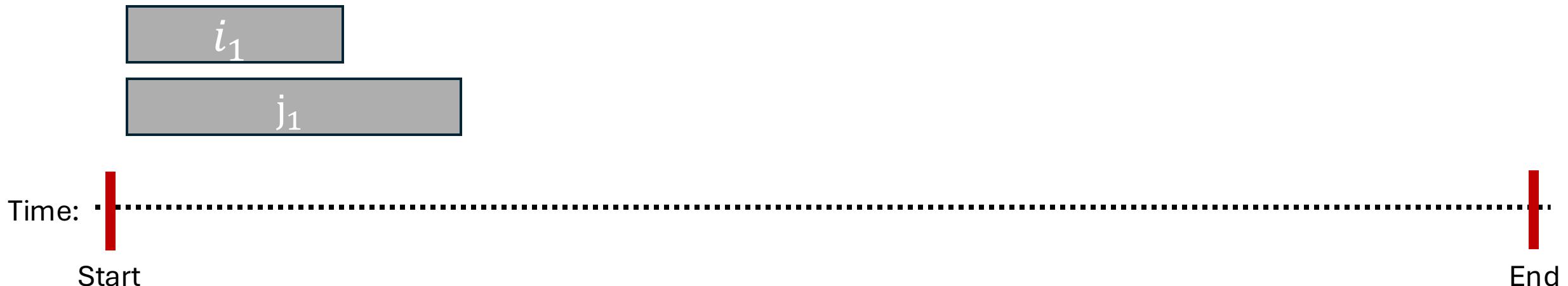
Proof Ideas:

- We want to show that for every index $1 \leq \ell \leq m$,
 $f(i_\ell) \leq f(j_\ell)$.
 - That is, we want to show that our algorithm is always doing better than the optimal solution! “Stay Ahead”
- If this is true, then it must be the case that $m = k$.
 - If not, then our algorithm would have added j_{k+1} to S .

Claim: The Finish First Algorithm is Optimal

Base Case:

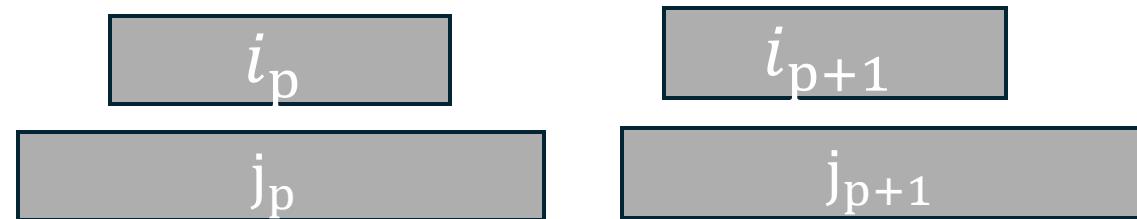
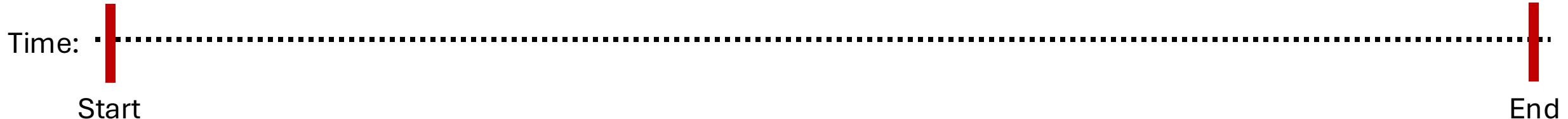
- We observe that $f(i_1) \leq f(j_1)$ since the algorithm always takes the element with the quickest finish time.



Claim: The Finish First Algorithm is Optimal

Inductive Hypothesis:

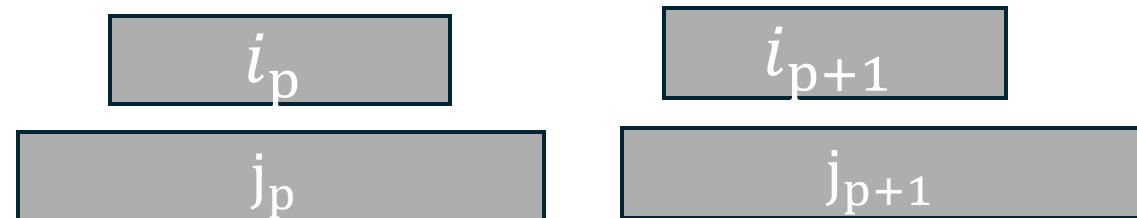
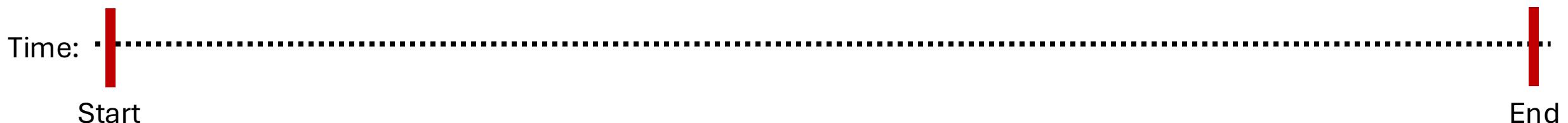
- Assume that $f(i_p) \leq f(j_p)$ for some $1 \leq p < k$.
 - We will prove that $f(i_{p+1}) \leq f(j_{p+1})$



Claim: The Finish First Algorithm is Optimal

Inductive Case:

- Observe that since $f(i_p) \leq f(j_p)$, j_{p+1} was in the set R when we added i_{p+1} .
 - Hence, $f(i_{p+1}) \leq f(j_{p+1})$



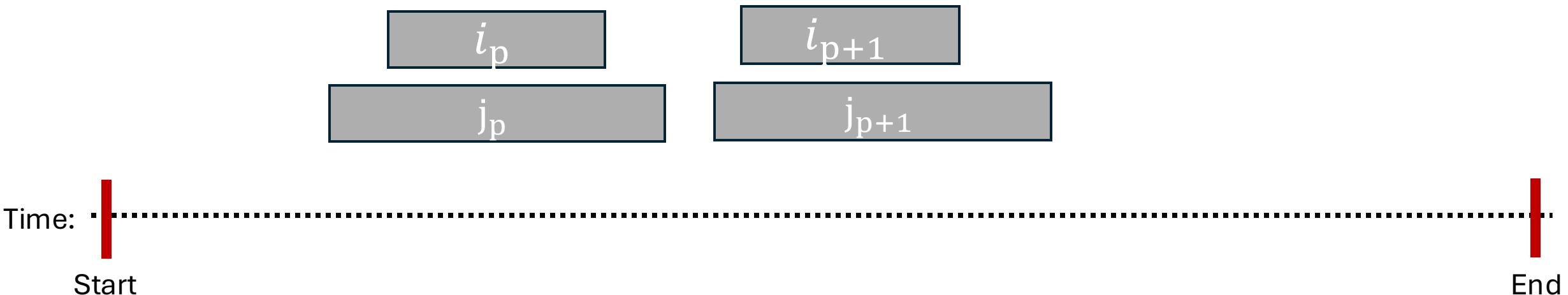
Finish First Algorithm

- **Input:** List of n tasks R
 - For each $i \in R$, let $s(i)$ and $f(i)$ be start and finish times.
- **Output:** List of non-conflicting tasks of maximum length
 - Let S be empty
 - While R is not empty:
 - **Find $i \in R$ with earliest finish time ($\operatorname{argmin} f(i)$)**
 - Add i to S
 - Remove all tasks that conflict with i from R
 - Return S

Claim: The Finish First Algorithm is Optimal

Conclusion:

- We have shown $f(i_\ell) \leq f(j_\ell)$ for all $1 \leq \ell \leq k$ as desired.
- If $k \leq m$, then we could add j_{k+1} to S which contradicts the while loop exit condition.



Finish First Algorithm

- **Input:** List of n tasks R
 - For each $i \in R$, let $s(i)$ and $f(i)$ be start and finish times.
- **Output:** List of non-conflicting tasks of maximum length
 - Let S be empty
 - **While R is not empty:**
 - Find $i \in R$ with earliest finish time ($\operatorname{argmin} f(i)$)
 - Add i to S
 - Remove all tasks that conflict with i from R
 - Return S

Runtime

- **Input:** List of n tasks R
 - For each $i \in R$, let $s(i)$ and $f(i)$ be start and finish times.
- **Output:** List of non-conflicting tasks of maximum length
 - Let S be empty
 - While R is not empty:
 - Find $i \in R$ with earliest finish time ($\operatorname{argmin} f(i)$)
 - Add i to S
 - Remove all tasks that conflict with i from R
 - Return S

Runtime

- **Input:** List of n tasks R
 - For each $i \in R$, let $s(i)$ and $f(i)$ be start and finish times.
- **Output:** List of non-conflicting tasks of maximum length
 - Let S be empty
 - While R is not empty:
 - Find $i \in R$ with earliest finish time ($\operatorname{argmin} f(i)$)
 - Add i to S
 - Remove all tasks that conflict with i from R
 - Return S

These look like $O(n)$ steps!

Runtime

- **Input:** List of n tasks R
 - For each $i \in R$, let $s(i)$ and $f(i)$ be start and finish times.
- **Output:** List of non-conflicting tasks of maximum length
 - Let S be empty
 - Sort R by finish time
 - Let $last_finished = 0$
 - For $i \in [n]$:
 - If $s(i) \geq last_finished$:
 - Add i to S
 - Set $last_finished = f(i)$
 - Return S

Because we sorted, this is next task to finish that won't conflict!

Runtime

- **Input:** List of n tasks R
 - For each $i \in R$, let $s(i)$ and $f(i)$ be start and finish times.
- **Output:** List of non-conflicting tasks of maximum length
 - Let S be empty
 - Sort R by finish time
 - Let $\text{last_finished} = 0$
 - For $i \in [n]$:
 - If $s(i) \geq \text{last_finished}$:
 - Add i to S
 - Set $\text{last_finished} = f(i)$
 - Return S

This only takes $O(n \log(n))$ time!

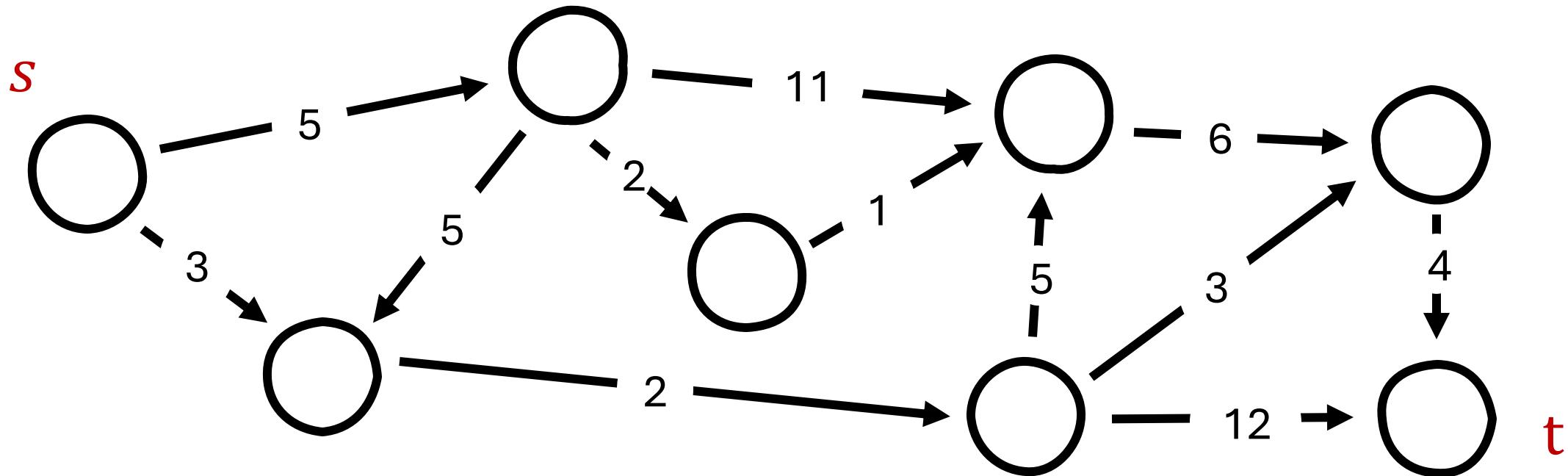
Runtime $O(n \log(n))$

- **Input:** List of n tasks R
 - For each $i \in R$, let $s(i)$ and $f(i)$ be start and finish times.
- **Output:** List of non-conflicting tasks of maximum length
 - Let S be empty
 - Sort R by finish time
 - Let `last_finished` = 0
 - For $i \in [n]$:
 - If $s(i) \geq \text{last_finished}$:
 - Add i to S
 - Set `last_finished` = $f(i)$
 - Return S

Each step in this loop is constant time!

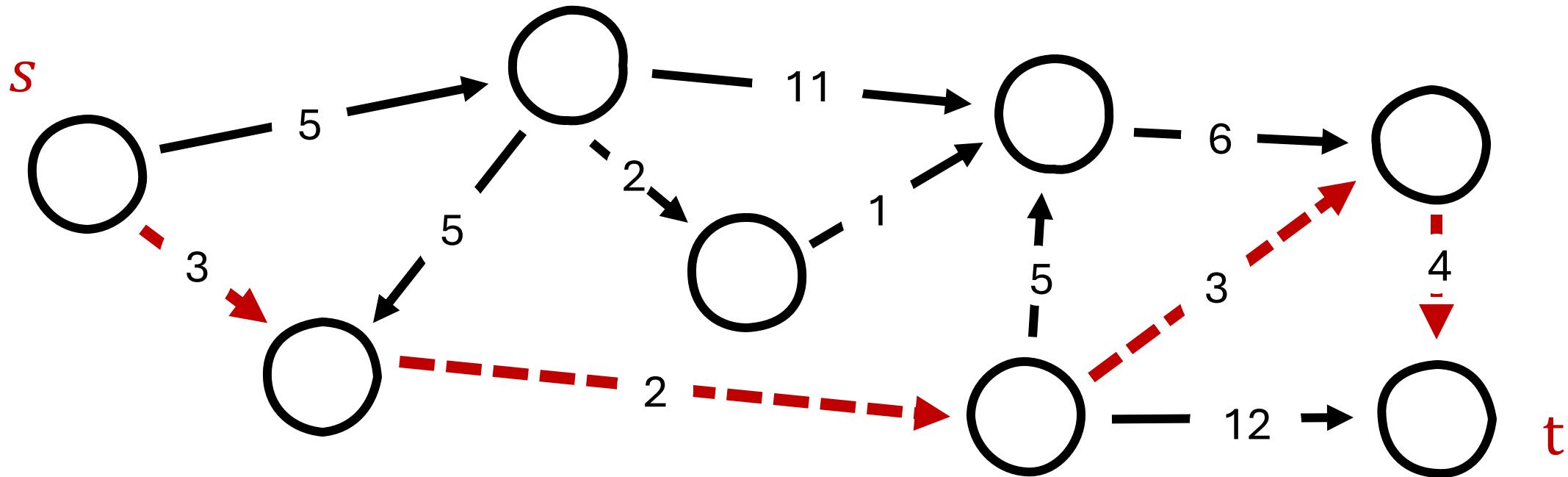
Shortest Path

- **Input:** Directed graph $G = (V, E)$, edge lengths $\ell: E \rightarrow \mathbb{R}_{\geq 0}$, a source vertex $s \in V$, and a destination vertex $t \in V$.
- **Output:** Find the shortest directed path from s to t in G .



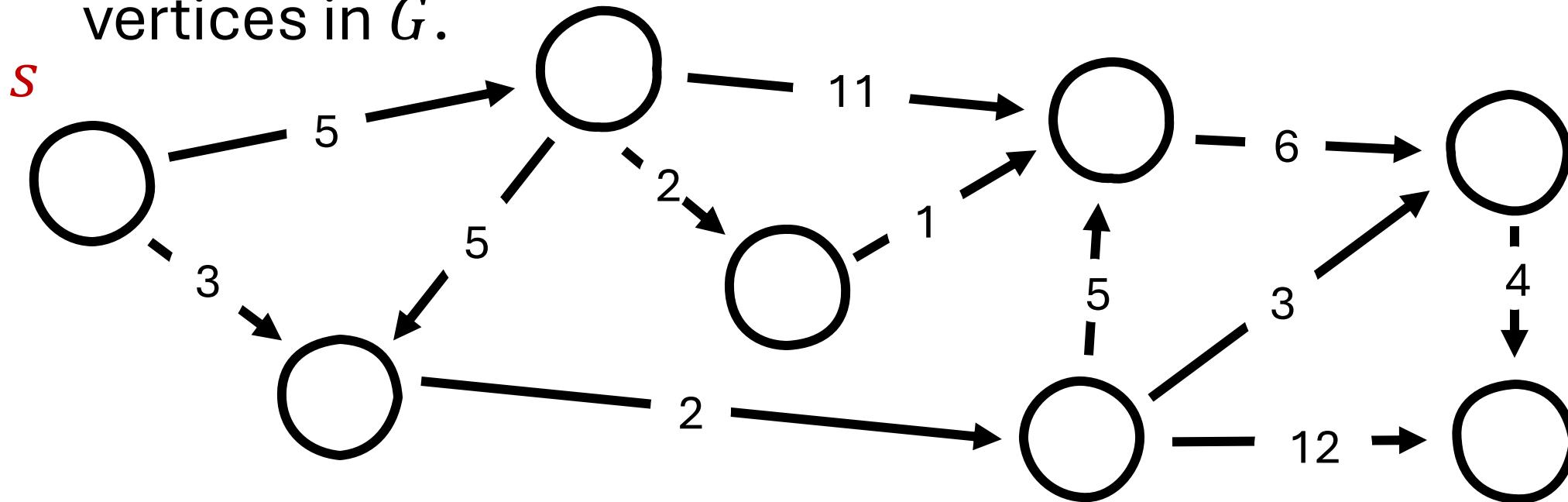
Single Pair Shortest Path

- **Input:** Directed graph $G = (V, E)$, edge lengths $\ell: E \rightarrow \mathbb{R}_{\geq 0}$, a source vertex $s \in V$, and a destination vertex $t \in V$.
- **Output:** Find the shortest directed path from s to t in G .



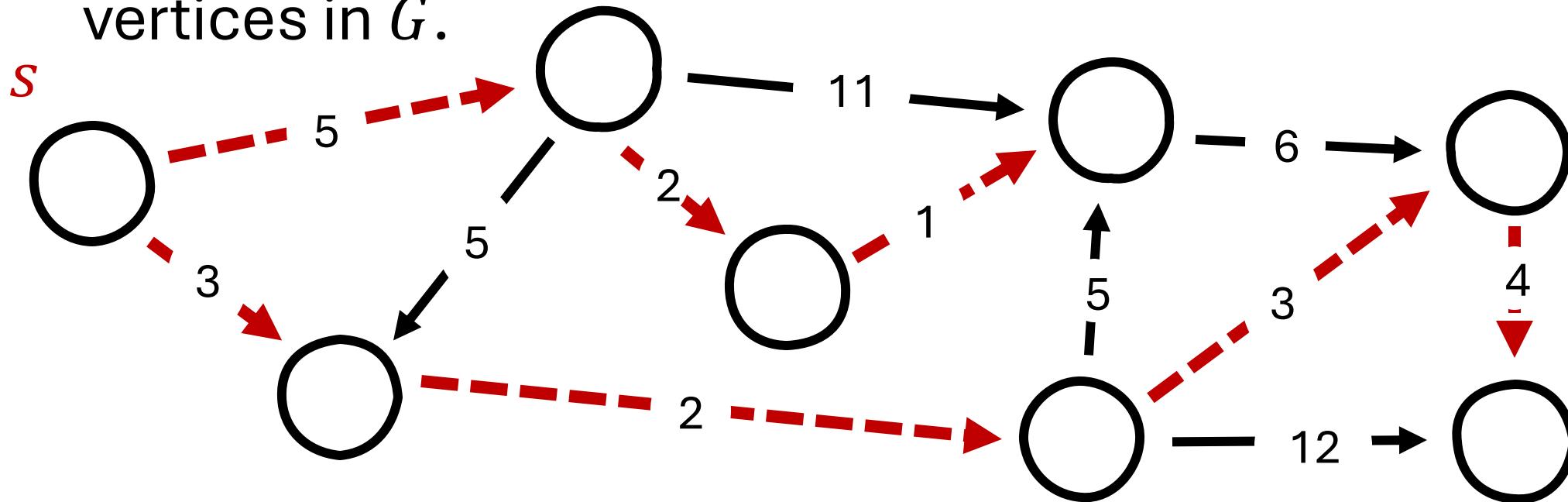
Single Pair Shortest Path

- **Input:** Directed graph $G = (V, E)$, edge lengths $\ell: E \rightarrow \mathbb{R}_{\geq 0}$, and a source vertex $s \in V$.
- **Output:** Find the shortest directed path from s to all vertices in G .



Single Pair Shortest Path

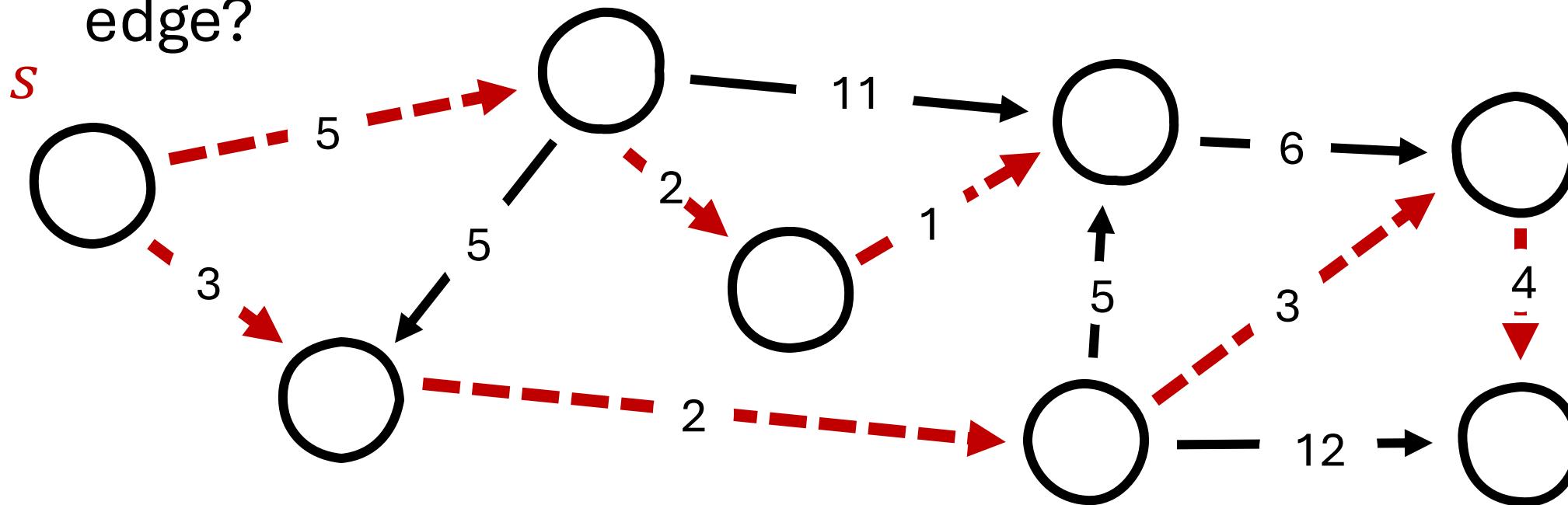
- **Input:** Directed graph $G = (V, E)$, edge lengths $\ell: E \rightarrow \mathbb{R}_{\geq 0}$, and a source vertex $s \in V$.
- **Output:** Find the shortest directed path from s to all vertices in G .



Shortest Path Tree

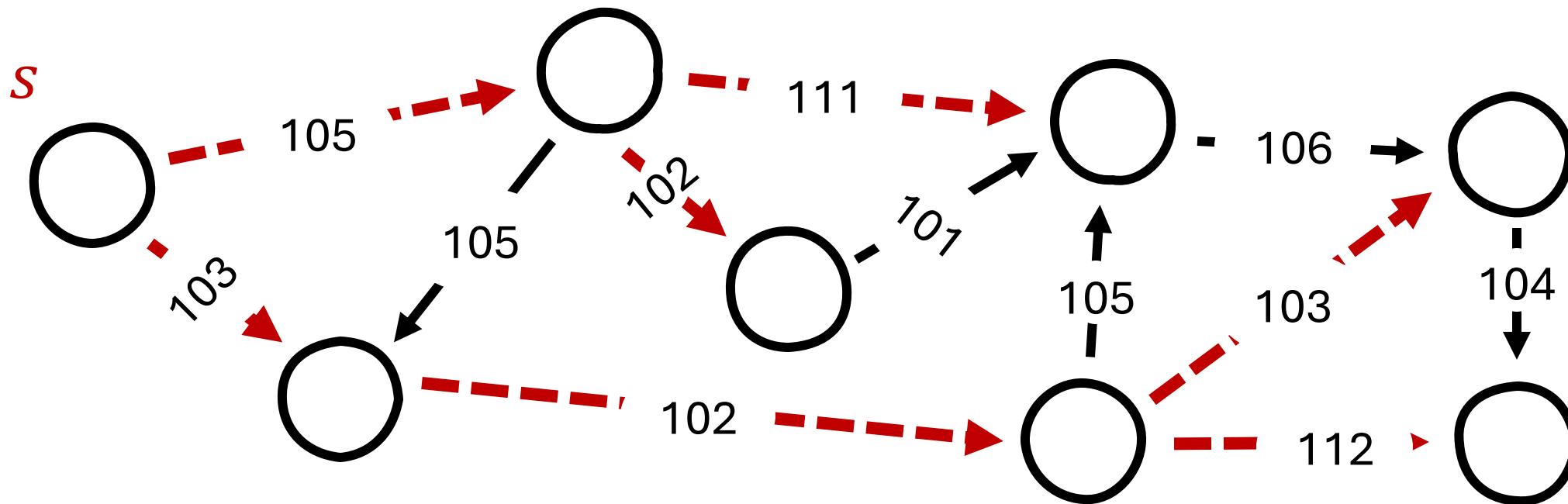
Questions

- Q1: How do you solve one problem with the answer to the other?
- Q2: What happens to the tree when you add 100 to each edge?



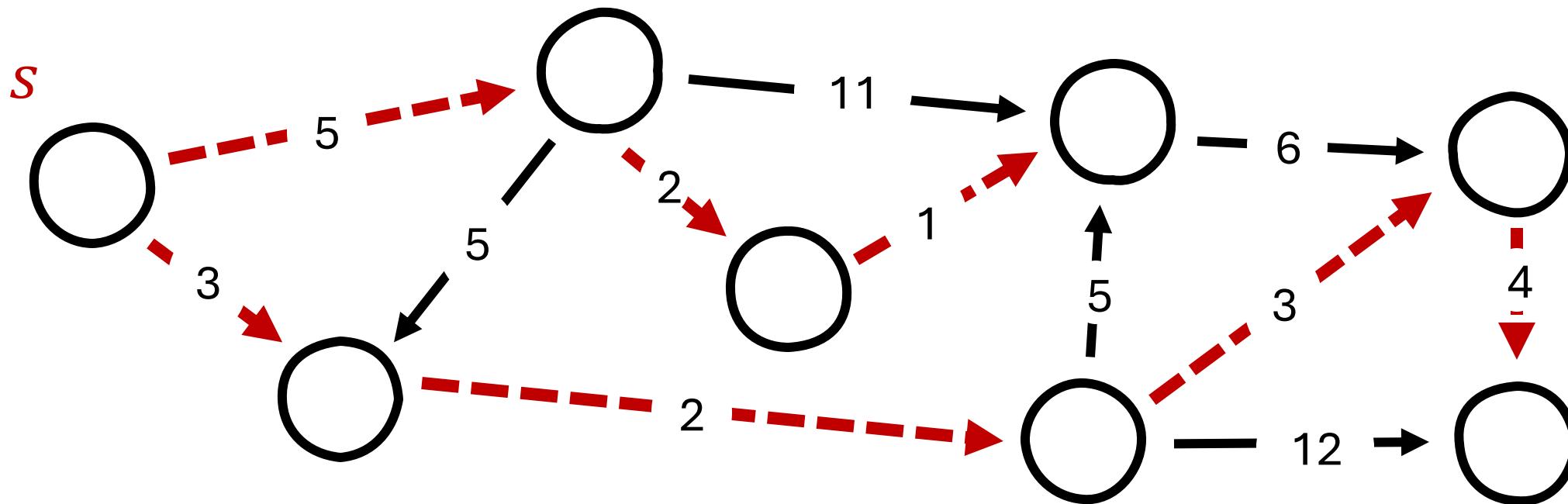
Questions

- A1: You can lookup t or run with t for each vertex.)
- A2: The shortest paths may change!



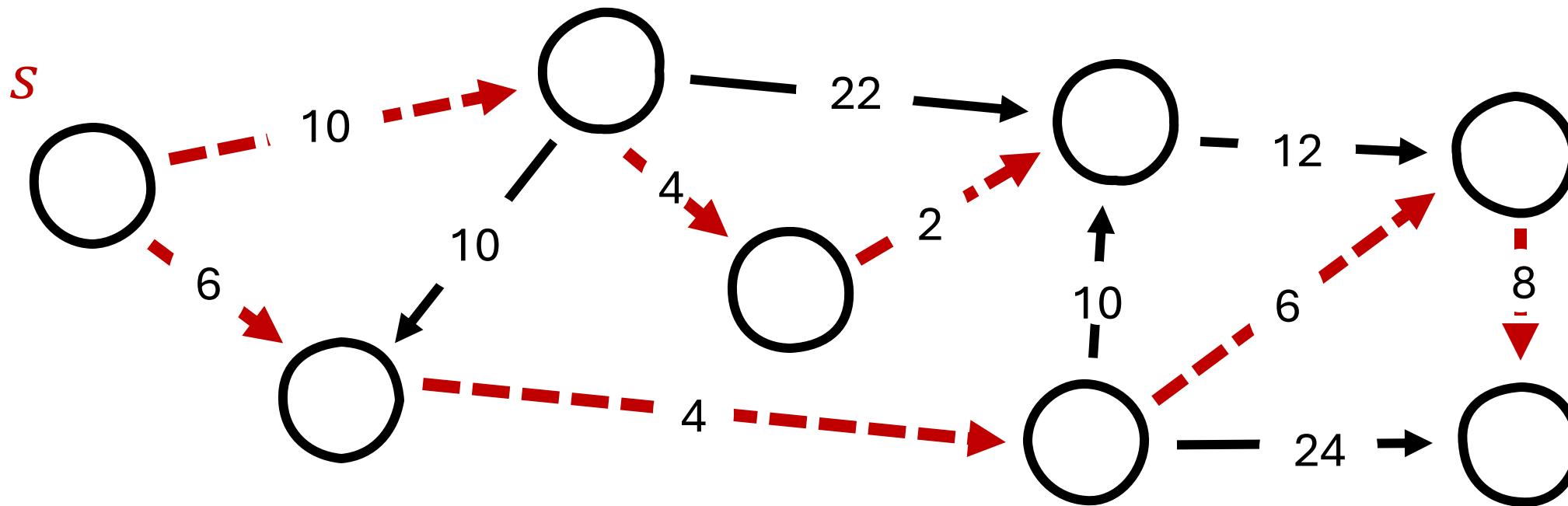
Questions

- Q3: How can you solve this if each edge has length 1?
- Q2: What happens to the tree when you multiply each length by 2?



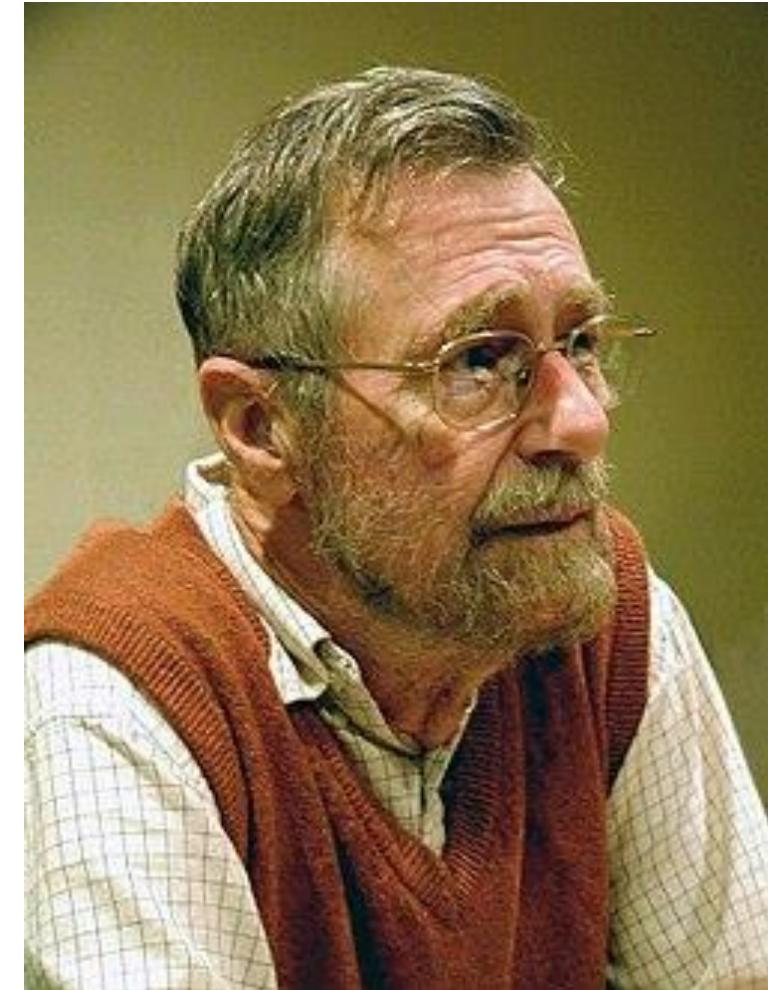
Questions

- Q3: You can run BFS.
- Q2: The shortest path is still the shortest path but twice as long.



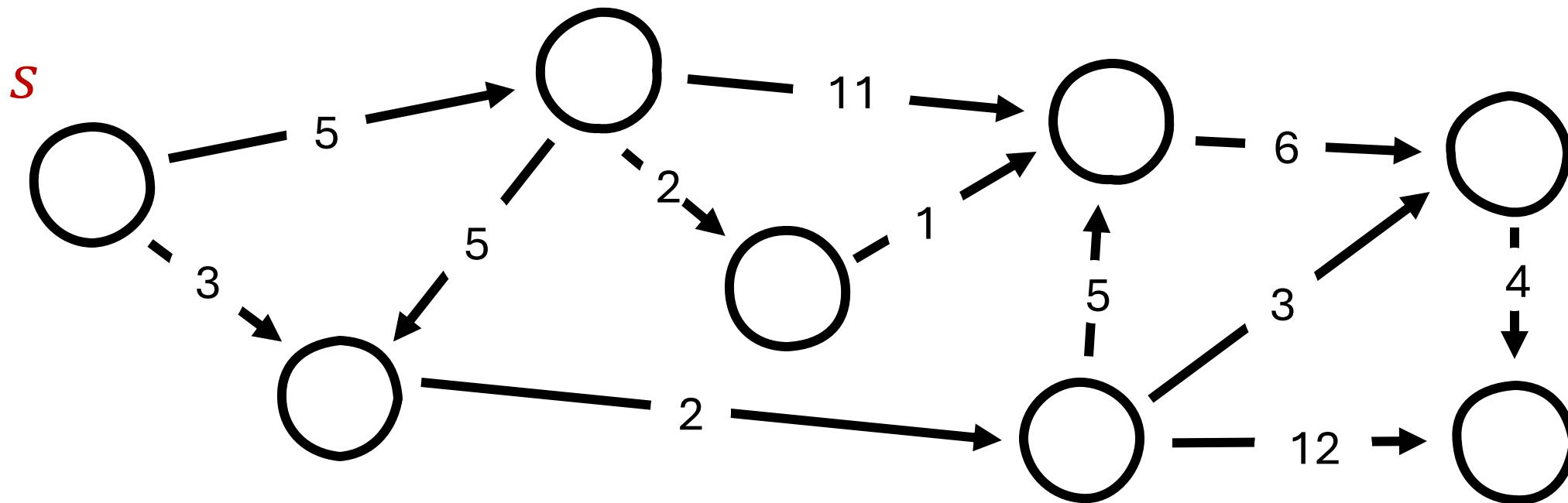
Dijkstra's Greedy Algorithm

- We will describe a **greedy algorithm** that is named after its discoverer, Edsger Wybe Dijkstra. ->
- The algorithm runs in $O(|E| + |V|\log(|V|))$ time when implemented with a **priority queue**.
- We will assume no negative edge weights.



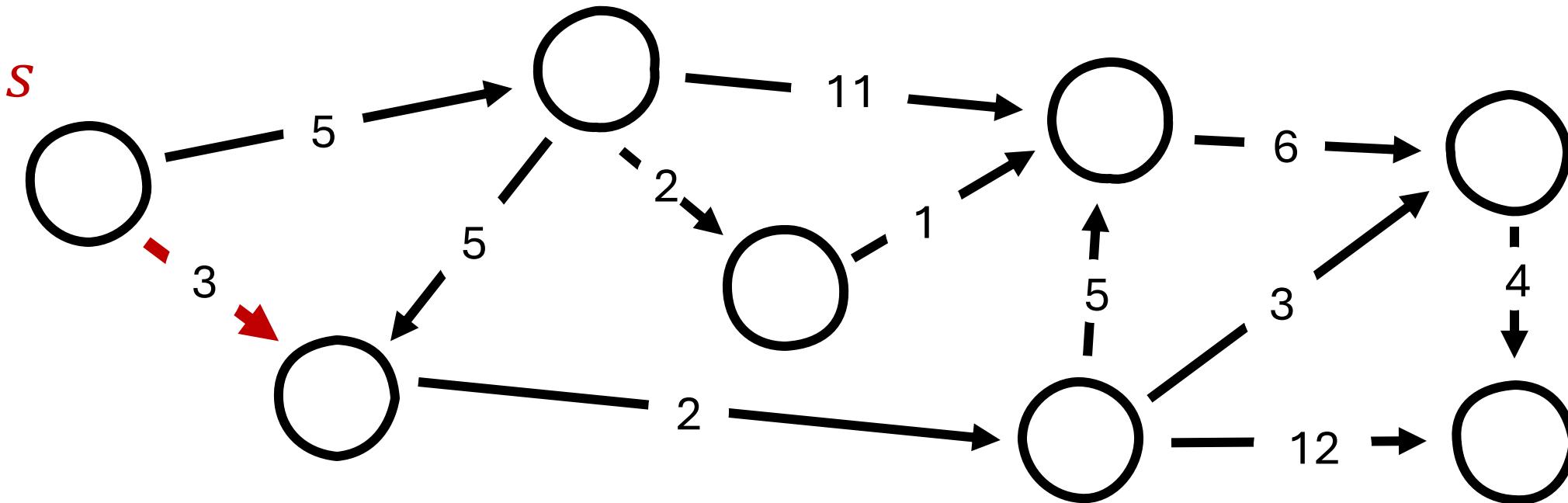
Dijkstra's Algorithm Idea

- Prompt: What edge do we always know is going to be part of a shortest path?



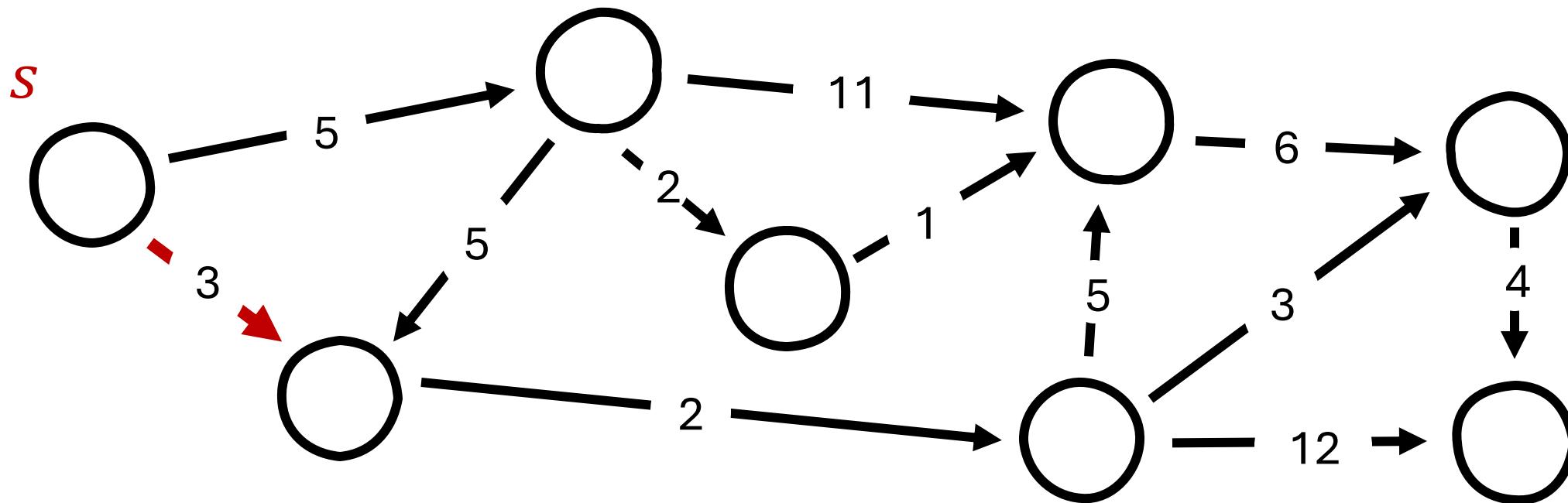
Dijkstra's Algorithm Idea

- Observation: The shortest edge leaving the source vertex is always in a shortest path.



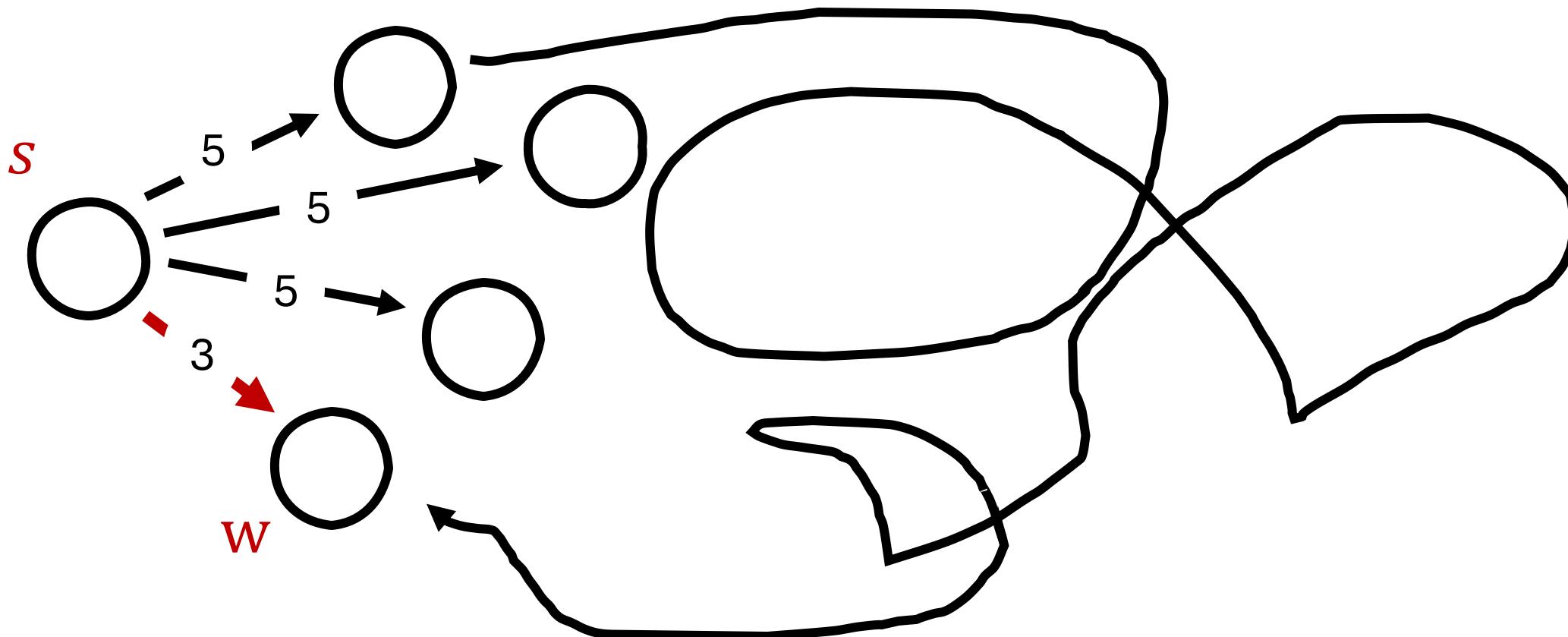
Dijkstra's Algorithm Idea

- Motivation: You know that the shortest path from where you are to anywhere else is important.



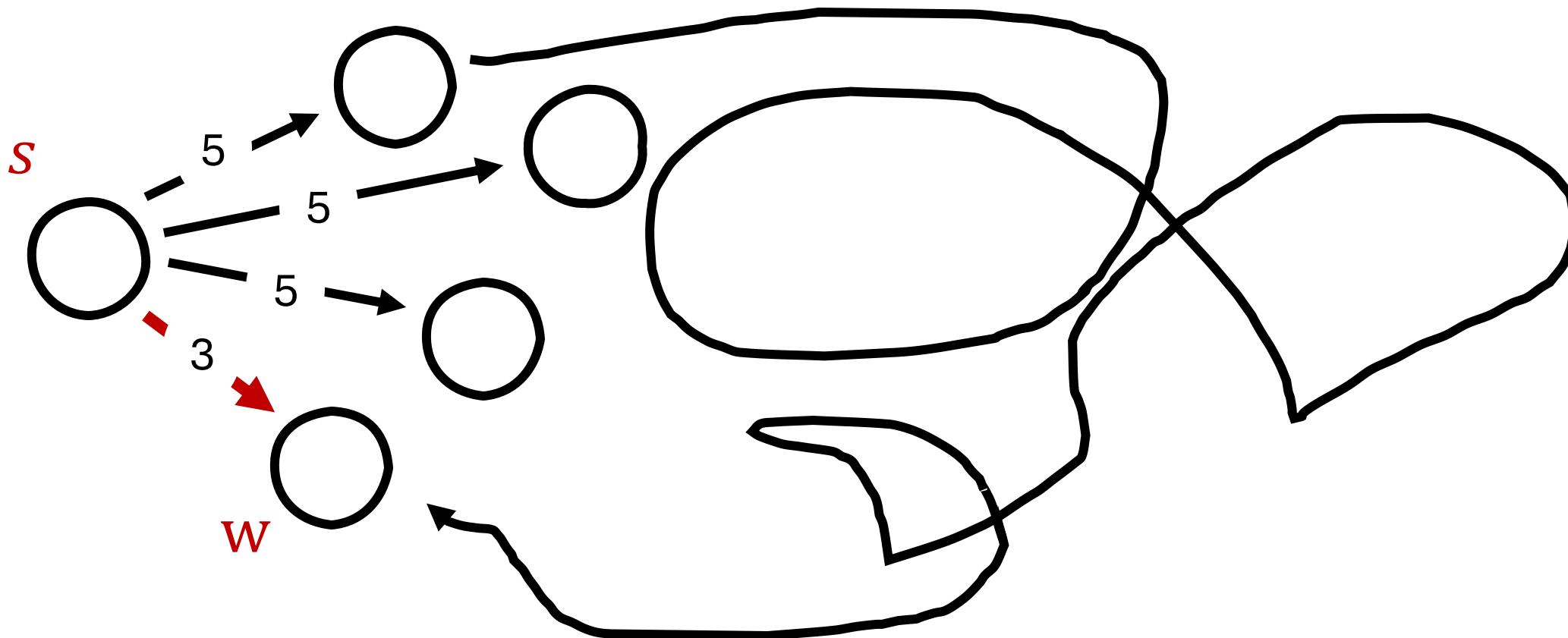
Dijkstra's Algorithm Idea

- Proof: Suppose the shortest edge leaving s went to w . Now suppose there is another path from s to w . It must use another edge leaving s .



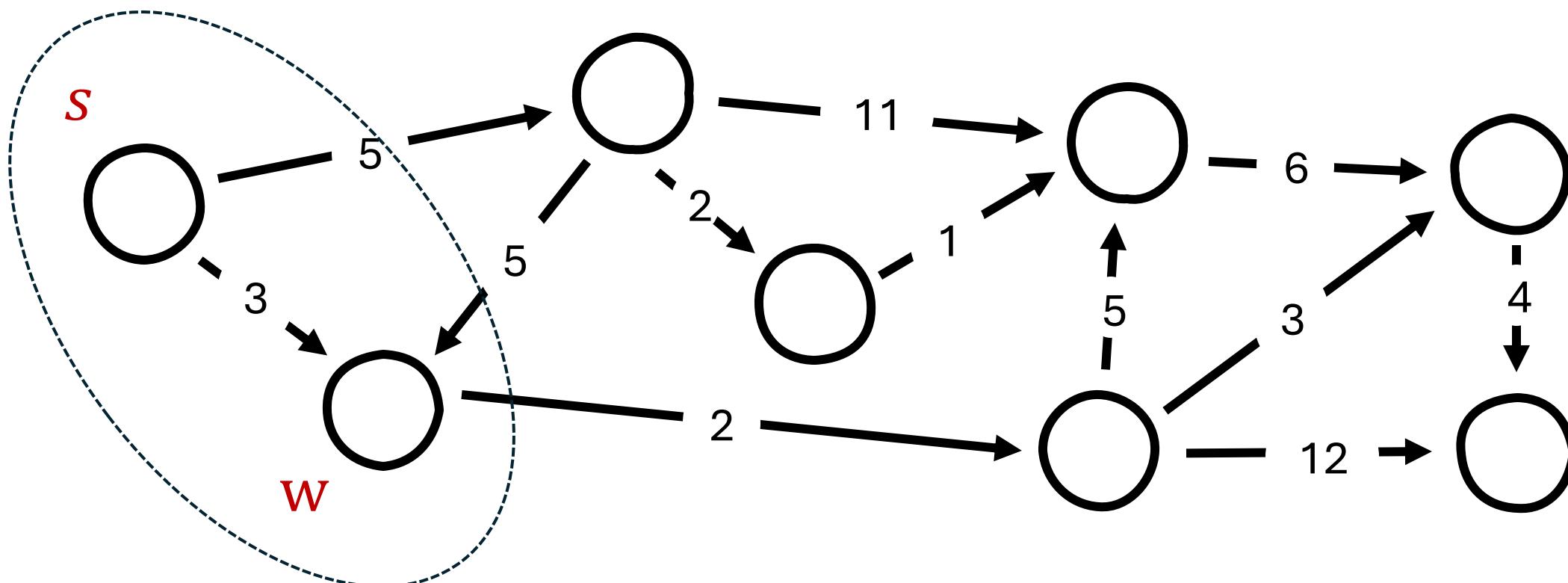
Dijkstra's Algorithm Idea

- If it uses another edge leaving s then it must be just as long or longer of a path!



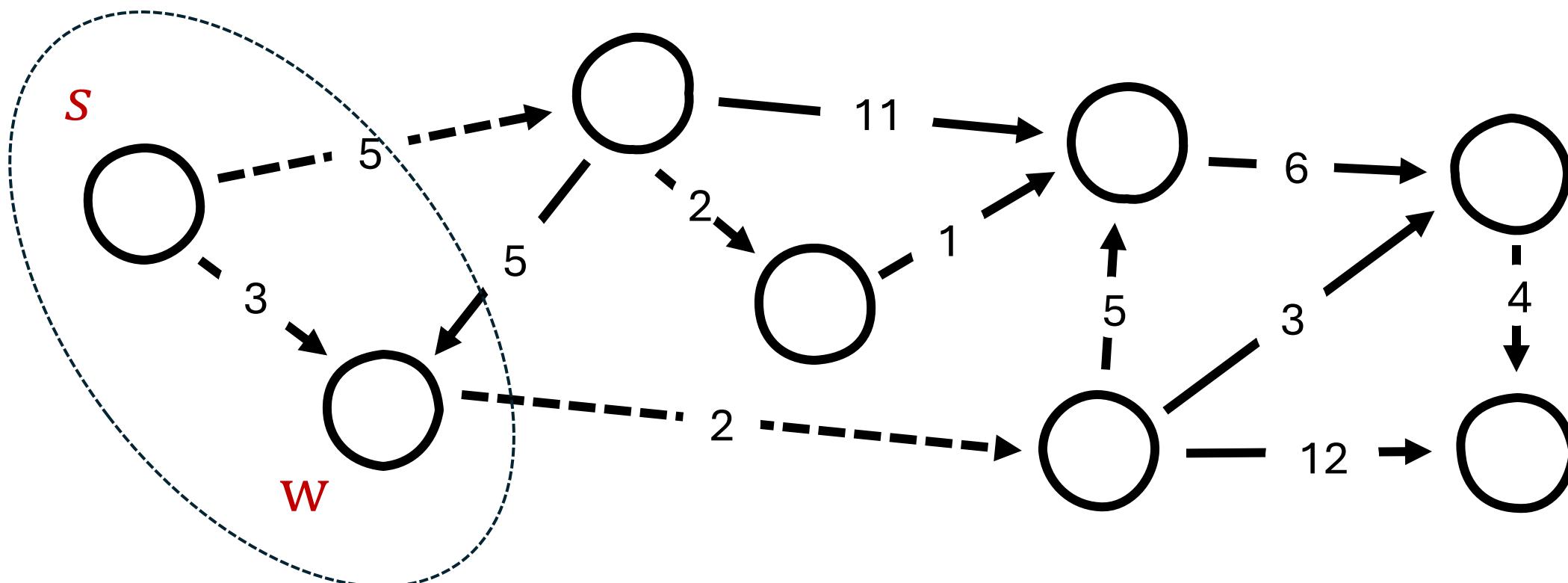
Dijkstra's Algorithm Idea

- Prompt: What can we say about the shortest path tree with respect to s and w ?



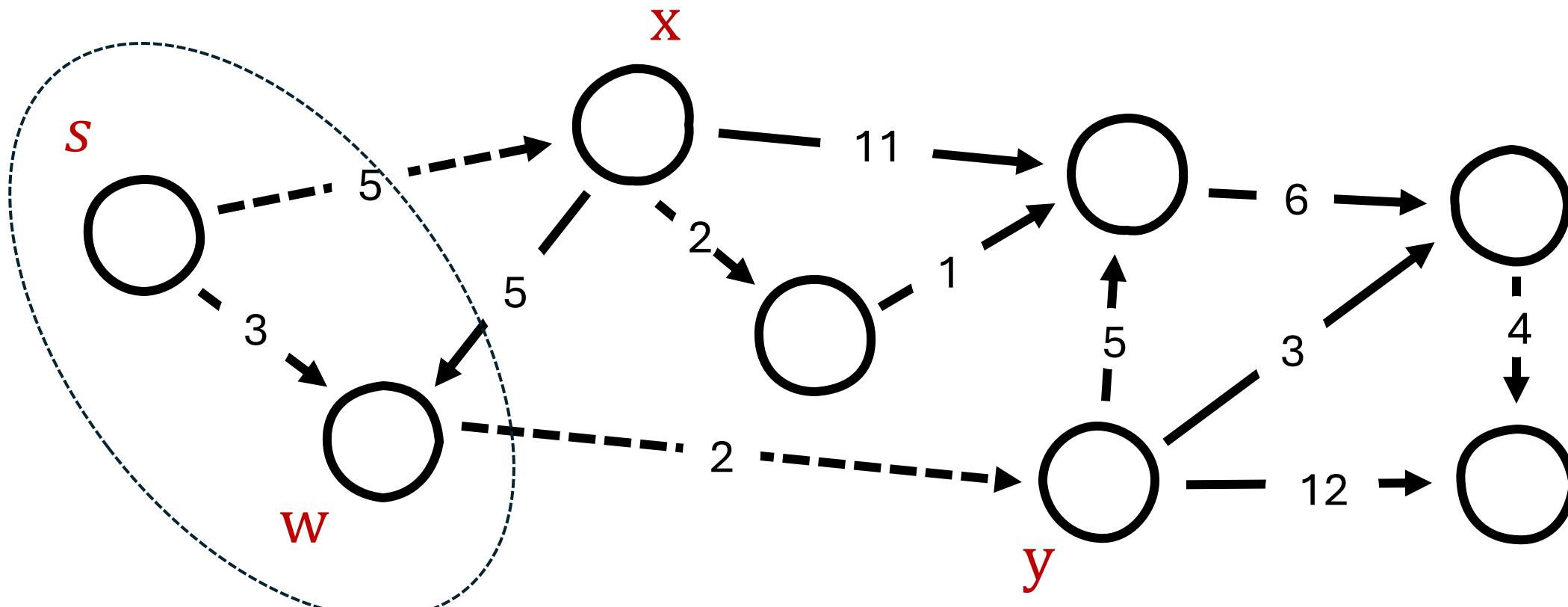
Dijkstra's Algorithm Idea

- Observation: The shortest path tree must include an edge leaving s and/or w . Otherwise, you can't reach everything.



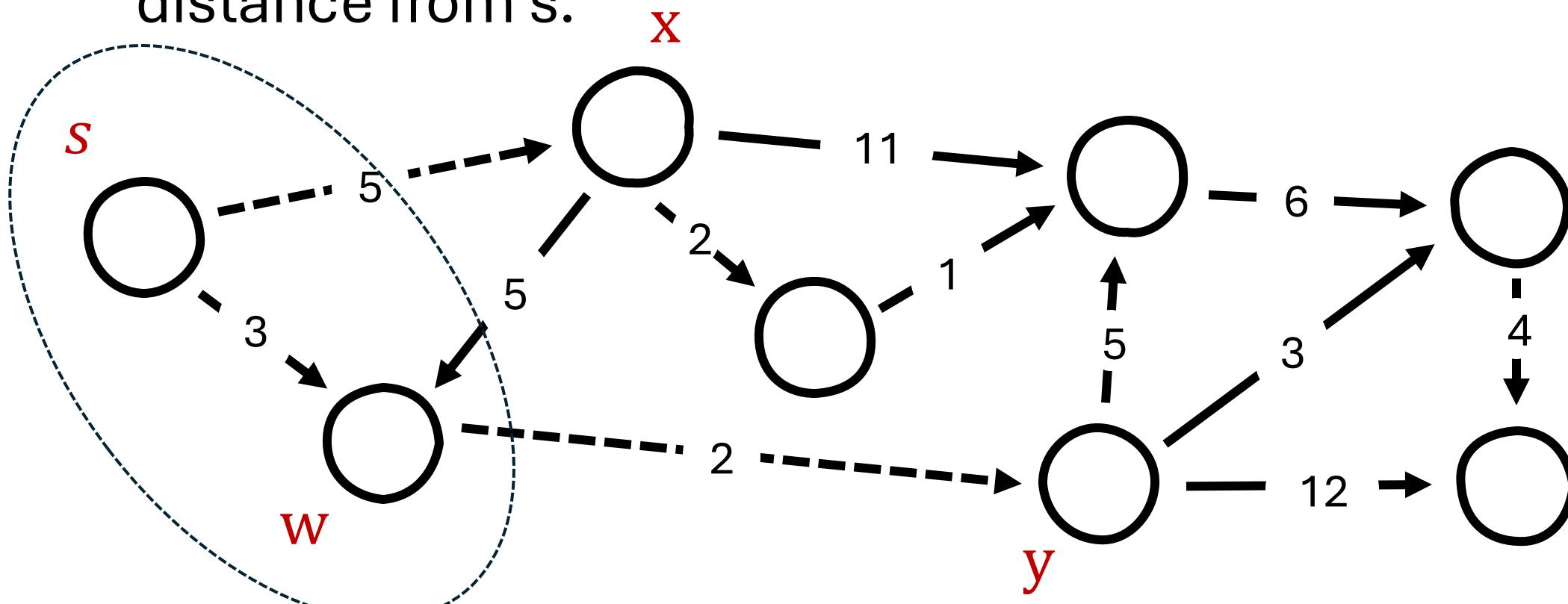
Dijkstra's Algorithm Idea

- Prompt: Which is closer to s ?



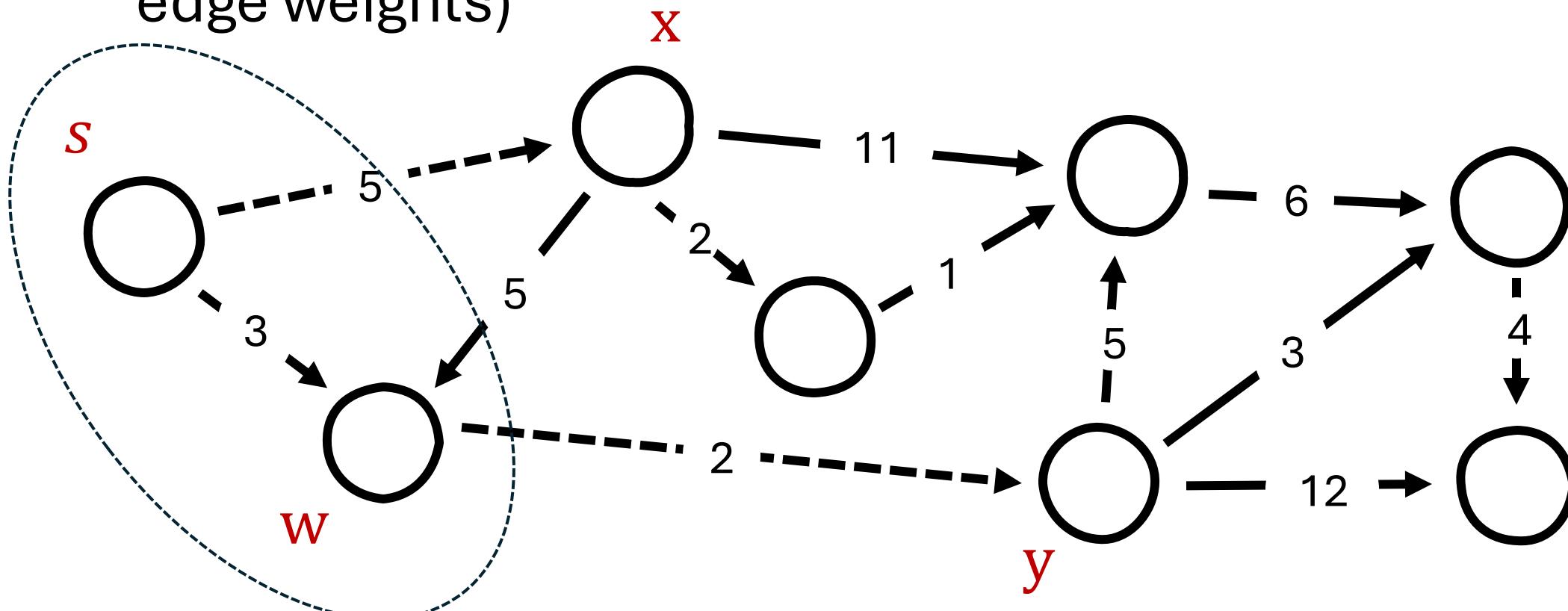
Dijkstra's Algorithm Idea

- Observation: There are both 5 away from s. We don't want to assume that the distance from w is the same as the distance from s.



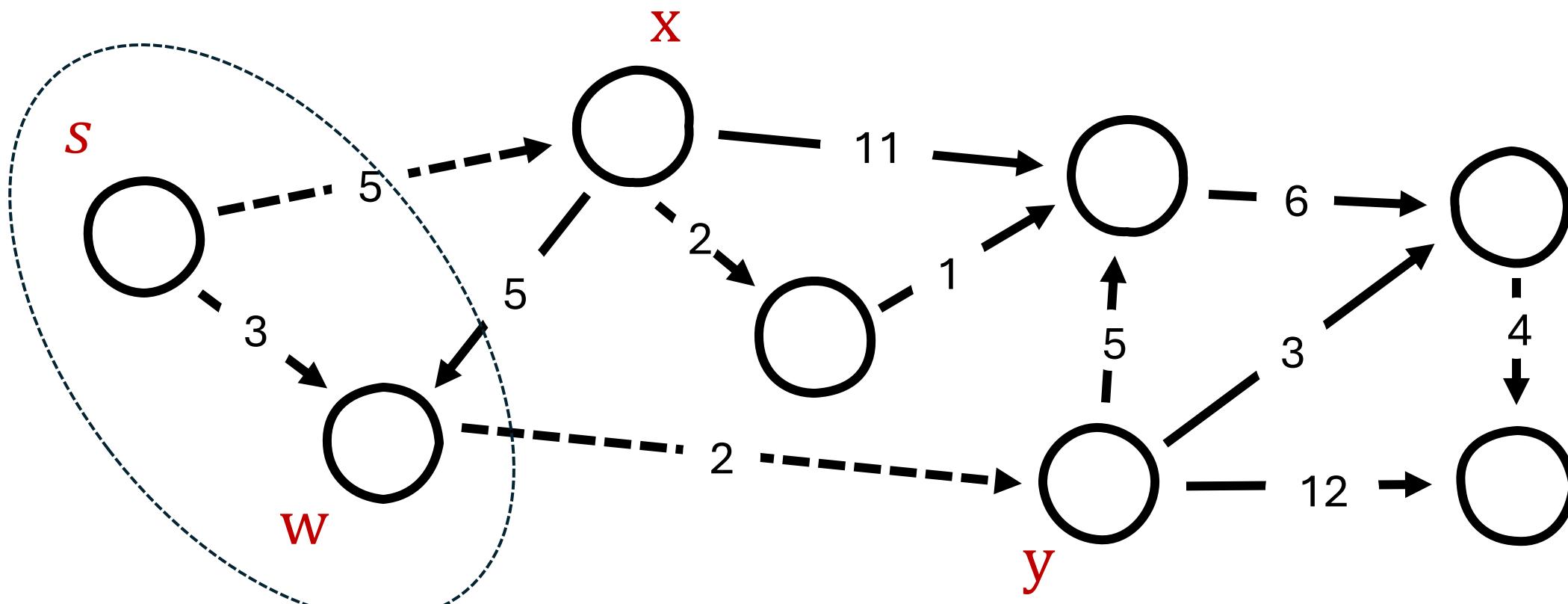
Dijkstra's Algorithm Idea

- Observation: The s to x edge and the w to y edge should both be in the shortest path tree. (We need non-negative edge weights)



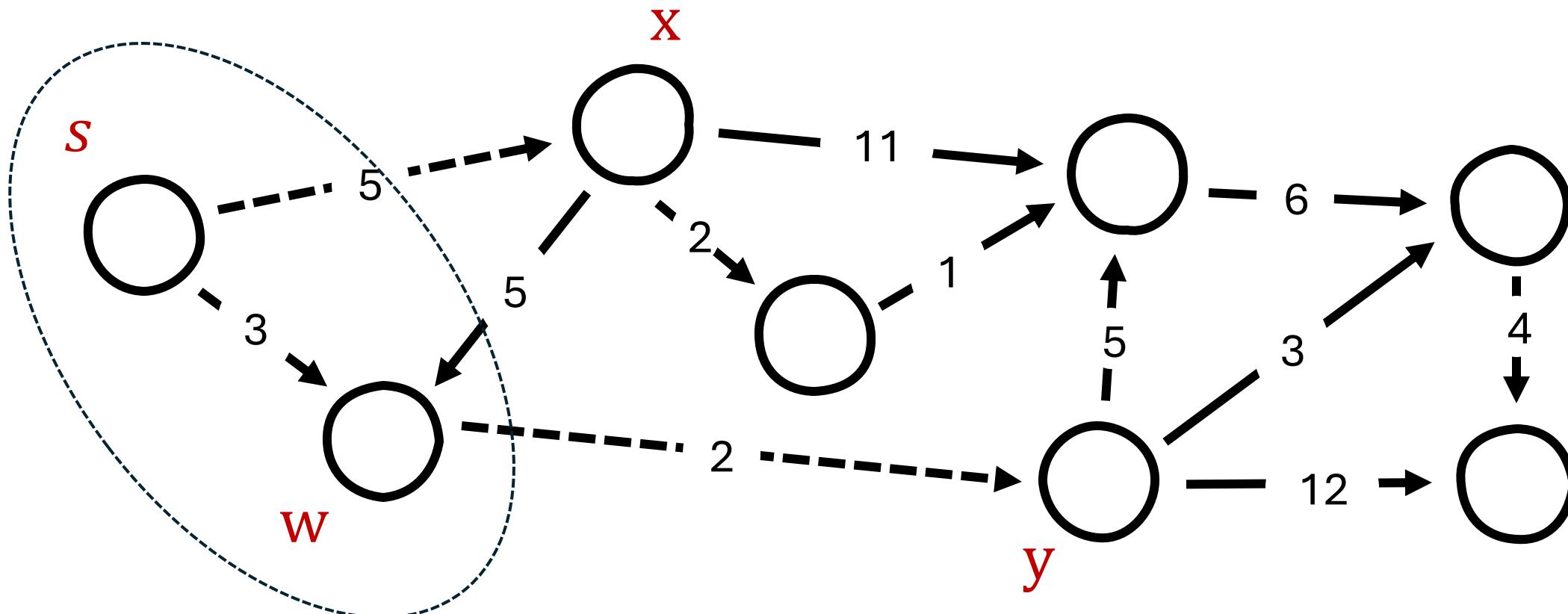
Dijkstra's Algorithm Idea

- Prompt: How do we generalize these observations as a greedy rule?



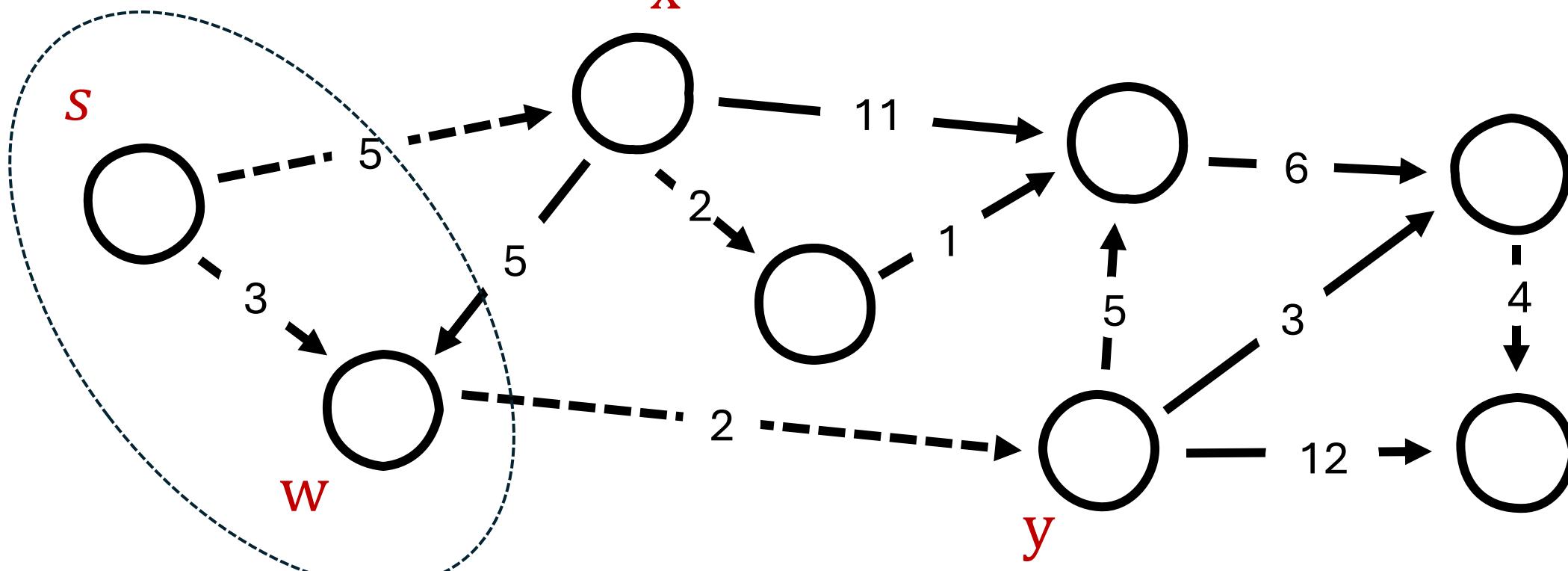
Dijkstra's Algorithm Idea

- Algorithm Idea: In each iteration, pick an edge from my shortest path tree to the “nearest” vertex not yet in the tree.



Dijkstra's Algorithm Idea

- Algorithm Idea: Keep track of the shortest path tree. In each iteration, add an edge from the tree to the nearest neighbor (with respect to s). $\textcolor{red}{x}$



Dijkstra's Algorithm

Dijkstra's Algorithm (G, ℓ)

Let S be the set of explored nodes

For each $u \in S$, we store a distance $d(u)$

Initially $S = \{s\}$ and $d(s) = 0$

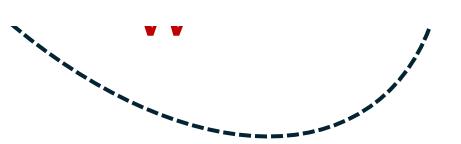
While $S \neq V$

Select a node $v \notin S$ with at least one edge from S for which

$d'(v) = \min_{e=(u,v):u \in S} d(u) + \ell_e$ is as small as possible

Add v to S and define $d(v) = d'(v)$

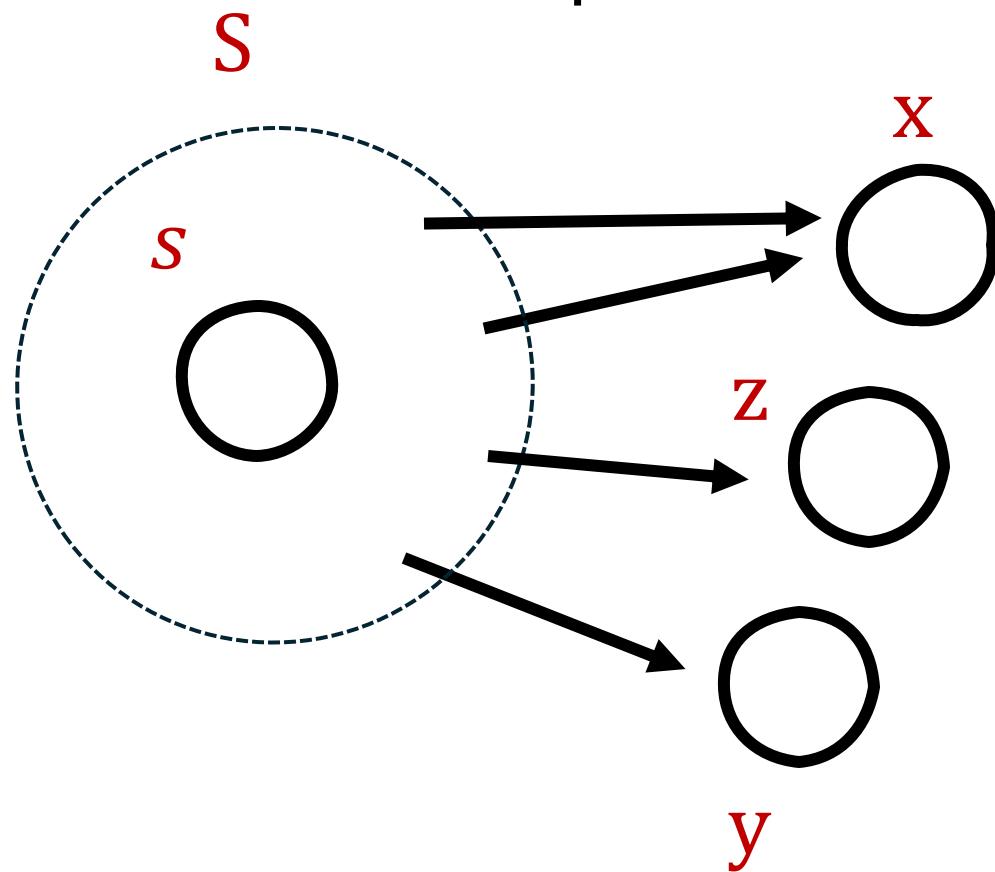
EndWhile



y

Dijkstra's Algorithm Idea

- Look at all neighbors of S . Determine which has the shortest path from s . Add that to S . Repeat.



Dijkstra's Algorithm (G, ℓ)

Let S be the set of explored nodes

For each $u \in S$, we store a distance $d(u)$

Initially $S = \{s\}$ and $d(s) = 0$

While $S \neq V$

Select a node $v \notin S$ with at least one edge from S for which

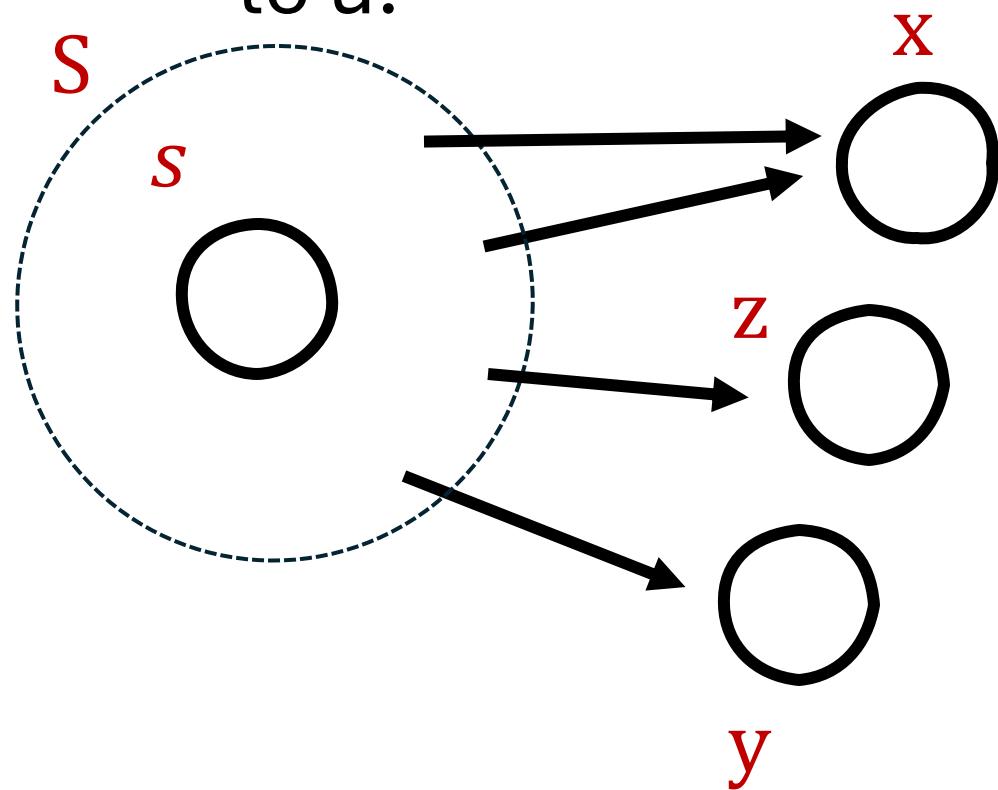
$d'(v) = \min_{e=(u,v):u \in S} d(u) + \ell_e$ is as small as possible

Add v to S and define $d(v) = d'(v)$

EndWhile

Dijkstra's Algorithm Idea

- Key Idea: We guess the distance from s to a neighbor is $\min_{e=(u,v):u \in S} d(u) + \ell_e$ where $d(u)$ is the distance from s to u .



Dijkstra's Algorithm (G, ℓ)

Let S be the set of explored nodes

For each $u \in S$, we store a distance $d(u)$

Initially $S = \{s\}$ and $d(s) = 0$

While $S \neq V$

Select a node $v \notin S$ with at least one edge from S for which

$d'(v) = \min_{e=(u,v):u \in S} d(u) + \ell_e$ is as small as possible

Add v to S and define $d(v) = d'(v)$

EndWhile

Dijkstra's Algorithm

$$S = \{s\}$$

$$d = [0, \infty, \infty, \infty, \infty, \infty, \infty, \infty]$$

Dijkstra's Algorithm (G, ℓ)

Let S be the set of explored nodes

For each $u \in S$, we store a distance $d(u)$

Initially $S = \{s\}$ and $d(s) = 0$

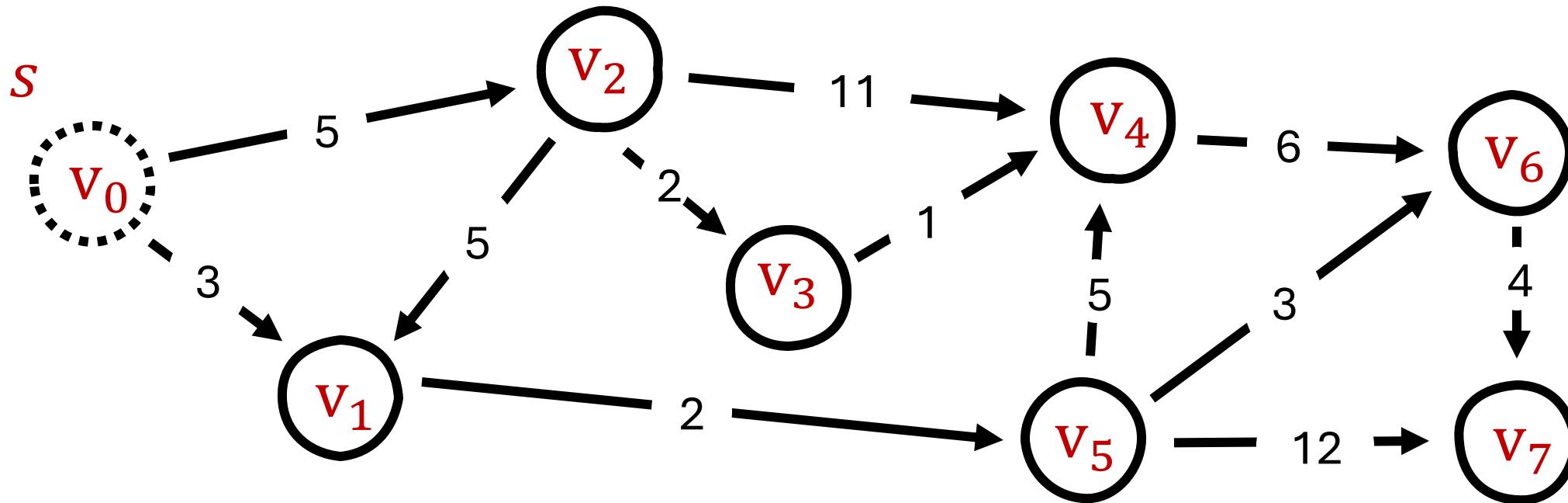
While $S \neq V$

Select a node $v \notin S$ with at least one edge from S for which

$d'(v) = \min_{e=(u,v): u \in S} d(u) + \ell_e$ is as small as possible

Add v to S and define $d(v) = d'(v)$

EndWhile



Dijkstra's Algorithm

$$S = \{s\}$$

$$d = [0, 3, 5, \infty, \infty, \infty, \infty, \infty]$$

Dijkstra's Algorithm (G, ℓ)

Let S be the set of explored nodes

For each $u \in S$, we store a distance $d(u)$

Initially $S = \{s\}$ and $d(s) = 0$

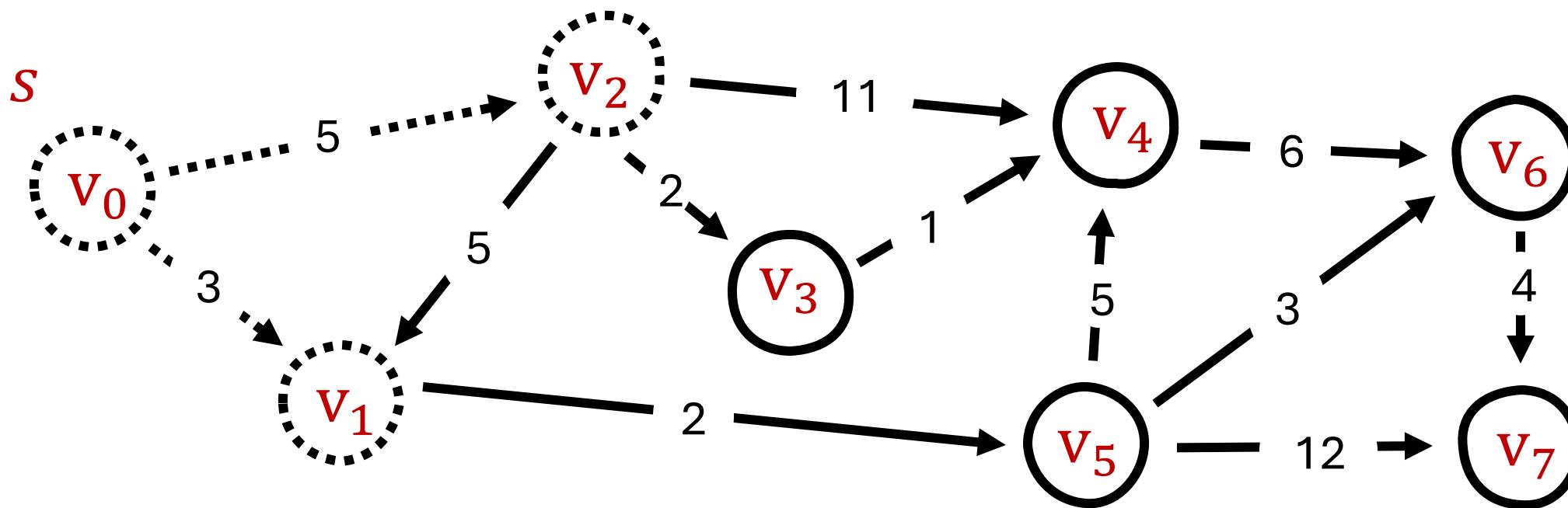
While $S \neq V$

Select a node $v \notin S$ with at least one edge from S for which

$d'(v) = \min_{e=(u,v):u \in S} d(u) + \ell_e$ is as small as possible

Add v to S and define $d(v) = d'(v)$

EndWhile



Dijkstra's Algorithm

$$S = \{s\}$$

$$d = [0, 3, 5, \infty, \infty, 5, \infty, \infty]$$

Dijkstra's Algorithm (G, ℓ)

Let S be the set of explored nodes

For each $u \in S$, we store a distance $d(u)$

Initially $S = \{s\}$ and $d(s) = 0$

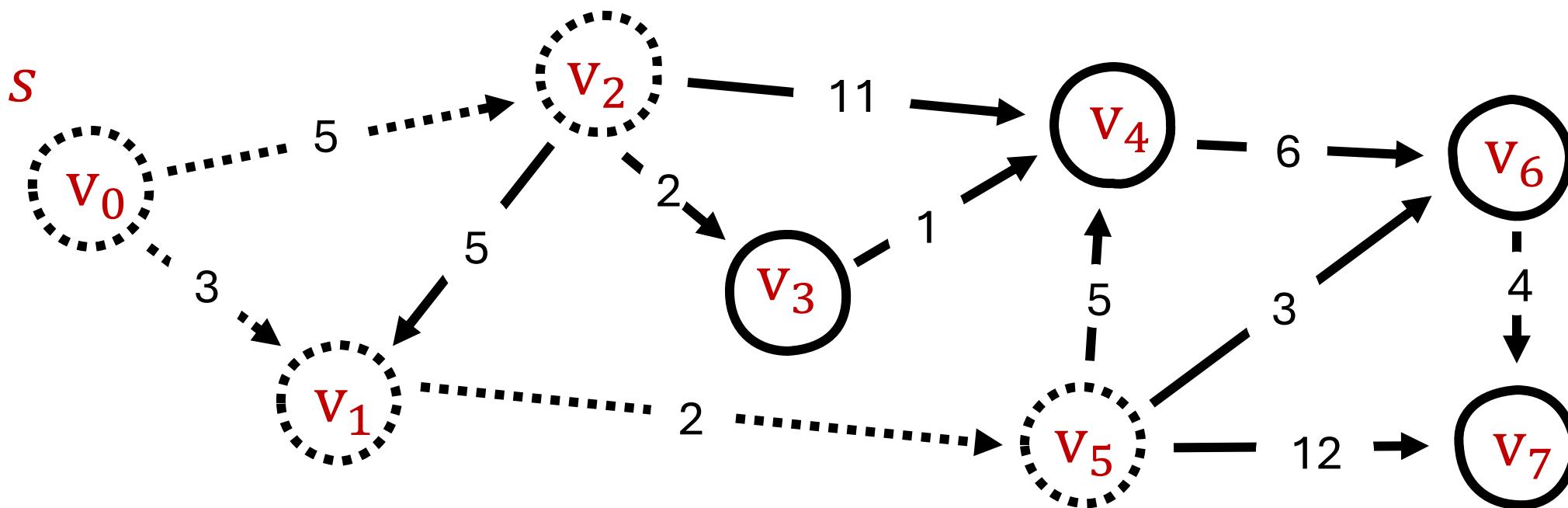
While $S \neq V$

Select a node $v \notin S$ with at least one edge from S for which

$d'(v) = \min_{e=(u,v):u \in S} d(u) + \ell_e$ is as small as possible

Add v to S and define $d(v) = d'(v)$

EndWhile



Dijkstra's Algorithm

$$S = \{s\}$$

$$d = [0, 3, 5, 7, \infty, 5, \infty, \infty]$$

Dijkstra's Algorithm (G, ℓ)

Let S be the set of explored nodes

For each $u \in S$, we store a distance $d(u)$

Initially $S = \{s\}$ and $d(s) = 0$

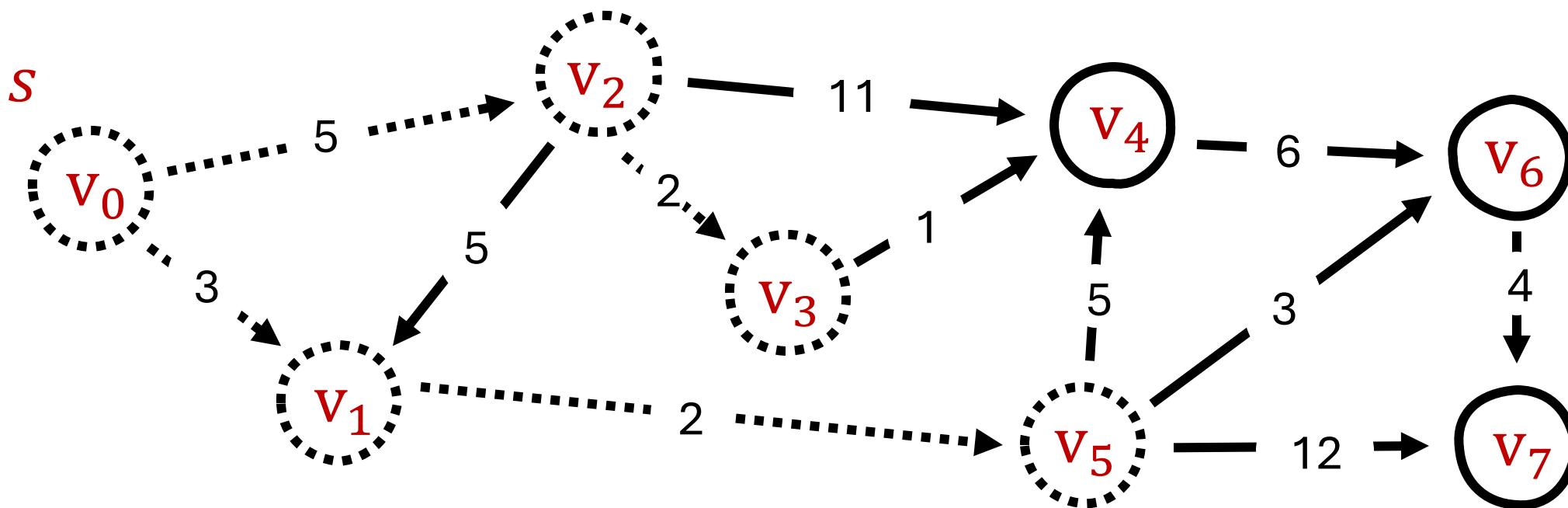
While $S \neq V$

Select a node $v \notin S$ with at least one edge from S for which

$d'(v) = \min_{e=(u,v):u \in S} d(u) + \ell_e$ is as small as possible

Add v to S and define $d(v) = d'(v)$

EndWhile



Dijkstra's Algorithm

$$S = \{s\}$$

$$d = [0, 3, 5, 7, 8, 5, \infty, \infty]$$

Dijkstra's Algorithm (G, ℓ)

Let S be the set of explored nodes

For each $u \in S$, we store a distance $d(u)$

Initially $S = \{s\}$ and $d(s) = 0$

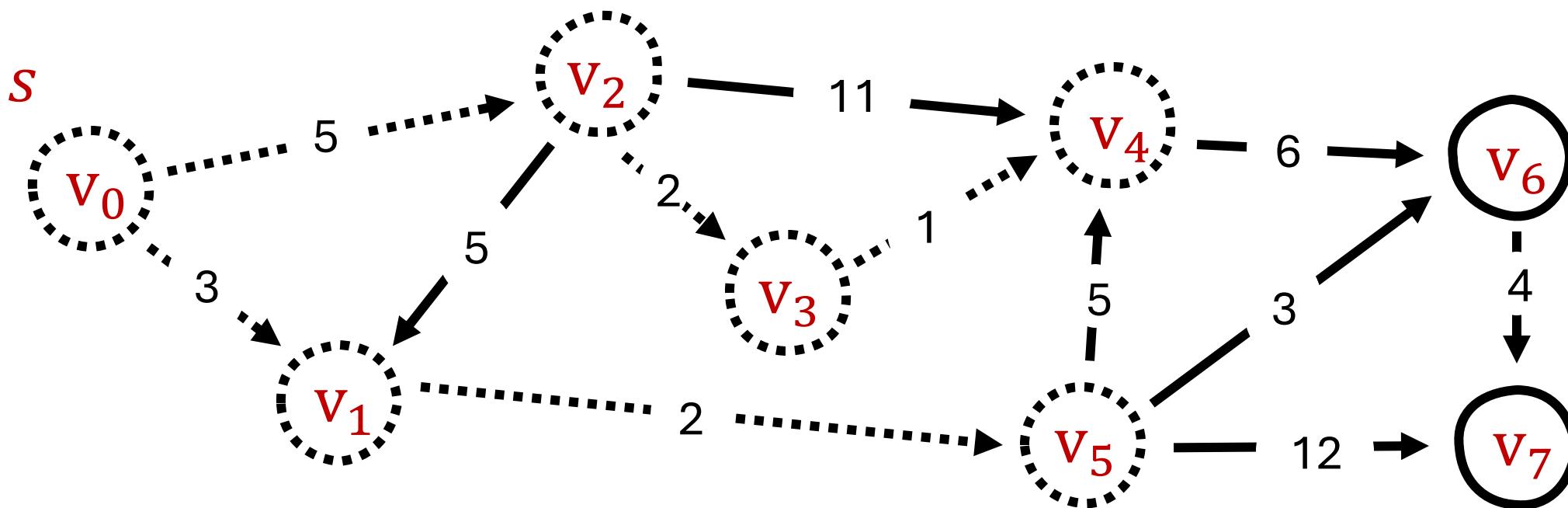
While $S \neq V$

Select a node $v \notin S$ with at least one edge from S for which

$d'(v) = \min_{e=(u,v):u \in S} d(u) + \ell_e$ is as small as possible

Add v to S and define $d(v) = d'(v)$

EndWhile



Dijkstra's Algorithm

$$S = \{s\}$$

$$d = [0, 3, 5, 7, 8, 5, 8, \infty]$$

Dijkstra's Algorithm (G, ℓ)

Let S be the set of explored nodes

For each $u \in S$, we store a distance $d(u)$

Initially $S = \{s\}$ and $d(s) = 0$

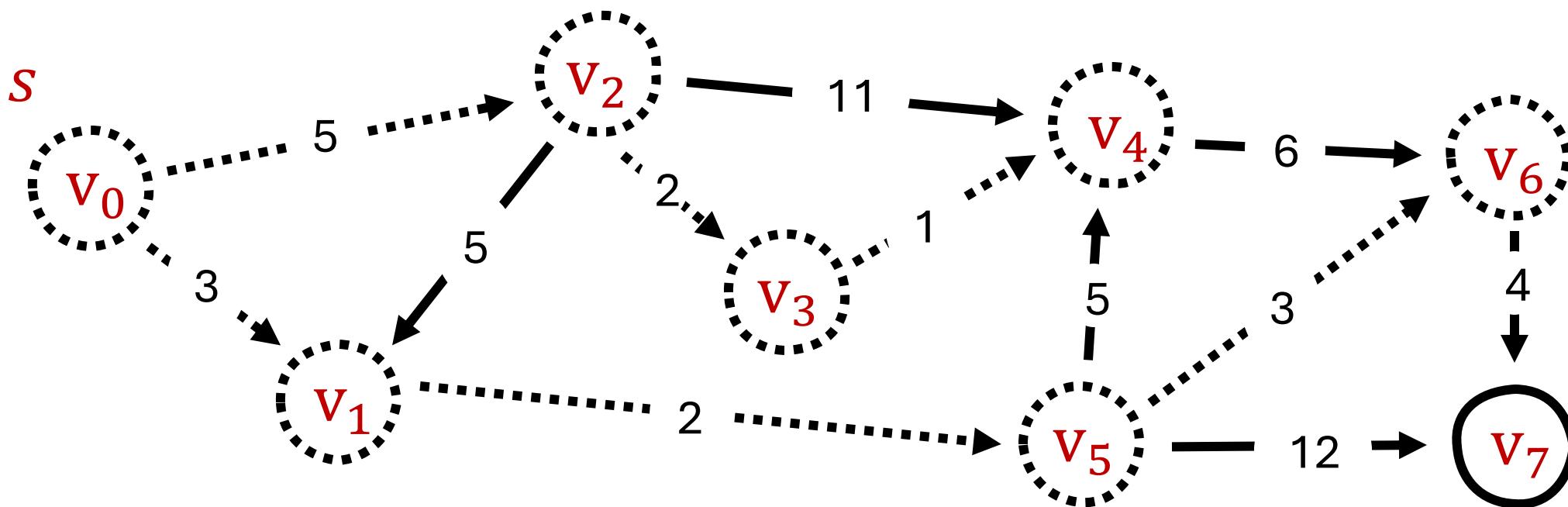
While $S \neq V$

Select a node $v \notin S$ with at least one edge from S for which

$d'(v) = \min_{e=(u,v):u \in S} d(u) + \ell_e$ is as small as possible

Add v to S and define $d(v) = d'(v)$

EndWhile



Dijkstra's Algorithm

$S = \{s\}$

$d = [0, 3, 5, 7, 8, 5, 8, 12]$

Dijkstra's Algorithm (G, ℓ)

Let S be the set of explored nodes

For each $u \in S$, we store a distance $d(u)$

Initially $S = \{s\}$ and $d(s) = 0$

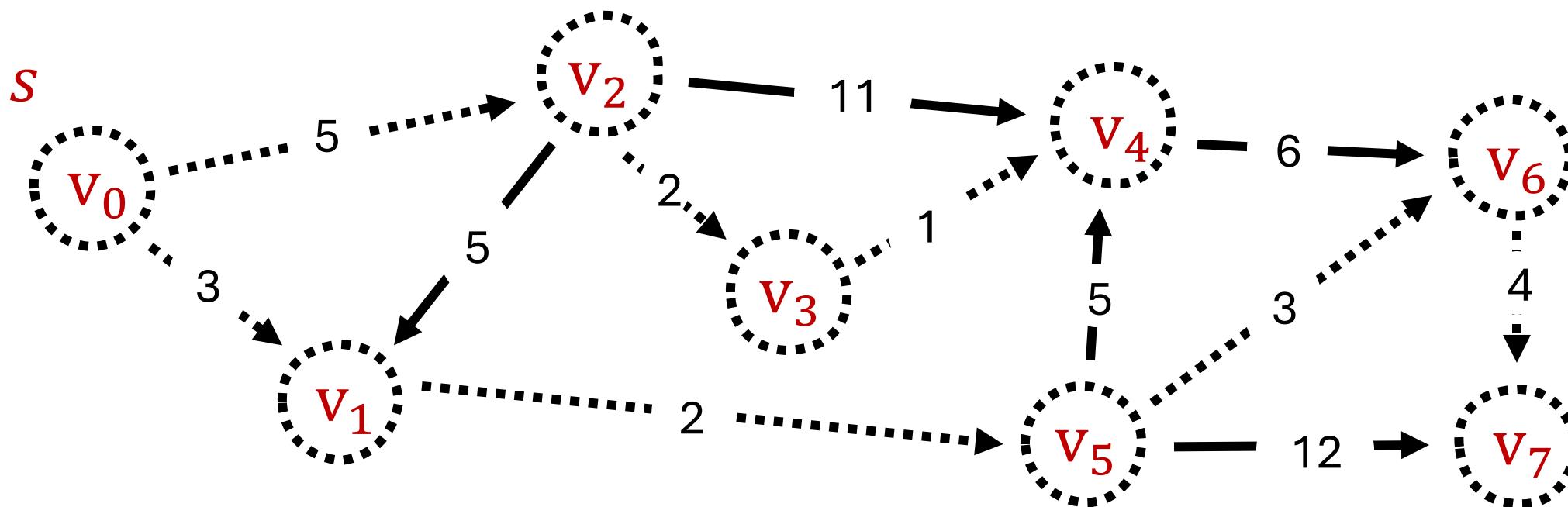
While $S \neq V$

Select a node $v \notin S$ with at least one edge from S for which

$d'(v) = \min_{e=(u,v):u \in S} d(u) + \ell_e$ is as small as possible

Add v to S and define $d(v) = d'(v)$

EndWhile



Paths?

Q: How do we return the paths?

Dijkstra's Algorithm (G, ℓ)

Let S be the set of explored nodes

For each $u \in S$, we store a distance $d(u)$

Initially $S = \{s\}$ and $d(s) = 0$

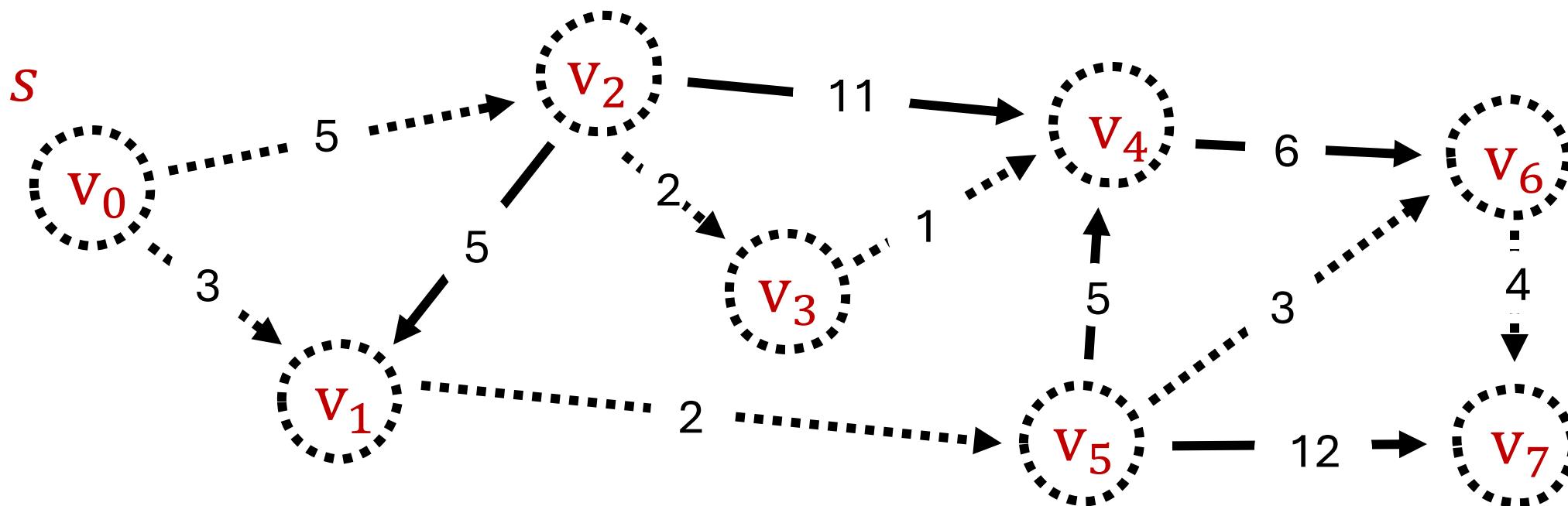
While $S \neq V$

Select a node $v \notin S$ with at least one edge from S for which

$d'(v) = \min_{e=(u,v):u \in S} d(u) + \ell_e$ is as small as possible

Add v to S and define $d(v) = d'(v)$

EndWhile



Paths?

Q: How do we return the paths?

Dijkstra's Algorithm (G, ℓ)

Let S be the set of explored nodes

For each $u \in S$, we store a distance $d(u)$

Initially $S = \{s\}$ and $d(s) = 0$

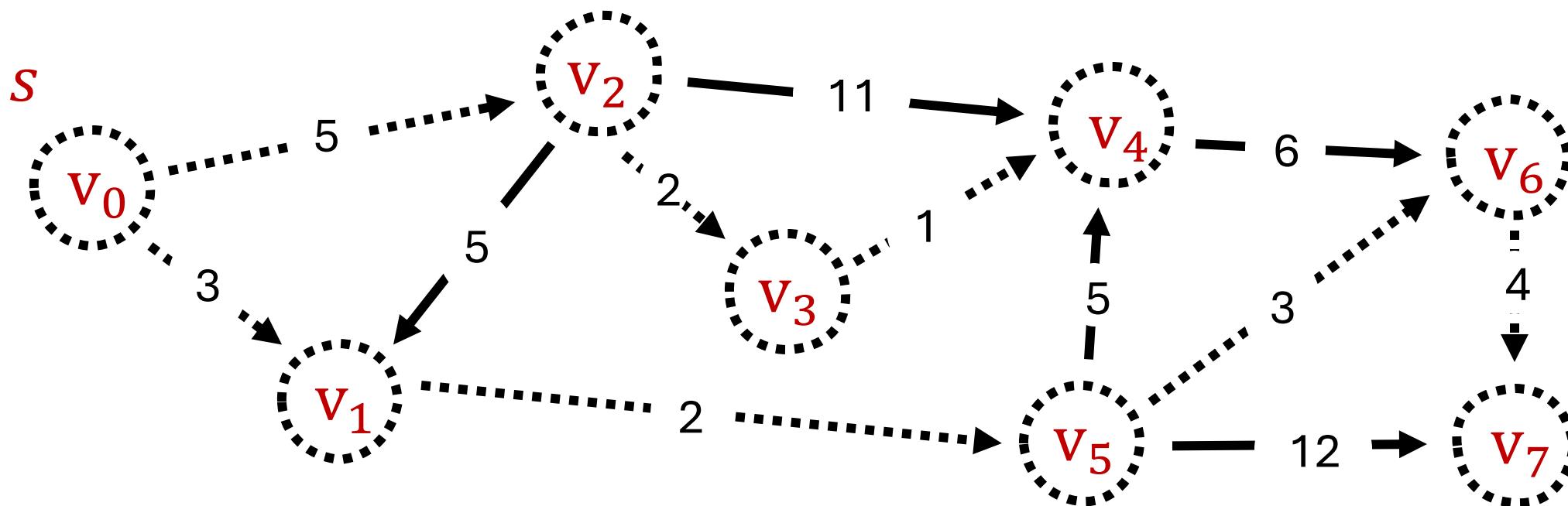
While $S \neq V$

Select a node $v \notin S$ with at least one edge from S for which

$d'(v) = \min_{e=(u,v):u \in S} d(u) + \ell_e$ is as small as possible

Add v to S and define $d(v) = d'(v)$

EndWhile



Paths?

A: When we add v to S , we can also keep track of what edge was used.

Dijkstra's Algorithm (G, ℓ)

Let S be the set of explored nodes **Let P a n length array.**

For each $u \in S$, we store a distance $d(u)$

Initially $S = \{s\}$ and $d(s) = 0$ **Set $P[s]$ to be -1.**

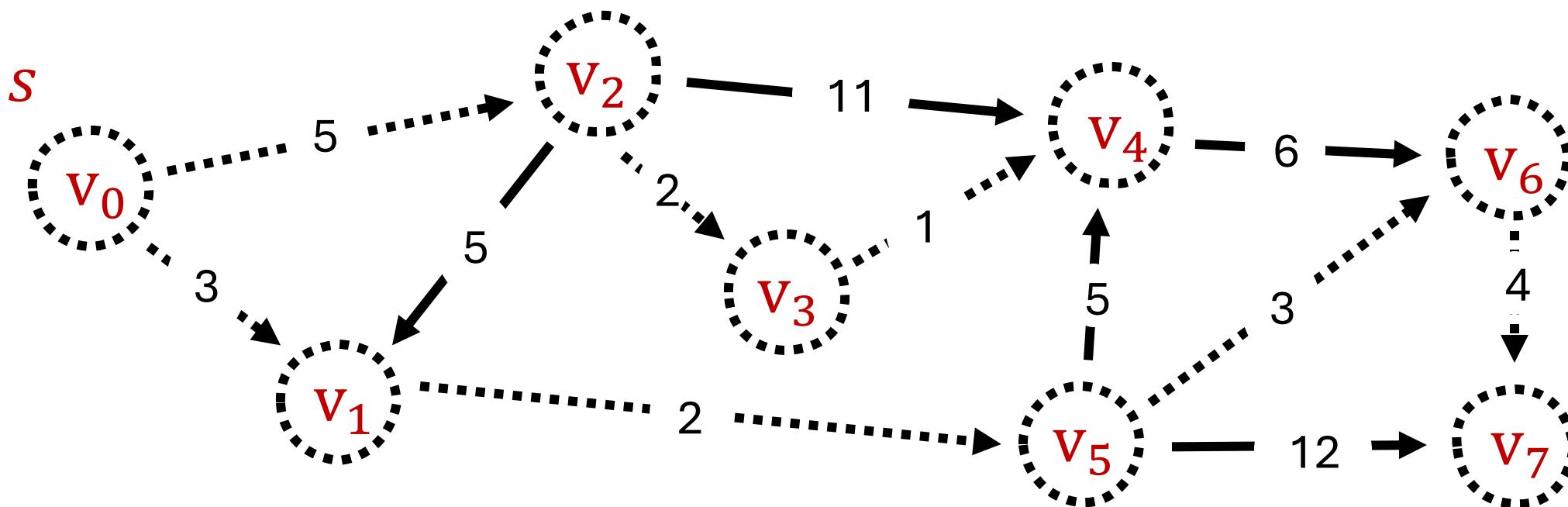
While $S \neq V$

Select a node $v \notin S$ with at least one edge from S for which

$d'(v) = \min_{e=(u,v):u \in S} d(u) + \ell_e$ is as small as possible

Add v to S and define $d(v) = d'(v)$ **Set $P[v] = u$ such that (u,v) was min.**

EndWhile



Paths?

Q: How do we get the shortest path from s to w?

Dijkstra's Algorithm (G, ℓ)

Let S be the set of explored nodes **Let P a n length array.**

For each $u \in S$, we store a distance $d(u)$

Initially $S = \{s\}$ and $d(s) = 0$ **Set $P[s]$ to be -1.**

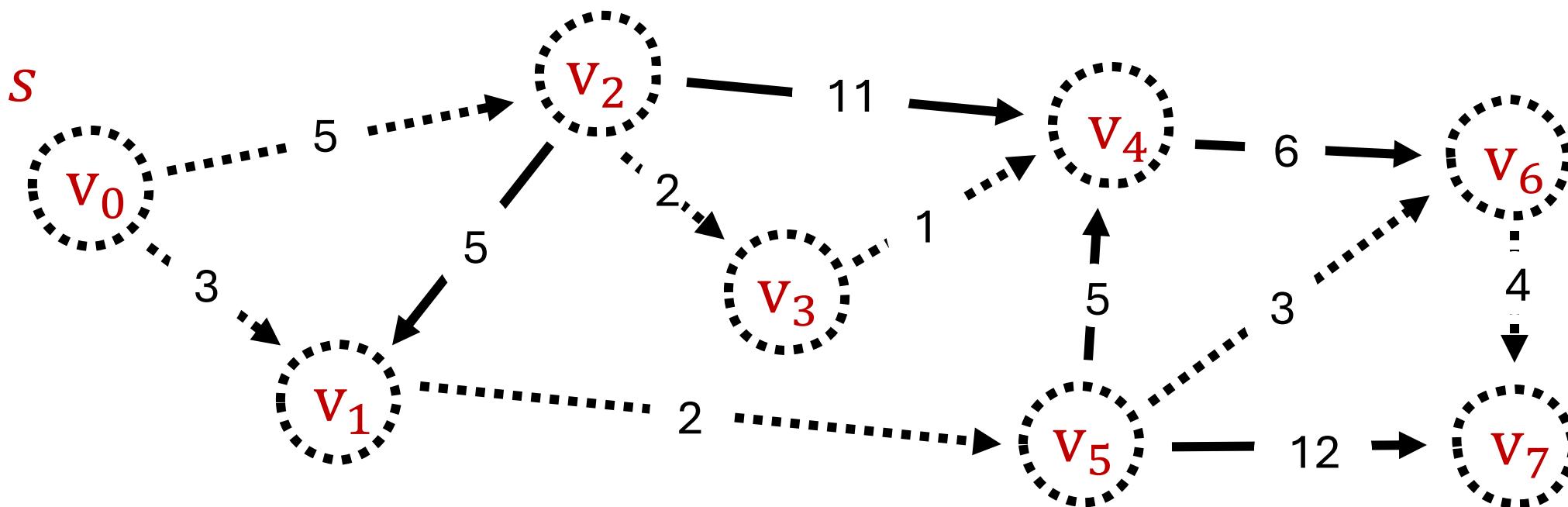
While $S \neq V$

Select a node $v \notin S$ with at least one edge from S for which

$d'(v) = \min_{e=(u,v):u \in S} d(u) + \ell_e$ is as small as possible

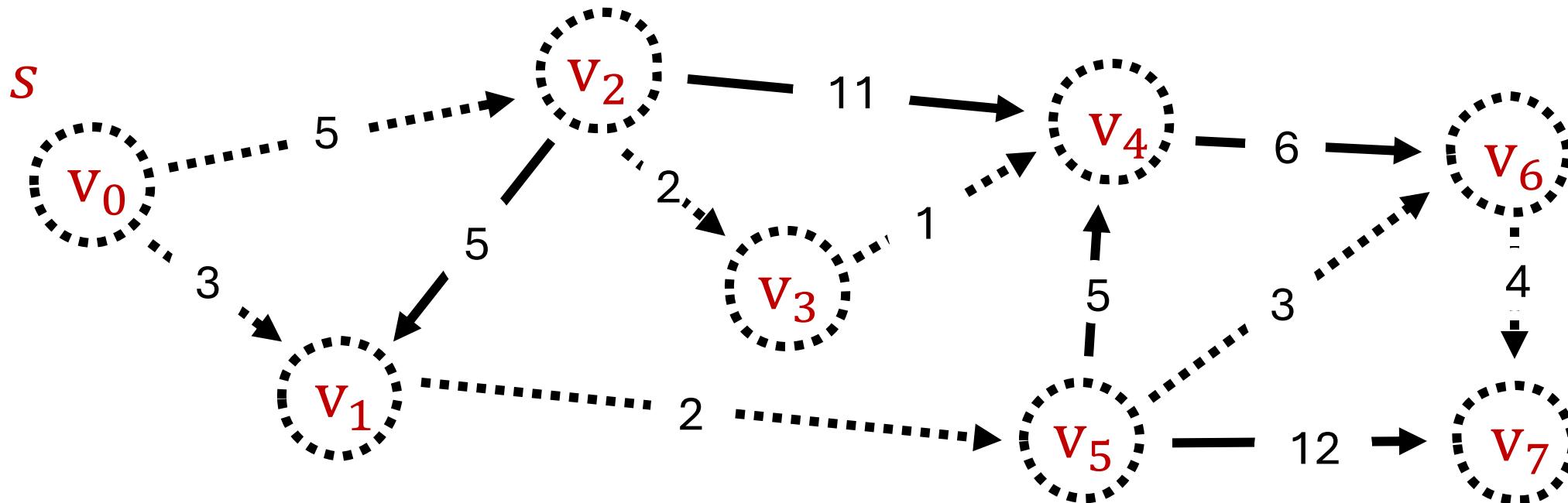
Add v to S and define $d(v) = d'(v)$ **Set $P[v] = u$ such that (u,v) was min.**

EndWhile



Paths?

A: We can recursively construct it by looking at taking the edge $(P[w], w)$ and the shortest path from s to $P[w]$.



Dijkstra's Algorithm (G, ℓ)

Let S be the set of explored nodes **Let P a n length array.**

For each $u \in S$, we store a distance $d(u)$

Initially $S = \{s\}$ and $d(s) = 0$ **Set $P[s]$ to be Null.**

While $S \neq V$

Select a node $v \notin S$ with at least one edge from S for which

$d'(v) = \min_{e=(u,v): u \in S} d(u) + \ell_e$ is as small as possible

Add v to S and define $d(v) = d'(v)$ **Set $P[v] = u$ such that (u,v) was min.**

EndWhile

Paths

Let P_u be the path found from s to u using these modifications.

Dijkstra's Algorithm (G, ℓ)

Let S be the set of explored nodes **Let P a n length array.**

For each $u \in S$, we store a distance $d(u)$

Initially $S = \{s\}$ and $d(s) = 0$ **Set $P[s]$ to be -1.**

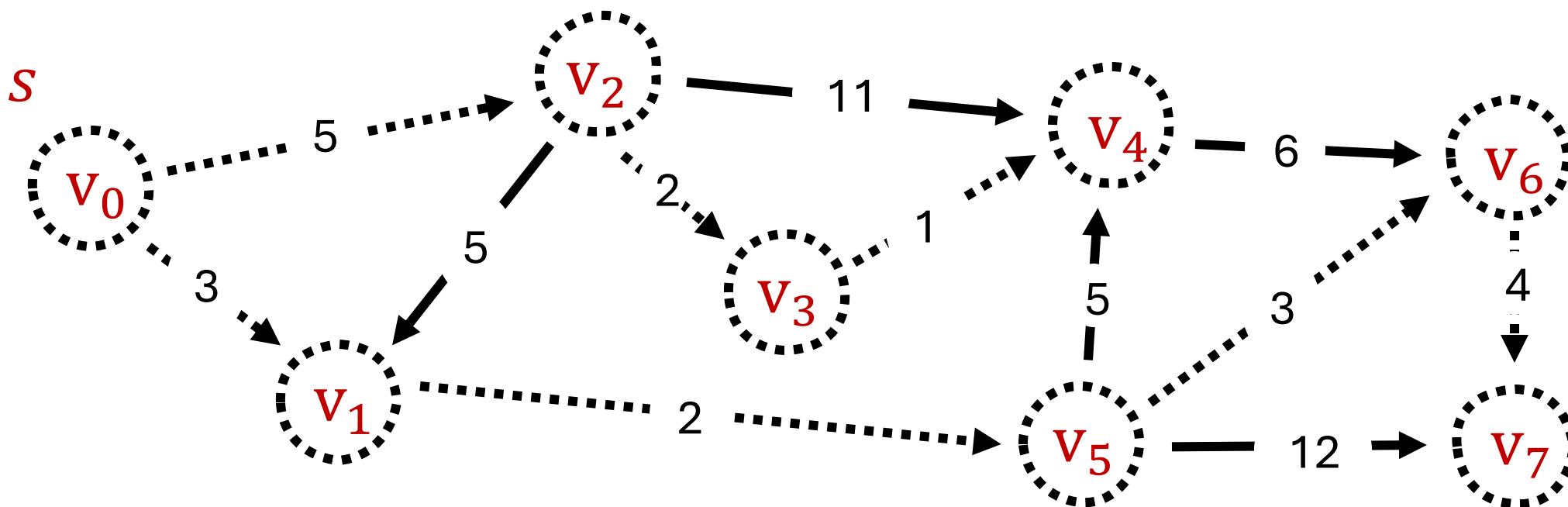
While $S \neq V$

Select a node $v \notin S$ with at least one edge from S for which

$d'(v) = \min_{e=(u,v):u \in S} d(u) + \ell_e$ is as small as possible

Add v to S and define $d(v) = d'(v)$ **Set $P[v] = u$ such that (u,v) was min.**

EndWhile



Correctness

Claim: At the start of each loop, P_u is the shortest path from s to u for all $u \in S$.

Dijkstra's Algorithm (G, ℓ)

Let S be the set of explored nodes

For each $u \in S$, we store a distance $d(u)$

Initially $S = \{s\}$ and $d(s) = 0$

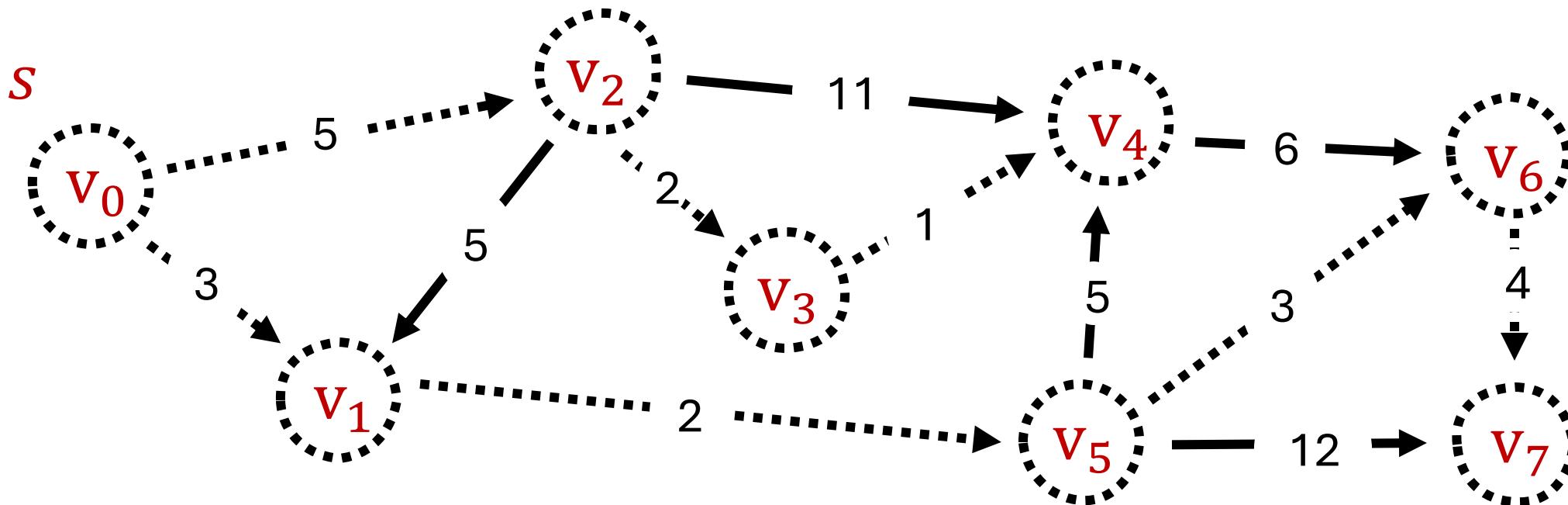
While $S \neq V$

Select a node $v \notin S$ with at least one edge from S for which

$d'(v) = \min_{e=(u,v):u \in S} d(u) + \ell_e$ is as small as possible

Add v to S and define $d(v) = d'(v)$

EndWhile

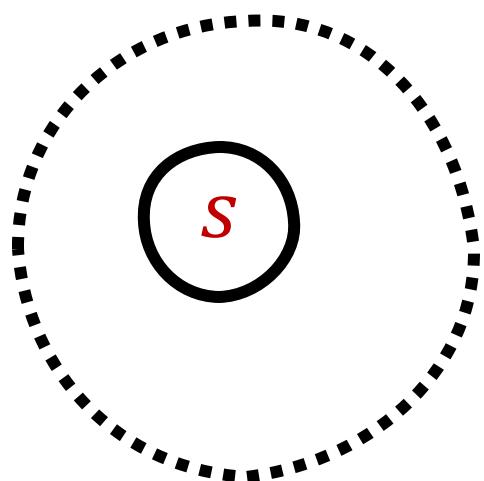


Proof Idea

- We proceed with induction on the size of S .
- If $|S| = 1$, then...

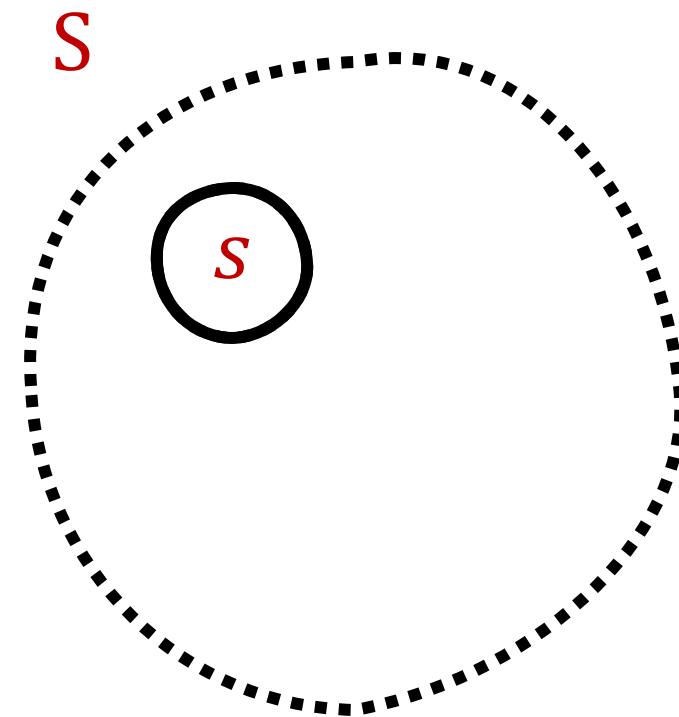
Proof Idea

- We proceed with induction on the size of S .
- If $|S| = 1$, then it is true because the shortest path from s to s is empty set.



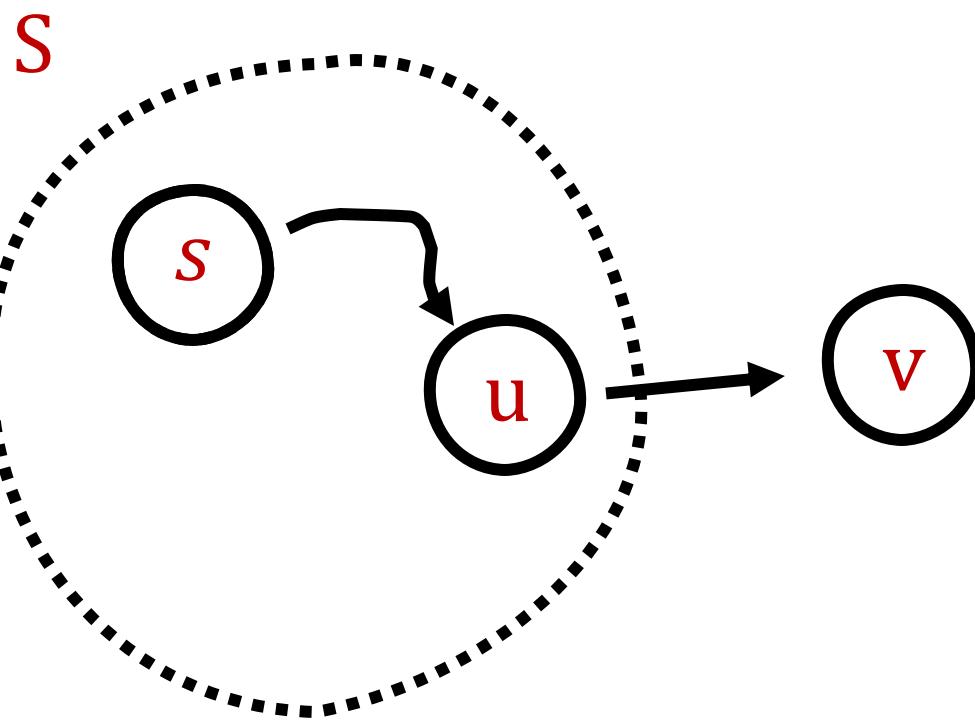
Proof Idea

- We proceed with induction on the size of S .
- Suppose for all S such that $|S| \leq k$, P_u is the shortest path from s to u for all $u \in S$.



Proof Idea

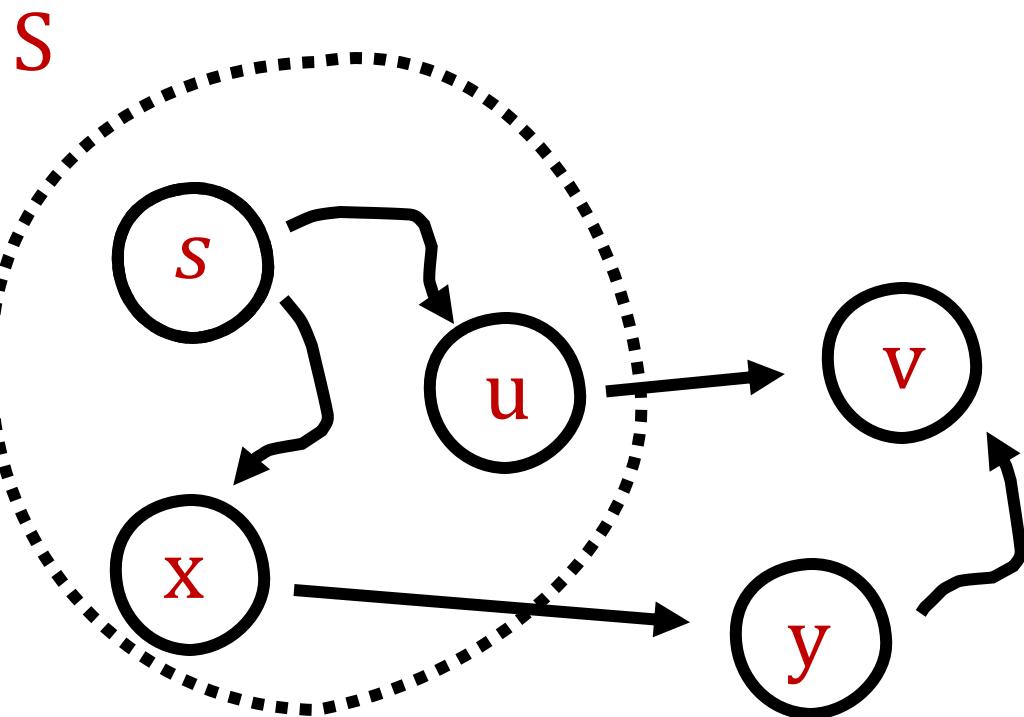
- We proceed with induction on the size of S .
- Suppose for all S such that $|S| \leq k$, P_u is the shortest path from s to u for all $u \in S$.



- Let v be the $k+1$ vertex added to S and let (u,v) be the edge minimized $\min_{e=(u,v):u \in S} d(u) + \ell_e$.

Proof Idea

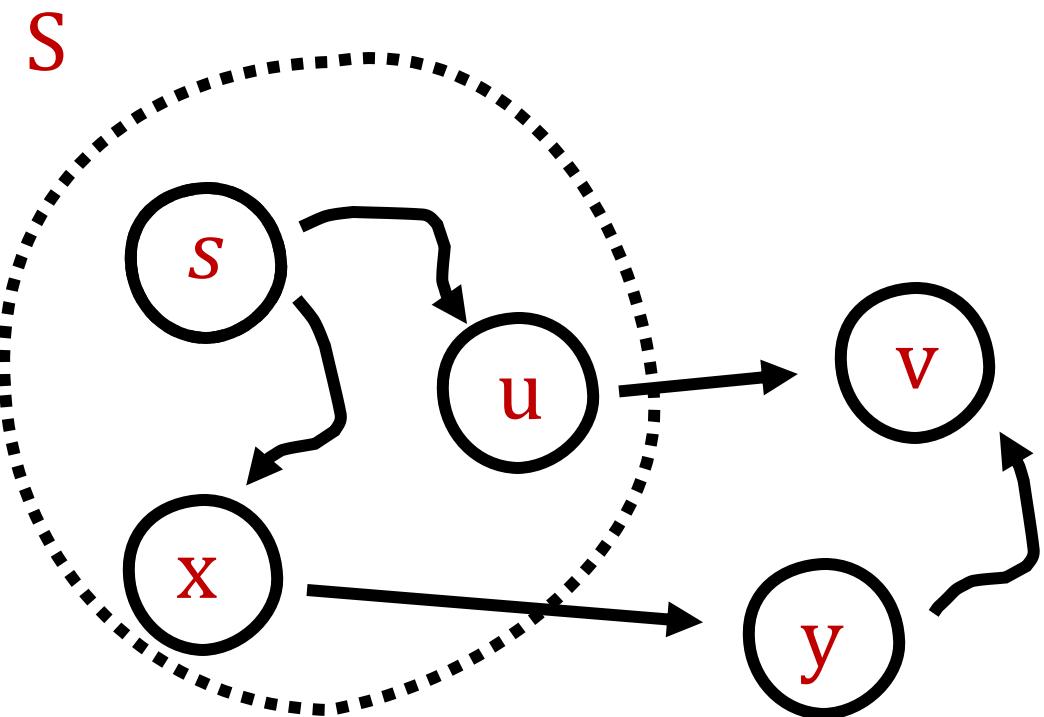
- We proceed with induction on the size of S .
- Suppose for all S such that $|S| \leq k$, P_u is the shortest path from s to u for all $u \in S$.



- Let v be the $k+1$ vertex added to S and let (u,v) be the edge minimized $\min_{e=(u,v):u \in S} d(u) + \ell_e$.
- Suppose $P_u \cup \{(u,v)\}$ is not the shortest path. Then there exists a path that must leave S via some edge (x,y) .

Proof Idea

- We proceed with induction on the size of S .
- Suppose for all S such that $|S| \leq k$, P_u is the shortest path from s to u for all $u \in S$.



- Let v be the $k+1$ vertex added to S and let (u,v) be the edge minimized $\min_{e=(u,v):u \in S} d(u) + \ell_e$.
- Suppose $P_u \cup \{(u,v)\}$ is not the shortest path. Then there exists a path that must leave S via some edge (x,y) .
- However, the algo picked v and so the path from s to y must be just as long. ><

Q: What about negative edge weights?

