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Schedule

1.Course Updates
2.Shortest Path
3.Dijkstra’s Algorithm
4.Proof of Correctness
5.Runtime




Course Updates

* Everything Besides Midterm
Graded

* Midterm Grades this week
 HWA4Out

* Due Next Week!
* Group Project

* First Problems Oct 315t



Mid Updates

You got mid semester grades based
only on HW1, HW2, HW3, and Quiz 1
(no drops).

* |willgive you more formal grades
once midterms are graded.

Midterms seemed to have been a
stumble for a lot of people.

e Thisis achance to do better and
not a chance to give up.




Cheating!

“If the violation involves the use of ChatGPT
(or other generative Al tools), irrespective of
whether it is the student's first violation or not,
then it will result in an automatic F letter grade
in the course.” <- Course Syllabus

* We know of a few people who are using
generative Al tools on homework
assignments.

* Justbecauseyou got a grade, doesn’t
mean | don’t know you cheated and you
are in the clear.




Single Pair Shortest Path



Single Pair Shortest Path

* Input: Directed graph ¢ = (V,E), edge lengths £: E = R,
and a source vertexs € V.
* Output: Find the shortest directed path from s to all

vertices in G.
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Shortest Path Tree



Dijkstra’s Algorithm Idea

* Algorithm ldea: ?
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Dijkstra’s Algorithm Idea

* Algorithm Idea: In each iteration, pick an edge from my
shortest path tree to the “nearest” vertex not yet in the tree.
Nearest means distance to the root, s.
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Dijkstra’s Algorithm

Dijkstra's Algorithm (G, £)
Let S be the set of explored nodes
For each ueS, we store a distance d(u)
Initially S={s} and d(s)=0
While S#V
Select a node v¢$S with at least one edge from S for which
d'(v) =min,_¢, yyuesd(m) + £, is as small as possible
Add v to S and define d(v) =d'(v)
EndWhile
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Dijkstra’s Algorithm

Dijkstra's Algorithm (G, £)

Let S be the set of explored nodes
For each ueS, we store a distEEMEIERGERIEIEI(l=RifelpaRRTe

Initially S={s} and d(s) =0 something on the “frontier”.

While S#V /
Select a node v¢$S with Mt least one edge from S for which
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Dijkstra’s Algorithm Idea

* Look at all neighbors of S. Determine which has the
shortest path from s. Add that to S. Repeat.

.......... X . .
,,,,,,,,, Dijkstra's Algorithm (G, £)
d ;__» Let S be the set of explored nodes

S \\\ For each ueS, we store a distance d(u)
- Initially S={s} and d(s)=0
i 7 While S#V

O :" Select a node v¢$S with at least one edge from S for which

/ d'(v) = min,_¢,, yynes d() + £, is as small as possible

Add v to S and define d(v) =d'(v)



oo 9 o Dijkstra's Algorithm (G, £)
DIJ kSt ra S Algo rlth m Let S be the set of explored nodes
For each ueS, we store a distance d(u)
Initially S={s} and d(s)=0
S ={s} While S#V
Select a node v¢S with at least one edge from S for which
d =[0,00, 00, 00, 00, 00, 00, O] dr _ , ‘
(V) =ming_(; yyues d@) + €, is as small as possible
Add v to S and define d(v)=d'(v)
EndWhile




Dij kStra,S Al_g() rith m Dijkstra's Algorithm (G, £)

Let S be the set of explored nodes

For each ueS, we store a distance d(u)

Initially S={s} and d(s)=0
S ={s} While S#V

_ Select a node v¢S with at least one edge from S for which
d=]0, 3,5, 00, 00, 0, 00, 0]

d'(v) =min,_g,, y)uesd) + £, is as small as possible
Add v to S and define d(v)=d'(v)

EndWhile
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Dij kStra,S Al_g() rith m Dijkstra's Algorithm (G, £)

Let S be the set of explored nodes

For each ueS, we store a distance d(u)

Initially S={s} and d(s)=0
S ={s} While S#V

_ Select a node v¢S with at least one edge from S for which
d - [Oa 33 5’ o, O, 5’ o, OO]

d'(v) =min,_g,, y)uesd) + £, is as small as possible
Add v to S and define d(v)=d'(v)

EndWhile
S - e BV2F =11 ﬁ,‘
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oo 9 o Dijkstra's Algorithm (G, £)
DIJ kSt ra S Algo rlth m Let S be the set of explored nodes

For each ueS, we store a distance d(u)
Initially S={s} and d(s)=0
S ={s} While S#V

_ Select a node v¢S with at least one edge from S for which
d=|[0,3,5,7, 00,5, oo, o0] .
O » = ) d'(v) = mine_g, yyuesd() + £, is as small as possible
Add v to S and define d(v)=d'(v)

EndWhile
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Dij kStra,S Al_g() rith m Dijkstra's Algorithm (G, £)

Let S be the set of explored nodes

For each ueS, we store a distance d(u)

Initially S={s} and d(s)=0
S ={s} While S#V

d — [O 3 5 7 8 5 00 OO] Select a node v¢S with at least one edge from S for which
O ’ d'(v) = mine_g, yyuesd() + £, is as small as possible
Add v to S and define d(v)=d'(v)
EndWhile
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oo 9 o Dijkstra's Algorithm (G, £)
DIJ kSt ra S Algo rlth m Let S be the set of explored nodes

For each ueS, we store a distance d(u)
Initially S={s} and d(s)=0
S ={s} While S#V

d — [O 3 5 7 8 5 8 OO] Select a node v ¢S with at least one edge from S for which
S d'(v) =min,_q, yyyesd(m) + £, is as small as possible
Add v to S and define d(v) =d'(v)

EndWhile
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oo 9 o Dijkstra's Algorithm (G, £)
DIJ kSt ra S Algo rlth m Let S be the set of explored nodes

For each ueS, we store a distance d(u)
Initially S={s} and d(s)=0
S ={s} While S#V

d = [O, 3, 5, 7’ 8’ 5, 8, 12] Select a node v ¢S with at least one edge from S for which

d'(v) =min,_g,, y)uesd) + £, is as small as possible
Add v to S and define d(v)=d'(v)

EndWhile
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r? Dijkstra's Algorithm (G, £)
Paths ° Let S be the set of explored nodes
For each ueS, we store a distance d(u)
Initially S={s} and d(s)=0

Q: How do we return the While S#V

Select a node v¢S with at least one edge from S for which
paths?

d'(v) =min,_g,, y)uesd) + £, is as small as possible
Add v to S and define d(v)=d'(v)

EndWhile
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PV 7 —

S “w, 5 “‘lll' ’0..?‘0. 11 * :‘ “ .0“..‘
:‘ \V4 .‘. gunne®”® / *, 9 “V "...4‘: — 6 =—> =‘ V6~:
-‘ O‘: "A . 1 * “' ? JEN

Gt , 5 :¢- 6 “‘\ f “¢ -

[ u *
3 0‘ / -“VB ’: |5 . 3 ?‘
LN Qgu® D' v
K A “Q

l‘ Vl.: B LLLT T e D "aumag ,“‘..0“’ .“‘..%
’..“. lllllll> I‘ VS.: — 12 » =‘ V7.:
* 3 .



Dijkstra's Algorithm (G, £)
Paths®

Let S be the set of explored nodes Let P a nlength array of Null.
For each ueS, we store a distance d(u)
Initially S={s} and d(s)=0
A: Whenwe add vto S, we While S#V
Select a node v¢S with at least one edge from S for which
can alSO keep tl’aCk Of What d'(v) =min,_g,, y)uesd) + £, is as small as possible

Add v to S and define d(v) =d'(v) t PIvl = h that in.
edge was used. N t Se [V] U suc a (U,V) was min

EndWhile
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Dijkstra's Algorithm (G, £)
Paths®

Let S be the set of explored nodes Let P a nlength array of Null.
For each ueS, we store a distance d(u)
Initially S={s} and d(s)=0

Q: How do we get the While S#V
Select a node v¢S with at least one edge from S for which
shortest path from s to w?

d'(v) =min,_g,, y)uesd) + £, is as small as possible
Add v to § and define d(v)=d'(v) Set P[v]=u such that (u,v) was min.

EndWhile
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r? Dijkstra's Algorithm (G, £)
Paths o Let S be the set of explored nodes LetP a nlength array of Null.

For each ueS, we store a distance d(u)
Initially S={s} and d(s)=0
A: We can recursively construct While S#V

|t by lOOking at ta k|ng the edge Select a node v ¢S with at least one edge from S for which

d'(v) =min,_g,, y)uesd) + £, is as small as possible
(P[w],w) and the shortest path Add v to S and define d()=d'(v) Set P[v]= u such that (u,v) was min.

from s to P[w]. S —
“‘..“
: .
S as ' "VZ", I 11 ‘} :‘ “ 0“..0
.n nun® Yas . S .
"‘ ..‘ annet® 5 * A At 40. -0 m—) V .
: Vo - 2 o tant s 'O
* O‘O '.A 1 " Yaur
Tant . 5 .0‘". . s% f ““ .
n - .
“‘..,. ®enns’ | R *
K .
Yenns?

lllllllllll...> i.\fs 5 — 1:2 '-’> € \,7'5

*
Yant Qg



Pat h S Dijkstra's Algorithm (G, £)

Let S be the set of explored nodes Let P a nlength array of Null.
For each ueS, we store a distance d(u)
Initially S={s} and d(s)=0

Let P, be the path found While SV
. Select a node v¢S with at least one edge from S for which
from s to u using these

d'(v) =min,_g,, y)uesd) + £, is as small as possible

modifications. Endwi:lcliev to S and define d(v)=d'(v) Set P[v]=u such that (u,v) was min.
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Dijkstra's Algorithm (G, £)
Corre CtneSS Let S be the set of explored nodes
For each ueS, we store a distance d(u)
Initially S={s} and d(s)=0

Claim: At the start of each While S#V

Select a node v¢S with at least one edge from S for which

|.OO p, Pu |S the ShO I’teSt path d'(v) =min,_g,, y)uesd) + £, is as small as possible
v to S and define d(v)=d'(v
fromstouforallu € S. Lo Vo R md feine =AW
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Proof Idea

* We proceed with induction on the size of S.
 If|S| = 1, then...



Proof Idea

* We proceed with induction on the size of S.
 If|S| = 1,thenitistrue because the shortest path from sto sis

empty set.



Proof Idea

* We proceed with induction on the size of S.
* Suppose forall S suchthat |S| < Kk, P, is the shortest path from s to
uforallu € S.



Proof Idea

* We proceed with induction on the size of S.
* Suppose forall S suchthat |S| < Kk, P, is the shortest path from s to
uforallu € S.

S aeeeeen " e Letvbethe k+1 vertexadded to S and
o let (u,v) be the edge minimized

@ L ““‘ @ mine=(u,v):u65d(u) + fe .

......



Proof Idea

* We proceed with induction on the size of S.
* Suppose forall S suchthat |S| < Kk, P, is the shortest path from s to

u for allu € S.

llllllll
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Let v be the k+1 vertex added to S and
let (u,v) be the edge minimized
mine=(u,v):uesd(u) + 4.

Suppose P, U {(u,v)}is notthe
shortest path. Then there exists a path
that must leave S via some edge (x,y).



Proof Idea

* We proceed with induction on the size of S.
Suppose forall S suchthat |S| < Kk, P, is the shortest path from s to

u for allu € S.
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Let v be the k+1 vertex added to S and
let (u,v) be the edge minimized
mine=(u,v):uesd(u) + 4.

Suppose P, U {(u,v)}is notthe
shortest path. Then there exists a path
that must leave S via some edge (x,y).
However, the algo picked v and so the
path from s to y must be just as long. ><



Q: What about negative edge weights?

A: If you have negative edge weights then you can have
negative cycles and the minimum distance becomes
“weird or hard to find."
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Q: What about negative edge weights?

A: If you have negative edge weights then you can have
negative cycles, and the minimum distance becomes
“weird or hard to find."



Dijkstra’s Algorithm

Dijkstra's Algorithm (G, £)
Let S be the set of explored nodes

For each ueS, we store a dist{OBIaleReETo\AtlasleTNeglfedgl
Initially S=/{s} and d(s) =0 we compute this?

While S#V /
Select a node v¢$S with Mt least one edge from S for which




Dijkstra’s Algorithm

Dijkstra's Algorithm (G, £)
Let S be the set of explored nodes

For each ueS, we store a distANAUHa WA loRIETVEIE]
Initially S={s} and d(s)=0 times because of large

While S#V / frontier.
Select a node v¢$S with Mt least one edge




Dijkstra’s Algorithm ldea

O Observation: A vertex could be in
the frontier a lot!

X
RN Idea: Don’t recompute every time!
‘l/ Dijkstra's Algorithm (G, &)
E 7. Let S be the set of explored nodes
q'\> For each ueS, we store a distance d(u)
Initially S={s} and d(s)=0

d'(v) = min,_y, yyes d() + £, is as small as possible
Add v to S and define d(v) =d'(v)
EndWhile

‘\
\\
\
= While S#V
________________ \ Q Select a node v ¢S with at least one edge from S for which



Dijkstra’s Algorithm Optimization

Dijkstra's Algorithm (G, £)
Let S be the set of explored nodes
For each ueS, we store a distance d(u)
Initially S={s} and d(s) =0 and d(w) =#w) for everyone neighbors of s
While S#V
Select a node v¢$S with at least one edge from S for which
d'(v) =min,_¢, yyuesd(m) + £, is as small as possible

Add v to S and for each neighbor w, check if d(v) +€xw)
EndWhile 1s smaller than current guess and update!
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Dijkstra’s Algorithm Optimization

Dijkstra's Algorithm (G, £)
Let S be the set of explored nodes
For each ueS, we store a dist{EONIalelWAlelaf-AdeRilsloRislNosllals
Initially S={s} and d(s) =0 and d(w)
While S#V
Select a node v¢$S with at least on®edge from S for which

d'(v) =min,_¢, yyuesd(m) + £, is as small as possible

Add v to S and for each neighbor w, check if d(v) +€xw)
EndWhile 1s smaller than current guess and update!
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Dijkstra’s Algorithm Optimization

Dijkstra's Algorithm (G, £)
Let S be the set of explored nodes

For each ueS, we store a dist{atESIil{Ntele]oRelVIIgAVICTaV dgT (gl
Initially S={s} and d(s) =0 and J(w)|RLRIIIR(OI{2))]

While S#V /
Select a node v¢S with at least one edge from S for which

d'(v) =min,_¢, yyuesd(m) + £, is as small as possible

Add v to S and for each neighbor w, check if d(v) +€xw)
EndWhile 1s smaller than current guess and update!
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Priority Queue

* A priority gueue is a data structure that supports the

following operations:

* Insert (PQ, v, p):Insertselementvinto PQ
with priority p.

* Pop-Min (PQ) : Returnselement with minimum
priority and removes it from PQ.

* Decrease-Key (PQ, v, p) : Updates the priority
of vin PQ to be p.

* Recall: You can implement this using a Heap data
structure.



Input: graph G = (V,E), lengths L, and start s

* Initialize Priority Queue PQ, arrays P and d
* For Each v 1in V:
* TLet P[v] = Null and d[wv] = INFINITY
* Insert v into PQ with priority d[v]
e TLet d[s] = 0
* While PQ 1s not empty:
* u = Pop—-Min (PQ)
* For each edge e = (u,v) in E leaving u:
e If d[v] > d[u] + Lle]:
* Decrease-Key(PQ, v, d[u] + L[e])
e d{v] = d[u] + L[e]
e P[v] = u



Dijkstra’s Algorithm Runtime

* Theruntime depends on the priority queue used.

* Using a priority queue, Dijkstra’s Algorithm can be
Implemented on a graph with n nodes and m edges
to run in O(m) time plus the time for n Pop-Min and
m Decrease-Priority operations.

* Using the heap-based priority queue, each priority
queue operation can be implemented in log(n)
time giving a total runtime of O(mlog(n)).



Input: graph G = (V,E), lengths L, and start s

* Initialize Priority Queue PQ, arrays P and d
* For Each v 1in V:
* TLet P[v] = Null and d[wv] = INFINITY
* Insert v into PQ with priority d[v]
e TLet d[s] = 0
* While PQ 1s not empty:
* u = Pop—-Min (PQ)
* For each edge e = (u,v) in E leaving u:
e If d[v] > d[u] + Lle]:
* Decrease-Key(PQ, v, d[u] + L[e])
e d{v] = d[u] + L[e]
e P[v] = u



Even Better?

Breaking the Sorting Barrier for Directed Single-Source Shortest
Paths

Ran Duan * Jiayi Mao * Xiao Mao ' Xinkai Shu * Longhui Yin *
July 31, 2025

Abstract

We give a deterministic O(m log”/® n)-time algorithm for single-source shortest paths (SSSP) on
directed graphs with real non-negative edge weights in the comparison-addition model. This is the first
result to break the O(m + nlogn) time bound of Dijkstra’s algorithm on sparse graphs, showing that
Dijkstra’s algorithm is not optimal for SSSP.
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