
CSE 331: 
Algorithms & Complexity

Prof. Charlie Anne Carlson (She/Her)
Lecture 18

Wednesday October 15, 2025

“Dijkstra’s Algorithm”



Schedule

1.Course Updates
2.Shortest Path
3.Dijkstra’s Algorithm
4.Proof of Correctness
5.Runtime 



Course Updates

• Everything Besides Midterm 
Graded
• Midterm Grades this week

• HW 4 Out
• Due Next Week!

• Group Project
• First Problems Oct 31st



Mid Updates

• You got mid semester grades based 
only on HW1, HW2, HW3, and Quiz 1 
(no drops).
• I will give you more formal grades 

once midterms are graded.
• Midterms seemed to have been a 

stumble for a lot of people.
• This is a chance to do better and 

not a chance to give up.



Cheating!

“If the violation involves the use of ChatGPT 
(or other generative AI tools), irrespective of 
whether it is the student's first violation or not, 
then it will result in an automatic F letter grade 
in the course.” <- Course Syllabus

• We know of a few people who are using 
generative AI tools on homework 
assignments. 

• Just because you got a grade, doesn’t 
mean I don’t know you cheated and you 
are in the clear. 



Single Pair Shortest Path
• Input: ?
• Output: ?
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Single Pair Shortest Path

• Input: Directed graph 𝐺 =  (𝑉, 𝐸), edge lengths ℓ: 𝐸 → 𝑅≥0, 
and a source vertex 𝑠 ∈ 𝑉.

• Output: Find the shortest directed path from s to all 
vertices in 𝐺.
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Shortest Path Tree



Dijkstra’s Algorithm Idea
• Algorithm Idea: ?
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Dijkstra’s Algorithm Idea
• Algorithm Idea: In each iteration, pick an edge from my 

shortest path tree to the “nearest” vertex not yet in the tree. 
Nearest means distance to the root, s.
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Dijkstra’s Algorithm
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Dijkstra’s Algorithm
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This is the distance from s to 
something on the “frontier”. 



Dijkstra’s Algorithm Idea
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• Look at all neighbors of S. Determine which has the 
shortest path from s. Add that to S. Repeat. 



Dijkstra’s Algorithm Idea
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Dijkstra’s Algorithm Idea
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Dijkstra’s Algorithm Idea

5

3
5

2

1

11
6

3

12

5

2

4

𝑠

S = {s}
d = [0, 3, 5, ∞, ∞, 5, ∞, ∞]

v1

v2

v3

v4

v5

v6

v7

v0



Dijkstra’s Algorithm Idea
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Dijkstra’s Algorithm Idea

5

3
5

2

1

11
6

3

12

5

2

4

𝑠

S = {s}
d = [0, 3, 5, 7, 8, 5, ∞, ∞]

v1

v2

v3

v4

v5

v6

v7

v0



Dijkstra’s Algorithm Idea
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Dijkstra’s Algorithm Idea
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Paths?
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Paths?

5

3
5

2

1

11
6

3

12

5

2

4

𝑠

A: When we add v to S, we 
can also keep track of what 
edge was used. 
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Set P[v] = u such that (u,v) was min.

Let P a n length array of Null.



Paths?

5

3
5

2

1

11
6

3

12

5

2

4

𝑠

Q: How do we get the 
shortest path from s to w?
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Set P[v] = u such that (u,v) was min.

Let P a n length array of Null.



Paths?
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A: We can recursively construct 
it by looking at taking the edge 
(P[w],w) and the shortest path 
from s to P[w]. 
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Set P[v] = u such that (u,v) was min.

Let P a n length array of Null.



Paths
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Let 𝑃𝑢 be the path found 
from s to u using these 
modifications. 
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Set P[v] = u such that (u,v) was min.

Let P a n length array of Null.



Correctness
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Claim: At the start of each 
loop, 𝑃𝑢 is the shortest path 
from s to u for all u ∈ S.
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Proof Idea
• We proceed with induction on the size of 𝑆.
• If |S| =  1, then…



Proof Idea

𝑠

• We proceed with induction on the size of 𝑆.
• If |S| =  1, then it is true because the shortest path from s to s is 

empty set. 



Proof Idea

S

• We proceed with induction on the size of 𝑆.
• Suppose for all 𝑆 such that |𝑆|  ≤  k, 𝑃𝑢 is the shortest path from s to 

u for all u ∈ S.

𝑠



Proof Idea

S

• We proceed with induction on the size of 𝑆.
• Suppose for all 𝑆 such that |𝑆|  ≤  k, 𝑃𝑢 is the shortest path from s to 

u for all u ∈ S.

𝑠

v

• Let v be the k+1 vertex added to S and 
let (u,v) be the edge minimized 
𝑚𝑖𝑛𝑒= 𝑢,𝑣 :𝑢∈𝑆𝑑 𝑢 + ℓ𝑒  .

u



Proof Idea

S

• We proceed with induction on the size of 𝑆.
• Suppose for all 𝑆 such that |𝑆|  ≤  k, 𝑃𝑢 is the shortest path from s to 

u for all u ∈ S.

𝑠

v

• Let v be the k+1 vertex added to S and 
let (u,v) be the edge minimized 
𝑚𝑖𝑛𝑒= 𝑢,𝑣 :𝑢∈𝑆𝑑 𝑢 + ℓ𝑒  .

• Suppose 𝑃𝑢  ∪  {(u, v)} is not the 
shortest path. Then there exists a path 
that must leave S via some edge (x,y).
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Proof Idea

S

• We proceed with induction on the size of 𝑆.
• Suppose for all 𝑆 such that |𝑆|  ≤  k, 𝑃𝑢 is the shortest path from s to 

u for all u ∈ S.

𝑠

v

• Let v be the k+1 vertex added to S and 
let (u,v) be the edge minimized 
𝑚𝑖𝑛𝑒= 𝑢,𝑣 :𝑢∈𝑆𝑑 𝑢 + ℓ𝑒  .

• Suppose 𝑃𝑢  ∪  {(u, v)} is not the 
shortest path. Then there exists a path 
that must leave S via some edge (x,y).

• However, the algo picked v and so the 
path from s to y must be just as long. ><
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Q: What about negative edge weights?
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A: If you have negative edge weights then you can have 
negative cycles and the minimum distance becomes 
“weird or hard to find."



Q: What about negative edge weights?
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“weird or hard to find."



Dijkstra’s Algorithm
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Q: How many times might 
we compute this?



Dijkstra’s Algorithm
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A: We may do it several 
times because of large 
frontier. 



Dijkstra’s Algorithm Idea
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abc Observation: A vertex could be in 
the frontier a lot!

Idea: Don’t recompute every time!



Dijkstra’s Algorithm Optimization
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for each neighbor w, check if 𝑑 𝑣 + ℓ(v,w) 

is smaller than current guess and update!

and 𝑑 w = ℓ(s,w) for everyone neighbors of s



Dijkstra’s Algorithm Optimization
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is smaller than current guess and update!

and 𝑑 w = ℓ(s,w) for everyone neighbors of s

Q: How long to find the min?



Dijkstra’s Algorithm Optimization
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for each neighbor w, check if 𝑑 𝑣 + ℓ(v,w) 

is smaller than current guess and update!

and 𝑑 w = ℓ(s,w) for everyone neighbors of s

A: Still loop over everything 
in frontier (O(n)). 



Priority Queue

• A priority queue is a data structure that supports the 
following operations:
• Insert(PQ, v, p): Inserts element v into PQ 

with priority p.
• Pop-Min(PQ): Returns element with minimum 

priority and removes it from PQ. 
• Decrease-Key(PQ,v,p): Updates the priority 

of v in PQ to be p. 
• Recall: You can implement this using a Heap data 

structure. 



Input: graph G = (V,E), lengths L, and start s

• Initialize Priority Queue PQ, arrays P and d

• For Each v in V: 

• Let P[v] = Null and d[v] = INFINITY

• Insert v into PQ with priority d[v]

• Let d[s] = 0

• While PQ is not empty:

• u = Pop-Min(PQ)

• For each edge e = (u,v) in E leaving u:

• If d[v] > d[u] + L[e]:

• Decrease-Key(PQ, v, d[u] + L[e])

• d[v] = d[u] + L[e]

• P[v] = u



Dijkstra’s Algorithm Runtime

• The runtime depends on the priority queue used.
• Using a priority queue, Dijkstra’s Algorithm can be 

implemented on a graph with n nodes and m edges 
to run in O(m) time plus the time for n  Pop-Min and 
m Decrease-Priority operations. 
• Using the heap-based priority queue, each priority 

queue operation can be implemented in log(n) 
time giving a total runtime of O(mlog(n)). 



Input: graph G = (V,E), lengths L, and start s

• Initialize Priority Queue PQ, arrays P and d

• For Each v in V: 

• Let P[v] = Null and d[v] = INFINITY

• Insert v into PQ with priority d[v]

• Let d[s] = 0

• While PQ is not empty:

• u = Pop-Min(PQ)

• For each edge e = (u,v) in E leaving u:

• If d[v] > d[u] + L[e]:

• Decrease-Key(PQ, v, d[u] + L[e])

• d[v] = d[u] + L[e]

• P[v] = u



Even Better?
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