
CSE 331:
Algorithms & Complexity

Prof. Charlie Anne Carlson (She/Her)
Lecture 18

Wednesday October 15, 2025

“Dijkstra’s Algorithm”

Schedule

1.Course Updates
2.Shortest Path
3.Dijkstra’s Algorithm
4.Proof of Correctness
5.Runtime

Course Updates

• Everything Besides Midterm
Graded
• Midterm Grades this week

• HW 4 Out
• Due Next Week!

• Group Project
• First Problems Oct 31st

Mid Updates

• You got mid semester grades based
only on HW1, HW2, HW3, and Quiz 1
(no drops).
• I will give you more formal grades

once midterms are graded.
• Midterms seemed to have been a

stumble for a lot of people.
• This is a chance to do better and

not a chance to give up.

Cheating!

“If the violation involves the use of ChatGPT
(or other generative AI tools), irrespective of
whether it is the student's first violation or not,
then it will result in an automatic F letter grade
in the course.” <- Course Syllabus

• We know of a few people who are using
generative AI tools on homework
assignments.

• Just because you got a grade, doesn’t
mean I don’t know you cheated and you
are in the clear.

Single Pair Shortest Path
• Input: ?
• Output: ?

5

3
5

2

1

11
6

3

12

5

2

4

𝑠

Single Pair Shortest Path

• Input: Directed graph 𝐺 = (𝑉, 𝐸), edge lengths ℓ: 𝐸 → 𝑅≥0,
and a source vertex 𝑠 ∈ 𝑉.

• Output: Find the shortest directed path from s to all
vertices in 𝐺.

5

3
5

2

1

11
6

3

12

5

2

4

𝑠

Shortest Path Tree

Dijkstra’s Algorithm Idea
• Algorithm Idea: ?

5

3
5

2

1

11
6

3

12

5

2

4

𝑠

w

x

y

Dijkstra’s Algorithm Idea
• Algorithm Idea: In each iteration, pick an edge from my

shortest path tree to the “nearest” vertex not yet in the tree.
Nearest means distance to the root, s.

5

3
5

2

1

11
6

3

12

5

2

4

𝑠

w

x

y

Dijkstra’s Algorithm

5

3
5

2

1

11
6

3

12

5

2

4

𝑠

w

x

y

Dijkstra’s Algorithm

5

3
5

2

1

11
6

3

12

5

2

4

𝑠

w

x

y

This is the distance from s to
something on the “frontier”.

Dijkstra’s Algorithm Idea

𝑠

y

x

z

S

• Look at all neighbors of S. Determine which has the
shortest path from s. Add that to S. Repeat.

Dijkstra’s Algorithm Idea

5

3
5

2

1

11
6

3

12

5

2

4

𝑠

S = {s}
d = [0,∞, ∞, ∞, ∞, ∞, ∞, ∞]

v1

v2

v3

v4

v5

v6

v7

v0

Dijkstra’s Algorithm Idea

5

3
5

2

1

11
6

3

12

5

2

4

𝑠

S = {s}
d = [0, 3, 5, ∞, ∞, ∞, ∞, ∞]

v1

v2

v3

v4

v5

v6

v7

v0

Dijkstra’s Algorithm Idea

5

3
5

2

1

11
6

3

12

5

2

4

𝑠

S = {s}
d = [0, 3, 5, ∞, ∞, 5, ∞, ∞]

v1

v2

v3

v4

v5

v6

v7

v0

Dijkstra’s Algorithm Idea

5

3
5

2

1

11
6

3

12

5

2

4

𝑠

S = {s}
d = [0, 3, 5, 7, ∞, 5, ∞, ∞]

v1

v2

v3

v4

v5

v6

v7

v0

Dijkstra’s Algorithm Idea

5

3
5

2

1

11
6

3

12

5

2

4

𝑠

S = {s}
d = [0, 3, 5, 7, 8, 5, ∞, ∞]

v1

v2

v3

v4

v5

v6

v7

v0

Dijkstra’s Algorithm Idea

5

3
5

2

1

11
6

3

12

5

2

4

𝑠

S = {s}
d = [0, 3, 5, 7, 8, 5, 8, ∞]

v1

v2

v3

v4

v5

v6

v7

v0

Dijkstra’s Algorithm Idea

5

3
5

2

1

11
6

3

12

5

2

4

𝑠

S = {s}
d = [0, 3, 5, 7, 8, 5, 8, 12]

v1

v2

v3

v4

v5

v6

v7

v0

Paths?

5

3
5

2

1

11
6

3

12

5

2

4

𝑠

Q: How do we return the
paths?

v1

v2

v3

v4

v5

v6

v7

v0

Paths?

5

3
5

2

1

11
6

3

12

5

2

4

𝑠

A: When we add v to S, we
can also keep track of what
edge was used.

v1

v2

v3

v4

v5

v6

v7

v0

Set P[v] = u such that (u,v) was min.

Let P a n length array of Null.

Paths?

5

3
5

2

1

11
6

3

12

5

2

4

𝑠

Q: How do we get the
shortest path from s to w?

v1

v2

v3

v4

v5

v6

v7

v0

Set P[v] = u such that (u,v) was min.

Let P a n length array of Null.

Paths?

5

3
5

2

1

11
6

3

12

5

2

4

𝑠

A: We can recursively construct
it by looking at taking the edge
(P[w],w) and the shortest path
from s to P[w].

v1

v2

v3

v4

v5

v6

v7

v0

Set P[v] = u such that (u,v) was min.

Let P a n length array of Null.

Paths

5

3
5

2

1

11
6

3

12

5

2

4

𝑠

Let 𝑃𝑢 be the path found
from s to u using these
modifications.

v1

v2

v3

v4

v5

v6

v7

v0

Set P[v] = u such that (u,v) was min.

Let P a n length array of Null.

Correctness

5

3
5

2

1

11
6

3

12

5

2

4

𝑠

Claim: At the start of each
loop, 𝑃𝑢 is the shortest path
from s to u for all u ∈ S.

v1

v2

v3

v4

v5

v6

v7

v0

Proof Idea
• We proceed with induction on the size of 𝑆.
• If |S| = 1, then…

Proof Idea

𝑠

• We proceed with induction on the size of 𝑆.
• If |S| = 1, then it is true because the shortest path from s to s is

empty set.

Proof Idea

S

• We proceed with induction on the size of 𝑆.
• Suppose for all 𝑆 such that |𝑆| ≤ k, 𝑃𝑢 is the shortest path from s to

u for all u ∈ S.

𝑠

Proof Idea

S

• We proceed with induction on the size of 𝑆.
• Suppose for all 𝑆 such that |𝑆| ≤ k, 𝑃𝑢 is the shortest path from s to

u for all u ∈ S.

𝑠

v

• Let v be the k+1 vertex added to S and
let (u,v) be the edge minimized
𝑚𝑖𝑛𝑒= 𝑢,𝑣 :𝑢∈𝑆𝑑 𝑢 + ℓ𝑒 .

u

Proof Idea

S

• We proceed with induction on the size of 𝑆.
• Suppose for all 𝑆 such that |𝑆| ≤ k, 𝑃𝑢 is the shortest path from s to

u for all u ∈ S.

𝑠

v

• Let v be the k+1 vertex added to S and
let (u,v) be the edge minimized
𝑚𝑖𝑛𝑒= 𝑢,𝑣 :𝑢∈𝑆𝑑 𝑢 + ℓ𝑒 .

• Suppose 𝑃𝑢 ∪ {(u, v)} is not the
shortest path. Then there exists a path
that must leave S via some edge (x,y).

u

x
y

Proof Idea

S

• We proceed with induction on the size of 𝑆.
• Suppose for all 𝑆 such that |𝑆| ≤ k, 𝑃𝑢 is the shortest path from s to

u for all u ∈ S.

𝑠

v

• Let v be the k+1 vertex added to S and
let (u,v) be the edge minimized
𝑚𝑖𝑛𝑒= 𝑢,𝑣 :𝑢∈𝑆𝑑 𝑢 + ℓ𝑒 .

• Suppose 𝑃𝑢 ∪ {(u, v)} is not the
shortest path. Then there exists a path
that must leave S via some edge (x,y).

• However, the algo picked v and so the
path from s to y must be just as long. ><

u

x
y

Q: What about negative edge weights?

5

3
5

2

1

-11
6

3

12

5

2

4

𝑠

v1

v2

v3

v4

v5

v6

v7

v0

A: If you have negative edge weights then you can have
negative cycles and the minimum distance becomes
“weird or hard to find."

Q: What about negative edge weights?

5

3
5

2

1

-11
6

3

12

5

2

4

𝑠

v1

v2

v3

v4

v5

v6

v7

v0

A: If you have negative edge weights then you can have
negative cycles, and the minimum distance becomes
“weird or hard to find."

Dijkstra’s Algorithm

5

3
5

2

1

11
6

3

12

5

2

4

𝑠

w

x

y

Q: How many times might
we compute this?

Dijkstra’s Algorithm

5

3
5

2

1

11
6

3

12

5

2

4

𝑠

w

x

y

A: We may do it several
times because of large
frontier.

Dijkstra’s Algorithm Idea

𝑠

y

x

z

S

abc Observation: A vertex could be in
the frontier a lot!

Idea: Don’t recompute every time!

Dijkstra’s Algorithm Optimization

5

3
5

2

1

11
6

3

12

5

2

4

𝑠

w

x

for each neighbor w, check if 𝑑 𝑣 + ℓ(v,w)

is smaller than current guess and update!

and 𝑑 w = ℓ(s,w) for everyone neighbors of s

Dijkstra’s Algorithm Optimization

5

3
5

2

1

11
6

3

12

5

2

4

𝑠

w

x

for each neighbor w, check if 𝑑 𝑣 + ℓ(v,w)

is smaller than current guess and update!

and 𝑑 w = ℓ(s,w) for everyone neighbors of s

Q: How long to find the min?

Dijkstra’s Algorithm Optimization

5

3
5

2

1

11
6

3

12

5

2

4

𝑠

w

x

for each neighbor w, check if 𝑑 𝑣 + ℓ(v,w)

is smaller than current guess and update!

and 𝑑 w = ℓ(s,w) for everyone neighbors of s

A: Still loop over everything
in frontier (O(n)).

Priority Queue

• A priority queue is a data structure that supports the
following operations:
• Insert(PQ, v, p): Inserts element v into PQ

with priority p.
• Pop-Min(PQ): Returns element with minimum

priority and removes it from PQ.
• Decrease-Key(PQ,v,p): Updates the priority

of v in PQ to be p.
• Recall: You can implement this using a Heap data

structure.

Input: graph G = (V,E), lengths L, and start s

• Initialize Priority Queue PQ, arrays P and d

• For Each v in V:

• Let P[v] = Null and d[v] = INFINITY

• Insert v into PQ with priority d[v]

• Let d[s] = 0

• While PQ is not empty:

• u = Pop-Min(PQ)

• For each edge e = (u,v) in E leaving u:

• If d[v] > d[u] + L[e]:

• Decrease-Key(PQ, v, d[u] + L[e])

• d[v] = d[u] + L[e]

• P[v] = u

Dijkstra’s Algorithm Runtime

• The runtime depends on the priority queue used.
• Using a priority queue, Dijkstra’s Algorithm can be

implemented on a graph with n nodes and m edges
to run in O(m) time plus the time for n Pop-Min and
m Decrease-Priority operations.
• Using the heap-based priority queue, each priority

queue operation can be implemented in log(n)
time giving a total runtime of O(mlog(n)).

Input: graph G = (V,E), lengths L, and start s

• Initialize Priority Queue PQ, arrays P and d

• For Each v in V:

• Let P[v] = Null and d[v] = INFINITY

• Insert v into PQ with priority d[v]

• Let d[s] = 0

• While PQ is not empty:

• u = Pop-Min(PQ)

• For each edge e = (u,v) in E leaving u:

• If d[v] > d[u] + L[e]:

• Decrease-Key(PQ, v, d[u] + L[e])

• d[v] = d[u] + L[e]

• P[v] = u

Even Better?

	Slide 1: CSE 331: Algorithms & Complexity
	Slide 2: Schedule
	Slide 3: Course Updates
	Slide 4: Mid Updates
	Slide 5: Cheating!
	Slide 6: Single Pair Shortest Path
	Slide 7: Single Pair Shortest Path
	Slide 8: Dijkstra’s Algorithm Idea
	Slide 9: Dijkstra’s Algorithm Idea
	Slide 10: Dijkstra’s Algorithm
	Slide 11: Dijkstra’s Algorithm
	Slide 12: Dijkstra’s Algorithm Idea
	Slide 13: Dijkstra’s Algorithm Idea
	Slide 14: Dijkstra’s Algorithm Idea
	Slide 15: Dijkstra’s Algorithm Idea
	Slide 16: Dijkstra’s Algorithm Idea
	Slide 17: Dijkstra’s Algorithm Idea
	Slide 18: Dijkstra’s Algorithm Idea
	Slide 19: Dijkstra’s Algorithm Idea
	Slide 20: Paths?
	Slide 21: Paths?
	Slide 22: Paths?
	Slide 23: Paths?
	Slide 24: Paths
	Slide 25: Correctness
	Slide 26: Proof Idea
	Slide 27: Proof Idea
	Slide 28: Proof Idea
	Slide 29: Proof Idea
	Slide 30: Proof Idea
	Slide 31: Proof Idea
	Slide 32: Q: What about negative edge weights?
	Slide 33: Q: What about negative edge weights?
	Slide 34: Dijkstra’s Algorithm
	Slide 35: Dijkstra’s Algorithm
	Slide 36: Dijkstra’s Algorithm Idea
	Slide 37: Dijkstra’s Algorithm Optimization
	Slide 38: Dijkstra’s Algorithm Optimization
	Slide 39: Dijkstra’s Algorithm Optimization
	Slide 40: Priority Queue
	Slide 41
	Slide 42: Dijkstra’s Algorithm Runtime
	Slide 43
	Slide 44: Even Better?

