CSE 331:
A]lg(o)]r[ilt]hunnls & (C<o>lnnqp>ll<exiilty
“Dijkstra’s Algorithm”

Prof. Charlie Anne Carlson (She/Her)
Lecture 18
Wednesday October 15, 2025

L]

G5

University at Buffalo

Schedule

1.Course Updates
2.Dijkstra’s Algorithm
3.Proof of Correctness
4.Min Spanning Trees
5.Kruskal’s Algorithm
6.Prim’s Algorithm

Course Updates

* Everything Besides Midterm
Graded

* Midterm Grades this week
 HWA4Out

* Due Next Week!
* Group Project

* First Problems Oct 315t

Pat h S Dijkstra's Algorithm (G, £)

Let S be the set of explored nodes Let P a nlength array of Null.
For each ueS, we store a distance d(u)
Initially S={s} and d(s)=0

Let P, be the path found While SV
. Select a node v¢S with at least one edge from S for which
from s to u using these

d'(v) =min,_g,, y)uesd) + £, is as small as possible

modifications. Endwi:lcliev to S and define d(v)=d'(v) Set P[v]=u such that (u,v) was min.
“".“

S lll" "OVZ": I 11 '» :“ “ 0“..‘
.“ ..‘- -l““‘ 5 / .4 ‘V "Q. 4‘0. — 6 ﬁ =: V6 :
=' VO . 2, ** . W e, oo

ans? a4 PR LIS 1 f o* :
an® 5 : “‘\ “0 :
N f Vg 5 3' 4
"y 0..-‘0) -
.“‘ “ I ‘0“ v
l‘ Vln:......."l..l 2 SEmgy ."‘.."" .0“'."
T A Vg i 12 =8 Vg
*

Dijkstra's Algorithm (G, £)
Corre CtneSS Let S be the set of explored nodes
For each ueS, we store a distance d(u)
Initially S={s} and d(s)=0

Claim: At the start of each While S#V

Select a node v¢S with at least one edge from S for which

|.OO p, Pu |S the ShO I’teSt path d'(v) =min,_g,, y)uesd) + £, is as small as possible
v to S and define d(v)=d'(v
fromstouforallu € S. Lo Vo R md feine =AW

EndWhile
P V) —

S anw 5 “““' ”'-?". 11 : 4: “‘...t
"‘ ..‘ -““‘- *, “0 0. — 6 q =. V :
P Vo : /o o e ", 8
% o a ... 1 f 0" .:’

Tente 5 .‘ .“‘\ ““ A
l: Vl.:l..l 2 "Emagy ,“‘..0“" .“‘..%
TR A Vg s == 12 >3 Vy:

*
Yape gt

Proof Idea

* We proceed with induction on the size of S.
 If|S| = 1, then...

Proof Idea

* We proceed with induction on the size of S.
 If|S| = 1,thenitistrue because the shortest path from sto sis

empty set.

Proof Idea

* We proceed with induction on the size of S.
* Suppose forall S suchthat |S| < Kk, P, is the shortest path from s to
uforallu € S.

Proof Idea

* We proceed with induction on the size of S.
* Suppose forall S suchthat |S| < Kk, P, is the shortest path from s to
uforallu € S.

S aeeeeen " e Letvbethe k+1 vertexadded to S and
o let (u,v) be the edge minimized

@ L ““‘ @ mine=(u,v):u65d(u) + fe .

......

Proof Idea

* We proceed with induction on the size of S.
* Suppose forall S suchthat |S| < Kk, P, is the shortest path from s to

u for allu € S.

llllllll

......

Let v be the k+1 vertex added to S and
let (u,v) be the edge minimized
mine=(u,v):uesd(u) + 4.

Suppose P, U {(u,v)}is notthe
shortest path. Then there exists a path
that must leave S via some edge (x,y).

Proof Idea

* We proceed with induction on the size of S.
Suppose forall S suchthat |S| < Kk, P, is the shortest path from s to

u for allu € S.

llllllll

......

Let v be the k+1 vertex added to S and
let (u,v) be the edge minimized
mine=(u,v):uesd(u) + 4.

Suppose P, U {(u,v)}is notthe
shortest path. Then there exists a path
that must leave S via some edge (x,y).
However, the algo picked v and so the
path from s to y must be just as long. ><

Q: What about negative edge weights?

A: If you have negative edge weights then you can have
negative cycles and the minimum distance becomes
“weird or hard to find."

S @"‘ 'I'I\
O o 790

v /@
@\2\»@—12»@

Q: What about negative edge weights?

A: If you have negative edge weights then you can have
negative cycles, and the minimum distance becomes
“weird or hard to find."

Dijkstra’s Algorithm

Dijkstra's Algorithm (G, £)
Let S be the set of explored nodes

For each ueS, we store a dist{OBIaleReETo\AtlasleTNeglfedgl
Initially S=/{s} and d(s) =0 we compute this?

While S#V /
Select a node v¢$S with Mt least one edge from S for which

Dijkstra’s Algorithm

Dijkstra's Algorithm (G, £)
Let S be the set of explored nodes

For each ueS, we store a distANAUHa WA loRIETVEIE]
Initially S={s} and d(s)=0 times because of large

While S#V / frontier.
Select a node v¢$S with Mt least one edge

Dijkstra’s Algorithm ldea

O Observation: A vertex could be in
the frontier a lot!

X
RN Idea: Don’t recompute every time!
‘l/ Dijkstra's Algorithm (G, &)
E 7. Let S be the set of explored nodes
q'\> For each ueS, we store a distance d(u)
Initially S={s} and d(s)=0

d'(v) = min,_y, yyes d() + £, is as small as possible
Add v to S and define d(v) =d'(v)
EndWhile

‘\
\\
\
= While S#V
________________ \ Q Select a node v ¢S with at least one edge from S for which

Dijkstra’s Algorithm Optimization

Dijkstra's Algorithm (G, £)
Let S be the set of explored nodes
For each ueS, we store a distance d(u)
Initially S={s} and d(s) =0 and d(w) =#w) for everyone neighbors of s
While S#V
Select a node v¢$S with at least one edge from S for which
d'(v) =min,_¢, yyuesd(m) + £, is as small as possible

Add v to S and for each neighbor w, check if d(v) +€xw)
EndWhile 1s smaller than current guess and update!

~
~
N ———

Dijkstra’s Algorithm Optimization

Dijkstra's Algorithm (G, £)
Let S be the set of explored nodes
For each ueS, we store a dist{EONIalelWAlelaf-AdeRilsloRislNosllals
Initially S={s} and d(s) =0 and d(w)
While S#V
Select a node v¢$S with at least on®edge from S for which

d'(v) =min,_¢, yyuesd(m) + £, is as small as possible

Add v to S and for each neighbor w, check if d(v) +€xw)
EndWhile 1s smaller than current guess and update!

N
~
~
So
~ ,/
S~ -’
-~ -
-

Dijkstra’s Algorithm Optimization

Dijkstra's Algorithm (G, £)
Let S be the set of explored nodes

For each ueS, we store a dist{atESIil{Ntele]oRelVIIgAVICTaV dgT (gl
Initially S={s} and d(s) =0 and J(w)|RLRIIIR(OI{2))]

While S#V /
Select a node v¢S with at least one edge from S for which

d'(v) =min,_¢, yyuesd(m) + £, is as small as possible

Add v to S and for each neighbor w, check if d(v) +€xw)
EndWhile 1s smaller than current guess and update!

N
~
~
S
\\\\\
S~ -7
~ -
———————

Priority Queue

* A priority gueue is a data structure that supports the

following operations:

* Insert (PQ, v, p):Insertselementvinto PQ
with priority p.

* Pop-Min (PQ) : Returnselement with minimum
priority and removes it from PQ.

* Decrease-Key (PQ, v, p) : Updates the priority
of vin PQ to be p.

* Recall: You can implement this using a Heap data
structure.

Input: graph G = (V,E), lengths L, and start s

* Initialize Priority Queue PQ, arrays P and d
* For Each v 1in V:
* TLet P[v] = Null and d[wv] = INFINITY
* Insert v into PQ with priority d[v]
e TLet d[s] = 0
* While PQ 1s not empty:
* u = Pop—-Min (PQ)
* For each edge e = (u,v) in E leaving u:
e If d[v] > d[u] + Lle]:
* Decrease-Key(PQ, v, d[u] + L[e])
e d{v] = d[u] + L[e]
e P[v] = u

Dijkstra’s Algorithm Runtime

* Theruntime depends on the priority queue used.

* Using a priority queue, Dijkstra’s Algorithm can be
Implemented on a graph with n nodes and m edges
to run in O(m) time plus the time for n Pop-Min and
m Decrease-Priority operations.

* Using the heap-based priority queue, each priority
queue operation can be implemented in log(n)
time giving a total runtime of O(mlog(n)).

Input: graph G = (V,E), lengths L, and start s

* Initialize Priority Queue PQ, arrays P and d
* For Each v 1in V:
* TLet P[v] = Null and d[wv] = INFINITY
* Insert v into PQ with priority d[v]
e TLet d[s] = 0
* While PQ 1s not empty:
* u = Pop—-Min (PQ)
* For each edge e = (u,v) in E leaving u:
e If d[v] > d[u] + Lle]:
* Decrease-Key(PQ, v, d[u] + L[e])
e d{v] = d[u] + L[e]
e P[v] = u

Even Better?

Breaking the Sorting Barrier for Directed Single-Source Shortest
Paths

Ran Duan * Jiayi Mao * Xiao Mao ' Xinkai Shu * Longhui Yin *
July 31, 2025

Abstract

We give a deterministic O(m log”/® n)-time algorithm for single-source shortest paths (SSSP) on
directed graphs with real non-negative edge weights in the comparison-addition model. This is the first
result to break the O(m + nlogn) time bound of Dijkstra’s algorithm on sparse graphs, showing that
Dijkstra’s algorithm is not optimal for SSSP.

2/3

Spanning Trees

Super Graph

Def: A spanning tree of an undirected
graph G = (V,E) isasubgraph H =
(V,E’) that is both acyclic and
connected.

Spanning Trees

a \

@ @ Spanning Tree

Def: A spanning tree of an undirected
graph G = (V,E) isasubgraph H =
(V,E’) that is both acyclic and
connected.

Q: How many edges does a spanning tree have?

@ @ Spanning Tree

a \

Def: A spanning tree of an undirected
graph G = (V,E) isasubgraph H =
(V,E’) that is both acyclic and
connected.

A: It has |V| -1 because itis a tree!

a \

@ @ Spanning Tree

Def: A spanning tree of an undirected
graph G = (V,E) isasubgraph H =
(V,E’) that is both acyclic and
connected.

Q: Can you have more than one spanning tree?

@ @ Spanning Tree

a \

Def: A spanning tree of an undirected
graph G = (V,E) isasubgraph H =
(V,E’) that is both acyclic and
connected.

A: Can you have more than one spanning tree?

@ @ Spanning Tree

a \

E

Def: A spanning tree of an undirected
graph G = (V,E) isasubgraph H =
(V,E’) that is both acyclic and
connected.

Minimum Spanning Trees

Super Graph

2
5 Def: The minimum spanning tree of
an undirected, connected graph G =

1 (V, E) with edge costs ¢, is the
\@ spanning tree with the min total edge

sum.

Minimum Spanning Trees (MST)
: %’1 . \' -
1 @L B

Def: The minimum spanning tree of
an undirected, connected graph ¢ =
(V, E) with edge costs ¢, is the
spanning tree with the min total edge
sum.

Minimum Spanning Trees (MST)

nat if
nat if

nat if

add 100 to each edge?
mult each edge by 23?
take log of each edge?

MST Algorithms (Greedy) ldeas:

e Start with empty graph:
* Kruskal: Add small edge that
connect components.

« Prim: Grow a component by ‘ @
taking smallest edge leaving it.

 Boruvka: Add min weight edge
leaving each component. *
e Start With G: @ @
* Reverse Kruskal: Remove big

edges that aren’t needed. O d

Cut (Sets)

Super Graph

2
5 Def: Acutofagraph G = (V,E) isa
partitioning of V into two sets S and

1 '\ S. The cutset of S is the set of
\@ edges with exactly on endpointin S.

Cut (Sets) S

CutSetof S

- A Def: Acutofagraph G = (V,E)is a
"‘.Vl‘{: 1 partitioning of V into two sets S and
1 V'\ S. The cutset of S is the set of

3 Voo edges with exactly on endpointin S.

Q: Can a cycle intersect a cut set an odd number of
times?

_ CutSetof S

7 e
- A Def: Acutofagraph G = (V,E)is a
Vi 1 partitioning of I/ into two sets S and
1 V '\ S. The cutset of S is the set of

3 Voo edges with exactly on endpointin S.

	Slide 1: CSE 331: Algorithms & Complexity
	Slide 2: Schedule
	Slide 3: Course Updates
	Slide 4: Paths
	Slide 5: Correctness
	Slide 6: Proof Idea
	Slide 7: Proof Idea
	Slide 8: Proof Idea
	Slide 9: Proof Idea
	Slide 10: Proof Idea
	Slide 11: Proof Idea
	Slide 12: Q: What about negative edge weights?
	Slide 13: Q: What about negative edge weights?
	Slide 14: Dijkstra’s Algorithm
	Slide 15: Dijkstra’s Algorithm
	Slide 16: Dijkstra’s Algorithm Idea
	Slide 17: Dijkstra’s Algorithm Optimization
	Slide 18: Dijkstra’s Algorithm Optimization
	Slide 19: Dijkstra’s Algorithm Optimization
	Slide 20: Priority Queue
	Slide 21
	Slide 22: Dijkstra’s Algorithm Runtime
	Slide 23
	Slide 24: Even Better?
	Slide 25: Spanning Trees
	Slide 26: Spanning Trees
	Slide 27: Q: How many edges does a spanning tree have?
	Slide 28: A: It has |V| - 1 because it is a tree!
	Slide 29: Q: Can you have more than one spanning tree?
	Slide 30: A: Can you have more than one spanning tree?
	Slide 31: Minimum Spanning Trees
	Slide 32: Minimum Spanning Trees (MST)
	Slide 33: Minimum Spanning Trees (MST)
	Slide 34: MST Algorithms (Greedy) Ideas:
	Slide 35: Cut (Sets)
	Slide 36: Cut (Sets)
	Slide 37: Q: Can a cycle intersect a cut set an odd number of times?

