

CSE 331: Algorithms & Complexity “Dijkstra’s Algorithm”

Prof. Charlie Anne Carlson (She/Her)

Lecture 18

Wednesday October 15, 2025

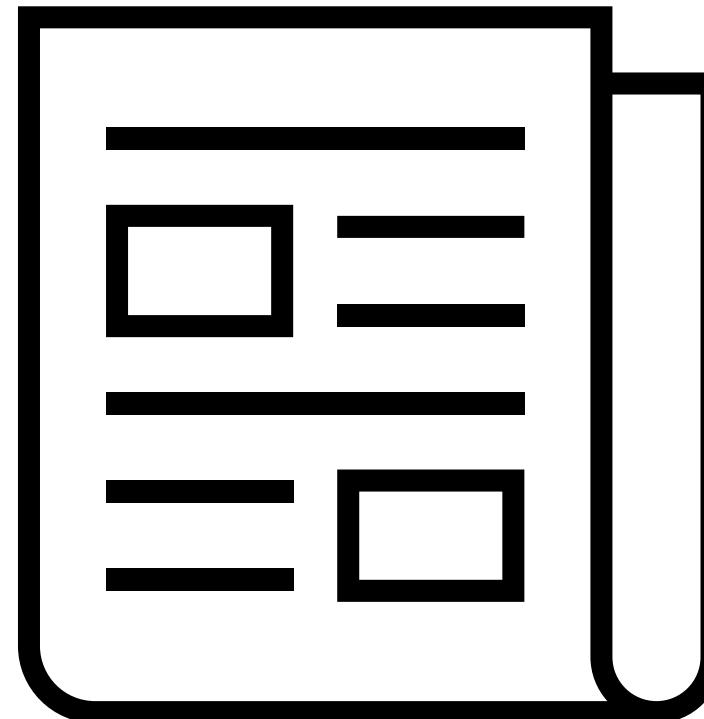
University at Buffalo®

Schedule

1. Course Updates
2. Dijkstra's Algorithm
3. Proof of Correctness
4. Min Spanning Trees
5. Kruskal's Algorithm
6. Prim's Algorithm

Course Updates

- Everything Besides Midterm Graded
 - Midterm Grades this week
- HW 4 Out
 - Due Next Week!
- Group Project
 - First Problems Oct 31st



Paths

Let P_u be the path found from s to u using these modifications.

Dijkstra's Algorithm (G, ℓ)

Let S be the set of explored nodes **Let P a n length array of Null.**

For each $u \in S$, we store a distance $d(u)$

Initially $S = \{s\}$ and $d(s) = 0$

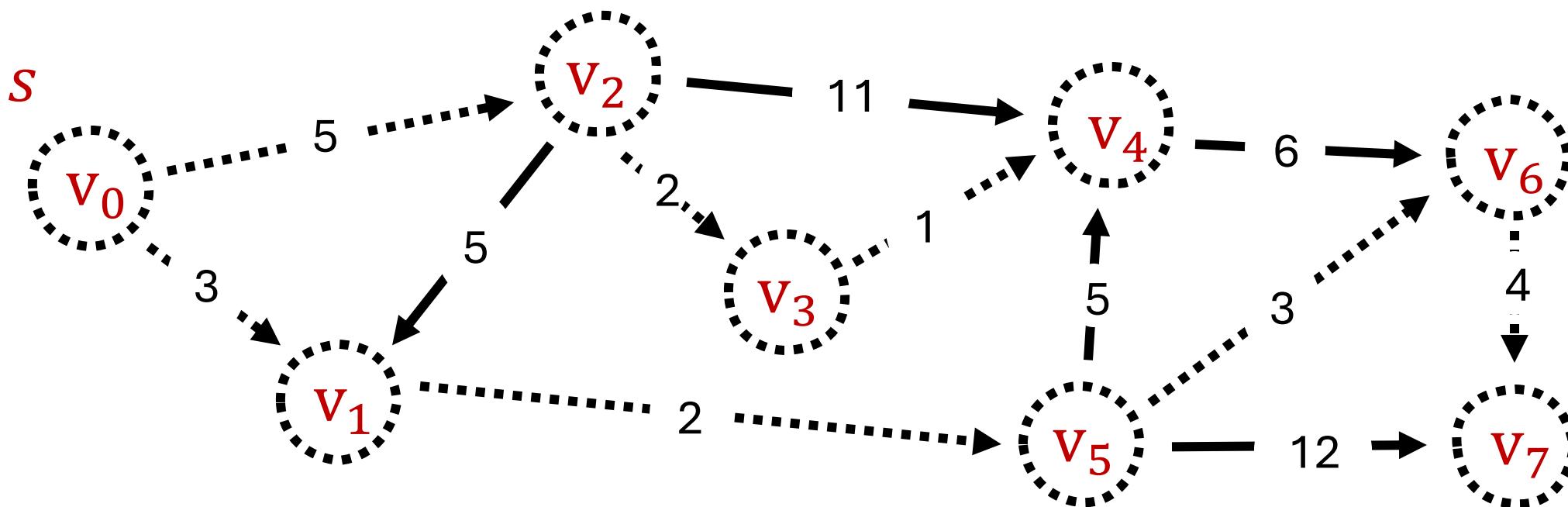
While $S \neq V$

Select a node $v \notin S$ with at least one edge from S for which

$d'(v) = \min_{e=(u,v):u \in S} d(u) + \ell_e$ is as small as possible

Add v to S and define $d(v) = d'(v)$ **Set $P[v] = u$ such that (u,v) was min.**

EndWhile



Correctness

Claim: At the start of each loop, P_u is the shortest path from s to u for all $u \in S$.

Dijkstra's Algorithm (G, ℓ)

Let S be the set of explored nodes

For each $u \in S$, we store a distance $d(u)$

Initially $S = \{s\}$ and $d(s) = 0$

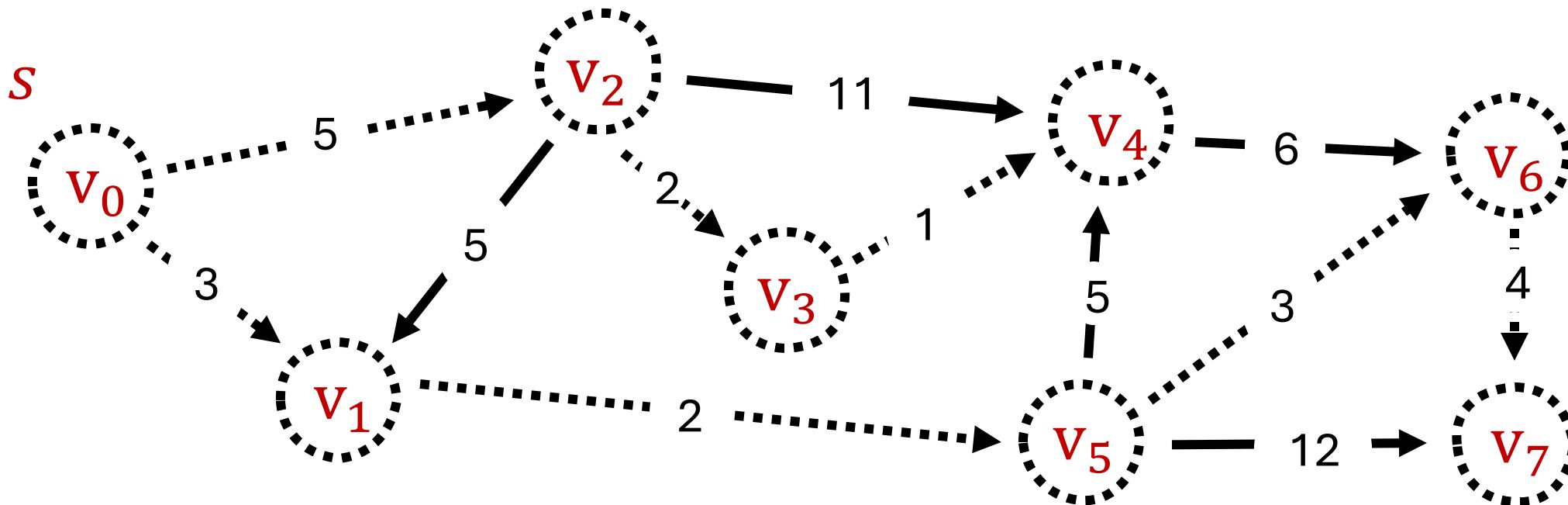
While $S \neq V$

Select a node $v \notin S$ with at least one edge from S for which

$d'(v) = \min_{e=(u,v):u \in S} d(u) + \ell_e$ is as small as possible

Add v to S and define $d(v) = d'(v)$

EndWhile

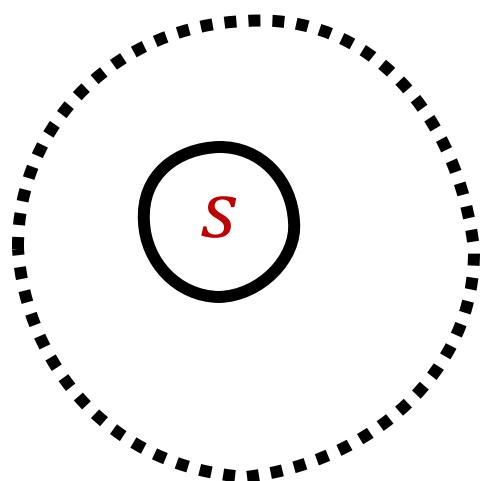


Proof Idea

- We proceed with induction on the size of S .
- If $|S| = 1$, then...

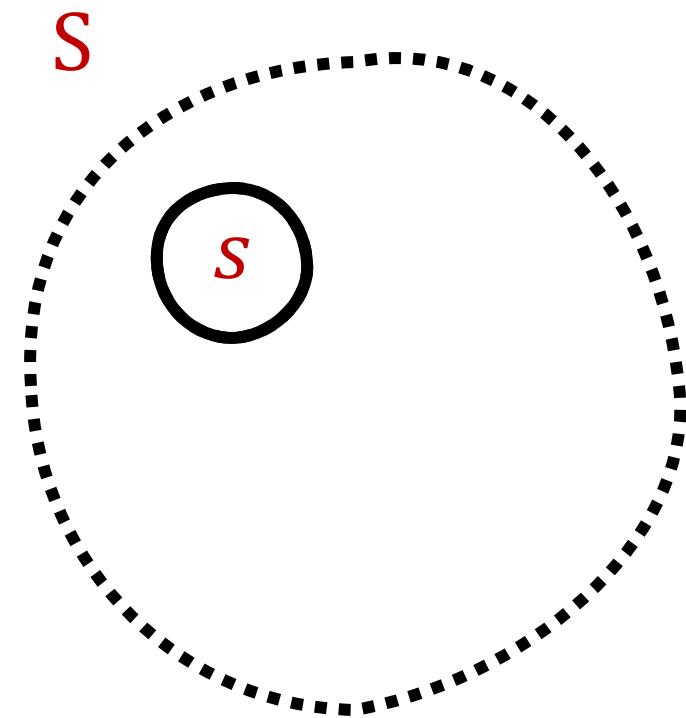
Proof Idea

- We proceed with induction on the size of S .
- If $|S| = 1$, then it is true because the shortest path from s to s is empty set.



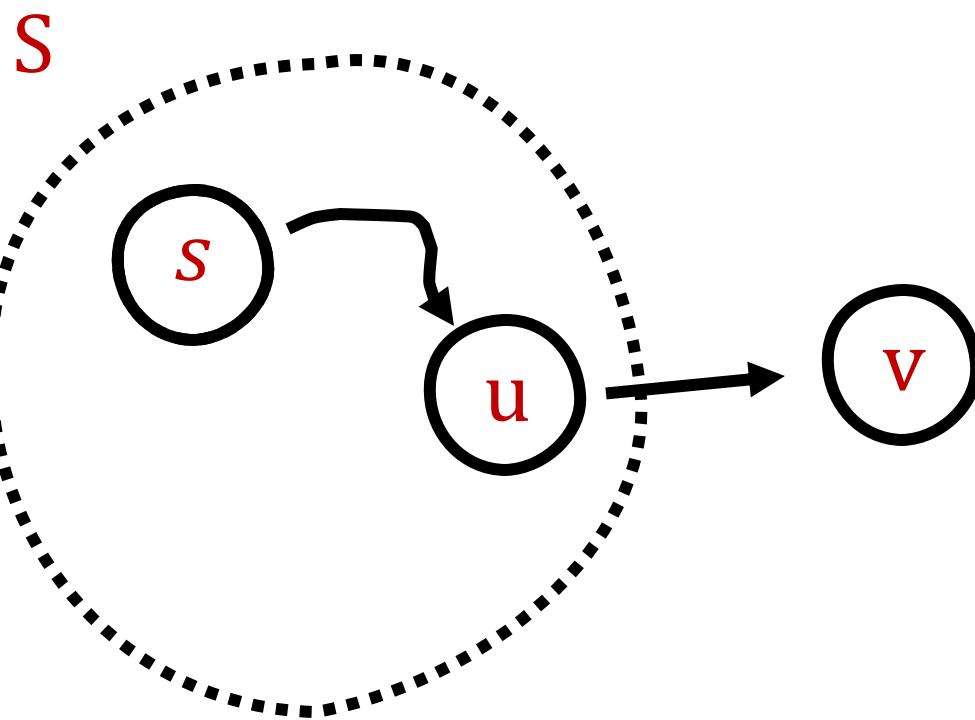
Proof Idea

- We proceed with induction on the size of S .
- Suppose for all S such that $|S| \leq k$, P_u is the shortest path from s to u for all $u \in S$.



Proof Idea

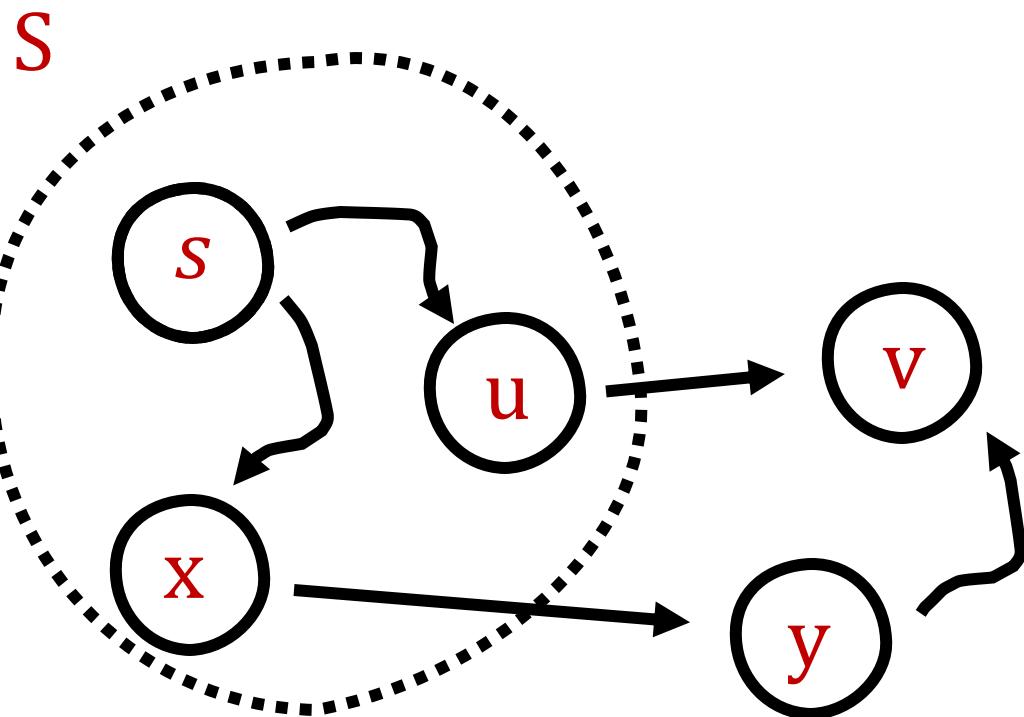
- We proceed with induction on the size of S .
- Suppose for all S such that $|S| \leq k$, P_u is the shortest path from s to u for all $u \in S$.



- Let v be the $k+1$ vertex added to S and let (u,v) be the edge minimized $\min_{e=(u,v):u \in S} d(u) + \ell_e$.

Proof Idea

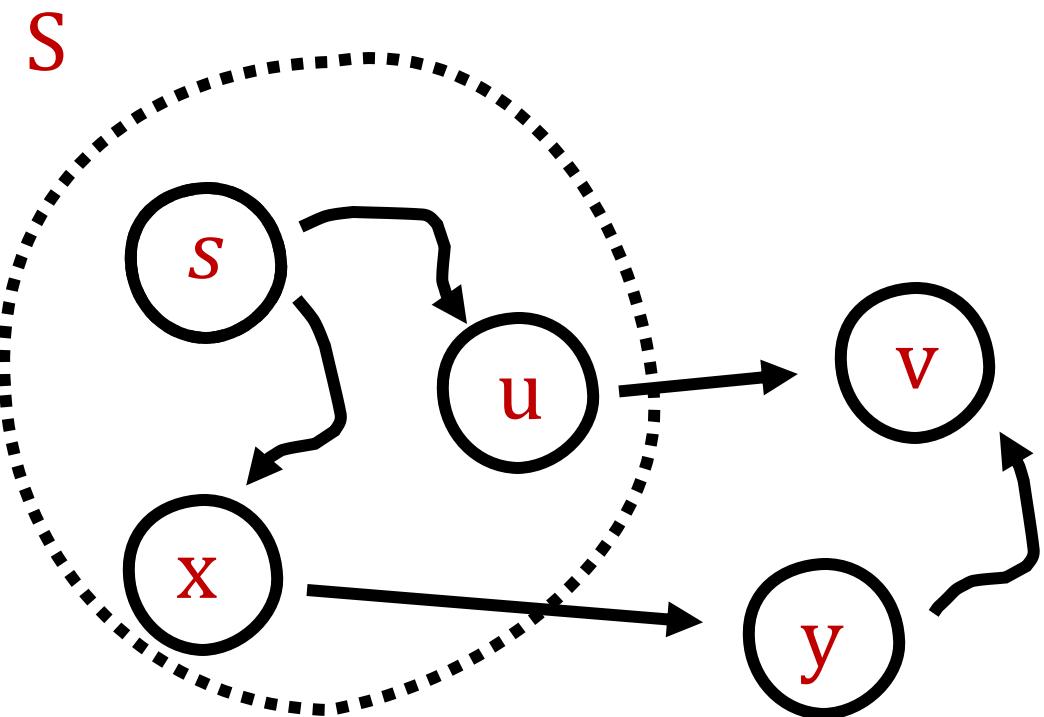
- We proceed with induction on the size of S .
- Suppose for all S such that $|S| \leq k$, P_u is the shortest path from s to u for all $u \in S$.



- Let v be the $k+1$ vertex added to S and let (u,v) be the edge minimized $\min_{e=(u,v):u \in S} d(u) + \ell_e$.
- Suppose $P_u \cup \{(u,v)\}$ is not the shortest path. Then there exists a path that must leave S via some edge (x,y) .

Proof Idea

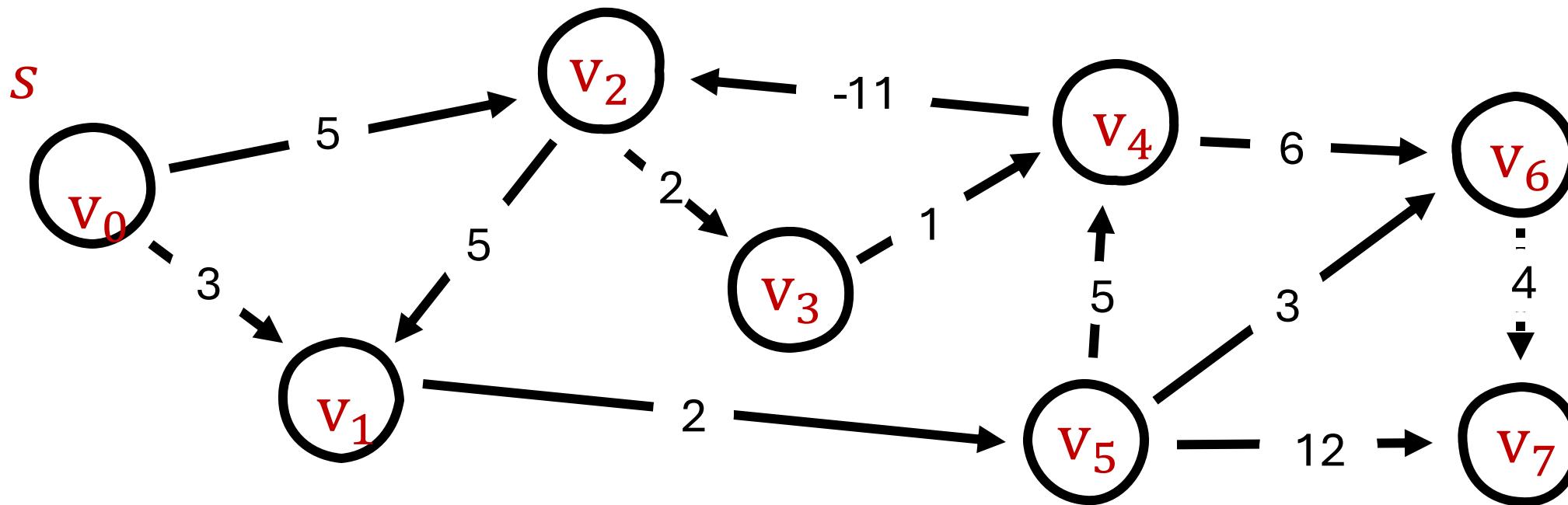
- We proceed with induction on the size of S .
- Suppose for all S such that $|S| \leq k$, P_u is the shortest path from s to u for all $u \in S$.



- Let v be the $k+1$ vertex added to S and let (u,v) be the edge minimized $\min_{e=(u,v):u \in S} d(u) + \ell_e$.
- Suppose $P_u \cup \{(u,v)\}$ is not the shortest path. Then there exists a path that must leave S via some edge (x,y) .
- However, the algo picked v and so the path from s to y must be just as long. ><

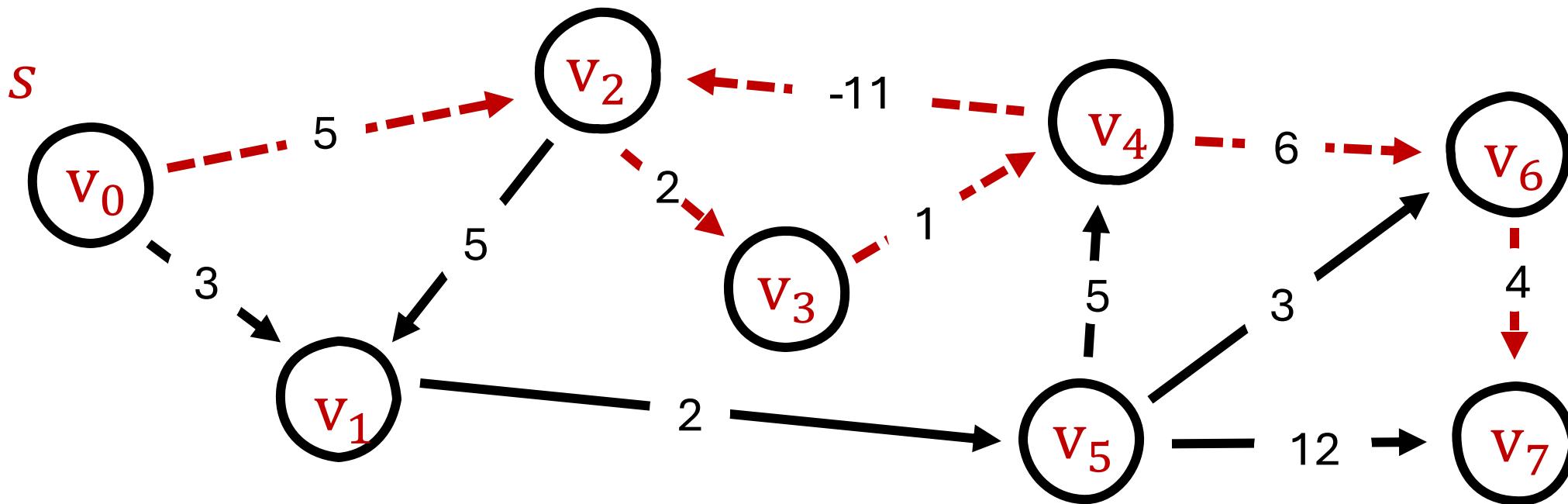
Q: What about negative edge weights?

A: If you have negative edge weights then you can have negative cycles and the minimum distance becomes “weird or hard to find.”



Q: What about negative edge weights?

A: If you have negative edge weights then you can have negative cycles, and the minimum distance becomes “weird or hard to find.”



Dijkstra's Algorithm

Dijkstra's Algorithm (G, ℓ)

Let S be the set of explored nodes

For each $u \in S$, we store a dist:

Initially $S = \{s\}$ and $d(s) = 0$

While $S \neq V$

 Select a node $v \notin S$ with at least one edge from S for which

$$d'(v) = \min_{e=(u,v):u \in S} d(u) + \ell_e$$
 is as small as possible

 Add v to S and define $d(v) = d'(v)$

EndWhile

Q: How many times might we compute this?



y

Dijkstra's Algorithm

Dijkstra's Algorithm (G, ℓ)

Let S be the set of explored nodes

For each $u \in S$, we store a dist:

Initially $S = \{s\}$ and $d(s) = 0$

While $S \neq V$

 Select a node $v \notin S$ with at least one edge from S for which

$$d'(v) = \min_{e=(u,v):u \in S} d(u) + \ell_e$$
 is as small as possible

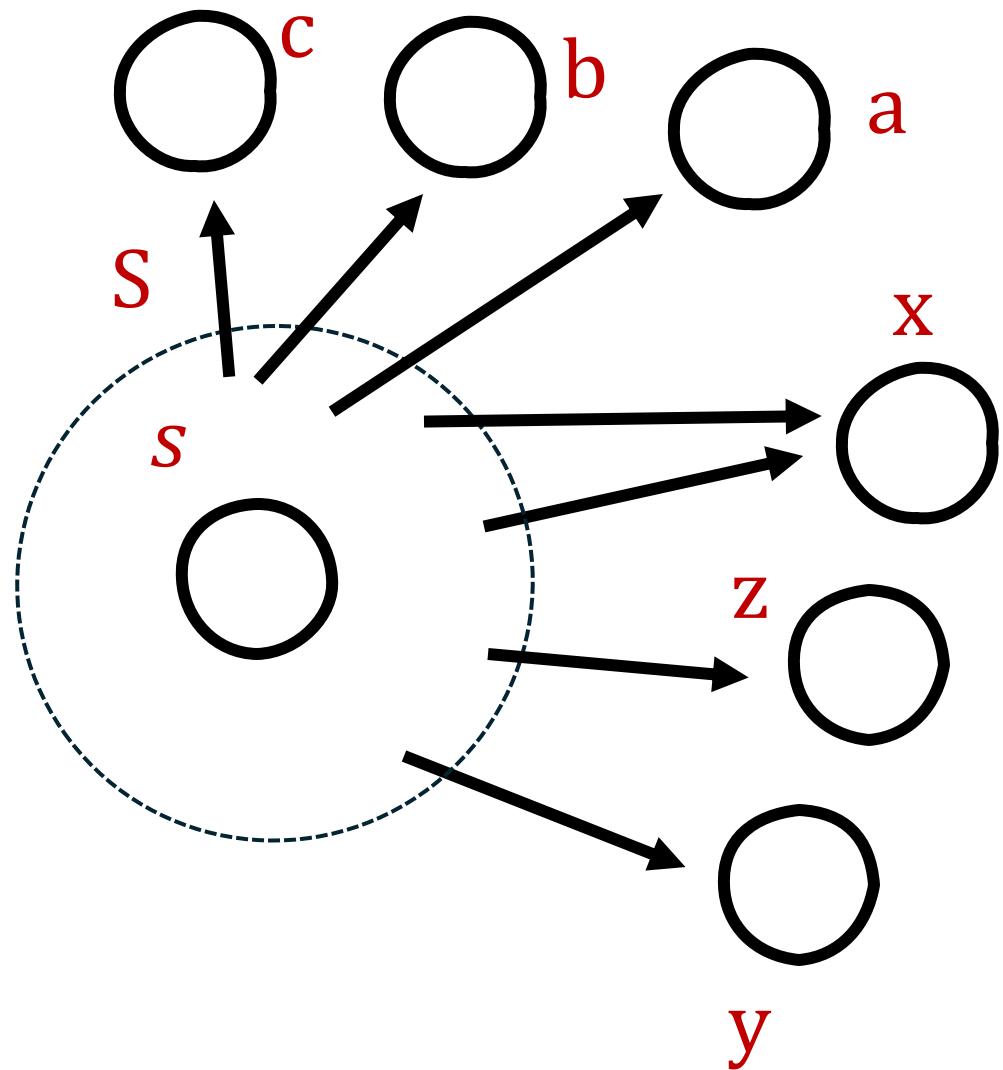
 Add v to S and define $d(v) = d'(v)$

EndWhile

A: We may do it several times because of large frontier.

y

Dijkstra's Algorithm Idea



Observation: A vertex could be in the frontier a lot!

Idea: Don't recompute every time!

Dijkstra's Algorithm (G, ℓ)

Let S be the set of explored nodes

For each $u \in S$, we store a distance $d(u)$

Initially $S = \{s\}$ and $d(s) = 0$

While $S \neq V$

Select a node $v \notin S$ with at least one edge from S for which

$d'(v) = \min_{e=(u,v):u \in S} d(u) + \ell_e$ is as small as possible

Add v to S and define $d(v) = d'(v)$

EndWhile

Dijkstra's Algorithm Optimization

Dijkstra's Algorithm (G, ℓ)

Let S be the set of explored nodes

For each $u \in S$, we store a distance $d(u)$

Initially $S = \{s\}$ and $d(s) = 0$ and $d(w) = \ell_{(s,w)}$ for everyone neighbors of s

While $S \neq V$

Select a node $v \notin S$ with at least one edge from S for which

$d'(v) = \min_{e=(u,v):u \in S} d(u) + \ell_e$ is as small as possible

Add v to S and for each neighbor w , check if $d(v) + \ell_{(v,w)}$

is smaller than current guess and update!

EndWhile

Dijkstra's Algorithm Optimization

Dijkstra's Algorithm (G, ℓ)

Let S be the set of explored nodes

For each $u \in S$, we store a dist:

Initially $S = \{s\}$ and $d(s) = 0$ and $d(w)$

While $S \neq V$

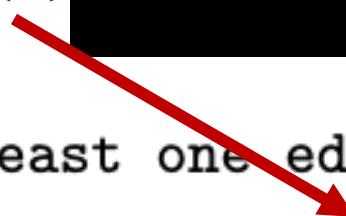
Select a node $v \notin S$ with at least one edge from S for which

$d'(v) = \min_{e=(u,v):u \in S} d(u) + \ell_e$ is as small as possible

Add v to S and for each neighbor w , check if $d(v) + \ell_{(v,w)}$
is smaller than current guess and update!

EndWhile

Q: How long to find the min?



Dijkstra's Algorithm Optimization

Dijkstra's Algorithm (G, ℓ)

Let S be the set of explored nodes

For each $u \in S$, we store a dist:

Initially $S = \{s\}$ and $d(s) = 0$ and $d(w)$

While $S \neq V$

Select a node $v \notin S$ with at least one edge from S for which

$d'(v) = \min_{e=(u,v):u \in S} d(u) + \ell_e$ is as small as possible

Add v to S and for each neighbor w , check if $d(v) + \ell_{(v,w)}$
is smaller than current guess and update!

EndWhile

A: Still loop over everything
in frontier ($O(n)$).

..

Priority Queue

- A priority queue is a data structure that supports the following operations:
 - $\text{Insert}(\text{PQ}, v, p)$: Inserts element v into PQ with priority p .
 - $\text{Pop-Min}(\text{PQ})$: Returns element with minimum priority and removes it from PQ .
 - $\text{Decrease-Key}(\text{PQ}, v, p)$: Updates the priority of v in PQ to be p .
- **Recall:** You can implement this using a Heap data structure.

Input: graph $G = (\mathbf{V}, \mathbf{E})$, lengths \mathbf{L} , and start \mathbf{s}

- Initialize Priority Queue \mathbf{PQ} , arrays \mathbf{P} and \mathbf{d}
- For Each \mathbf{v} in \mathbf{V} :
 - Let $\mathbf{P}[\mathbf{v}] = \text{Null}$ and $\mathbf{d}[\mathbf{v}] = \text{INFINITY}$
 - Insert \mathbf{v} into \mathbf{PQ} with priority $\mathbf{d}[\mathbf{v}]$
- Let $\mathbf{d}[\mathbf{s}] = 0$
- While \mathbf{PQ} is not empty:
 - $\mathbf{u} = \text{Pop-Min}(\mathbf{PQ})$
 - For each edge $\mathbf{e} = (\mathbf{u}, \mathbf{v})$ in \mathbf{E} leaving \mathbf{u} :
 - If $\mathbf{d}[\mathbf{v}] > \mathbf{d}[\mathbf{u}] + \mathbf{L}[\mathbf{e}]$:
 - Decrease-Key($\mathbf{PQ}, \mathbf{v}, \mathbf{d}[\mathbf{u}] + \mathbf{L}[\mathbf{e}]$)
 - $\mathbf{d}[\mathbf{v}] = \mathbf{d}[\mathbf{u}] + \mathbf{L}[\mathbf{e}]$
 - $\mathbf{P}[\mathbf{v}] = \mathbf{u}$

Dijkstra's Algorithm Runtime

- The runtime depends on the priority queue used.
- Using a priority queue, Dijkstra's Algorithm can be implemented on a graph with n nodes and m edges to run in $O(m)$ time plus the time for n Pop-Min and m Decrease-Priority operations.
 - Using the heap-based priority queue, each priority queue operation can be implemented in $\log(n)$ time giving a total runtime of $O(m\log(n))$.

Input: graph $G = (\mathbf{V}, \mathbf{E})$, lengths \mathbf{L} , and start \mathbf{s}

- Initialize Priority Queue \mathbf{PQ} , arrays \mathbf{P} and \mathbf{d}
- For Each \mathbf{v} in \mathbf{V} :
 - Let $\mathbf{P}[\mathbf{v}] = \text{Null}$ and $\mathbf{d}[\mathbf{v}] = \text{INFINITY}$
 - Insert \mathbf{v} into \mathbf{PQ} with priority $\mathbf{d}[\mathbf{v}]$
- Let $\mathbf{d}[\mathbf{s}] = 0$
- While \mathbf{PQ} is not empty:
 - $\mathbf{u} = \text{Pop-Min}(\mathbf{PQ})$
 - For each edge $\mathbf{e} = (\mathbf{u}, \mathbf{v})$ in \mathbf{E} leaving \mathbf{u} :
 - If $\mathbf{d}[\mathbf{v}] > \mathbf{d}[\mathbf{u}] + \mathbf{L}[\mathbf{e}]$:
 - Decrease-Key($\mathbf{PQ}, \mathbf{v}, \mathbf{d}[\mathbf{u}] + \mathbf{L}[\mathbf{e}]$)
 - $\mathbf{d}[\mathbf{v}] = \mathbf{d}[\mathbf{u}] + \mathbf{L}[\mathbf{e}]$
 - $\mathbf{P}[\mathbf{v}] = \mathbf{u}$

Even Better?

Breaking the Sorting Barrier for Directed Single-Source Shortest Paths

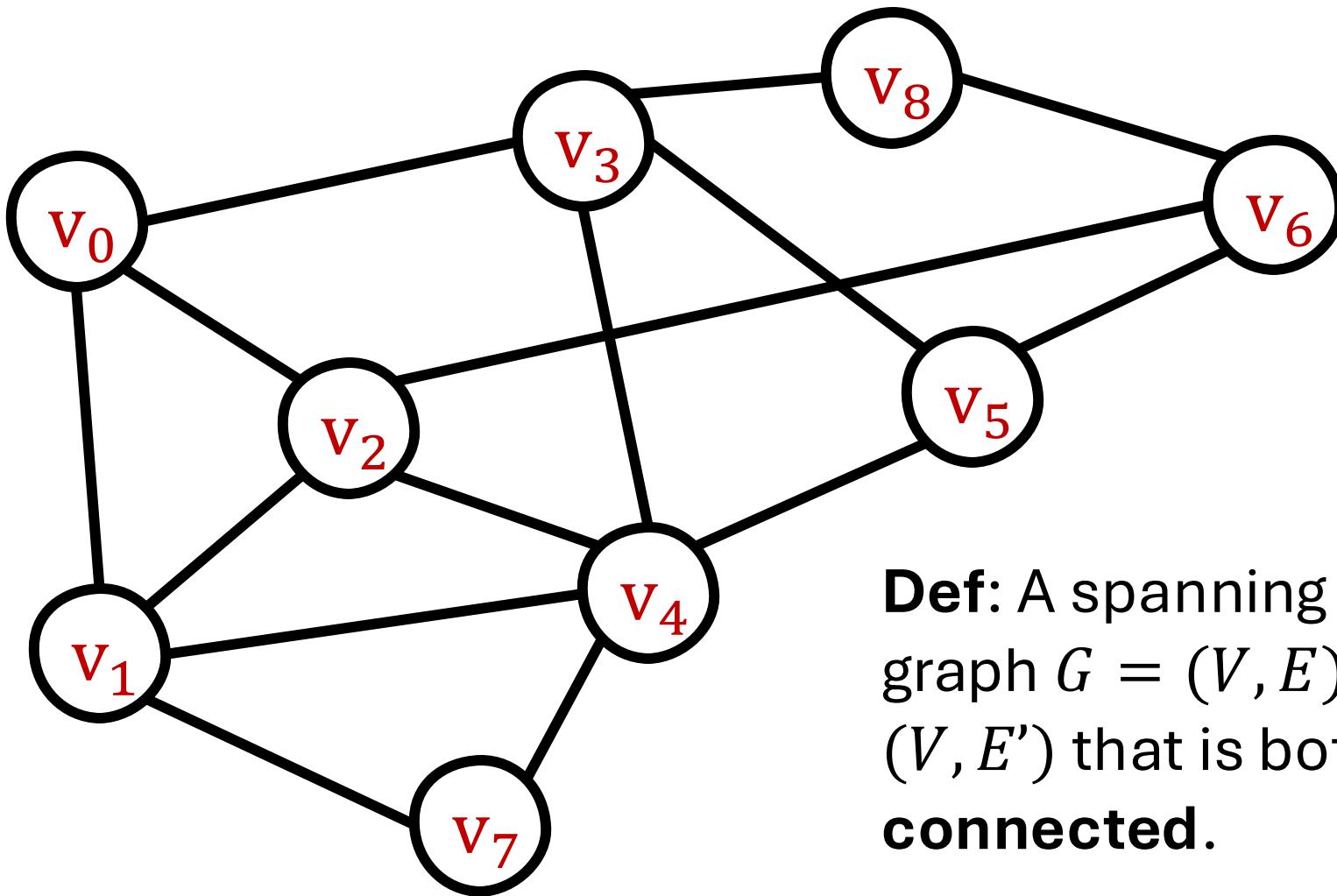
Ran Duan * Jiayi Mao * Xiao Mao [†] Xinkai Shu [‡] Longhui Yin *

July 31, 2025

Abstract

We give a deterministic $O(m \log^{2/3} n)$ -time algorithm for single-source shortest paths (SSSP) on directed graphs with real non-negative edge weights in the comparison-addition model. This is the first result to break the $O(m + n \log n)$ time bound of Dijkstra's algorithm on sparse graphs, showing that Dijkstra's algorithm is not optimal for SSSP.

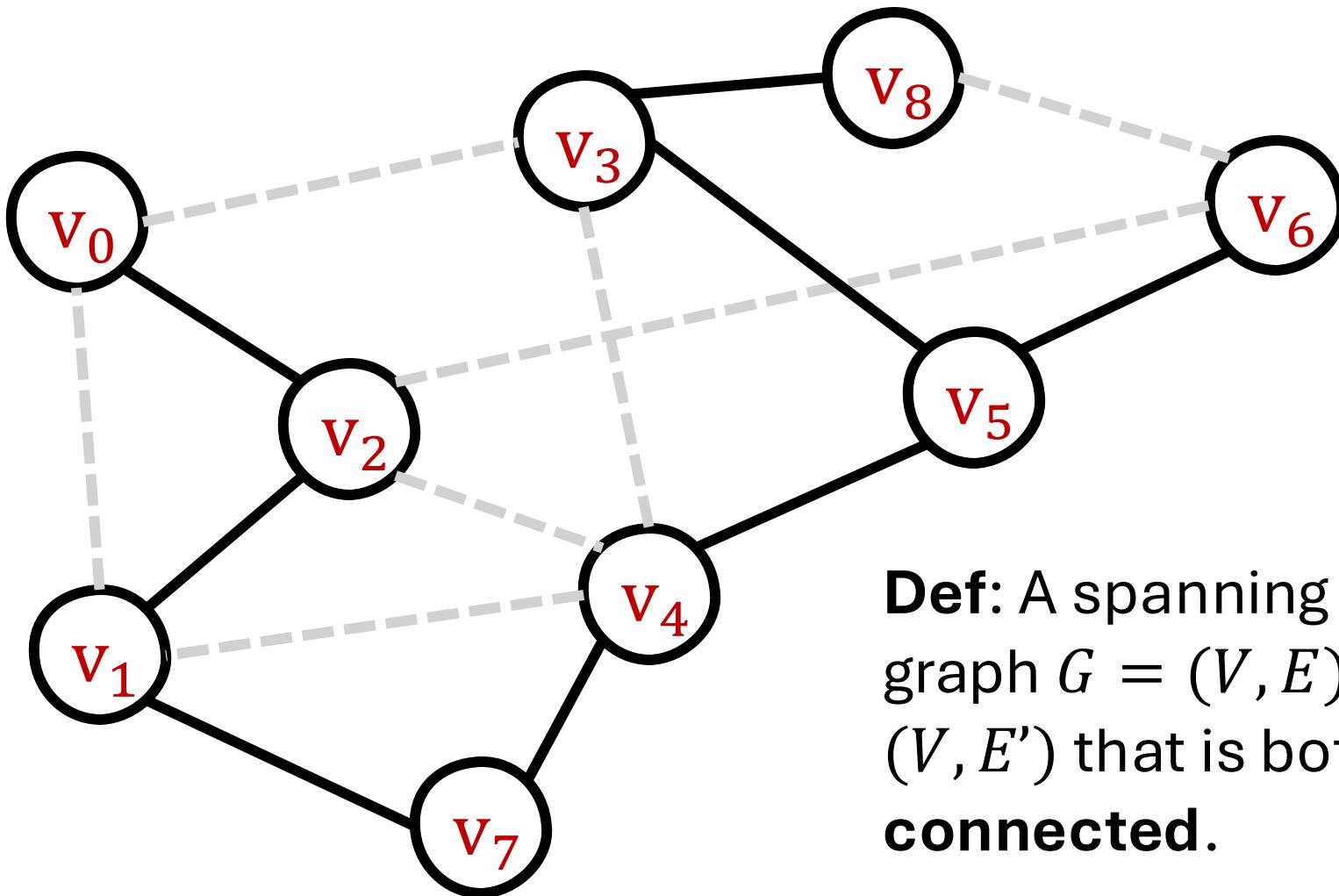
Spanning Trees



Super Graph

Def: A spanning tree of an undirected graph $G = (V, E)$ is a subgraph $H = (V, E')$ that is both **acyclic** and **connected**.

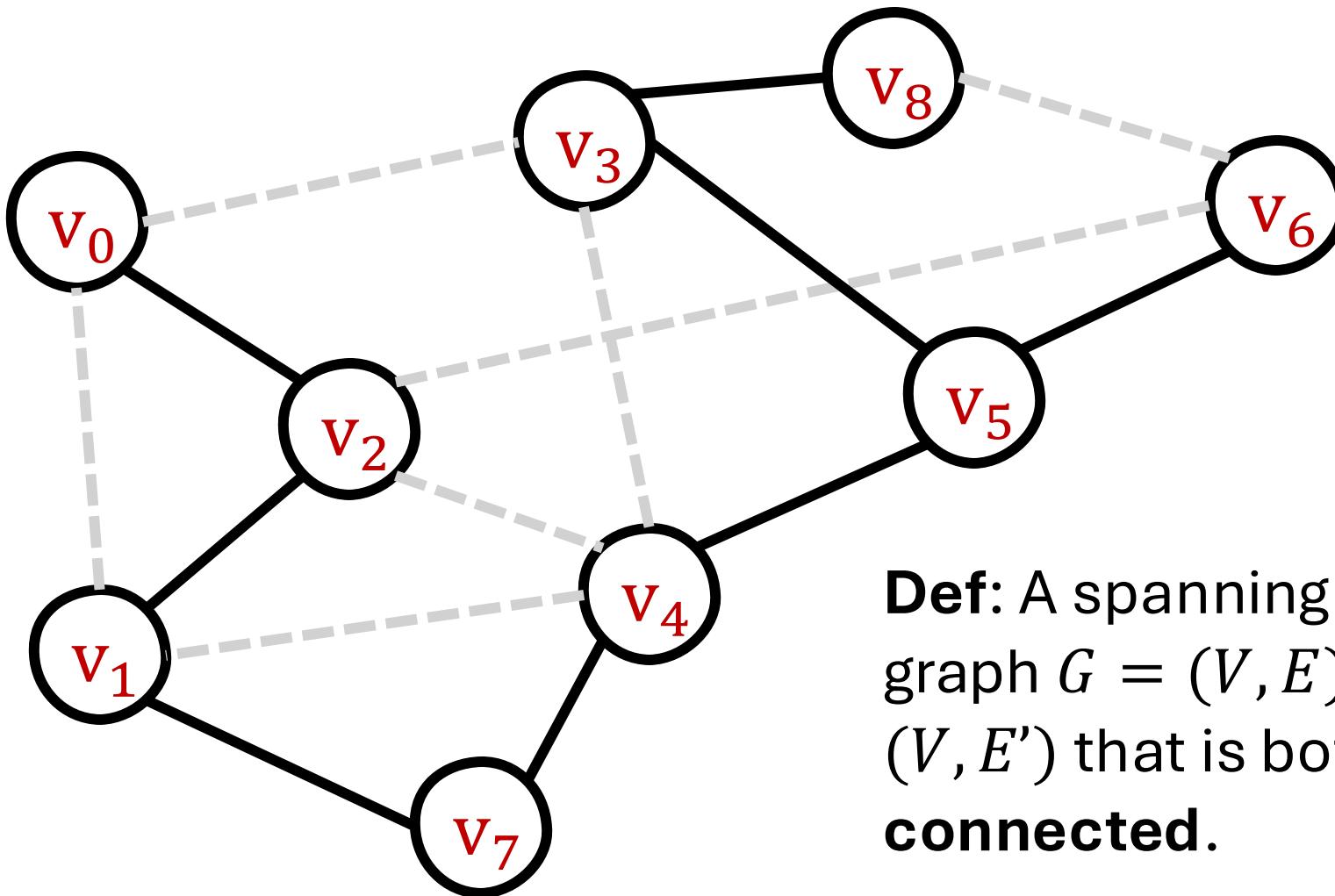
Spanning Trees



Spanning Tree

Def: A spanning tree of an undirected graph $G = (V, E)$ is a subgraph $H = (V, E')$ that is both **acyclic** and **connected**.

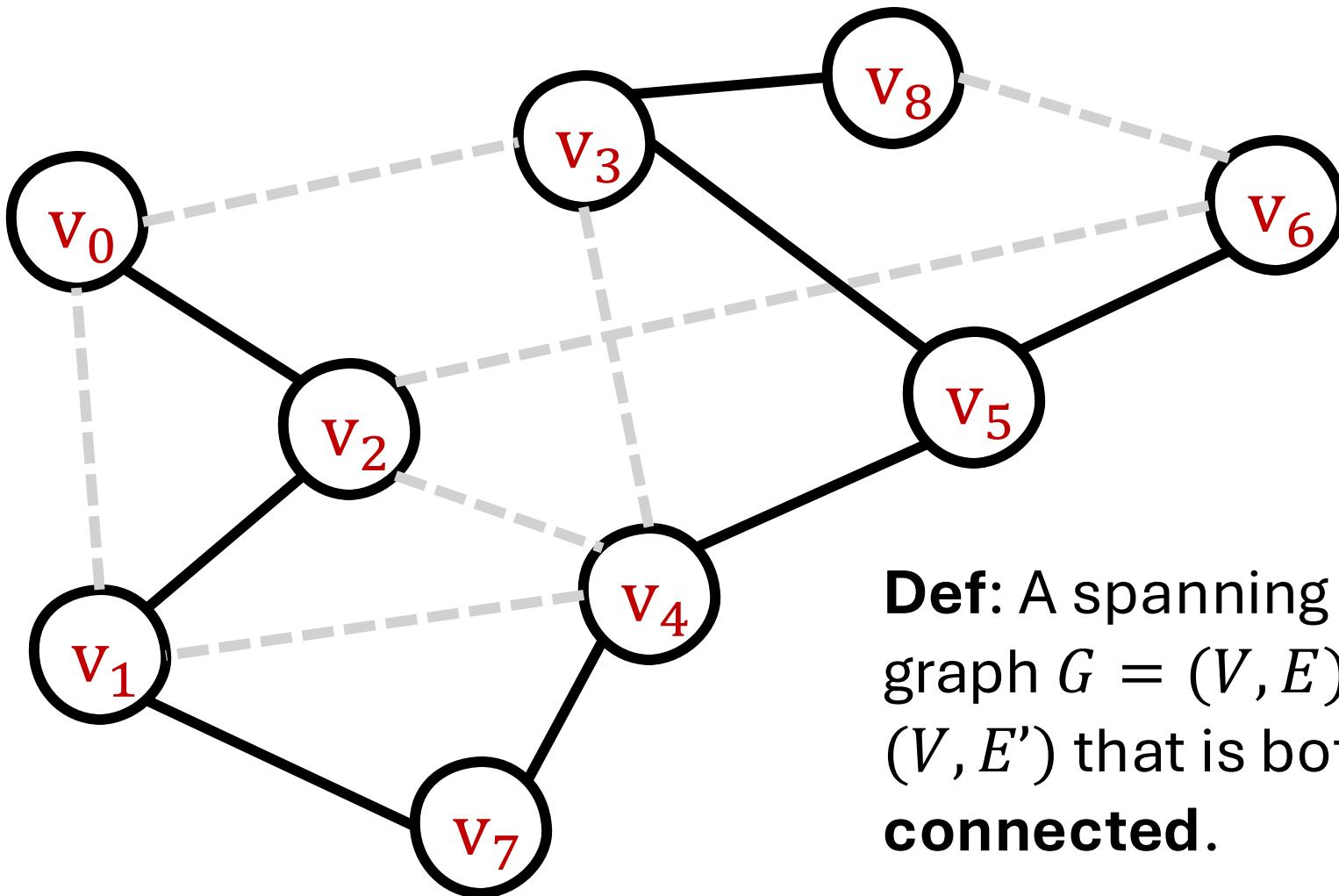
Q: How many edges does a spanning tree have?



Spanning Tree

Def: A spanning tree of an undirected graph $G = (V, E)$ is a subgraph $H = (V, E')$ that is both **acyclic** and **connected**.

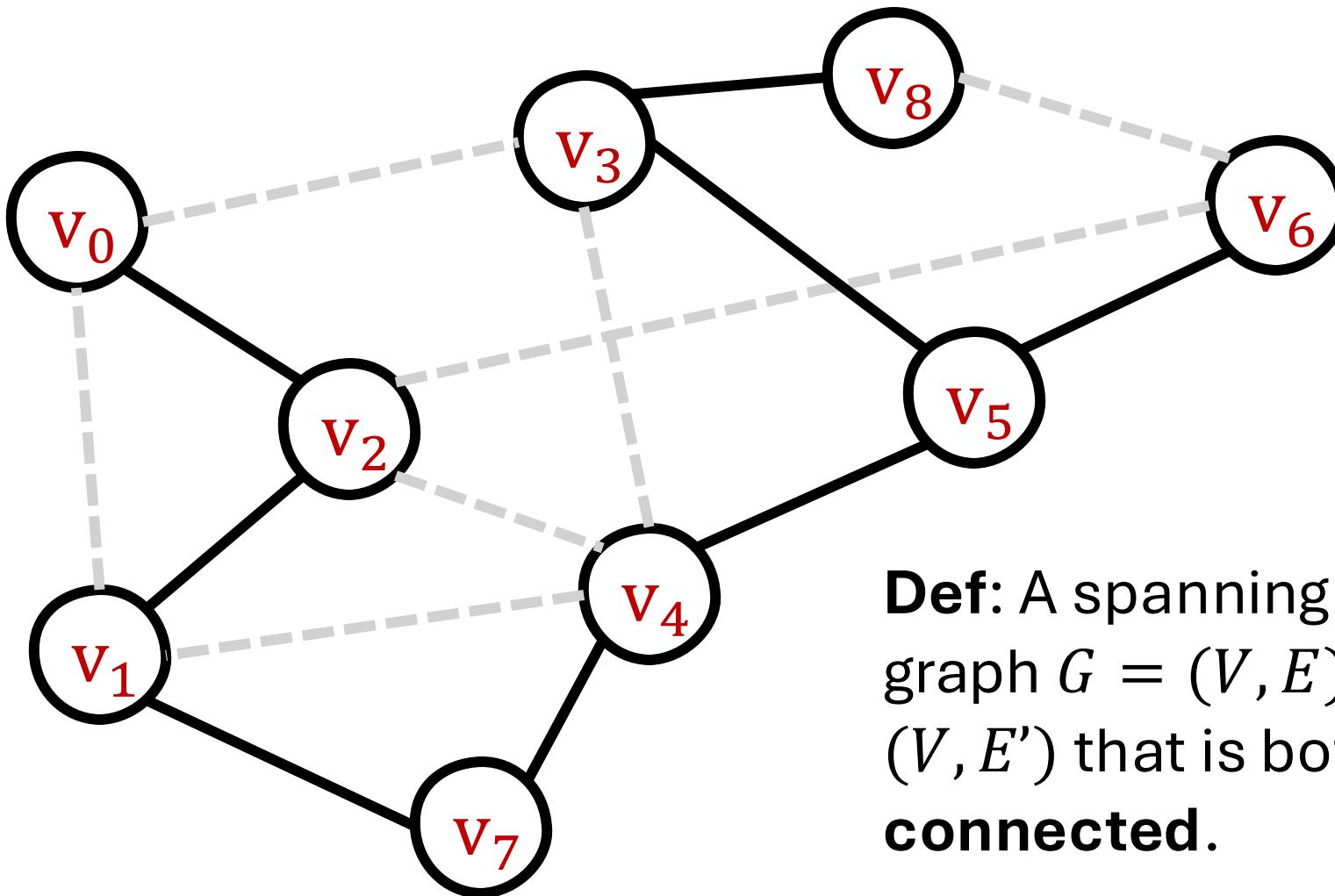
A: It has $|V| - 1$ because it is a tree!



Spanning Tree

Def: A spanning tree of an undirected graph $G = (V, E)$ is a subgraph $H = (V, E')$ that is both **acyclic** and **connected**.

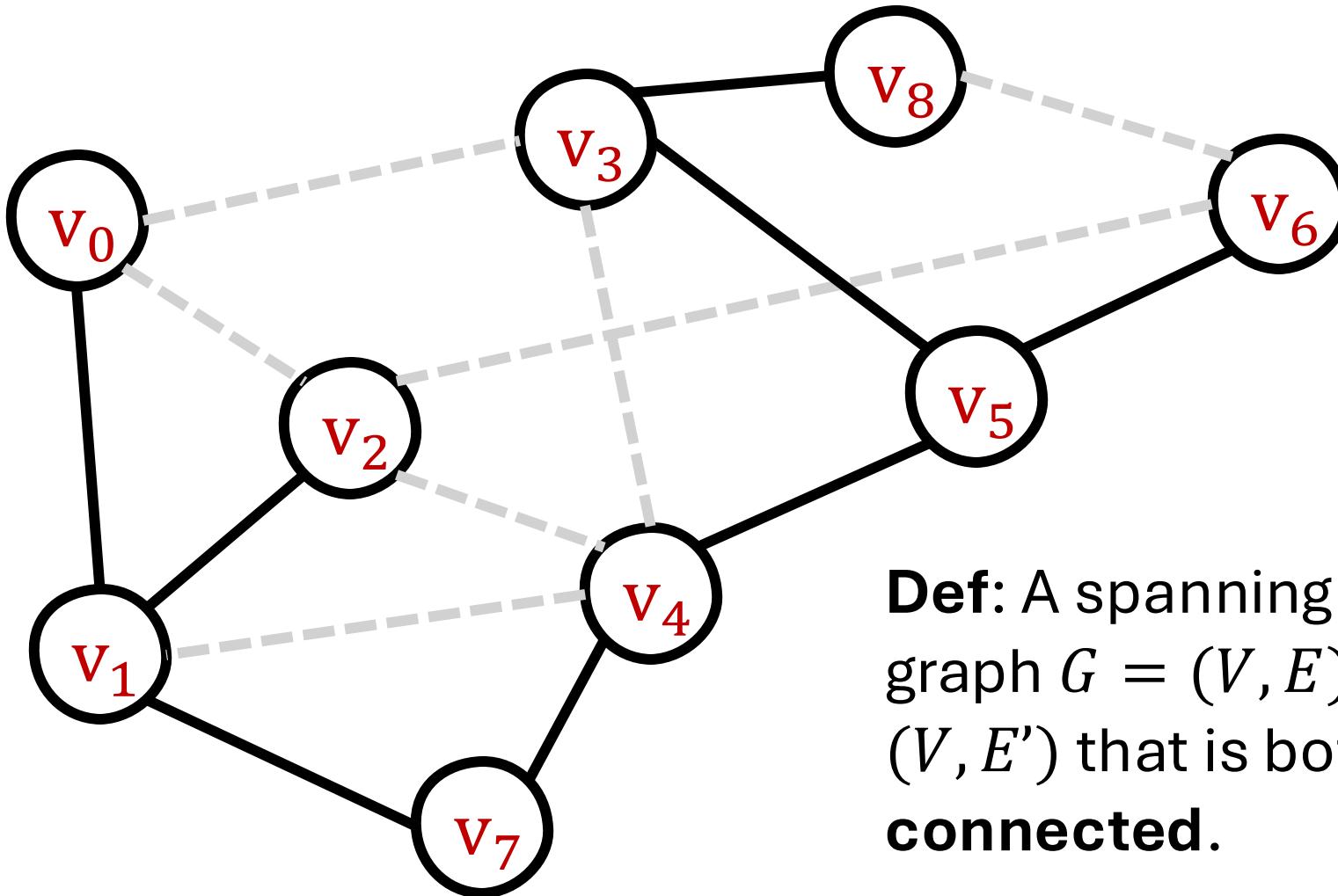
Q: Can you have more than one spanning tree?



Spanning Tree

Def: A spanning tree of an undirected graph $G = (V, E)$ is a subgraph $H = (V, E')$ that is both **acyclic** and **connected**.

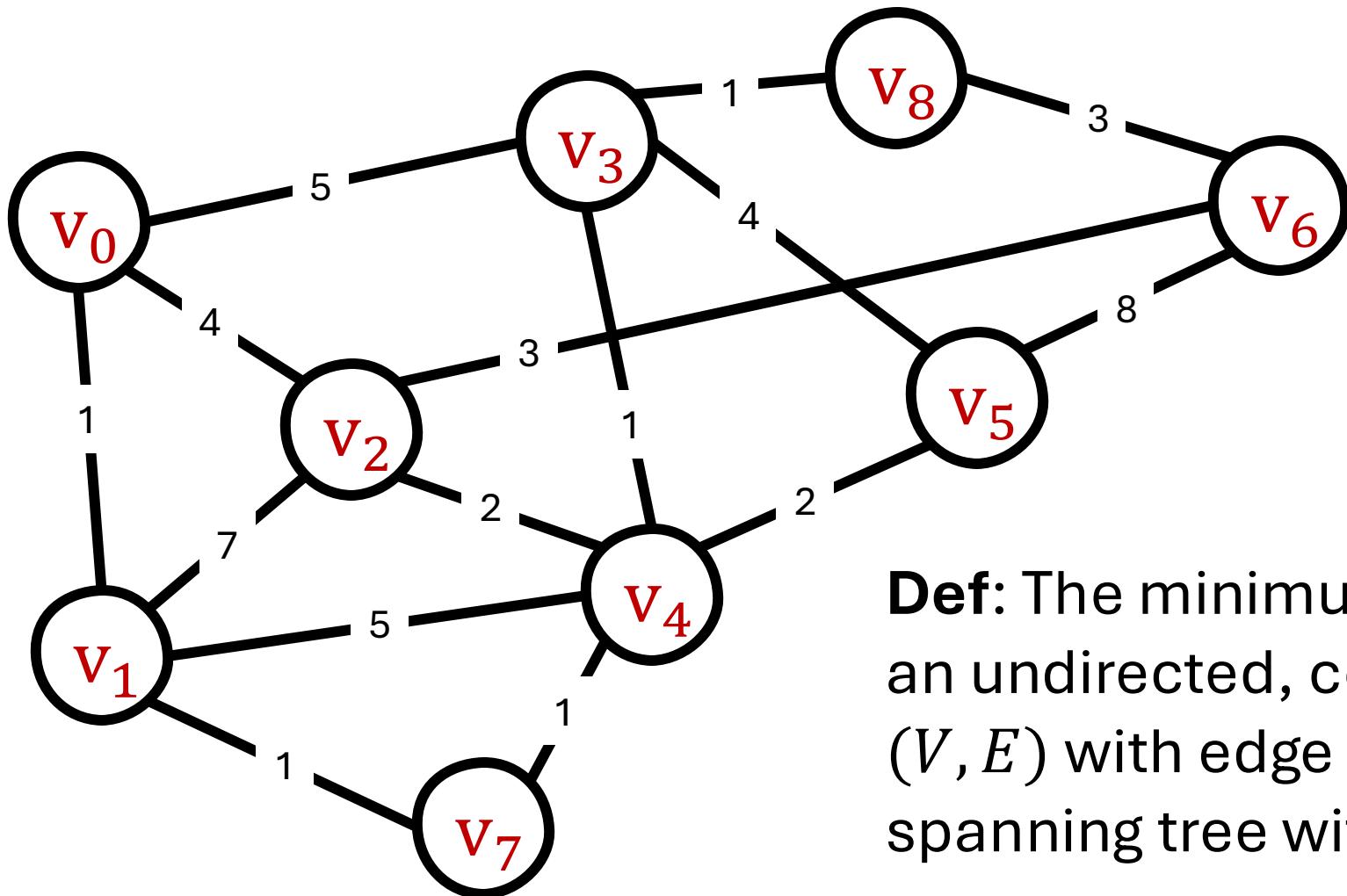
A: Can you have more than one spanning tree?



Spanning Tree

Def: A spanning tree of an undirected graph $G = (V, E)$ is a subgraph $H = (V, E')$ that is both **acyclic** and **connected**.

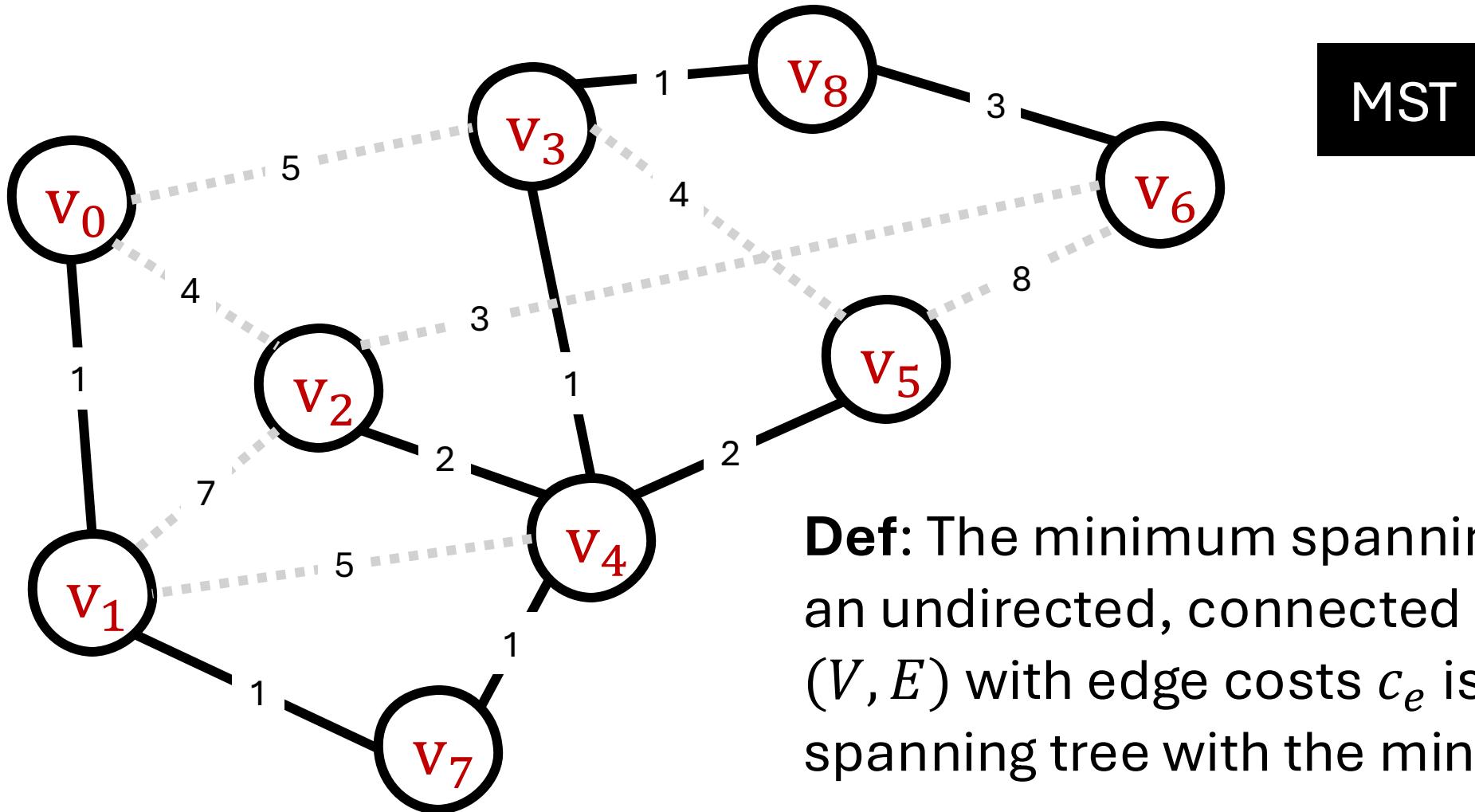
Minimum Spanning Trees



Super Graph

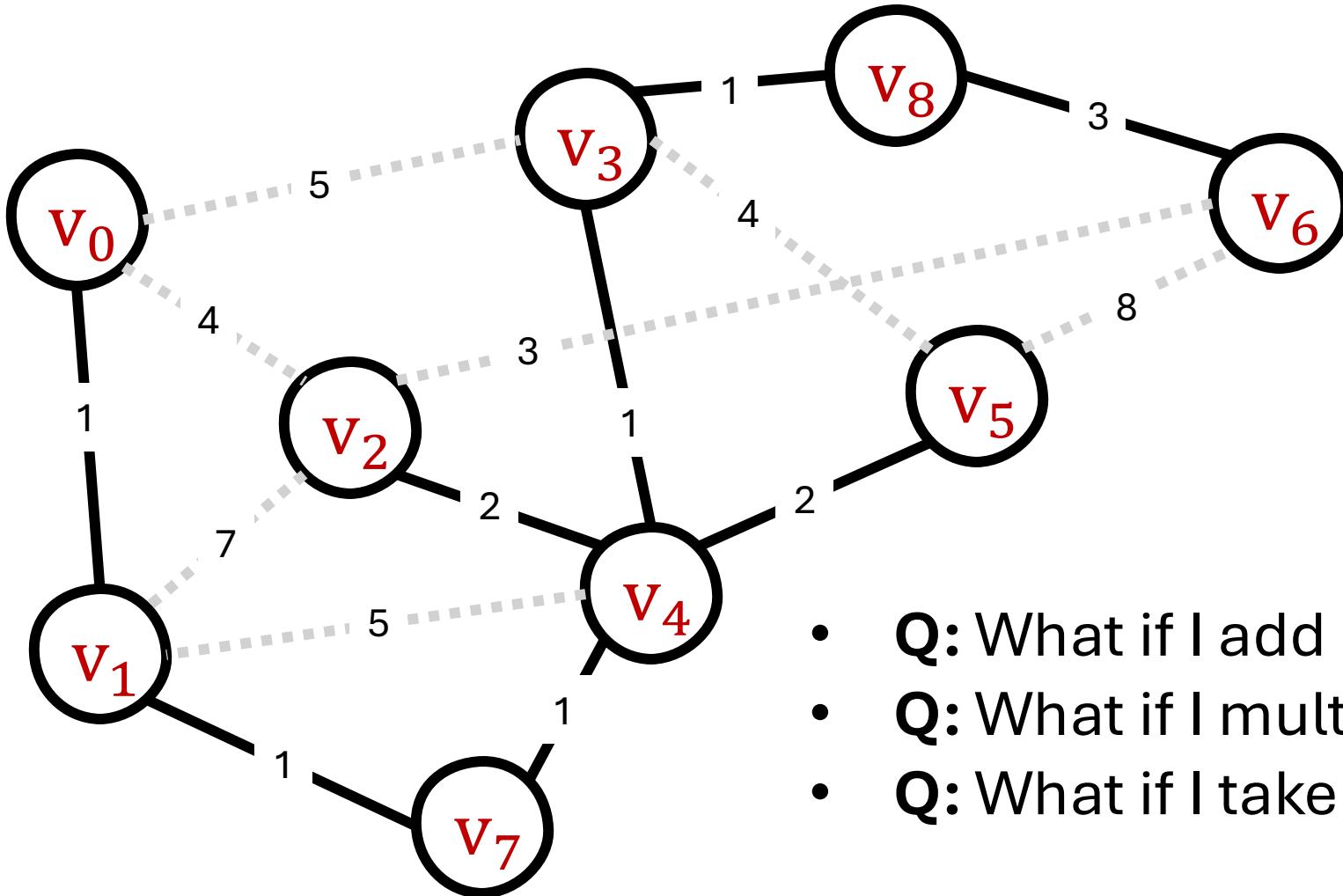
Def: The minimum spanning tree of an undirected, connected graph $G = (V, E)$ with edge costs c_e is the spanning tree with the min total edge sum.

Minimum Spanning Trees (MST)



Def: The minimum spanning tree of an undirected, connected graph $G = (V, E)$ with edge costs c_e is the spanning tree with the min total edge sum.

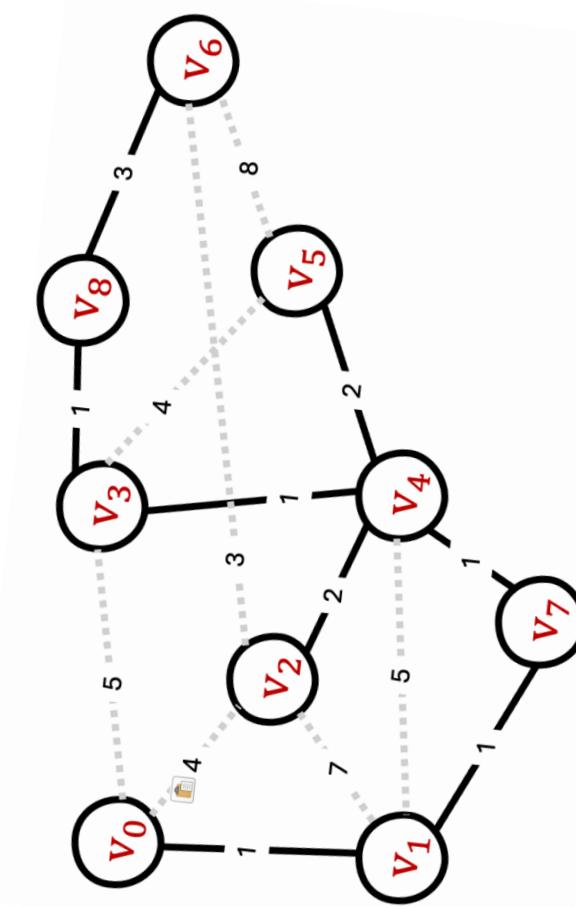
Minimum Spanning Trees (MST)



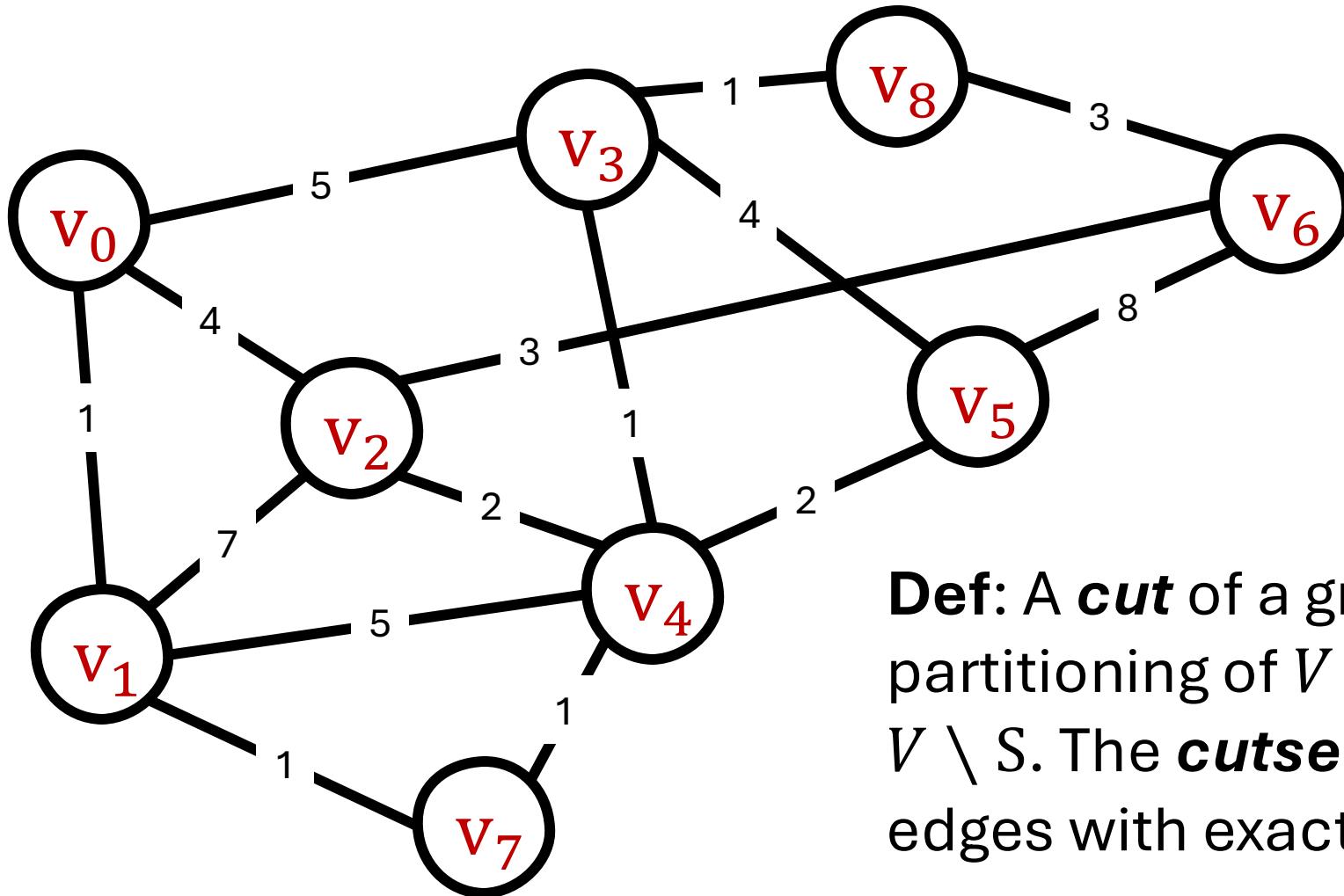
- Q: What if I add 100 to each edge?
- Q: What if I mult each edge by 23?
- Q: What if I take log of each edge?

MST Algorithms (Greedy) Ideas:

- Start with empty graph:
 - **Kruskal:** Add small edge that connect components.
 - **Prim:** Grow a component by taking smallest edge leaving it.
 - **Borůvka:** Add min weight edge leaving each component.
- Start With G:
 - **Reverse Kruskal:** Remove big edges that aren't needed.



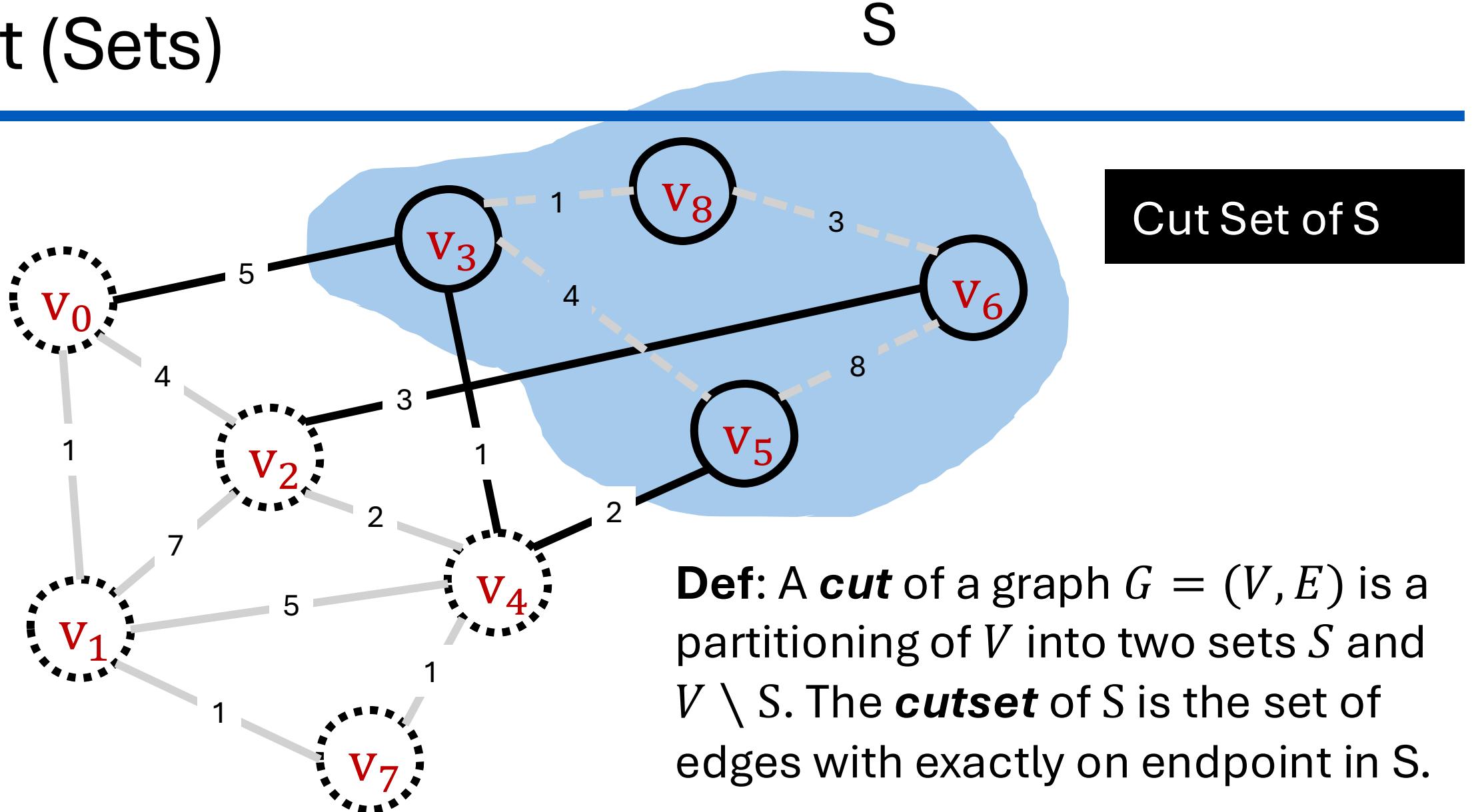
Cut (Sets)



Super Graph

Def: A ***cut*** of a graph $G = (V, E)$ is a partitioning of V into two sets S and $V \setminus S$. The ***cutset*** of S is the set of edges with exactly one endpoint in S .

Cut (Sets)



Q: Can a cycle intersect a cut set an odd number of times?

