
CSE 331: 
Algorithms & Complexity

Prof. Charlie Anne Carlson (She/Her)
Lecture 18

Wednesday October 15, 2025

“Dijkstra’s Algorithm”



Schedule

1.Course Updates
2.Dijkstra’s Algorithm
3.Proof of Correctness
4.Min Spanning Trees
5.Kruskal’s Algorithm
6.Prim’s Algorithm



Course Updates

• Everything Besides Midterm 
Graded
• Midterm Grades this week

• HW 4 Out
• Due Next Week!

• Group Project
• First Problems Oct 31st



Paths
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Let 𝑃𝑢 be the path found 
from s to u using these 
modifications. 
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Set P[v] = u such that (u,v) was min.

Let P a n length array of Null.



Correctness
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Claim: At the start of each 
loop, 𝑃𝑢 is the shortest path 
from s to u for all u ∈ S.
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Proof Idea
• We proceed with induction on the size of 𝑆.
• If |S| =  1, then…



Proof Idea

𝑠

• We proceed with induction on the size of 𝑆.
• If |S| =  1, then it is true because the shortest path from s to s is 

empty set. 



Proof Idea

S

• We proceed with induction on the size of 𝑆.
• Suppose for all 𝑆 such that |𝑆|  ≤  k, 𝑃𝑢 is the shortest path from s to 

u for all u ∈ S.

𝑠



Proof Idea

S

• We proceed with induction on the size of 𝑆.
• Suppose for all 𝑆 such that |𝑆|  ≤  k, 𝑃𝑢 is the shortest path from s to 

u for all u ∈ S.

𝑠

v

• Let v be the k+1 vertex added to S and 
let (u,v) be the edge minimized 
𝑚𝑖𝑛𝑒= 𝑢,𝑣 :𝑢∈𝑆𝑑 𝑢 + ℓ𝑒  .

u



Proof Idea

S

• We proceed with induction on the size of 𝑆.
• Suppose for all 𝑆 such that |𝑆|  ≤  k, 𝑃𝑢 is the shortest path from s to 

u for all u ∈ S.

𝑠

v

• Let v be the k+1 vertex added to S and 
let (u,v) be the edge minimized 
𝑚𝑖𝑛𝑒= 𝑢,𝑣 :𝑢∈𝑆𝑑 𝑢 + ℓ𝑒  .

• Suppose 𝑃𝑢  ∪  {(u, v)} is not the 
shortest path. Then there exists a path 
that must leave S via some edge (x,y).

u

x
y



Proof Idea

S

• We proceed with induction on the size of 𝑆.
• Suppose for all 𝑆 such that |𝑆|  ≤  k, 𝑃𝑢 is the shortest path from s to 

u for all u ∈ S.

𝑠

v

• Let v be the k+1 vertex added to S and 
let (u,v) be the edge minimized 
𝑚𝑖𝑛𝑒= 𝑢,𝑣 :𝑢∈𝑆𝑑 𝑢 + ℓ𝑒  .

• Suppose 𝑃𝑢  ∪  {(u, v)} is not the 
shortest path. Then there exists a path 
that must leave S via some edge (x,y).

• However, the algo picked v and so the 
path from s to y must be just as long. ><
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Q: What about negative edge weights?
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A: If you have negative edge weights then you can have 
negative cycles and the minimum distance becomes 
“weird or hard to find."



Q: What about negative edge weights?
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A: If you have negative edge weights then you can have 
negative cycles, and the minimum distance becomes 
“weird or hard to find."



Dijkstra’s Algorithm
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Q: How many times might 
we compute this?



Dijkstra’s Algorithm
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A: We may do it several 
times because of large 
frontier. 



Dijkstra’s Algorithm Idea
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S

abc Observation: A vertex could be in 
the frontier a lot!

Idea: Don’t recompute every time!



Dijkstra’s Algorithm Optimization
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w

x

for each neighbor w, check if 𝑑 𝑣 + ℓ(v,w) 

is smaller than current guess and update!

and 𝑑 w = ℓ(s,w) for everyone neighbors of s



Dijkstra’s Algorithm Optimization
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for each neighbor w, check if 𝑑 𝑣 + ℓ(v,w) 

is smaller than current guess and update!

and 𝑑 w = ℓ(s,w) for everyone neighbors of s

Q: How long to find the min?



Dijkstra’s Algorithm Optimization
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for each neighbor w, check if 𝑑 𝑣 + ℓ(v,w) 

is smaller than current guess and update!

and 𝑑 w = ℓ(s,w) for everyone neighbors of s

A: Still loop over everything 
in frontier (O(n)). 



Priority Queue

• A priority queue is a data structure that supports the 
following operations:
• Insert(PQ, v, p): Inserts element v into PQ 

with priority p.
• Pop-Min(PQ): Returns element with minimum 

priority and removes it from PQ. 
• Decrease-Key(PQ,v,p): Updates the priority 

of v in PQ to be p. 
• Recall: You can implement this using a Heap data 

structure. 



Input: graph G = (V,E), lengths L, and start s

• Initialize Priority Queue PQ, arrays P and d

• For Each v in V: 

• Let P[v] = Null and d[v] = INFINITY

• Insert v into PQ with priority d[v]

• Let d[s] = 0

• While PQ is not empty:

• u = Pop-Min(PQ)

• For each edge e = (u,v) in E leaving u:

• If d[v] > d[u] + L[e]:

• Decrease-Key(PQ, v, d[u] + L[e])

• d[v] = d[u] + L[e]

• P[v] = u



Dijkstra’s Algorithm Runtime

• The runtime depends on the priority queue used.
• Using a priority queue, Dijkstra’s Algorithm can be 

implemented on a graph with n nodes and m edges 
to run in O(m) time plus the time for n  Pop-Min and 
m Decrease-Priority operations. 
• Using the heap-based priority queue, each priority 

queue operation can be implemented in log(n) 
time giving a total runtime of O(mlog(n)). 



Input: graph G = (V,E), lengths L, and start s

• Initialize Priority Queue PQ, arrays P and d

• For Each v in V: 

• Let P[v] = Null and d[v] = INFINITY

• Insert v into PQ with priority d[v]

• Let d[s] = 0

• While PQ is not empty:

• u = Pop-Min(PQ)

• For each edge e = (u,v) in E leaving u:

• If d[v] > d[u] + L[e]:

• Decrease-Key(PQ, v, d[u] + L[e])

• d[v] = d[u] + L[e]

• P[v] = u



Even Better?



Spanning Trees
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Def: A spanning tree of an undirected 
graph 𝐺 = (𝑉, 𝐸) is a subgraph 𝐻 =
(𝑉, 𝐸’) that is both acyclic and 
connected. 

Super Graph



Spanning Trees
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Def: A spanning tree of an undirected 
graph 𝐺 = (𝑉, 𝐸) is a subgraph 𝐻 =
(𝑉, 𝐸’) that is both acyclic and 
connected. 

Spanning Tree



Q: How many edges does a spanning tree have?
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Def: A spanning tree of an undirected 
graph 𝐺 = (𝑉, 𝐸) is a subgraph 𝐻 =
(𝑉, 𝐸’) that is both acyclic and 
connected. 

Spanning Tree



A: It has |V| - 1 because it is a tree!
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Def: A spanning tree of an undirected 
graph 𝐺 = (𝑉, 𝐸) is a subgraph 𝐻 =
(𝑉, 𝐸’) that is both acyclic and 
connected. 

Spanning Tree



Q: Can you have more than one spanning tree?
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Def: A spanning tree of an undirected 
graph 𝐺 = (𝑉, 𝐸) is a subgraph 𝐻 =
(𝑉, 𝐸’) that is both acyclic and 
connected. 

Spanning Tree



A: Can you have more than one spanning tree?
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Def: A spanning tree of an undirected 
graph 𝐺 = (𝑉, 𝐸) is a subgraph 𝐻 =
(𝑉, 𝐸’) that is both acyclic and 
connected. 

Spanning Tree



Minimum Spanning Trees
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Def: The minimum spanning tree of 
an undirected, connected graph 𝐺 =
(𝑉, 𝐸) with edge costs 𝑐𝑒  is the 
spanning tree with the min total edge 
sum.
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Minimum Spanning Trees (MST)
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Def: The minimum spanning tree of 
an undirected, connected graph 𝐺 =
(𝑉, 𝐸) with edge costs 𝑐𝑒  is the 
spanning tree with the min total edge 
sum.
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Minimum Spanning Trees (MST)
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• Q: What if I add 100 to each edge?
• Q: What if I mult each edge by 23?
• Q: What if I take log of each edge?
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MST Algorithms (Greedy) Ideas:

MST• Start with empty graph: 
• Kruskal: Add small edge that 

connect components.
• Prim: Grow a component by 

taking smallest edge leaving it.
• Borůvka: Add min weight edge 

leaving each component.
• Start With G: 

• Reverse Kruskal: Remove big 
edges that aren’t needed.



Cut (Sets)
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Def: A cut of a graph 𝐺 = (𝑉, 𝐸) is a 
partitioning of 𝑉 into two sets 𝑆 and 
𝑉 ∖ S. The cutset of S is the set of 
edges with exactly on endpoint in S.
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Cut (Sets)

MST
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Def: A cut of a graph 𝐺 = (𝑉, 𝐸) is a 
partitioning of 𝑉 into two sets 𝑆 and 
𝑉 ∖ S. The cutset of S is the set of 
edges with exactly on endpoint in S.
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Q: Can a cycle intersect a cut set an odd number of 
times?

MST
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Def: A cut of a graph 𝐺 = (𝑉, 𝐸) is a 
partitioning of 𝑉 into two sets 𝑆 and 
𝑉 ∖ S. The cutset of S is the set of 
edges with exactly on endpoint in S.
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