
CSE 331:
Algorithms & Complexity

Prof. Charlie Anne Carlson (She/Her)
Lecture 18

Wednesday October 15, 2025

“Dijkstra’s Algorithm”

Schedule

1.Course Updates
2.Dijkstra’s Algorithm
3.Proof of Correctness
4.Min Spanning Trees
5.Kruskal’s Algorithm
6.Prim’s Algorithm

Course Updates

• Everything Besides Midterm
Graded
• Midterm Grades this week

• HW 4 Out
• Due Next Week!

• Group Project
• First Problems Oct 31st

Paths

5

3
5

2

1

11
6

3

12

5

2

4

𝑠

Let 𝑃𝑢 be the path found
from s to u using these
modifications.

v1

v2

v3

v4

v5

v6

v7

v0

Set P[v] = u such that (u,v) was min.

Let P a n length array of Null.

Correctness

5

3
5

2

1

11
6

3

12

5

2

4

𝑠

Claim: At the start of each
loop, 𝑃𝑢 is the shortest path
from s to u for all u ∈ S.

v1

v2

v3

v4

v5

v6

v7

v0

Proof Idea
• We proceed with induction on the size of 𝑆.
• If |S| = 1, then…

Proof Idea

𝑠

• We proceed with induction on the size of 𝑆.
• If |S| = 1, then it is true because the shortest path from s to s is

empty set.

Proof Idea

S

• We proceed with induction on the size of 𝑆.
• Suppose for all 𝑆 such that |𝑆| ≤ k, 𝑃𝑢 is the shortest path from s to

u for all u ∈ S.

𝑠

Proof Idea

S

• We proceed with induction on the size of 𝑆.
• Suppose for all 𝑆 such that |𝑆| ≤ k, 𝑃𝑢 is the shortest path from s to

u for all u ∈ S.

𝑠

v

• Let v be the k+1 vertex added to S and
let (u,v) be the edge minimized
𝑚𝑖𝑛𝑒= 𝑢,𝑣 :𝑢∈𝑆𝑑 𝑢 + ℓ𝑒 .

u

Proof Idea

S

• We proceed with induction on the size of 𝑆.
• Suppose for all 𝑆 such that |𝑆| ≤ k, 𝑃𝑢 is the shortest path from s to

u for all u ∈ S.

𝑠

v

• Let v be the k+1 vertex added to S and
let (u,v) be the edge minimized
𝑚𝑖𝑛𝑒= 𝑢,𝑣 :𝑢∈𝑆𝑑 𝑢 + ℓ𝑒 .

• Suppose 𝑃𝑢 ∪ {(u, v)} is not the
shortest path. Then there exists a path
that must leave S via some edge (x,y).

u

x
y

Proof Idea

S

• We proceed with induction on the size of 𝑆.
• Suppose for all 𝑆 such that |𝑆| ≤ k, 𝑃𝑢 is the shortest path from s to

u for all u ∈ S.

𝑠

v

• Let v be the k+1 vertex added to S and
let (u,v) be the edge minimized
𝑚𝑖𝑛𝑒= 𝑢,𝑣 :𝑢∈𝑆𝑑 𝑢 + ℓ𝑒 .

• Suppose 𝑃𝑢 ∪ {(u, v)} is not the
shortest path. Then there exists a path
that must leave S via some edge (x,y).

• However, the algo picked v and so the
path from s to y must be just as long. ><

u

x
y

Q: What about negative edge weights?

5

3
5

2

1

-11
6

3

12

5

2

4

𝑠

v1

v2

v3

v4

v5

v6

v7

v0

A: If you have negative edge weights then you can have
negative cycles and the minimum distance becomes
“weird or hard to find."

Q: What about negative edge weights?

5

3
5

2

1

-11
6

3

12

5

2

4

𝑠

v1

v2

v3

v4

v5

v6

v7

v0

A: If you have negative edge weights then you can have
negative cycles, and the minimum distance becomes
“weird or hard to find."

Dijkstra’s Algorithm

5

3
5

2

1

11
6

3

12

5

2

4

𝑠

w

x

y

Q: How many times might
we compute this?

Dijkstra’s Algorithm

5

3
5

2

1

11
6

3

12

5

2

4

𝑠

w

x

y

A: We may do it several
times because of large
frontier.

Dijkstra’s Algorithm Idea

𝑠

y

x

z

S

abc Observation: A vertex could be in
the frontier a lot!

Idea: Don’t recompute every time!

Dijkstra’s Algorithm Optimization

5

3
5

2

1

11
6

3

12

5

2

4

𝑠

w

x

for each neighbor w, check if 𝑑 𝑣 + ℓ(v,w)

is smaller than current guess and update!

and 𝑑 w = ℓ(s,w) for everyone neighbors of s

Dijkstra’s Algorithm Optimization

5

3
5

2

1

11
6

3

12

5

2

4

𝑠

w

x

for each neighbor w, check if 𝑑 𝑣 + ℓ(v,w)

is smaller than current guess and update!

and 𝑑 w = ℓ(s,w) for everyone neighbors of s

Q: How long to find the min?

Dijkstra’s Algorithm Optimization

5

3
5

2

1

11
6

3

12

5

2

4

𝑠

w

x

for each neighbor w, check if 𝑑 𝑣 + ℓ(v,w)

is smaller than current guess and update!

and 𝑑 w = ℓ(s,w) for everyone neighbors of s

A: Still loop over everything
in frontier (O(n)).

Priority Queue

• A priority queue is a data structure that supports the
following operations:
• Insert(PQ, v, p): Inserts element v into PQ

with priority p.
• Pop-Min(PQ): Returns element with minimum

priority and removes it from PQ.
• Decrease-Key(PQ,v,p): Updates the priority

of v in PQ to be p.
• Recall: You can implement this using a Heap data

structure.

Input: graph G = (V,E), lengths L, and start s

• Initialize Priority Queue PQ, arrays P and d

• For Each v in V:

• Let P[v] = Null and d[v] = INFINITY

• Insert v into PQ with priority d[v]

• Let d[s] = 0

• While PQ is not empty:

• u = Pop-Min(PQ)

• For each edge e = (u,v) in E leaving u:

• If d[v] > d[u] + L[e]:

• Decrease-Key(PQ, v, d[u] + L[e])

• d[v] = d[u] + L[e]

• P[v] = u

Dijkstra’s Algorithm Runtime

• The runtime depends on the priority queue used.
• Using a priority queue, Dijkstra’s Algorithm can be

implemented on a graph with n nodes and m edges
to run in O(m) time plus the time for n Pop-Min and
m Decrease-Priority operations.
• Using the heap-based priority queue, each priority

queue operation can be implemented in log(n)
time giving a total runtime of O(mlog(n)).

Input: graph G = (V,E), lengths L, and start s

• Initialize Priority Queue PQ, arrays P and d

• For Each v in V:

• Let P[v] = Null and d[v] = INFINITY

• Insert v into PQ with priority d[v]

• Let d[s] = 0

• While PQ is not empty:

• u = Pop-Min(PQ)

• For each edge e = (u,v) in E leaving u:

• If d[v] > d[u] + L[e]:

• Decrease-Key(PQ, v, d[u] + L[e])

• d[v] = d[u] + L[e]

• P[v] = u

Even Better?

Spanning Trees

v0

v1

v3

v4

v6

v2
v5

v7

v8

Def: A spanning tree of an undirected
graph 𝐺 = (𝑉, 𝐸) is a subgraph 𝐻 =
(𝑉, 𝐸’) that is both acyclic and
connected.

Super Graph

Spanning Trees

v0

v1

v3

v4

v6

v2
v5

v7

v8

Def: A spanning tree of an undirected
graph 𝐺 = (𝑉, 𝐸) is a subgraph 𝐻 =
(𝑉, 𝐸’) that is both acyclic and
connected.

Spanning Tree

Q: How many edges does a spanning tree have?

v0

v1

v3

v4

v6

v2
v5

v7

v8

Def: A spanning tree of an undirected
graph 𝐺 = (𝑉, 𝐸) is a subgraph 𝐻 =
(𝑉, 𝐸’) that is both acyclic and
connected.

Spanning Tree

A: It has |V| - 1 because it is a tree!

v0

v1

v3

v4

v6

v2
v5

v7

v8

Def: A spanning tree of an undirected
graph 𝐺 = (𝑉, 𝐸) is a subgraph 𝐻 =
(𝑉, 𝐸’) that is both acyclic and
connected.

Spanning Tree

Q: Can you have more than one spanning tree?

v0

v1

v3

v4

v6

v2
v5

v7

v8

Def: A spanning tree of an undirected
graph 𝐺 = (𝑉, 𝐸) is a subgraph 𝐻 =
(𝑉, 𝐸’) that is both acyclic and
connected.

Spanning Tree

A: Can you have more than one spanning tree?

v0

v1

v3

v4

v6

v2
v5

v7

v8

Def: A spanning tree of an undirected
graph 𝐺 = (𝑉, 𝐸) is a subgraph 𝐻 =
(𝑉, 𝐸’) that is both acyclic and
connected.

Spanning Tree

Minimum Spanning Trees

v0

v1

v3

v4

v6

v2
v5

v7

v8

Def: The minimum spanning tree of
an undirected, connected graph 𝐺 =
(𝑉, 𝐸) with edge costs 𝑐𝑒 is the
spanning tree with the min total edge
sum.

Super Graph
5

1

4

7

5

1
1

2

3

1

2

8

4

31

Minimum Spanning Trees (MST)

v0

v1

v3

v4

v6

v2
v5

v7

v8

Def: The minimum spanning tree of
an undirected, connected graph 𝐺 =
(𝑉, 𝐸) with edge costs 𝑐𝑒 is the
spanning tree with the min total edge
sum.

MST
5

1

4

7

5

1
1

2

3

1

2

8

4

31

Minimum Spanning Trees (MST)

v0

v1

v3

v4

v6

v2
v5

v7

v8

• Q: What if I add 100 to each edge?
• Q: What if I mult each edge by 23?
• Q: What if I take log of each edge?

MST
5

1

4

7

5

1
1

2

3

1

2

8

4

31

MST Algorithms (Greedy) Ideas:

MST• Start with empty graph:
• Kruskal: Add small edge that

connect components.
• Prim: Grow a component by

taking smallest edge leaving it.
• Borůvka: Add min weight edge

leaving each component.
• Start With G:

• Reverse Kruskal: Remove big
edges that aren’t needed.

Cut (Sets)

MST

v0

v1

v3

v4

v6

v2
v5

v7

v8

Def: A cut of a graph 𝐺 = (𝑉, 𝐸) is a
partitioning of 𝑉 into two sets 𝑆 and
𝑉 ∖ S. The cutset of S is the set of
edges with exactly on endpoint in S.

Super Graph
5

1

4

7

5

1
1

2

3

1

2

8

4

31

Cut (Sets)

MST

v0

v1

v3

v4

v6

v2
v5

v7

v8

Def: A cut of a graph 𝐺 = (𝑉, 𝐸) is a
partitioning of 𝑉 into two sets 𝑆 and
𝑉 ∖ S. The cutset of S is the set of
edges with exactly on endpoint in S.

Cut Set of S
5

1

4

7

5

1
1

2

3

1

2

8

4

31

S

Q: Can a cycle intersect a cut set an odd number of
times?

MST

v0

v1

v3

v4

v6

v2
v5

v7

v8

Def: A cut of a graph 𝐺 = (𝑉, 𝐸) is a
partitioning of 𝑉 into two sets 𝑆 and
𝑉 ∖ S. The cutset of S is the set of
edges with exactly on endpoint in S.

Cut Set of S
5

1

4

7

5

1
1

2

3

1

2

8

4

31

	Slide 1: CSE 331: Algorithms & Complexity
	Slide 2: Schedule
	Slide 3: Course Updates
	Slide 4: Paths
	Slide 5: Correctness
	Slide 6: Proof Idea
	Slide 7: Proof Idea
	Slide 8: Proof Idea
	Slide 9: Proof Idea
	Slide 10: Proof Idea
	Slide 11: Proof Idea
	Slide 12: Q: What about negative edge weights?
	Slide 13: Q: What about negative edge weights?
	Slide 14: Dijkstra’s Algorithm
	Slide 15: Dijkstra’s Algorithm
	Slide 16: Dijkstra’s Algorithm Idea
	Slide 17: Dijkstra’s Algorithm Optimization
	Slide 18: Dijkstra’s Algorithm Optimization
	Slide 19: Dijkstra’s Algorithm Optimization
	Slide 20: Priority Queue
	Slide 21
	Slide 22: Dijkstra’s Algorithm Runtime
	Slide 23
	Slide 24: Even Better?
	Slide 25: Spanning Trees
	Slide 26: Spanning Trees
	Slide 27: Q: How many edges does a spanning tree have?
	Slide 28: A: It has |V| - 1 because it is a tree!
	Slide 29: Q: Can you have more than one spanning tree?
	Slide 30: A: Can you have more than one spanning tree?
	Slide 31: Minimum Spanning Trees
	Slide 32: Minimum Spanning Trees (MST)
	Slide 33: Minimum Spanning Trees (MST)
	Slide 34: MST Algorithms (Greedy) Ideas:
	Slide 35: Cut (Sets)
	Slide 36: Cut (Sets)
	Slide 37: Q: Can a cycle intersect a cut set an odd number of times?

