CSE 331:
Allg(o)r[itt]hunnlg & (C<o>lnnqp>ll<ex[i1ty

L]

“More Concerns...”

Prof. Charlie Anne Carlson (She/Her)
Lecture 2
Monday August 29t 2025

G5

University at Buffalo

Schedule

1.Course Updates
2.Notation

3.Halting Problem
4.Note on Induction
5.Learning Outcomes
6.When to Algorithm
/.Matchings

EffJ ¢

Course Updates

 Office Hours Posted Soon
e Complete Syllabus Quiz

* HWO is Due on Tuesday

* Next Week Project Talk

Notation

Motivational Stuff

Sometime a few choices that | make in CSE 331 might
seem archaic so in these pages | try to motivate why
we do things a certain way.

* CSE 331 TA advice

* Do we need asymptotic analysis?
e Why do we need proofs?

» CSE 331 testimonials

Mathematical
Background

CSE 331 will need a fair bit of math: most of which you
must have seen earlier. However, if you have not used
those material for a bit then you might be a bit rusty.
The pages linked below are some notes that | wrote up
that might help you refresh the material that you might
have seen in CSE 116, 191 or 250.

e | ogarithms.

* Proof by Induction.

e Proving an implication (with some common proof
techniques).

* ProvingS =T.

e Reduction.

* Using a Progress Measure.

* Pigeon-hole Principle.

o RS s illdent e,

l * Some Useful Notation.

Other Material

Finally sometimes (but hopefully not often!) we will use
material that might not have been covered in previous
courses and we did not have much time to cover in
class: these pages will fill in those gaps.

¢ Analyzing the worst-case runtime of an algorithm
* Using the adversarial argument to prove lower
bounds

Notation

Notation is incredibly useful to write proofs. This page collects some notation that is used in this course.

Discrete Math Notation

In this part of the note we collect notation that you should have seen in CSE 191.

Logical Connectives

Notation Meaning

PAQ The logical AND of boolean variables P and Q

PvQ The logical OR of boolean variables P and Q

-P Negation of the boolean variable P

P=Q Logically equivalent to =P v Q

VxP(x) For every X (in the appropriate domain), the boolean predicate P(X) is true

IxP(x) There exists at least one X (in the appropriate domain), the boolean predicate P(x;) is true

Halting Problem 2.0

Input: A Program P and Input x.
Output: True if P terminates on x. Otherwise, false.

Program P —
TTTTTT — Tl‘ue ifPteI’minateS
</> onx

False if P does not

terminates on x.

Input x Algorithm A’

Halting Problem 2.0 is “impossible”

Theorem: There exist no
algorithm/program that will always
halt and will always correctly
decide Halting Problem 2.0.

Proof (by contradiction)

1. Assume the opposite: There is a problem that
solves Halting Problem 2.0. Call this
magic (P, I).

1. It must always return something.
2. It must always return the right answer.

2. Usemagic to construct a contradiction.

3. Conclude that original assumption was wrong.

You keep using that word...

Q1: What is a contradiction?

IF YOU ASSUME CONTRADICTORY HEY, YOURE RIGHT" MRS. LENHART?
AXIOMS, You CAN DERIVE ISTARTEDWITH PATP | | JAIT THIS /5 HER
ANYTHING. ITSCALLED THE AND DERIVED YOUR NUMBER! HOW-
WMWWN MOM'S PHONE NUMBER! H), T AFREND OF = WHY,
HHFWP THATS NOT HOW YEE; AM FREE TONIGHT!
THAT LJORKS,
/TOM. NG EH(MFME

SR

https://xkcd.com/704/

https://xkcd.com/704

Proof (by contradiction)

def contradiction (P): # This function takes a program as an input

#Run magic on (P, P)
if magic(P,P): # Use an UTM to make this call
while True:
continue # Do nothing

return # Just terminate if magic(P,P) returns False

Q2: What happens when we run
contradiction (contradiction) ?

Proof (by contradiction)

1. Assume the opposite: There is a problem that
solves Halting Problem 2.0. Call this
magic (P, I).

1. It must always return something.
2. It must always return the right answer.

2. Usemagic to construct a contradiction.

3. Conclude that original assumption was
wrong.

Prime Numbers

Recall that natural number z is prime if it Is not
the product of two smaller numbers.
QO0: How many prime numbers are there?

2,3,5,7,11,13,17,19, 23, 29, 31,37, 41, 43,47, 53, 59, 61,67, 71,73, 79, 83, 89, 97, 101, 103,
107,109,113,127,131,137, 139, 149,151, 157,163, 167,173,179, 181, 191, 193, 197, 199,
211,223,227, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277, 281, 283, 293, 307/, 311, 313,
317,331,337, 347, 349, 353, 359, 367, 373, 379, 383, 389, 397,401, 409, 419, 421, 431, 433,
439, 443,449, 457, 461, 463, 467,479,487, 491, 499, 503, 509, 521, 523, 541, 547, 557, 563,
569,571,577, 587, 593, 599...

Prime Numbers

1. Assume there are only n prime numbers, pq, ..., p,,.
2. LetP =1+ H?=1 Di.
3. IsP prime?

1. Byassumptionit can’t be and so it must be

composite.
4. Since P is composite, there must exista p; > 1 such

that p; divides P.
1. Thisimplies that p; divides 1... -><-

Proof by Induction

https://xk m/1516/

https://xkcd.com/1516/

Proof by Induction

Base Case

Inductive Hypothesis

Inductive Step
Conclusion

Proof by induction,

Statement of Intent idk, | don 't understand

math.

Bongcloudforthewin. “Proof by induction.” Reddit, August 16, 2020.
https://www.reddit.com/r/mathmemes/comments/iasdsb/proof_

by_induction/

https://www.reddit.com/r/mathmemes/comments/iasdsb/proof_by_induction/
https://www.reddit.com/r/mathmemes/comments/iasdsb/proof_by_induction/

Learning Outcomes

(ABET () Learning Outcomes

This course is required of all computer science students and after the completion of the course, students should demonstrate mastery of the concepts/skills/knowledge expressed in
the following learning outcomes for computer science:

e (4) recognize professional responsibilities and make informed judgments in computing practice based on legal and ethical principles.
e (5) Function effectively as a member or leader of a team engaged in activities appropriate to the program’s discipline.
¢ (6) Apply computer science theory and software development fundamentals to produce computing-based solutions. [CS]

Course Learning Outcome Program Outcomes / Competencies Instructional Method(s) Assessment Method(s)
Be able to design algorithms to solve given problems ABET (6) Lectures Homeworks, Exams

Be able to prove correctness of designed algorithms ABET (6) Lectures Homeworks, Exams

Be able to identify ethical and societal implications of algorithms ABET (4) Lectures Project

Be able to effectively work in a team ABET (5) Lectures Project

The Student Outcomes from the Computing Accreditation Commission (CAC) of ABET have been adopted (4.

Program Outcome Support (Computer Science ABET Outcomes):

Program 1 2 3 4 5 6
Outcome
Support Level No No No Demonstrate mastery of Demonstrate mastery of Demonstrate mastery of

coverage coverage coverage skill/concept skill/concept skill/concept

Learning Outcomes

(ABET () Learning Outcomes

This course is required of all computer science students and after the completion of the course, students should demonstrate mastery of the concepts/skills/knowledge expressed in
the following learning outcomes for computer science:

e (4) recognize professional responsibilities and make informed judgments in computing practice based on legal and ethical principles.
e (5) Function effectively as a member or leader of a team engaged in activities appropriate to the program’s discipline.
¢ (6) Apply computer science theory and software development fundamentals to produce computing-based solutions. [CS]

Course Learning Outcome Program Outcomes / Competencies Instructional Method(s) Assessment Method(s)
Be able to design algorithms to solve given problems ABET (6) Lectures Homeworks, Exams
Be able to prove correctness of designed algorithms ABET (6) Lectures Homeworks, Exams
L& & __§ _§B _§B _§B _§B _§B §B §B _§B _§B _§B _§B_§B _§B _§B _§B _§B _§B _§B _§B _§B_§B _§B _§B_§B_§B B _§B _§B_§B_§B _§B _§B _§B _§B _§B_§B_§B _§B _§B §B _§B _§B_ |
Be able to identify ethical and societal implications of algorithms ABET (4) Lectures Project
L---
Be able to effectively work in a team ABET (5) Lectures Project
The Student Outcomes from the Computing Accreditation Commission (CAC) of ABET have been adopted (4.
Program Outcome Support (Computer Science ABET Outcomes):
Program 1 2 3 4 5 6
Outcome
Support Level No No No Demonstrate mastery of Demonstrate mastery of Demonstrate mastery of

coverage coverage coverage skill/concept skill/concept skill/concept

When to Algorithm?

. |dentify a problem/need/desire
. Convert to formal “math” definition:
. |dentify the inputs
. |dentify the outputs/goals
. Make assumptions and identify limitations.
. Design an algorithm to solve the problem
. Analyze the algorithm.

When to Algorithm?

. |dentify a problem/need/desire
. Convert to formal “math” definition:
. |dentify the inputs
. |dentify the outputs/goals
. Make assumptions and identify limitations.
. Design an algorithm to solve the problem
. Analyze the algorithm.
. Consider wider impact of solution?!

Too Fast/Too Slow

An instructor with a big class wants live feedback from their
class on if they are going too fast or too slow. To this end,
the instructor decides to create a phone app that lets
students vote during class on if the instructor should speed
up or slow down.

Q3: How would you go about creating this
app/algorithm? f

When to Algorithm?

. |dentify a problem/need/desire
. Convert to formal “math” definition:
. |dentify the inputs
. |dentify the outputs/goals
. Make assumptions and identify limitations.
. Design an algorithm to solve the problem
. Analyze the algorithm.
. Consider wider impact of solution?!

GGGGGG

Graphs

NODE

EDG

PP~

Devs + Testers = Success

Matching

Definition: A matching is a collection of edges such that
no two share a node.

Testers

Devs

Perfect Matching

Testers

Devs

Definition: A perfect matching is a matching such that
every node is incident to an edge.

	Slide 1: CSE 331: Algorithms & Complexity
	Slide 2: Schedule
	Slide 3: Course Updates
	Slide 4: Notation
	Slide 5: Notation
	Slide 6: Halting Problem 2.0
	Slide 7: Halting Problem 2.0 is “impossible”
	Slide 8: Proof (by contradiction)
	Slide 9: You keep using that word…
	Slide 10: Proof (by contradiction)
	Slide 11: Proof (by contradiction)
	Slide 12: Prime Numbers
	Slide 13: Prime Numbers
	Slide 14: Proof by Induction
	Slide 15: Proof by Induction
	Slide 16: Learning Outcomes
	Slide 17: Learning Outcomes
	Slide 18: When to Algorithm?
	Slide 19: When to Algorithm?
	Slide 20: Too Fast/Too Slow
	Slide 21: When to Algorithm?
	Slide 22: Graphs
	Slide 23: Graphs
	Slide 24: Devs + Testers = Success
	Slide 25: Matching
	Slide 26: Perfect Matching

