CSE 331:
Allg(o)r[itt]hunnlg & (C<o>lnnqp>ll<ex[i1ty
“MSTs”

Prof. Charlie Anne Carlson (She/Her)
Lecture 20
Monday October 20, 2025

L]

4G5

University at Buffalo

Schedule

1.Course Updates
2.Min Spanning Trees

3.Cut Property
4.Kruskal’s Algorithm

5.Prim’s Algorithm

Course Updates

Midterm Part | Out
Midterm Part Il Out - Soonish
Post Midterm Grades — Before

Wednesday

HW 4 Due Tomorrow
Group Project
First Problems Oct 318t

Minimum Spanning Trees (MST)

nat if
nat if

nat if

add 100 to each edge?
mult each edge by 23?
take log of each edge?

MST Algorithms (Greedy) ldeas:

e Start with empty graph:
* Kruskal: Add small edge that
connect components.

« Prim: Grow a component by ‘ @
taking smallest edge leaving it.

 Boruvka: Add min weight edge
leaving each component. *
e Start With G: @ @
* Reverse Kruskal: Remove big

edges that aren’t needed. O d

Cut (Sets)

Super Graph

2
5 Def: Acutofagraph G = (V,E) isa
partitioning of V into two sets S and

1 '\ S. The cutset of S is the set of
\@ edges with exactly on endpointin S.

Cut (Sets) S

CutSetof S

- A Def: Acutofagraph G = (V,E)is a
"‘.Vl‘{: 1 partitioning of V into two sets S and
1 V'\ S. The cutset of S is the set of

3 Voo edges with exactly on endpointin S.

Q: Can a cycle intersect a cut set an odd number of
times?

_ CutSetof S

7 e
- A Def: Acutofagraph G = (V,E)is a
Vi 1 partitioning of I/ into two sets S and
1 V '\ S. The cutset of S is the set of

3 Voo edges with exactly on endpointin S.

A: No. “If it enters, it must leave.”

Y o
\
’——————---———-.‘ i
/,’ ‘\, 1
e PR il SN 4 g l.
V4
/ \ '
gum W EEN EEN By,
\
. 3
’
N - /
SO Y, I
\ | J
IS \\\\ "'"’”

Spanning Trees

D~
5
4
8

\k Q: What happens when | add an edge
to a tree?

Spanning Not Trees
* Q%’

@ A: You get a spanning graph with one
cycle.

Q: How do | get a tree again?

Spanning Trees

Q: How many connected

2 2
7
& . A: You remove any edge in the cycle!
1 components do | get when | remove
\@ an edge?

Spanning Forest

O~

8

A: You get two connected
components.
Q: How do | get back a tree?

Spanning Tree

@
8

2
A: You add any edge in the cut set!

1
4

®

Cut Property

Lemma: Fix a graph ¢ = (V, E) with edge weights £. Assume that all

edges are distinct. Let S be any subset of nodes that is neither empty
orequalto allof V, and lete = (u, v) be the minimum-cost edge with
onendin S and the otherinV \ S. Then every minimum spanning tree
contains the edge e.

Proof of Cut Property

* We willdo an exchange argument.
* LetTbeaspanning tree that doesn’t contain e = (u,v).
* We will show that we can construct a tree T’ that does include e
that has strictly less total weight.
* Tothisend, we willidentify another edge €’ = (x,y) thatisinT
and be be “exchanged” with e.

— Tree T’

Proof of Cut Property

S ‘ VS

— Tree T’

Proof of Cut Property

S ‘ VS

|dea: Take cycle that forms by adding e to T.

— Tree T’

Proof of Cut Property

S ‘ VS

This cycle must cross S an even number of times.

— Tree T’

Proof of Cut Property

S ‘ VS

Let e’ be another edge.

— Tree T’

Proof of Cut Property

S ‘ VS

Swap these edges to break cycle and form new Tree.

Proof of Cut Property

* We willdo an exchange argument.

* LetTbeaspanning tree that doesn’t contain e = (u,v).

* We will show that we can construct a tree T’ that does include e
that has strictly less total weight.
* Tothisend, we willidentify another edge €’ = (x,y) thatisinT

and be be “exchanged” with e.

* Since Tis aspanningtree there must be a path from uto v.
 Take this path and let e’=(x,y) be first edge to leave S.
* Bylemma assumption, we know that £, < £..
e Swapeande’tomakeT.

* T’ isconnected and acyclic and total weight went down.

Proof of Cut Property

* We willdo an exchange argument.
* T’isconnected and acyclic and total weight went down.

* Tosee I’is connected, take any pair of vertices (a,b) and their
pathinT.
* |[fthis path used e then ”reroute” to use €’.
* Otherwise, path still exists.

* Tosee T’is acyclic, note that the only cycle in T with e must
have been the cycle that contained e and it is no longer a
cycle since e’ was removed.

* To seethatthe weight wentdown, recall £, < €.

Kruskal’s Algorithm

 Input: Undirected graph G =

O O
(V.E) and weights L 0 7 o
e Output: MST of G ©
« Sort E usingvaluesinL °© 5 “ o
* Breakties arbitrarily © ©
* LetT beanempty graph . o °
* ForeinE: “ o°
 Ifadding e to T doesn’t D{:,‘:* o O
case a cycle, add it. o .
O

https://en.wikipedia.org/wiki/File:KruskalDemo.gif

Kruskal’s Algorithm
1 3
® Y.
O 23 - (v9)
Q
T ©

Kruskal’s Algorithm

< > 1 .@ 3
4
3

O ®
Lo
- ®

Kruskal’s Algorithm

@ OR

5
4
éD;

8

Kruskal’s Algorithm

©. G%
@ &

Kruskal’s Algorithm

©. ?
@ &

Kruskal’s Algorithm

©. ?
@ o

Kruskal’s Algorithm

©. ?
@ B

Kruskal’s Algorithm

0. §° 6

éb\@\

Kruskal’s Algorithm

Kruskal’s Algorithm

Prim’s Algorithm

* Input: Undirected graph G = (V,E) o 9 0
and weights L \ L, O
e Output: MST of G q 5
* PicksinV arbitrarily o C o
e LetS={s} o)
+ While S!=V: 0O o
* Find minimum weight edge e = e 6 0 o
(u,v) where uis in S butvis oo
not. . °
* AddvtoS

https://en.wikipedia.org/wiki/File:PrimAlgDemo.gif

Prim’s Algorithm

Prim’s Algorithm

RON
@232
1\@1

©

3
8

Prim’s Algorithm

RON
@232
1\@1

©

3
8

Prim’s Algorithm

©. G%
@ o

Prim’s Algorithm

©. ?
@ o

Prim’s Algorithm

©. ?
@ B

Prim’s Algorithm
~(

ot o
b S

~J

Prim’s Algorithm

Other Algorithms

Reverse Kruskal’s
 Input: Undirected graph G =
(V,E) and weights L
e Output: MST of G
* SortEusingvaluesinlL
* Breakties arbitrarily
e LetTbeacopyofG
* ForeinE backwards:
* |fremovingefromT
doesn’t disconnect the
graph, remove it.

Boruvka's

Input: Undirected graph G =
(V,E) and weights L
Output: MST of G
* LetT beanemptygraph
* Forcin CC(T):
* Find edge e leaving c with
smallest weight
* AddetoT

Kruskal’s Algorithm

 Input: Undirected graph G =

O O
(V.E) and weights L 0 7 o
e Output: MST of G ©
« Sort E usingvaluesinL °© 5 “ o
* Breakties arbitrarily © ©
* LetT beanempty graph . o °
* ForeinE: “ o°
 Ifadding e to T doesn’t D{:,‘:* o O
case a cycle, add it. o .
O

https://en.wikipedia.org/wiki/File:KruskalDemo.gif

Claim: Kruskal’s Algorithm is Correct

Proof:

* Lete=(u,v)beanedge added by Kruskal’s algorithm

* Considerthe Tjust before adding e.
* LetS bethe connected component of T that contains u.

* Then e was the minimum weight edge leaving S and by the Cut
Property it must be in the MST.

* Hence, Kruskal’s algorithm only adds edges that must be in the
MST.

Claim: Kruskal’s Algorithm is Correct

Proof:

Let e = (u,v) be an edge added by Kruskal’s algorithm

Consider the T just before adding e.

* LetS bethe connected component of T that contains u.

Then e was the minimum weight edge leaving S and by the Cut
Property it must be in the MST.

Hence, Kruskal’s algorithm only adds edges that must be in the
MST.

~inally, we note that if T was not connected then there would have
been edge that could have been added without forming a cycle.

t follows that T is the MST at the end of the algorithm.

Claim: Prim’s Algorithm is Correct

Proof:

* Lete=(u,v)beanedge added by Kruskal’s algorithm

* Considerthe Tjust before adding e.

* LetS bethe connected component of T that contains u.

Then e was the minimum weight edge leaving S and by the Cut
Property it must be in the MST.

* Hence, Prim’s algorithm only adds edges that must be in the MST.
* Finally, we note that if T was not connected then there would have
been edge that could have been added without forming a cycle.

* |tfollowsthatT is the MST at the end of the algorithm.

	Slide 1: CSE 331: Algorithms & Complexity
	Slide 2: Schedule
	Slide 3: Course Updates
	Slide 4: Minimum Spanning Trees (MST)
	Slide 5: MST Algorithms (Greedy) Ideas:
	Slide 6: Cut (Sets)
	Slide 7: Cut (Sets)
	Slide 8: Q: Can a cycle intersect a cut set an odd number of times?
	Slide 9: A: No. “If it enters, it must leave.”
	Slide 10: Spanning Trees
	Slide 11: Spanning Not Trees
	Slide 12: Spanning Trees
	Slide 13: Spanning Forest
	Slide 14: Spanning Tree
	Slide 15: Cut Property
	Slide 16: Proof of Cut Property
	Slide 17: Proof of Cut Property
	Slide 18: Proof of Cut Property
	Slide 19: Proof of Cut Property
	Slide 20: Proof of Cut Property
	Slide 21: Proof of Cut Property
	Slide 22: Proof of Cut Property
	Slide 23: Proof of Cut Property
	Slide 24: Kruskal’s Algorithm
	Slide 25: Kruskal’s Algorithm
	Slide 26: Kruskal’s Algorithm
	Slide 27: Kruskal’s Algorithm
	Slide 28: Kruskal’s Algorithm
	Slide 29: Kruskal’s Algorithm
	Slide 30: Kruskal’s Algorithm
	Slide 31: Kruskal’s Algorithm
	Slide 32: Kruskal’s Algorithm
	Slide 33: Kruskal’s Algorithm
	Slide 34: Kruskal’s Algorithm
	Slide 35: Prim’s Algorithm
	Slide 36: Prim’s Algorithm
	Slide 37: Prim’s Algorithm
	Slide 38: Prim’s Algorithm
	Slide 39: Prim’s Algorithm
	Slide 40: Prim’s Algorithm
	Slide 41: Prim’s Algorithm
	Slide 42: Prim’s Algorithm
	Slide 43: Prim’s Algorithm
	Slide 44: Other Algorithms
	Slide 45: Kruskal’s Algorithm
	Slide 46: Claim: Kruskal’s Algorithm is Correct
	Slide 47: Claim: Kruskal’s Algorithm is Correct
	Slide 48: Claim: Prim’s Algorithm is Correct

