

CSE 331: Algorithms & Complexity “MSTs”

Prof. Charlie Anne Carlson (She/Her)

Lecture 20

Monday October 20, 2025

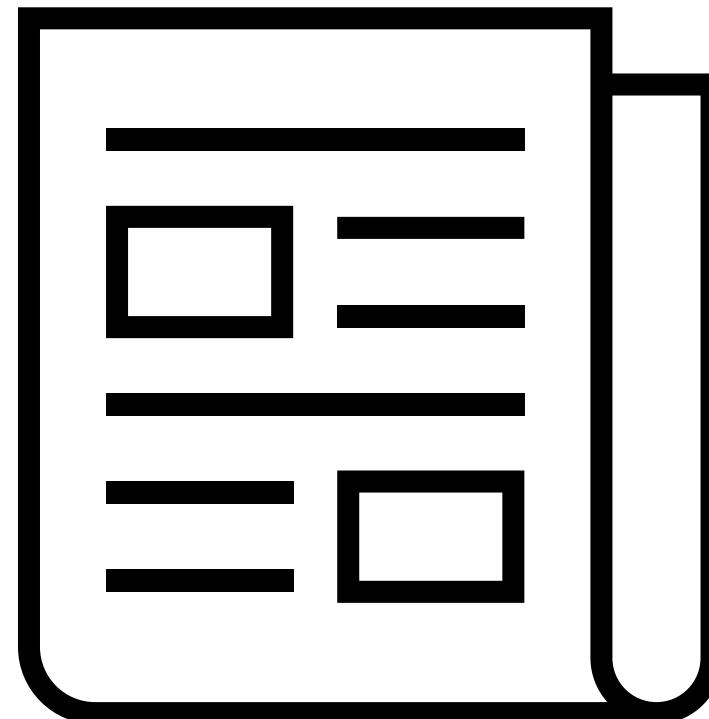
University at Buffalo®

Schedule

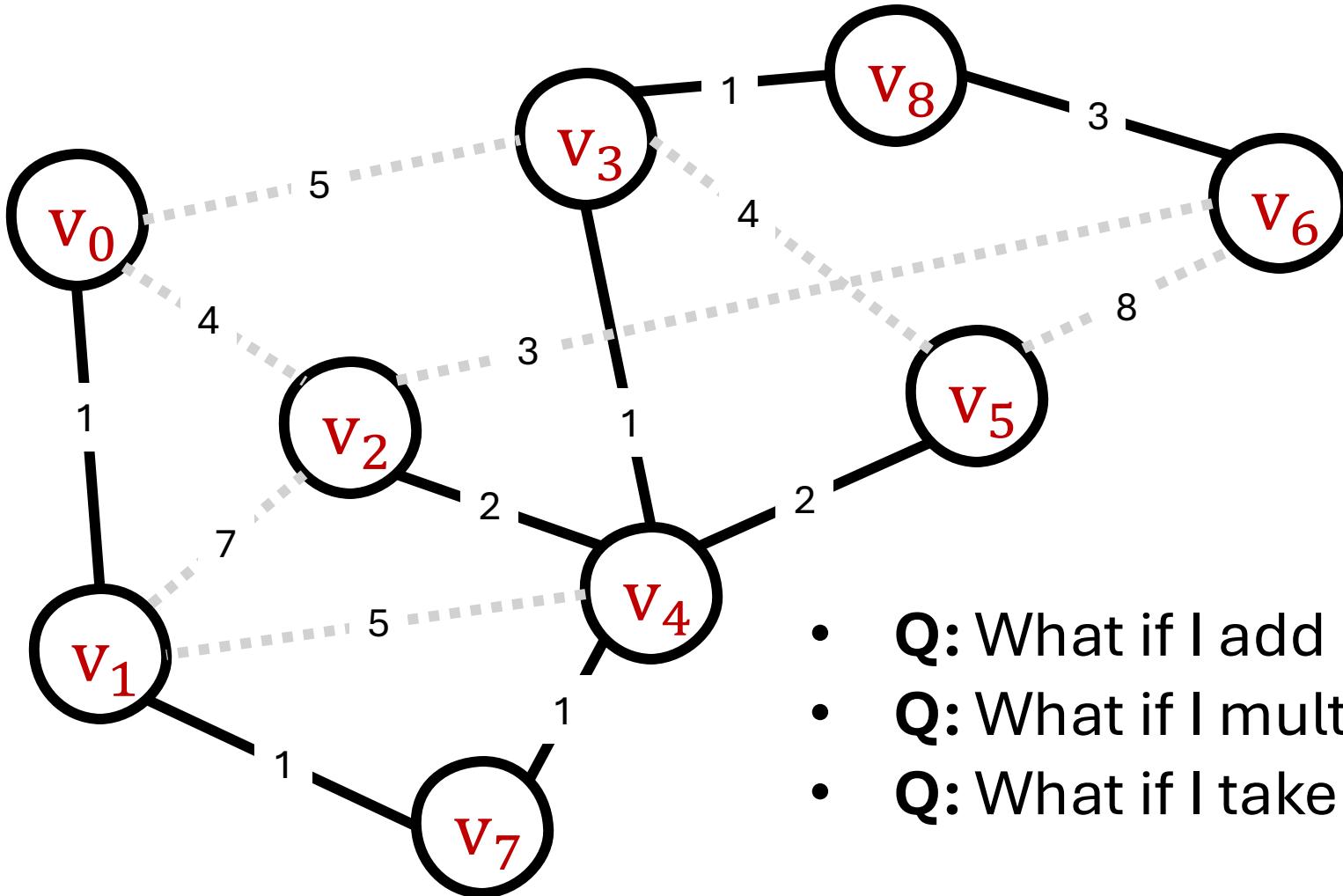
1. Course Updates
2. Min Spanning Trees
3. Cut Property
4. Kruskal's Algorithm
5. Prim's Algorithm

Course Updates

- Midterm Part I Out
- Midterm Part II Out – Soonish
- Post Midterm Grades – Before Wednesday
- HW 4 Due Tomorrow
- Group Project
 - First Problems Oct 31st



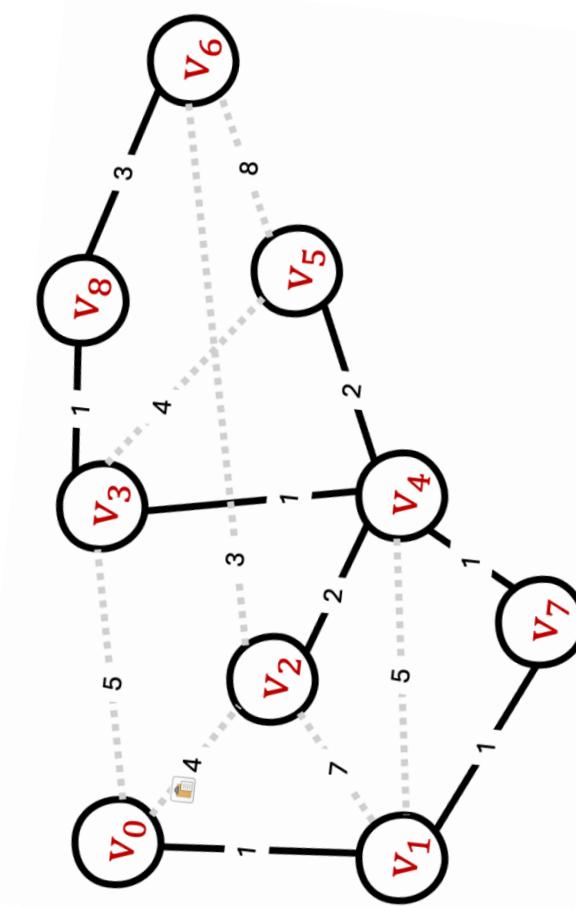
Minimum Spanning Trees (MST)



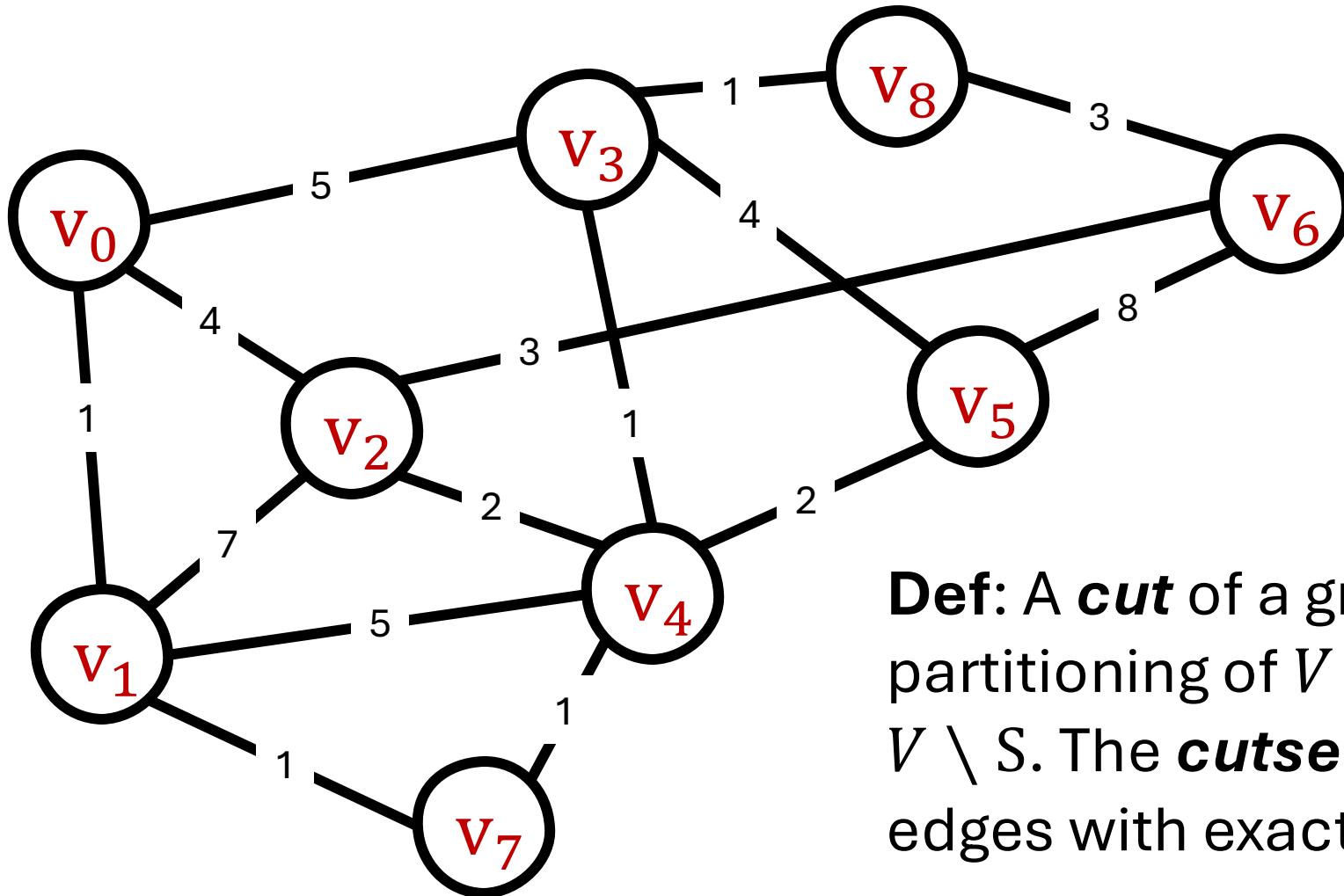
- Q: What if I add 100 to each edge?
- Q: What if I mult each edge by 23?
- Q: What if I take log of each edge?

MST Algorithms (Greedy) Ideas:

- Start with empty graph:
 - **Kruskal:** Add small edge that connect components.
 - **Prim:** Grow a component by taking smallest edge leaving it.
 - **Borůvka:** Add min weight edge leaving each component.
- Start With G:
 - **Reverse Kruskal:** Remove big edges that aren't needed.



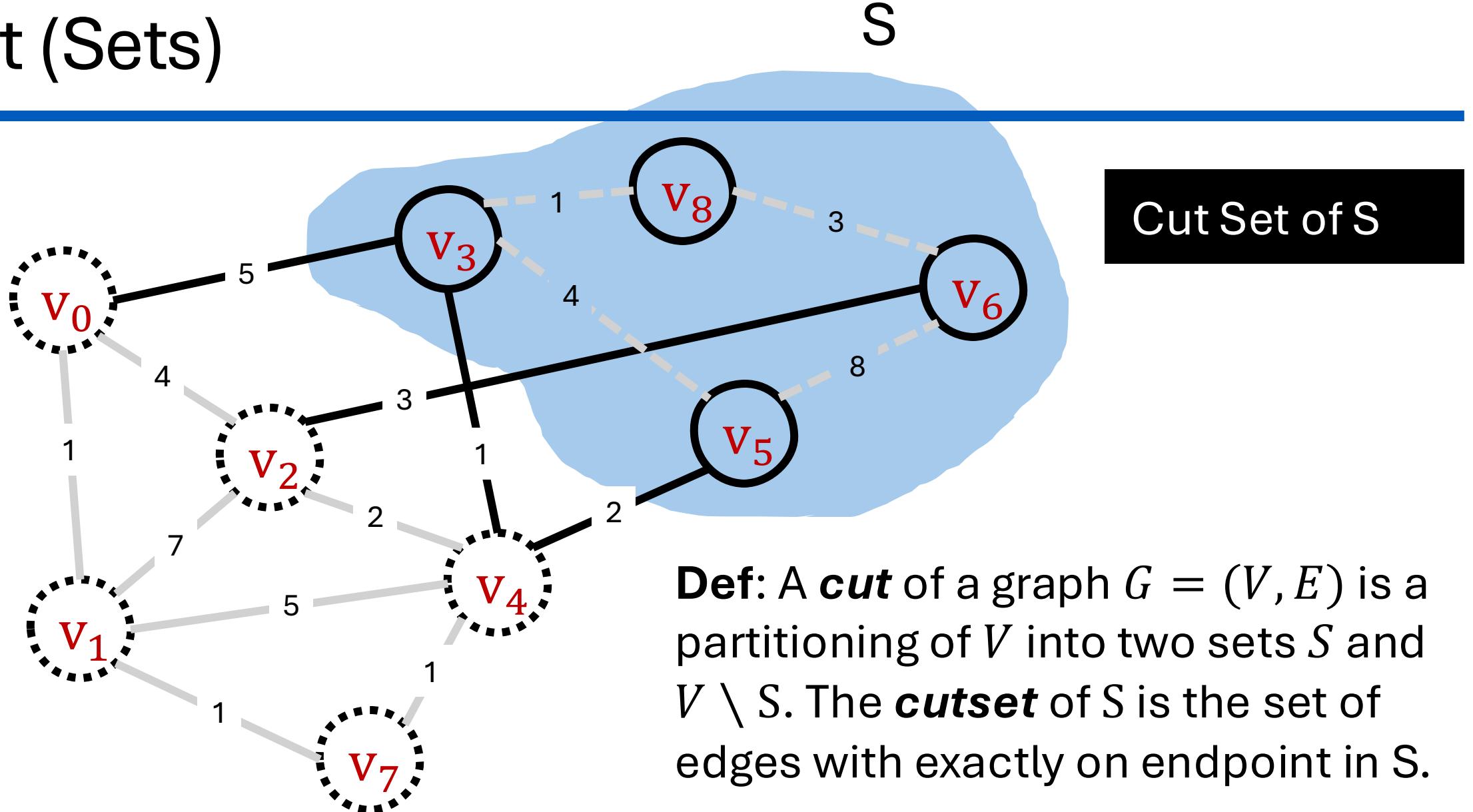
Cut (Sets)



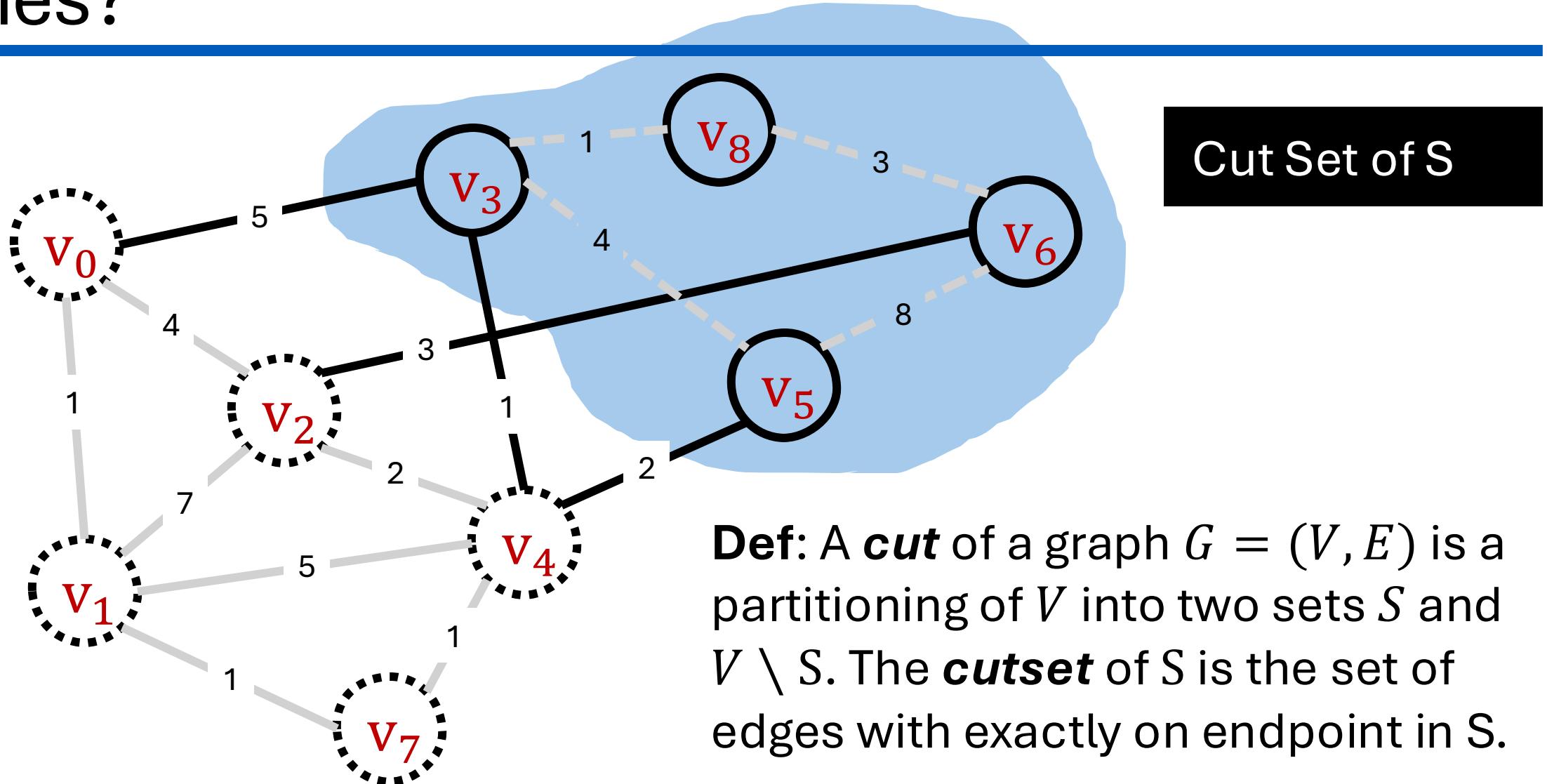
Super Graph

Def: A ***cut*** of a graph $G = (V, E)$ is a partitioning of V into two sets S and $V \setminus S$. The ***cutset*** of S is the set of edges with exactly one endpoint in S .

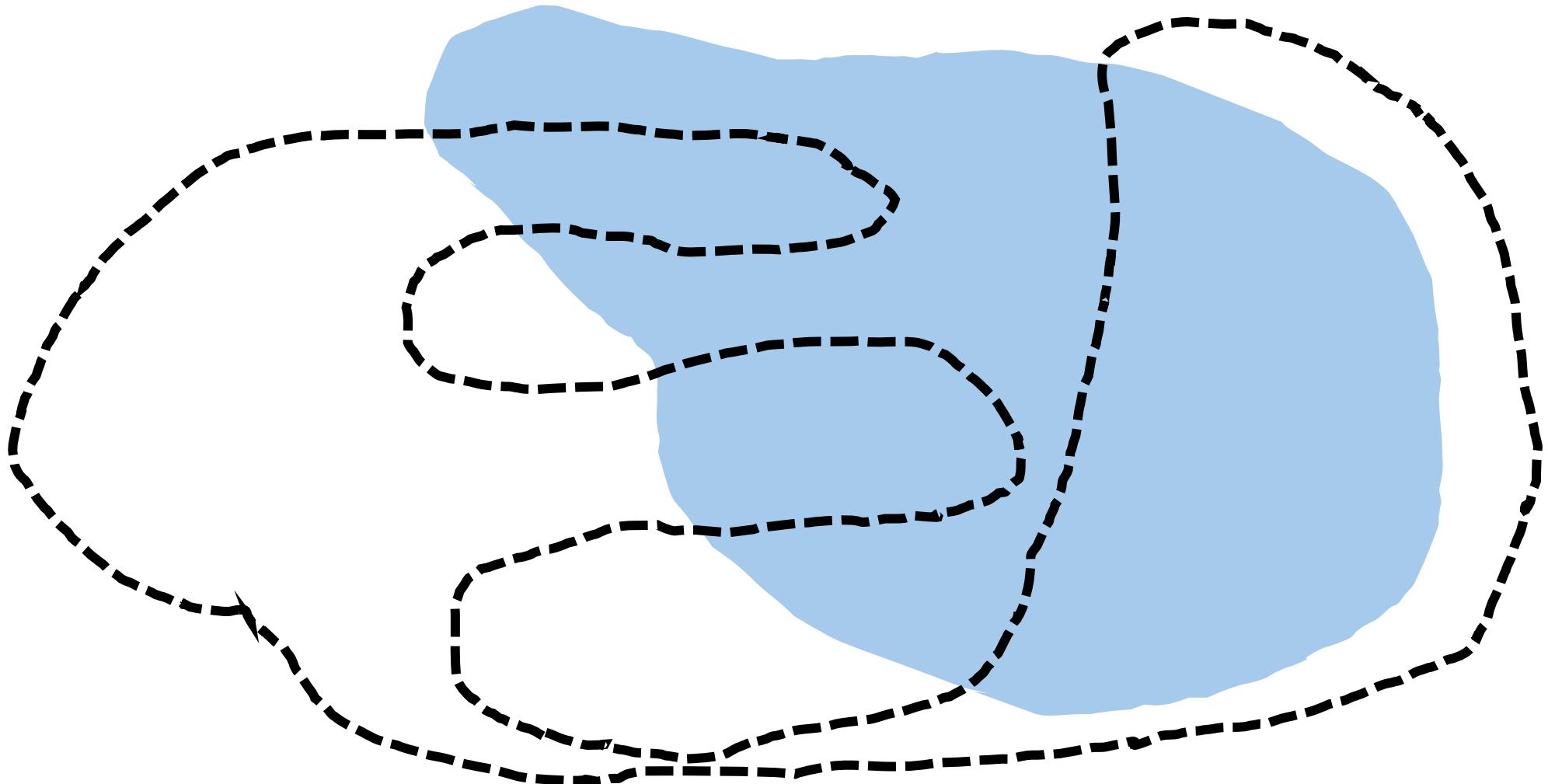
Cut (Sets)



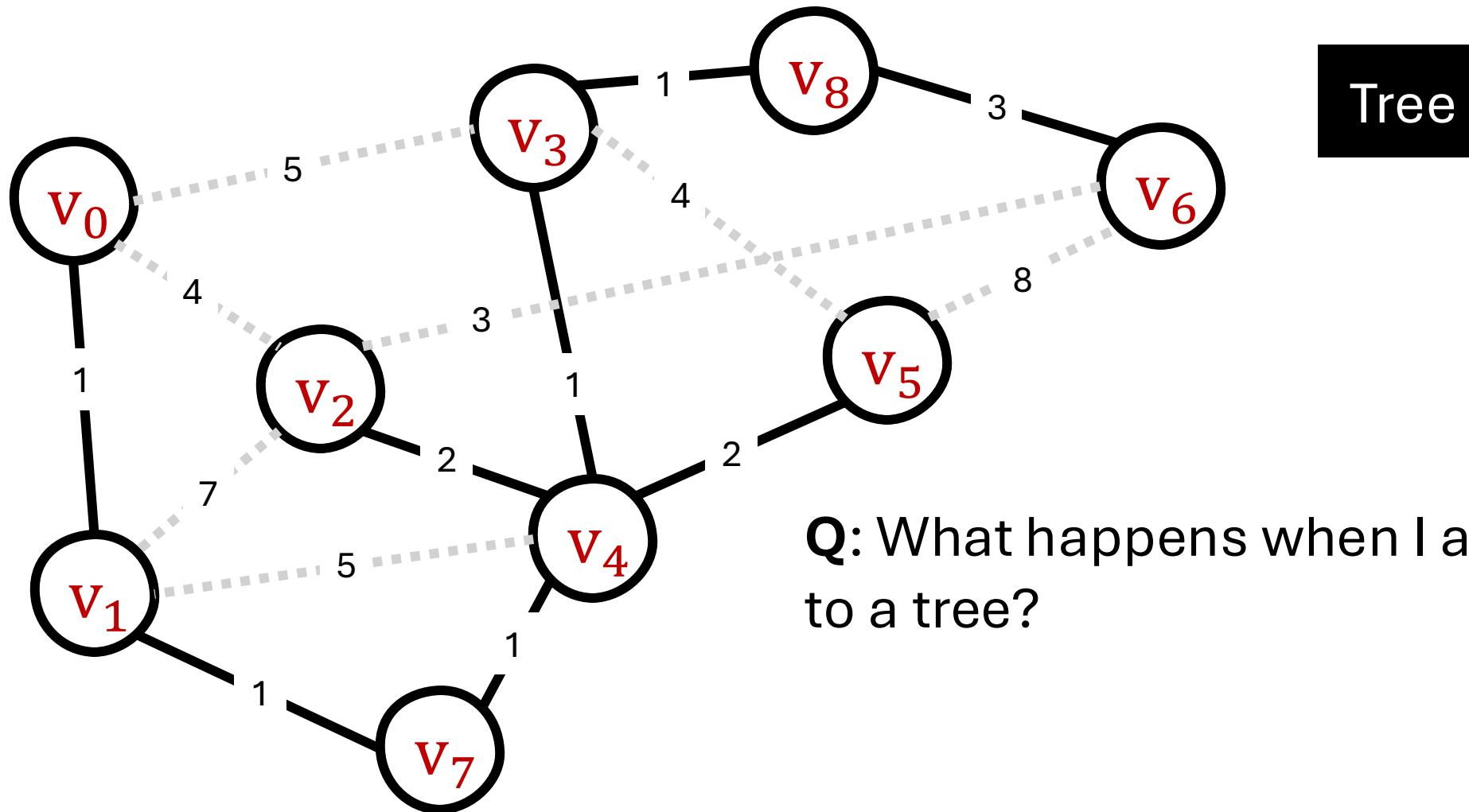
Q: Can a cycle intersect a cut set an odd number of times?



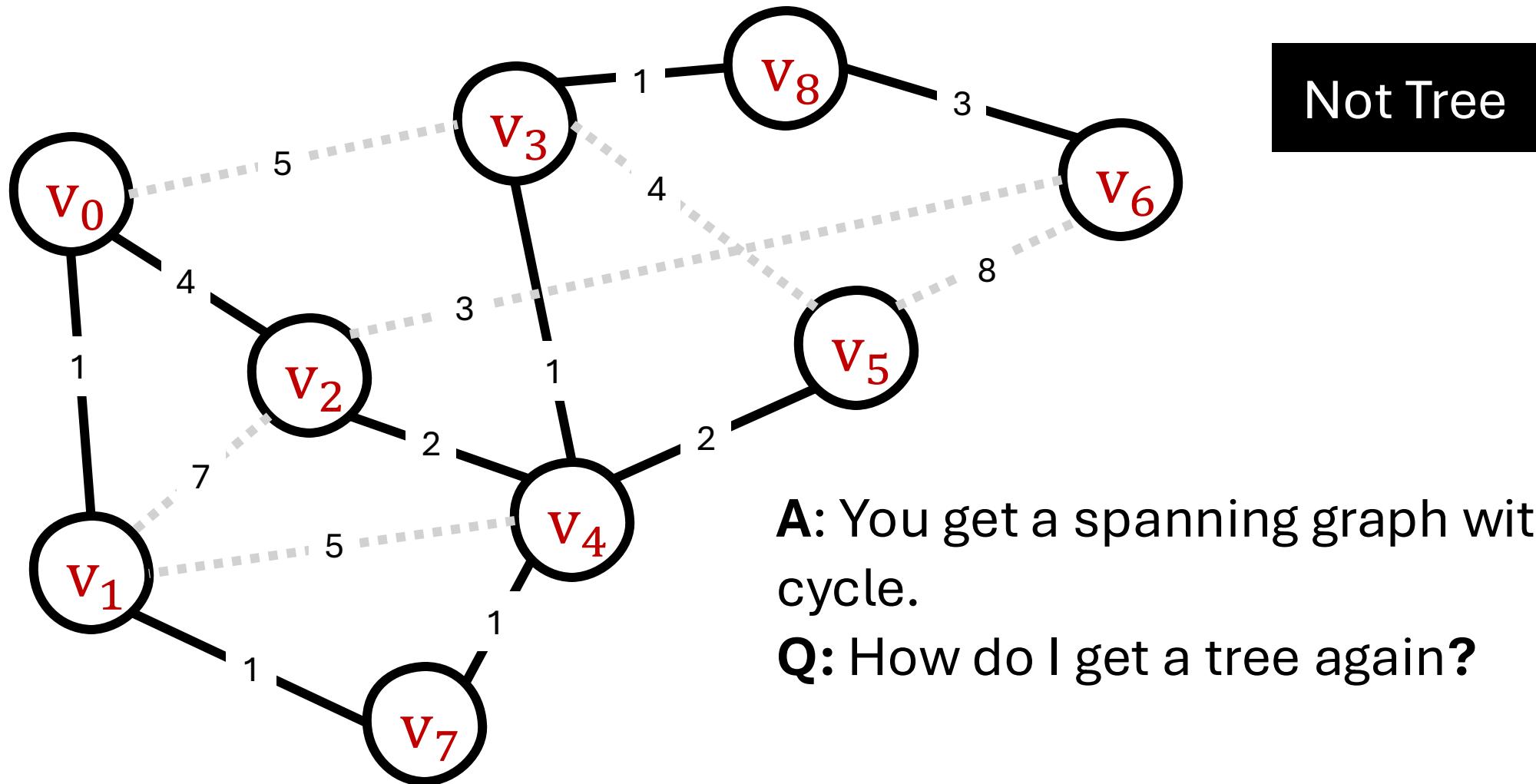
A: No. “If it enters, it must leave.”



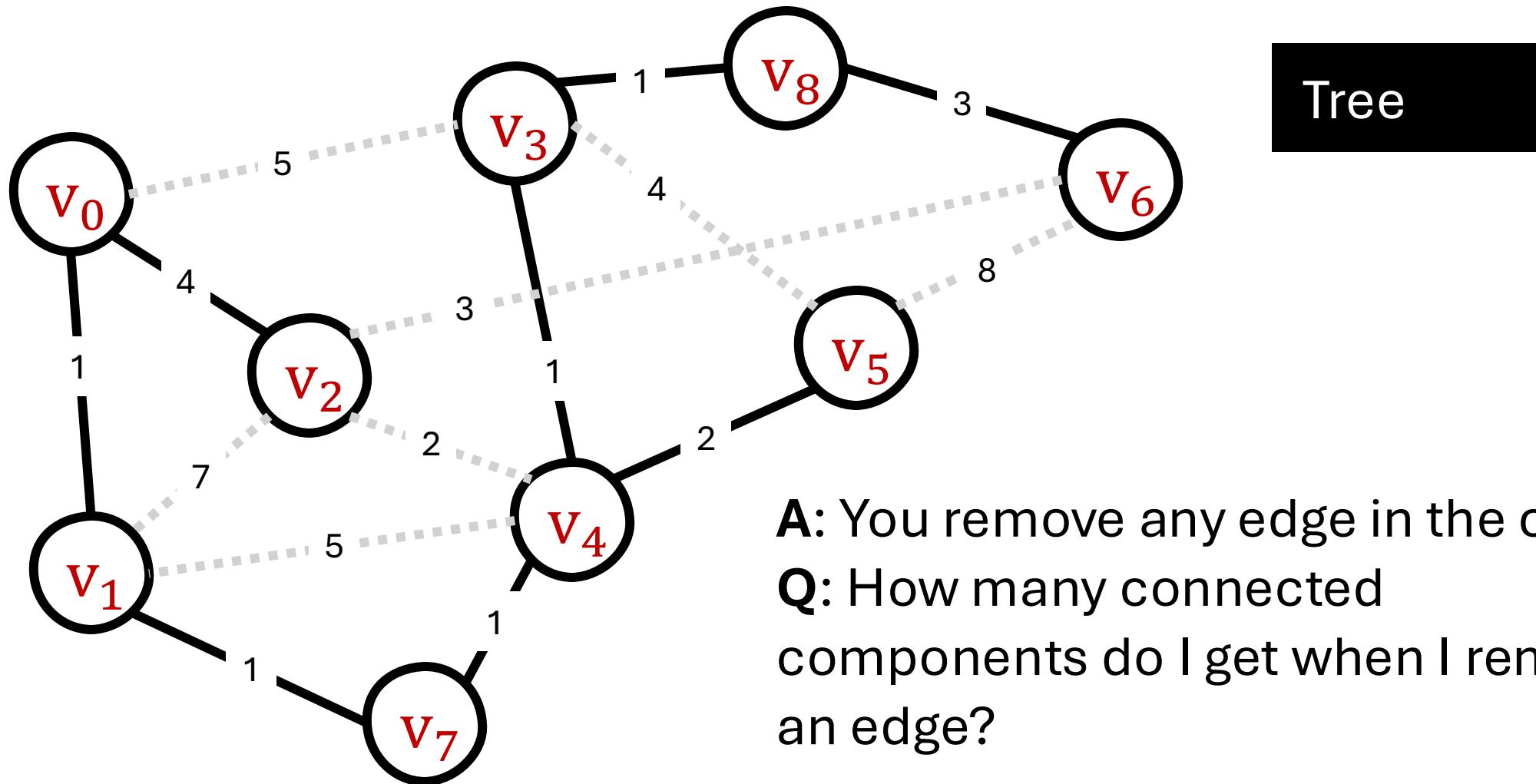
Spanning Trees



Spanning Not Trees

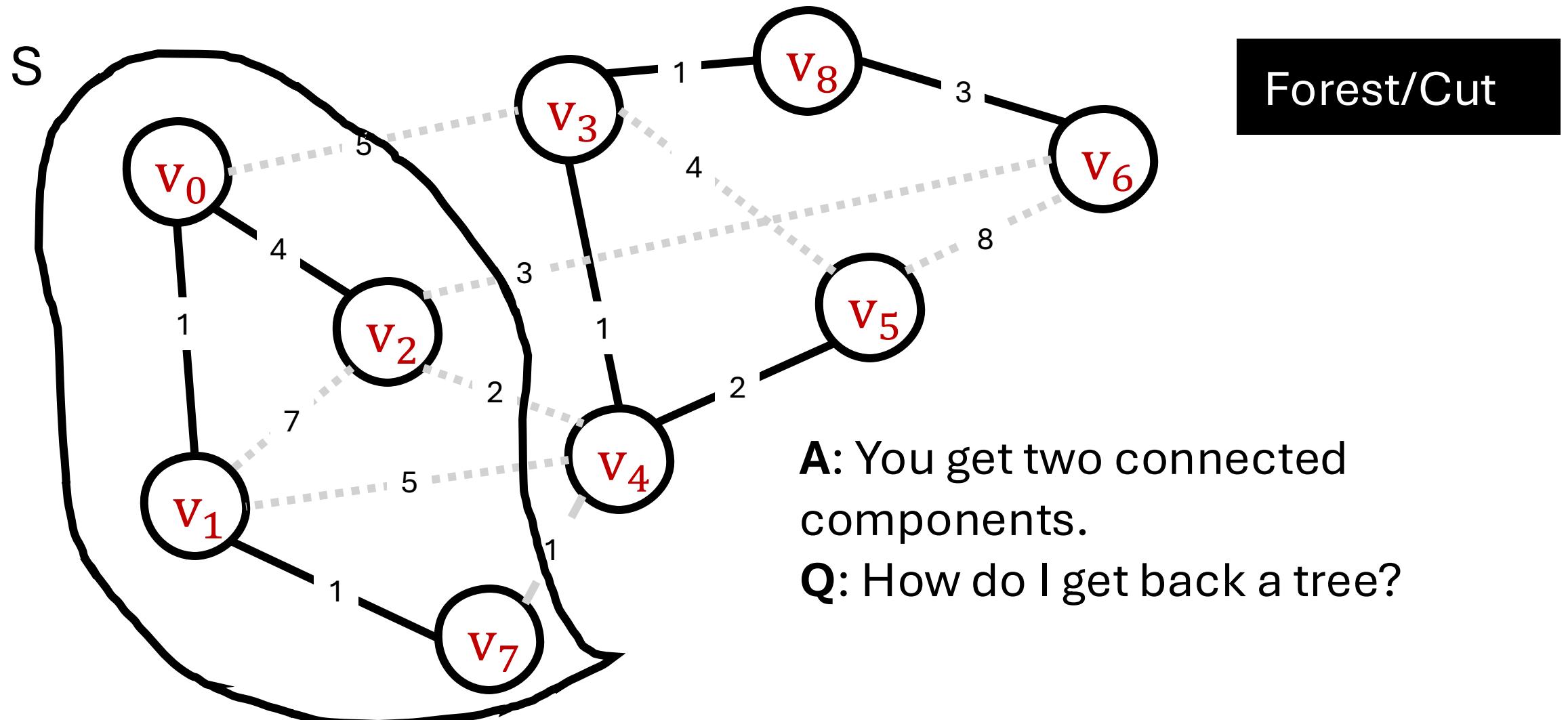


Spanning Trees

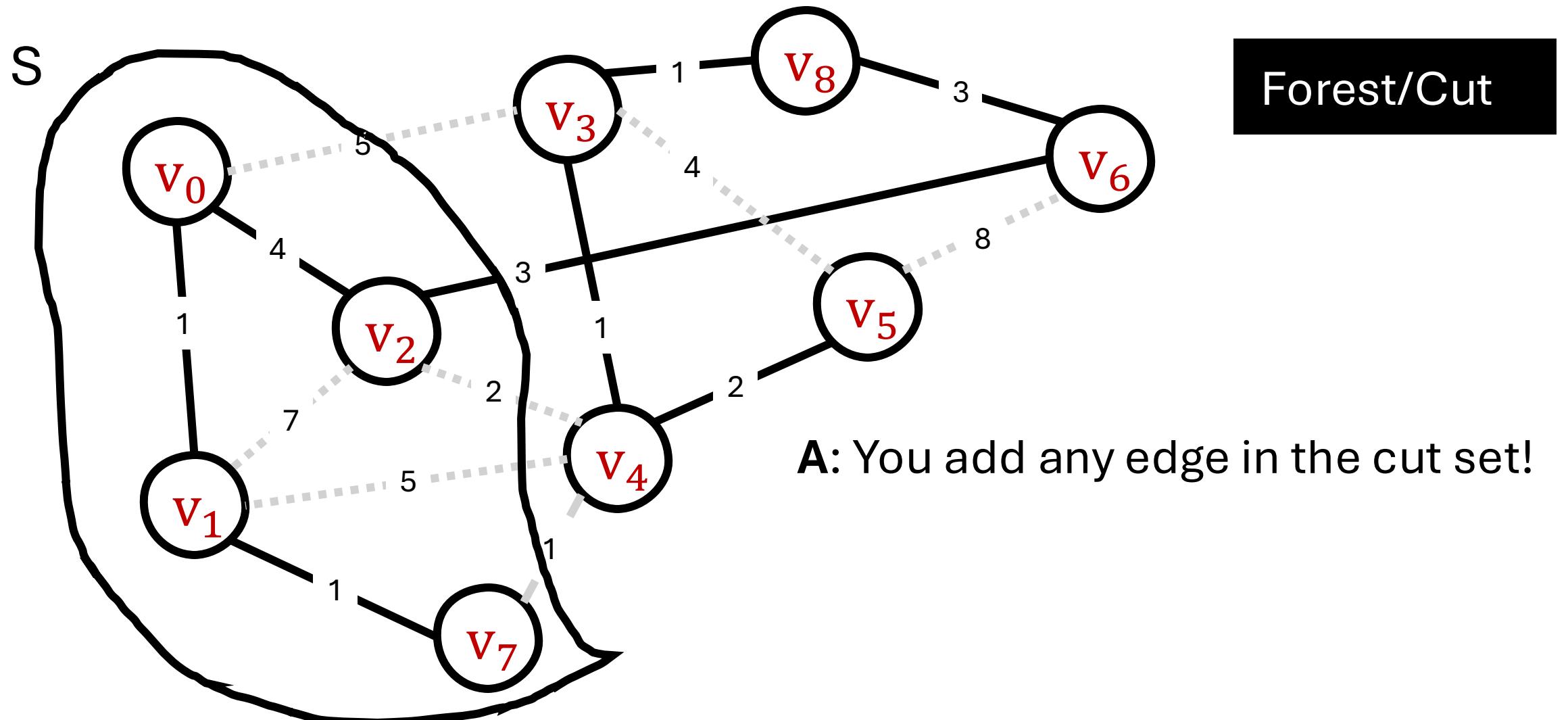


A: You remove any edge in the cycle!
Q: How many connected components do I get when I remove an edge?

Spanning Forest

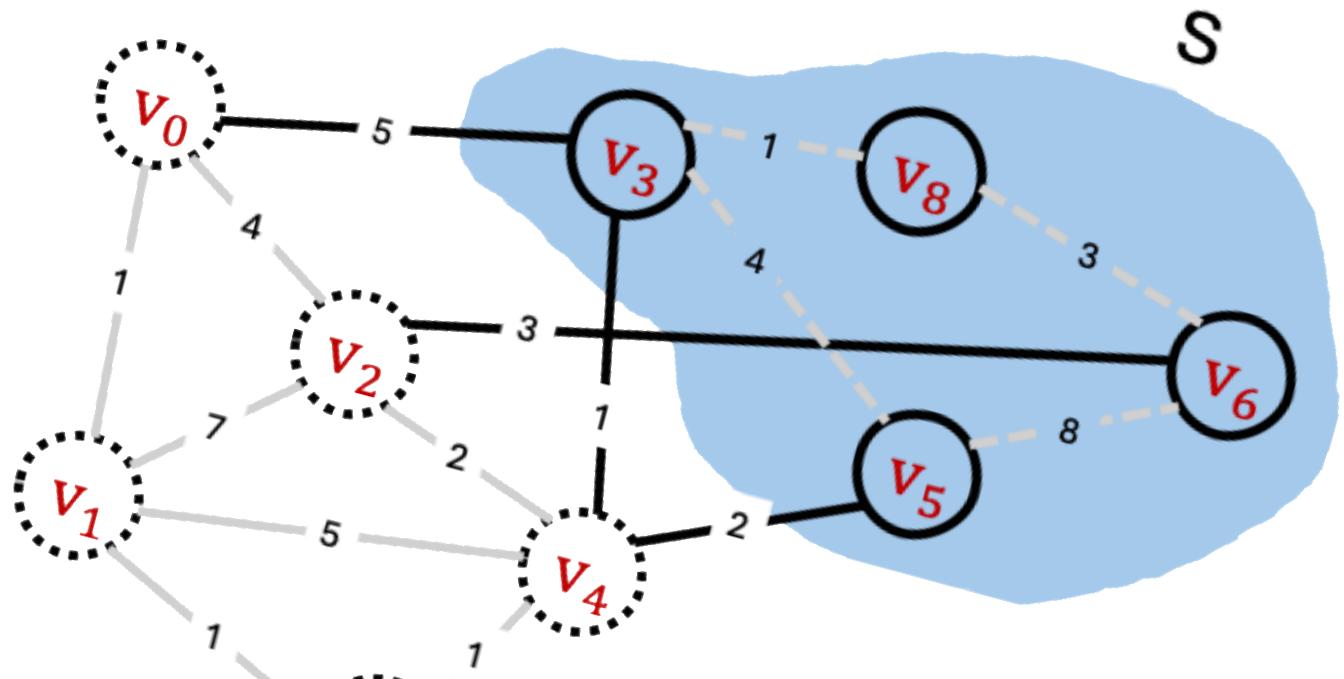


Spanning Tree



Cut Property

Lemma: Fix a graph $G = (V, E)$ with edge weights ℓ . Assume that all edges are distinct. Let S be any subset of nodes that is neither empty or equal to all of V , and let $e = (u, v)$ be the minimum-cost edge with one end in S and the other in $V \setminus S$. Then every minimum spanning tree contains the edge e .

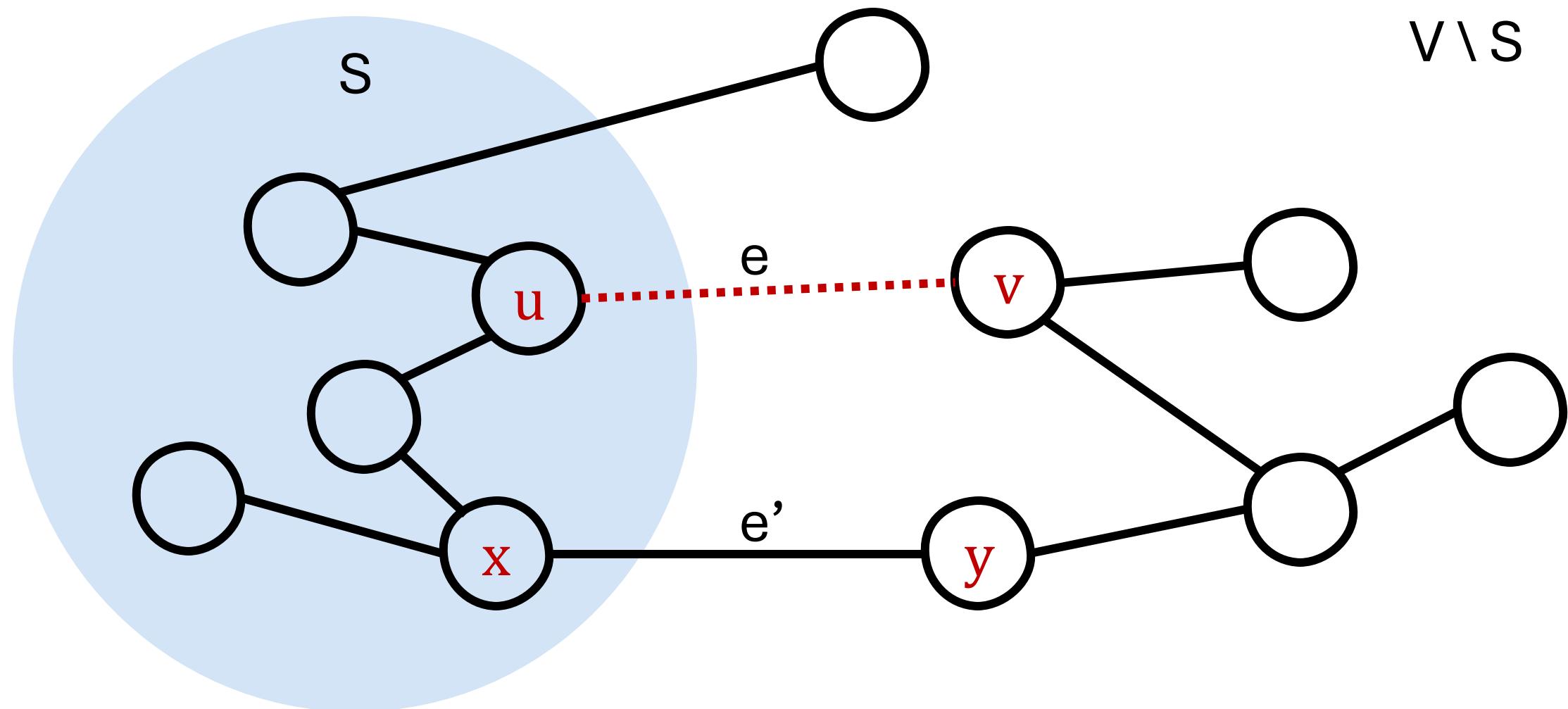


Proof of Cut Property

- We will do an exchange argument.
 - Let T be a spanning tree that doesn't contain $e = (u,v)$.
 - We will show that we can construct a tree T' that does include e that has strictly less total weight.
 - To this end, we will identify another edge $e' = (x,y)$ that is in T and be be “exchanged” with e .

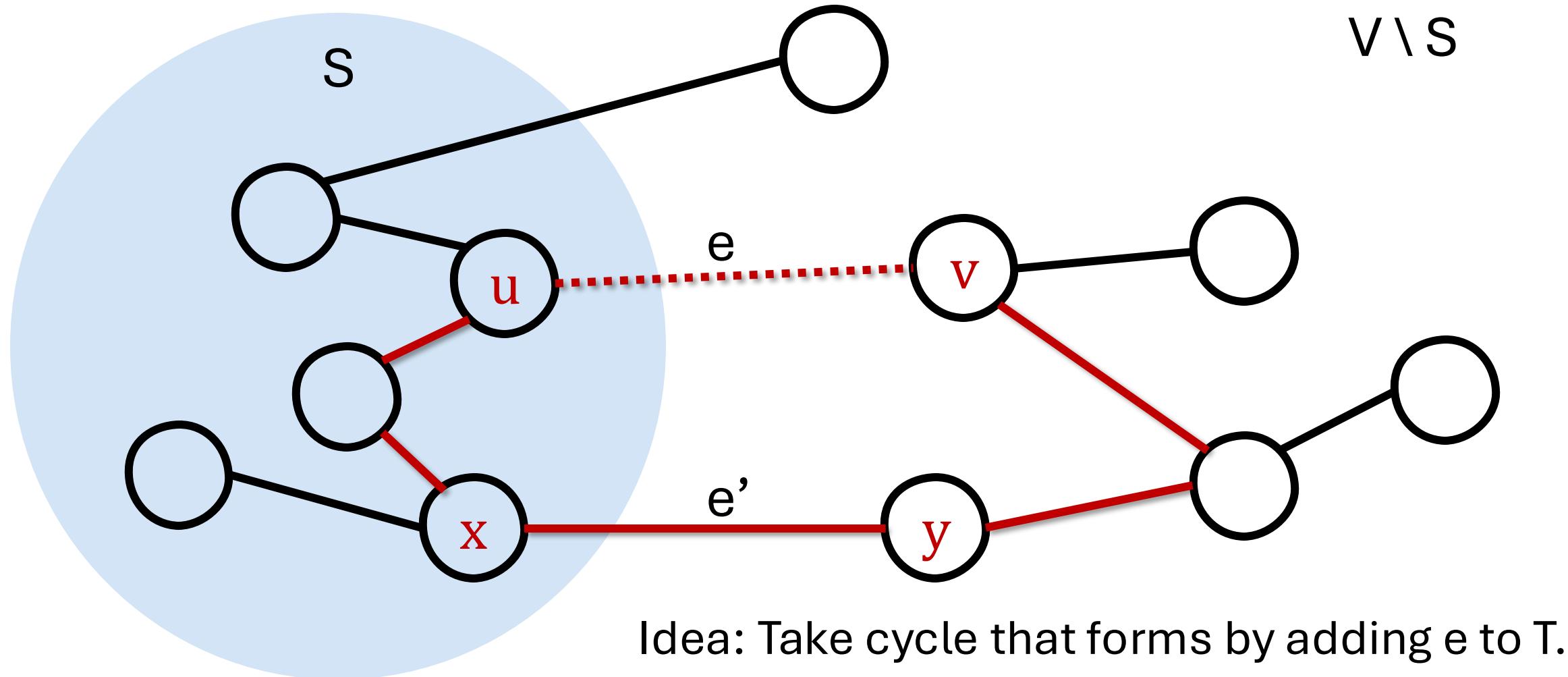
Proof of Cut Property

— Tree T'



Proof of Cut Property

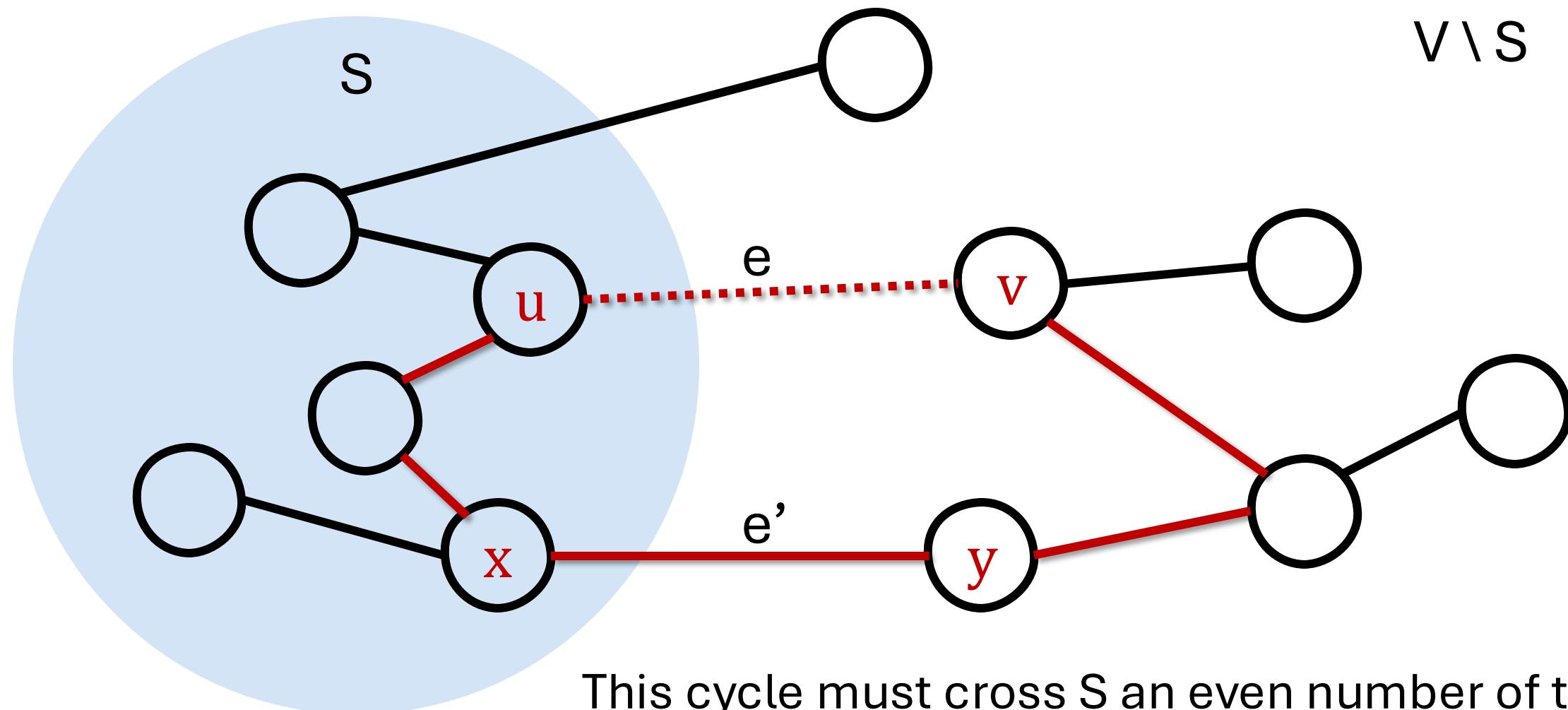
— Tree T'



Idea: Take cycle that forms by adding e to T .

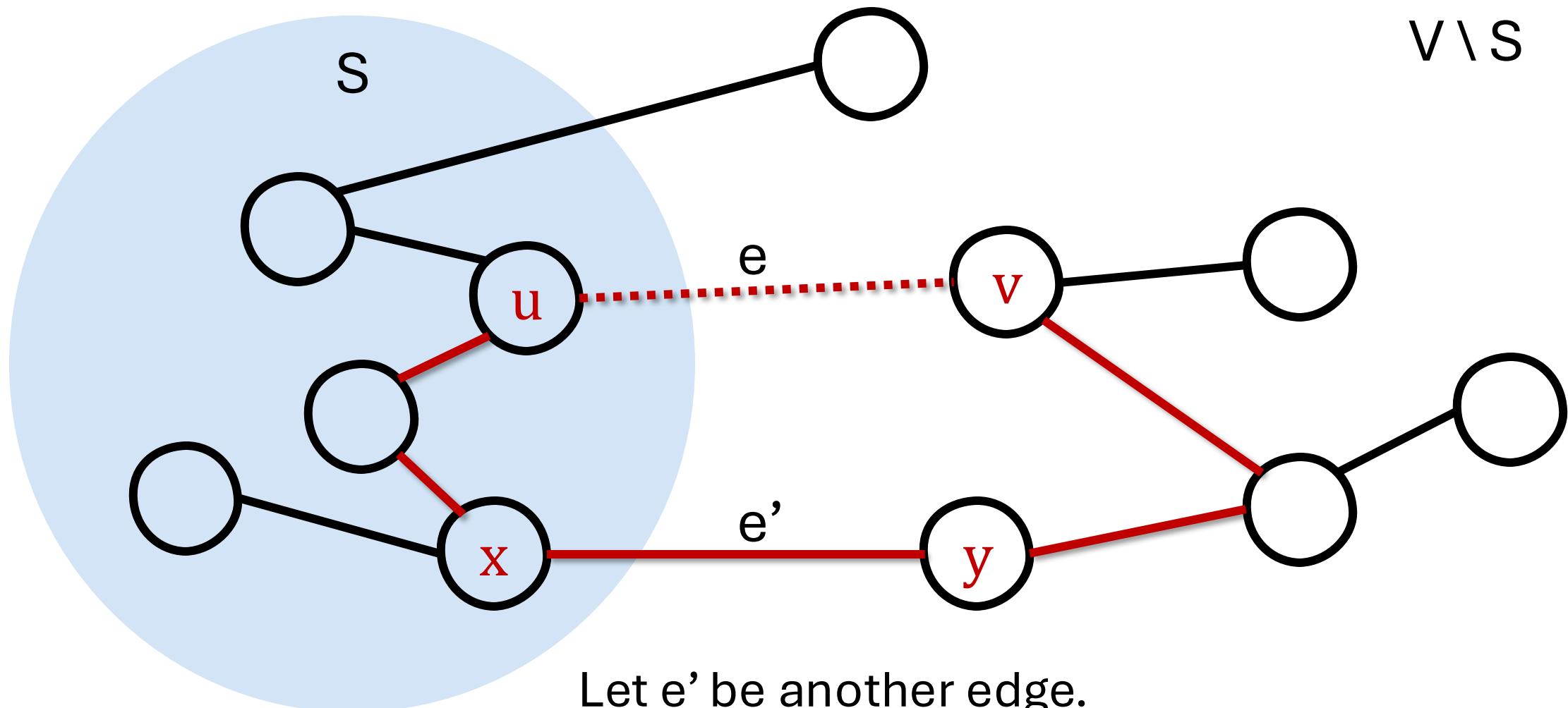
Proof of Cut Property

— Tree T'



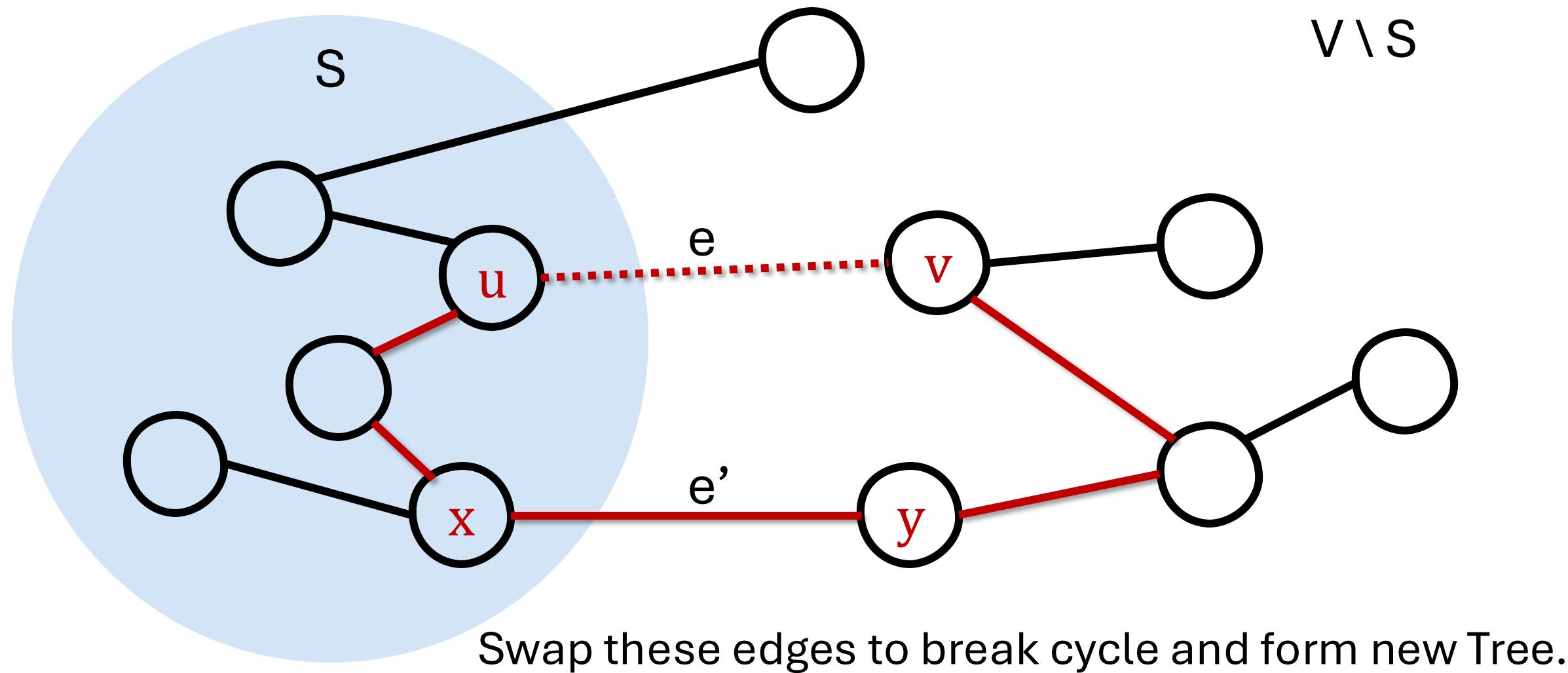
Proof of Cut Property

— Tree T'



Proof of Cut Property

— Tree T'



Proof of Cut Property

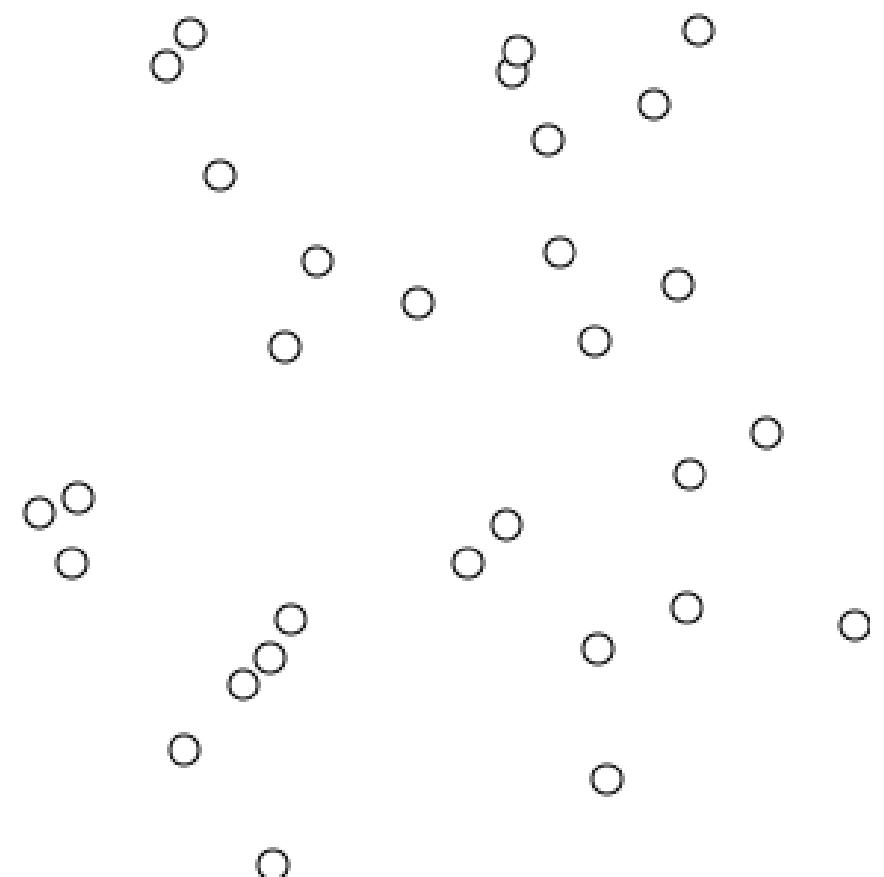
- We will do an exchange argument.
 - Let T be a spanning tree that doesn't contain $e = (u,v)$.
 - We will show that we can construct a tree T' that does include e that has strictly less total weight.
 - To this end, we will identify another edge $e' = (x,y)$ that is in T and be be “exchanged” with e .
 - Since T is a spanning tree there must be a path from u to v .
 - Take this path and let $e' = (x,y)$ be first edge to leave S .
 - By lemma assumption, we know that $\ell_e < \ell_{e'}$.
 - Swap e and e' to make T' .
 - T' is connected and acyclic and total weight went down.

Proof of Cut Property

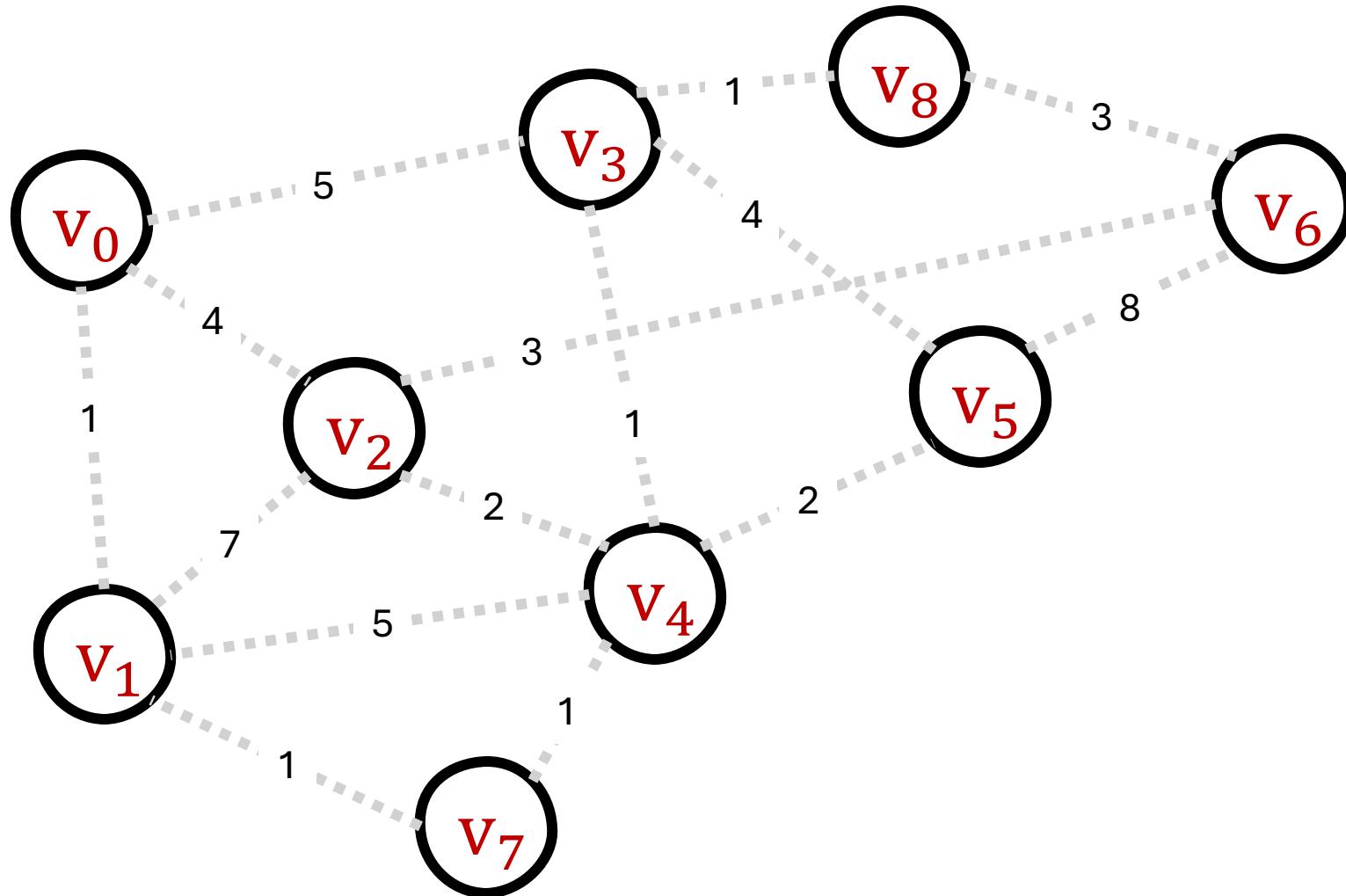
- We will do an exchange argument.
 - ...
 - T' is connected and acyclic and total weight went down.
 - To see T' is connected, take any pair of vertices (a, b) and their path in T .
 - If this path used e then "reroute" to use e' .
 - Otherwise, path still exists.
 - To see T' is acyclic, note that the only cycle in T with e must have been the cycle that contained e and it is no longer a cycle since e' was removed.
 - To see that the weight went down, recall $\ell_e < \ell_{e'}$.

Kruskal's Algorithm

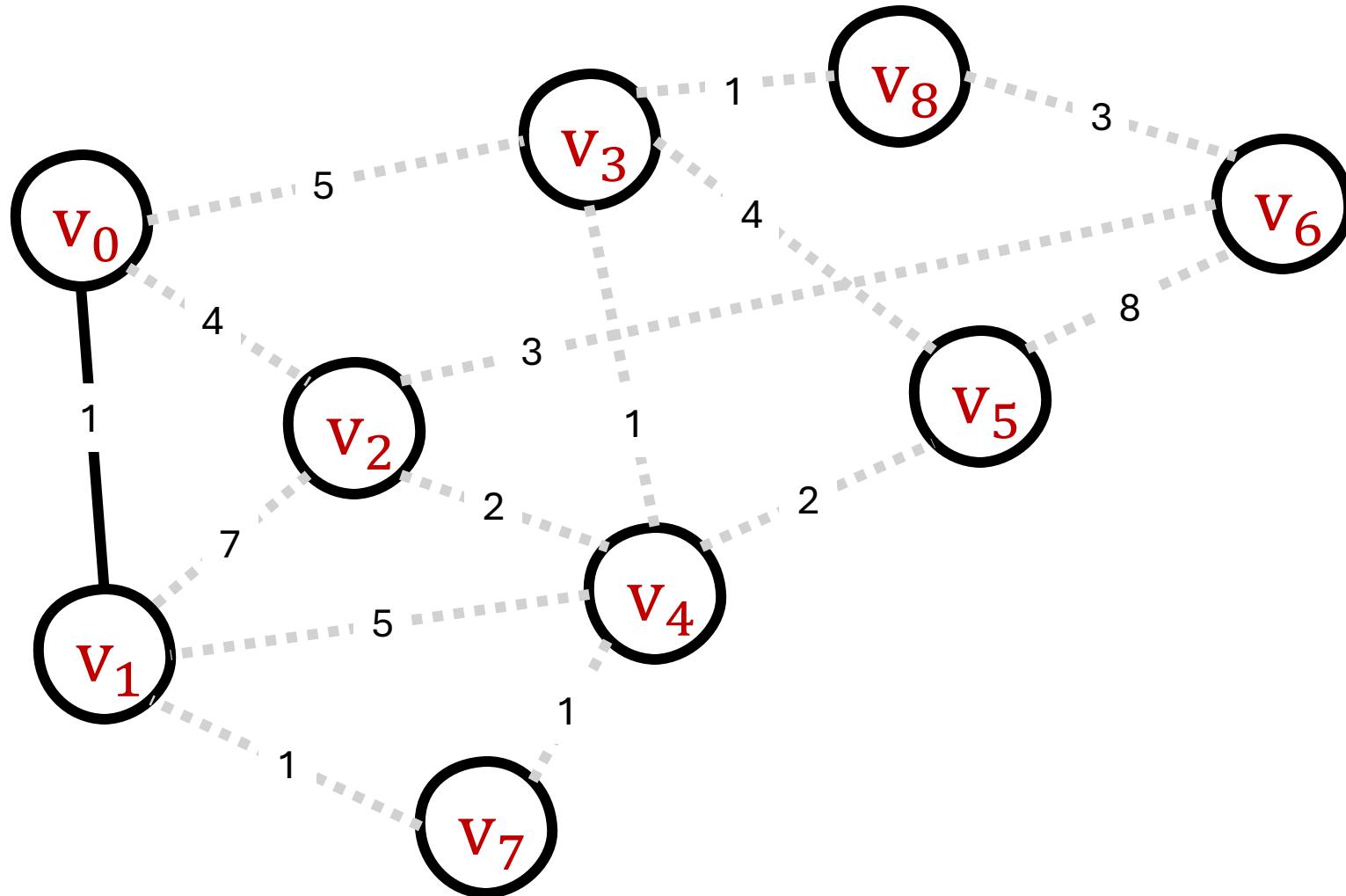
- **Input:** Undirected graph $G = (V, E)$ and weights L
- **Output:** MST of G
 - Sort E using values in L
 - Break ties arbitrarily
 - Let T be an empty graph
 - For e in E :
 - If adding e to T doesn't cause a cycle, add it.



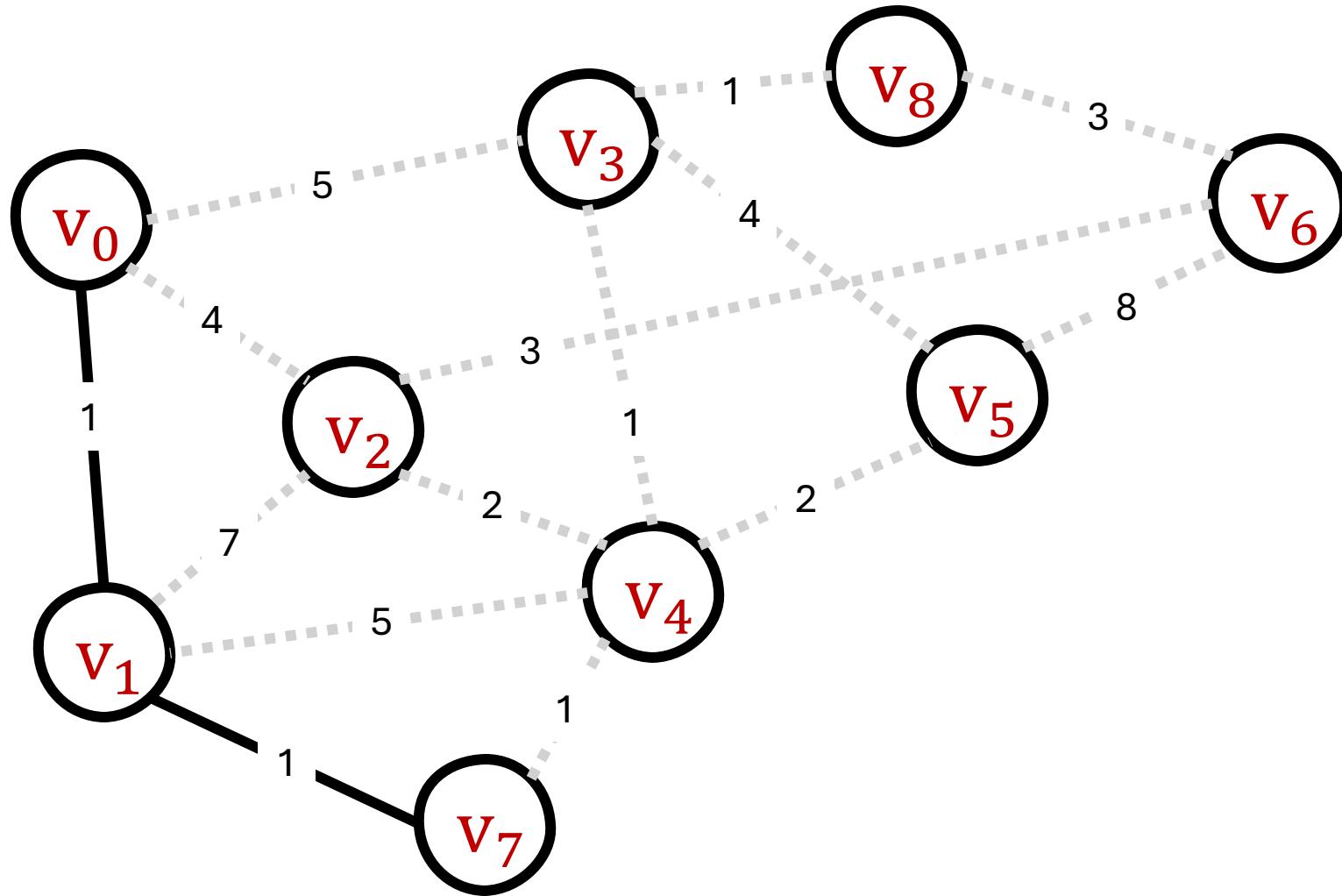
Kruskal's Algorithm



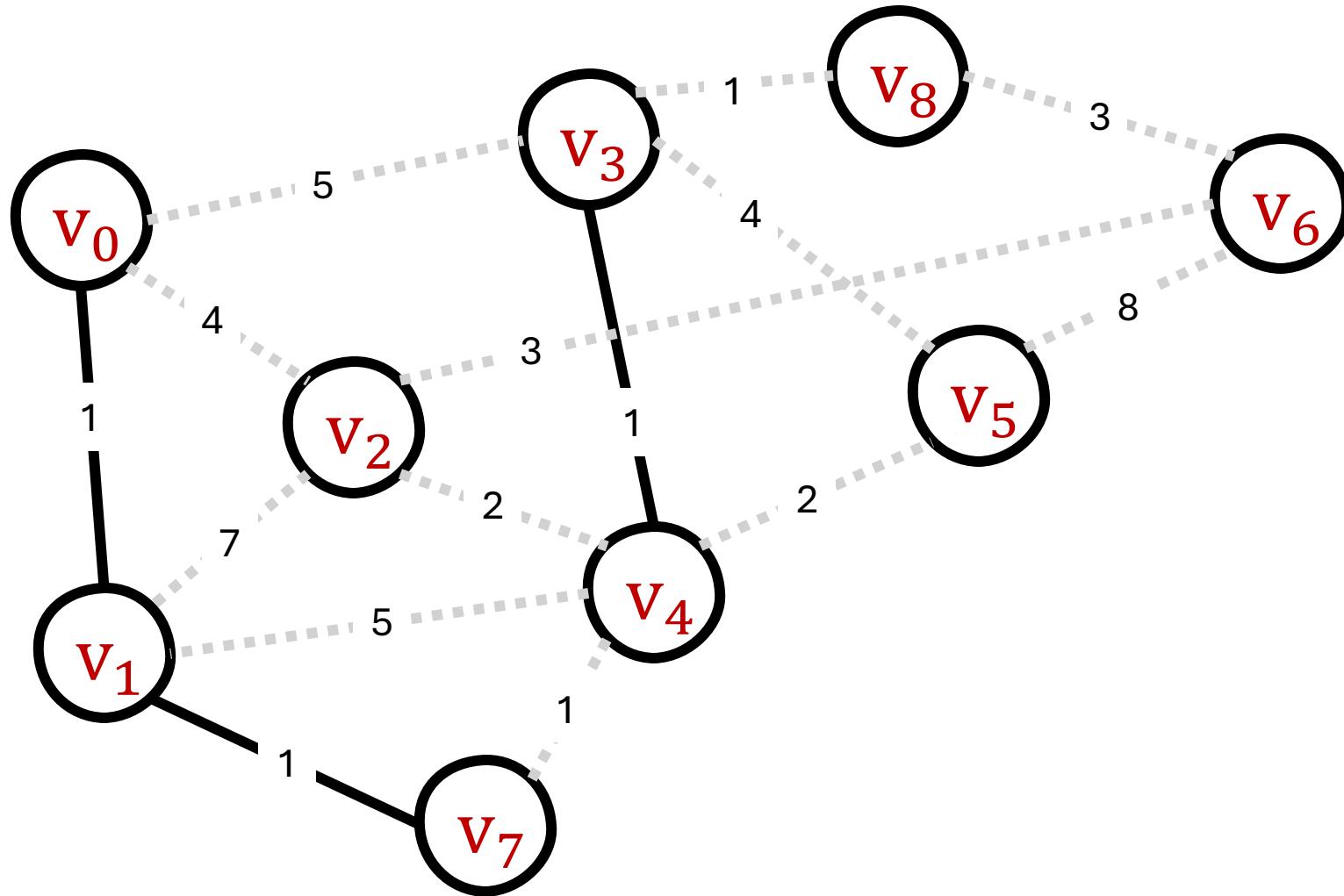
Kruskal's Algorithm



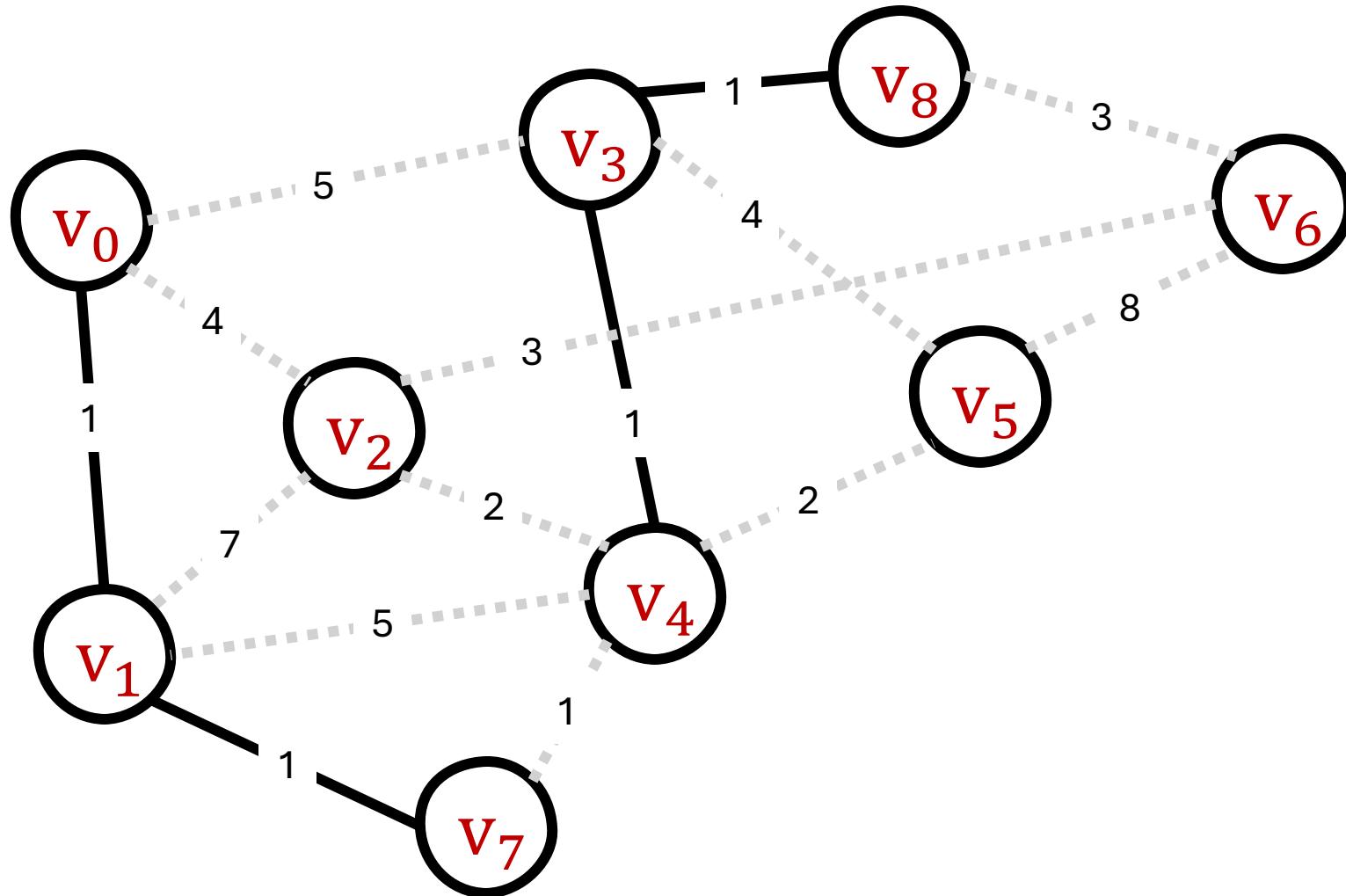
Kruskal's Algorithm



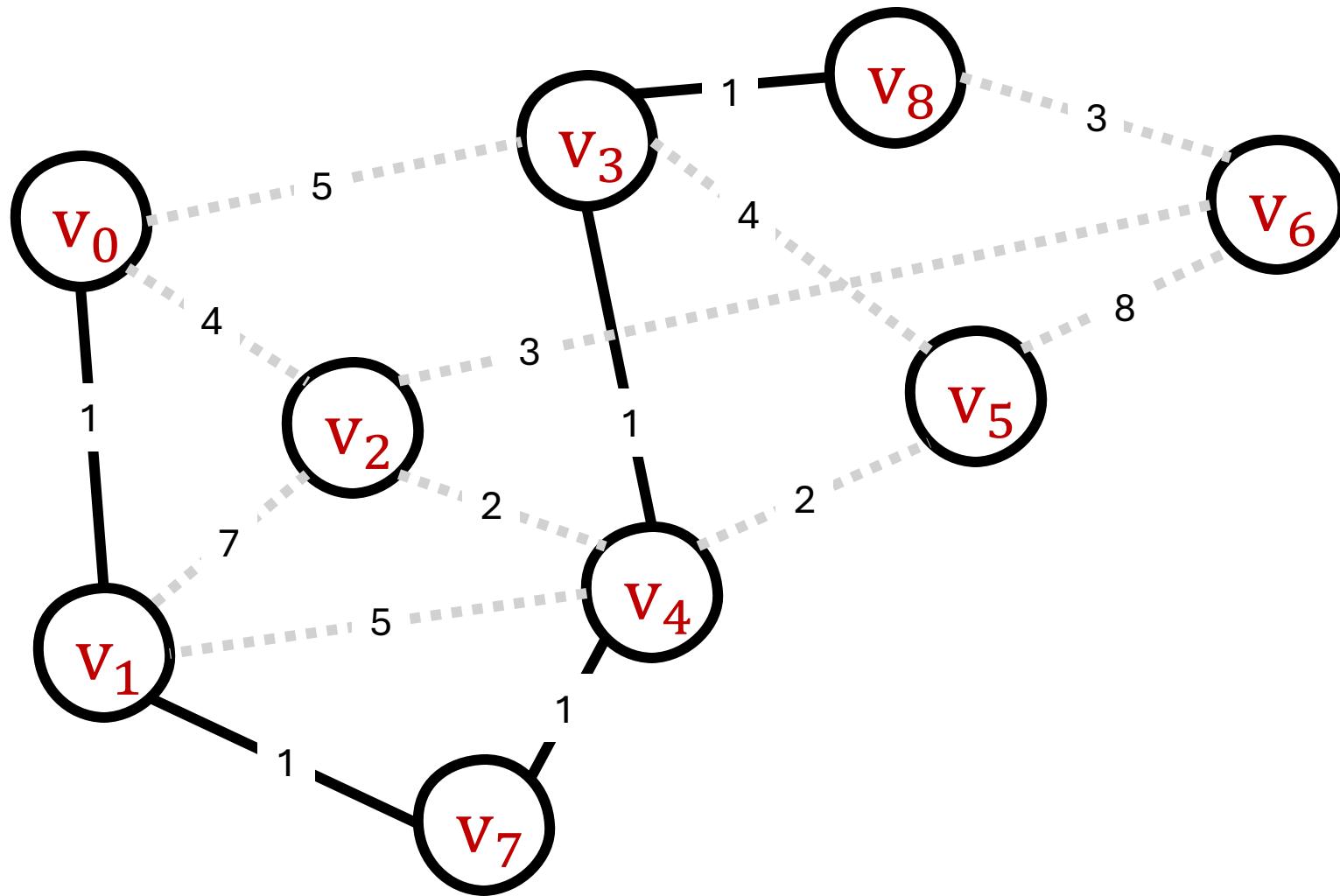
Kruskal's Algorithm



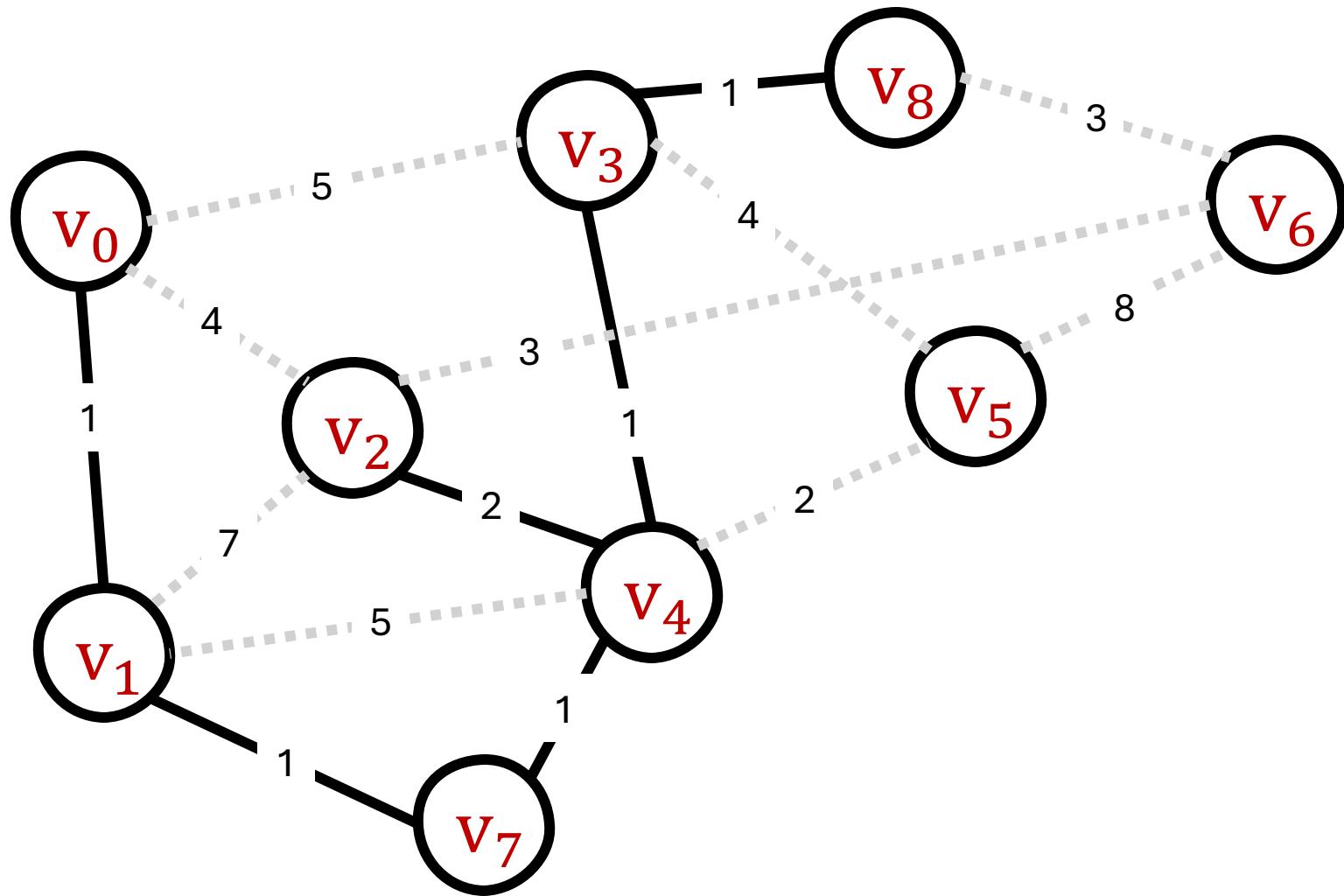
Kruskal's Algorithm



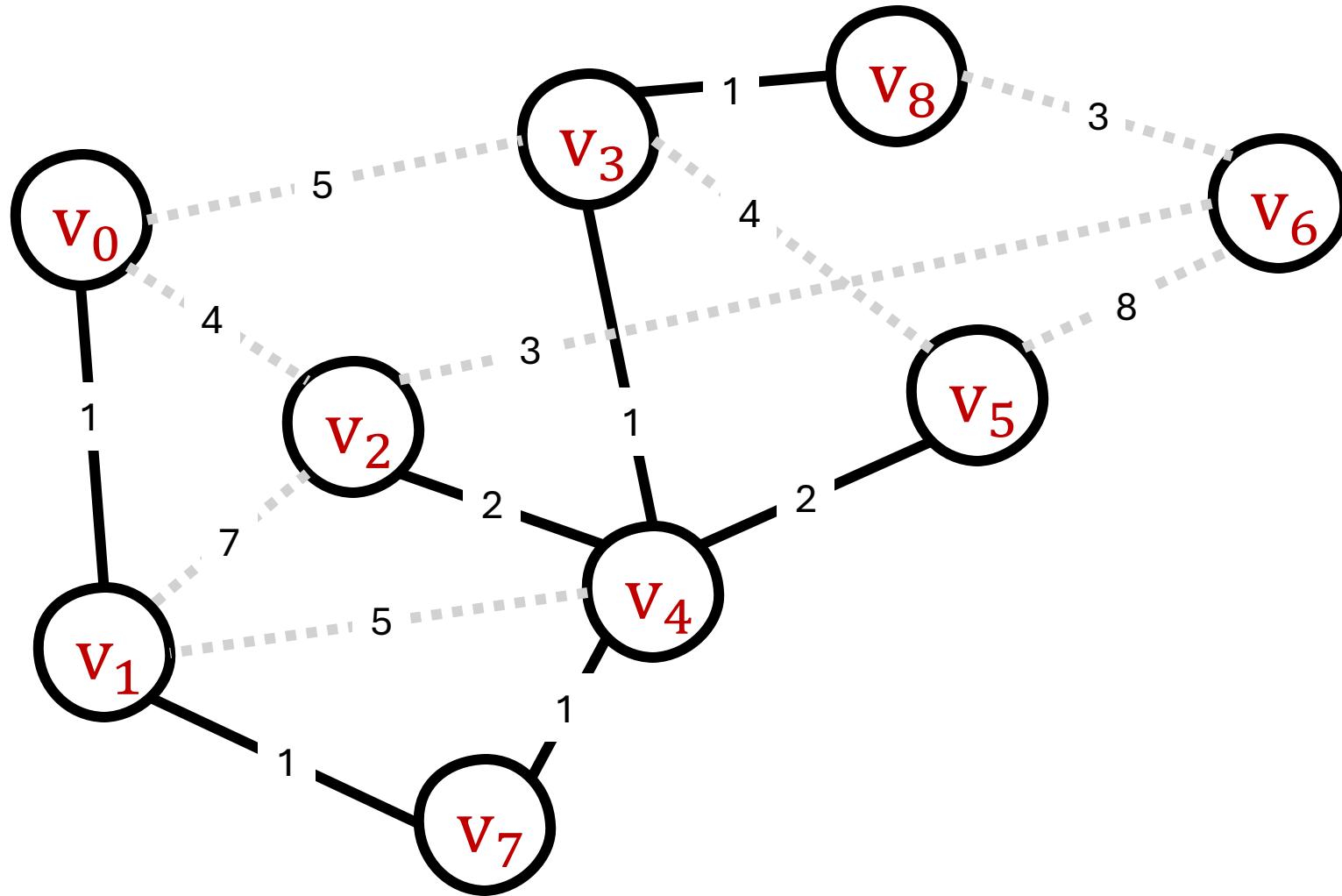
Kruskal's Algorithm



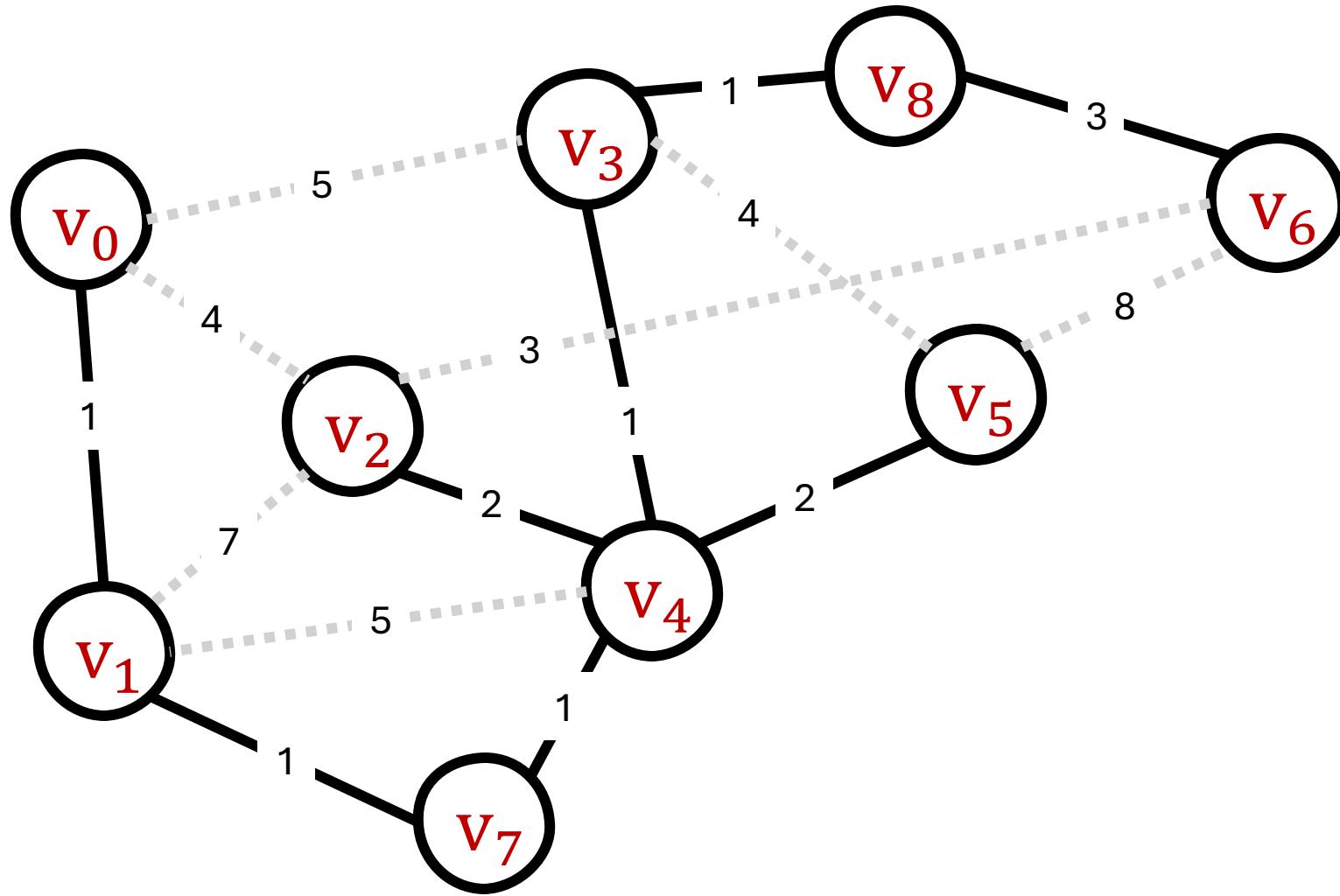
Kruskal's Algorithm



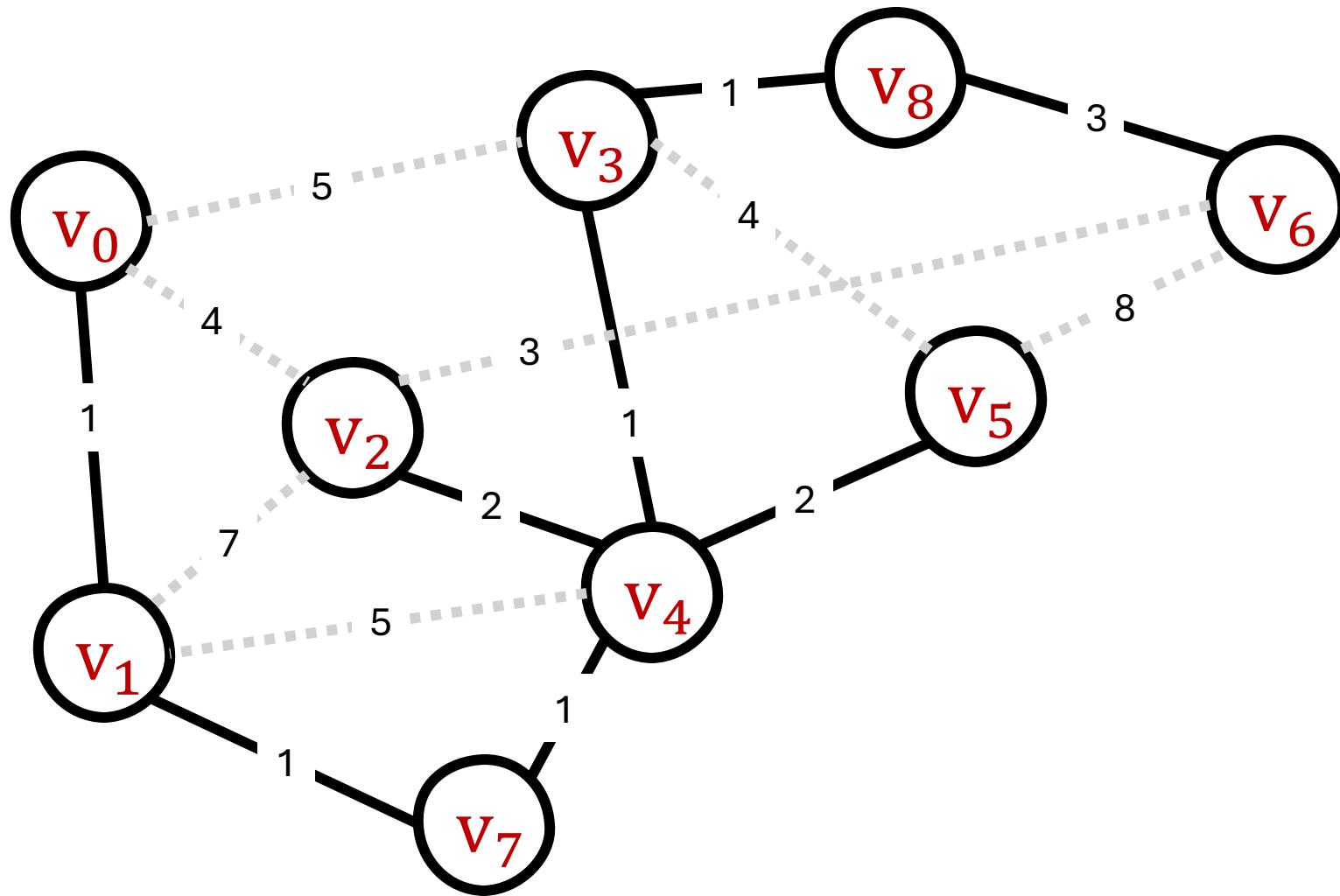
Kruskal's Algorithm



Kruskal's Algorithm

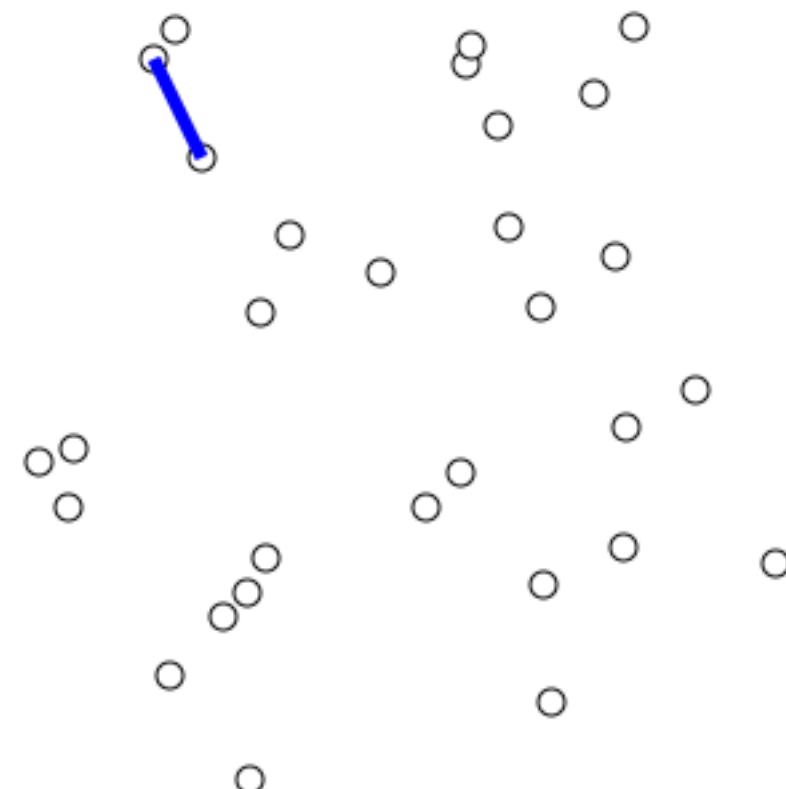


Kruskal's Algorithm

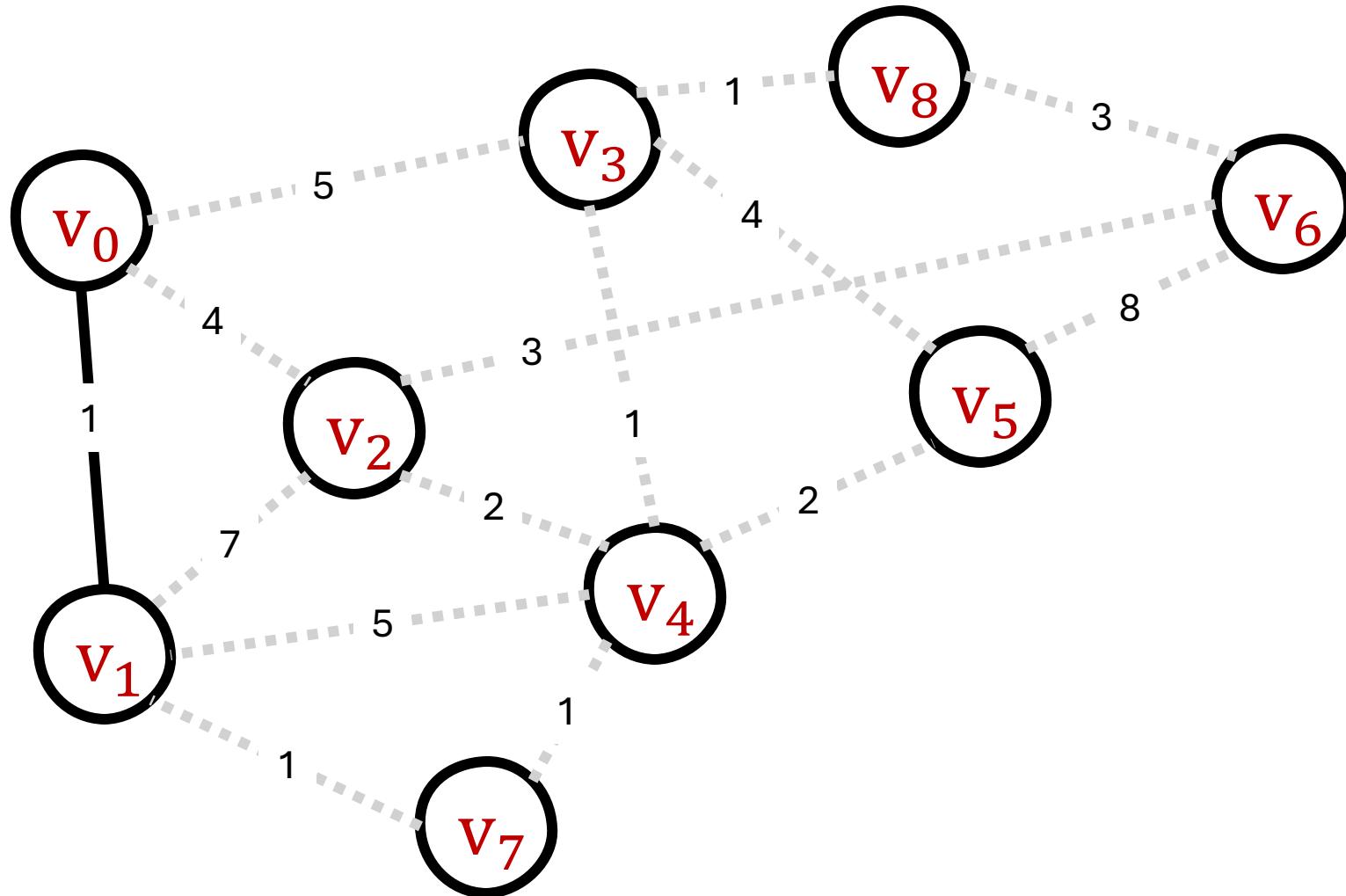


Prim's Algorithm

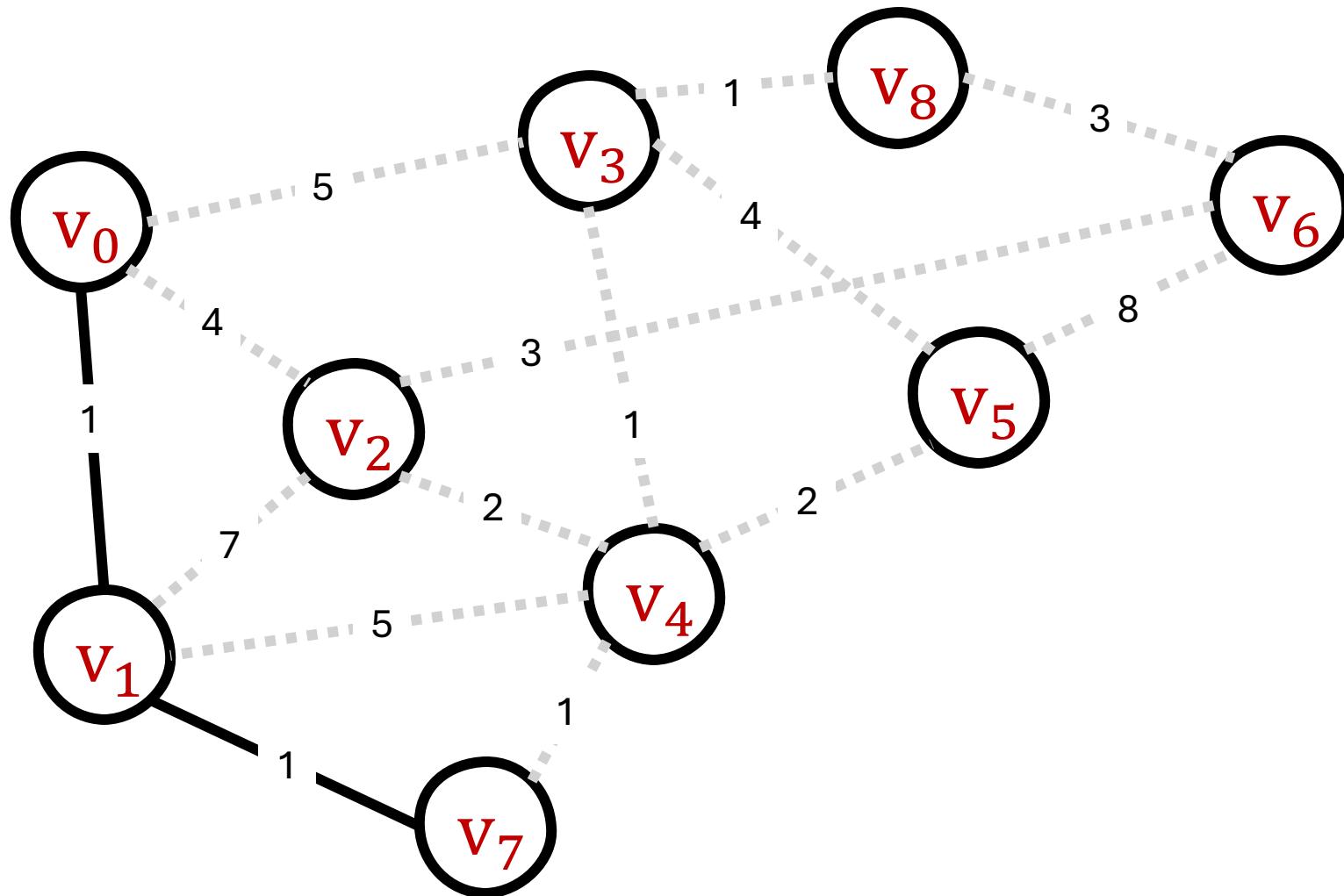
- **Input:** Undirected graph $G = (V, E)$ and weights L
- **Output:** MST of G
 - Pick s in V arbitrarily
 - Let $S = \{s\}$
 - While $S \neq V$:
 - Find minimum weight edge $e = (u, v)$ where u is in S but v is not.
 - Add v to S



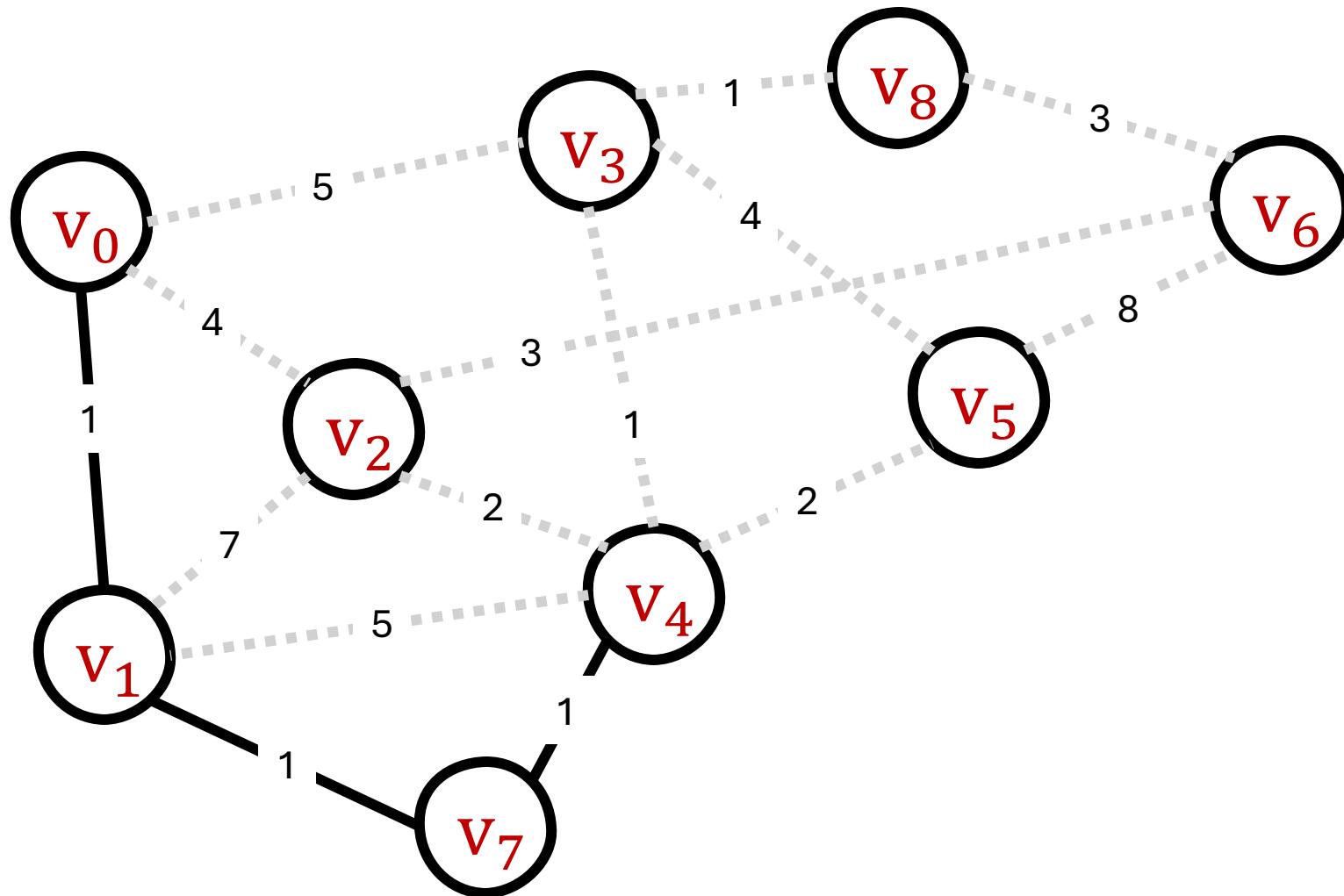
Prim's Algorithm



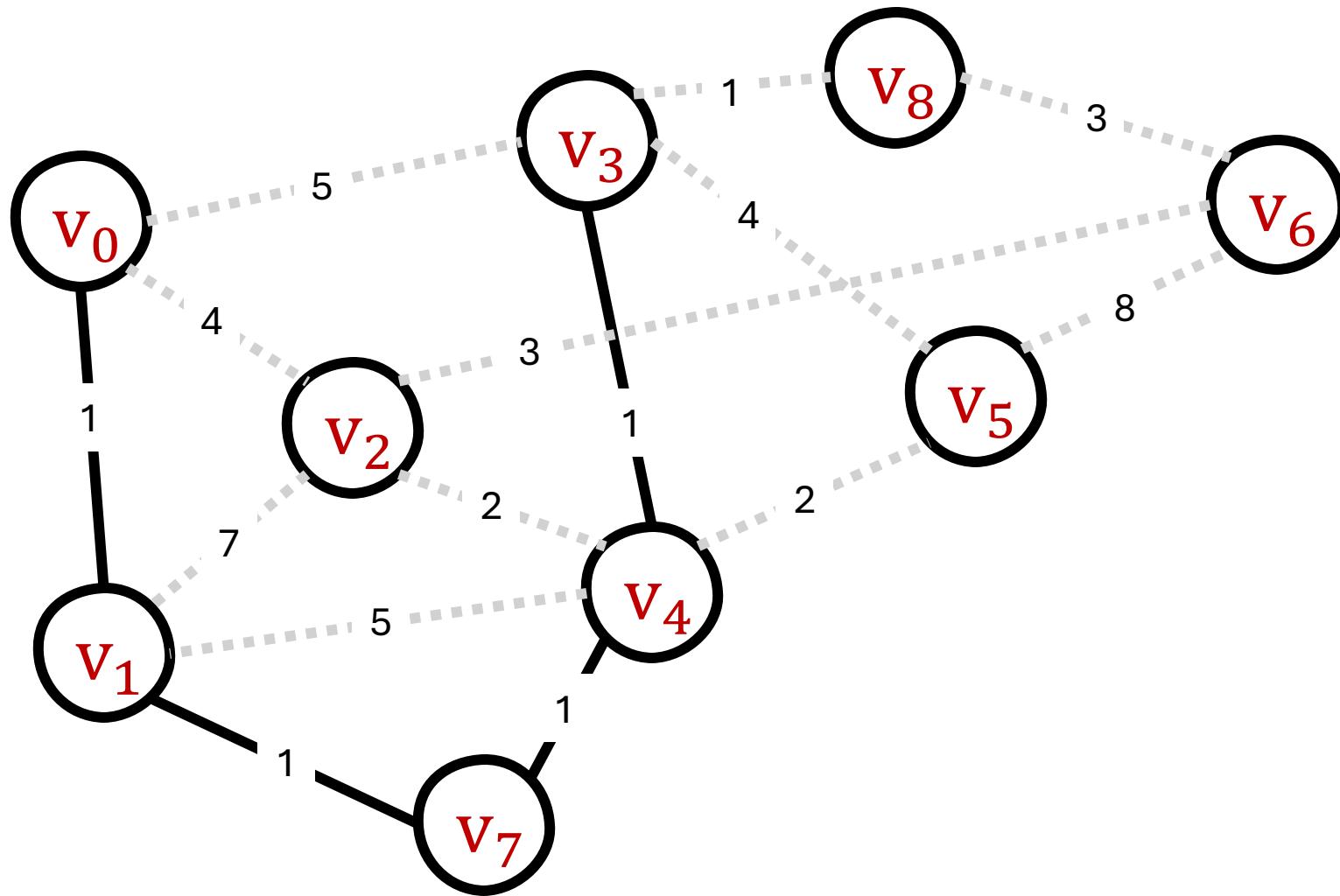
Prim's Algorithm



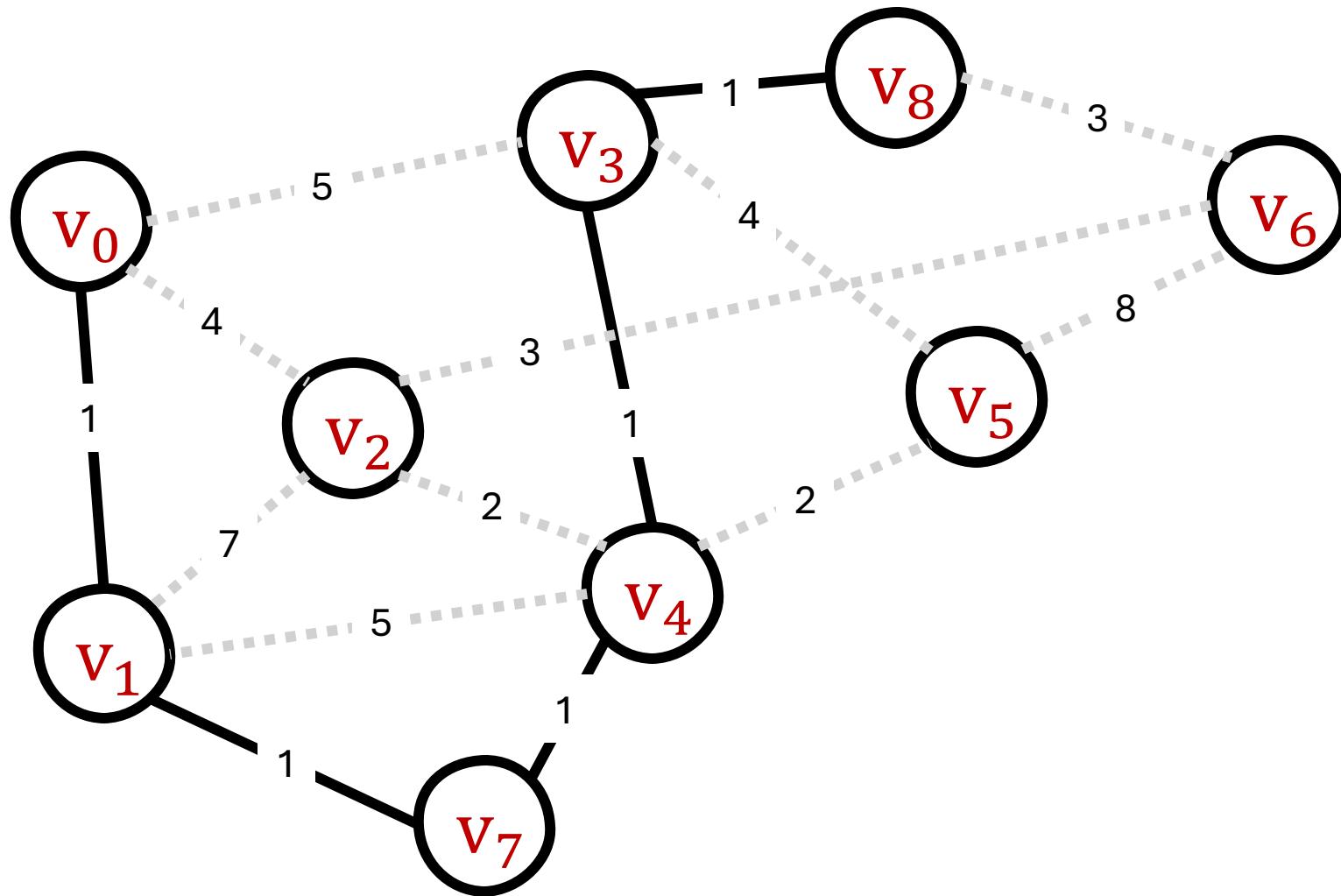
Prim's Algorithm



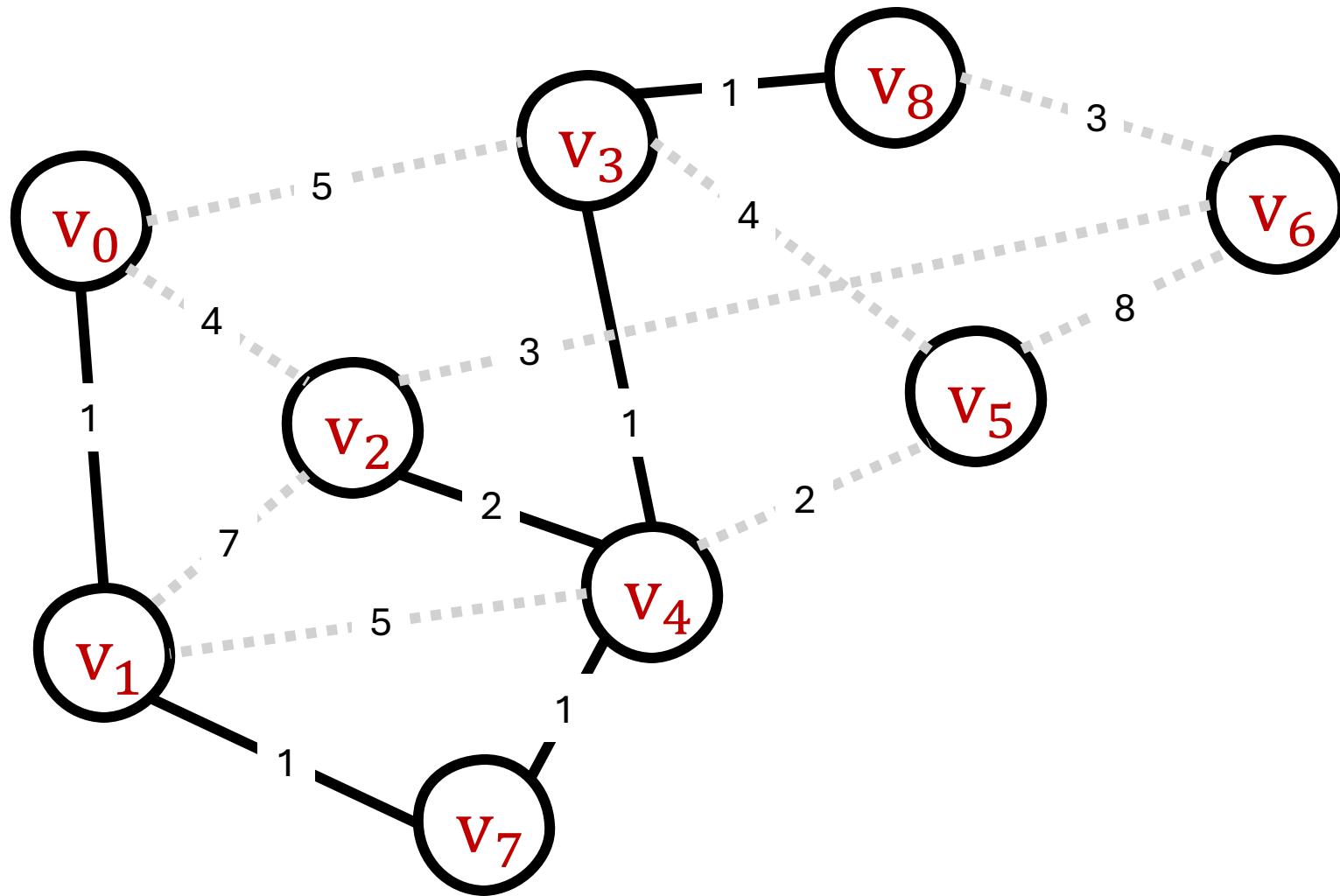
Prim's Algorithm



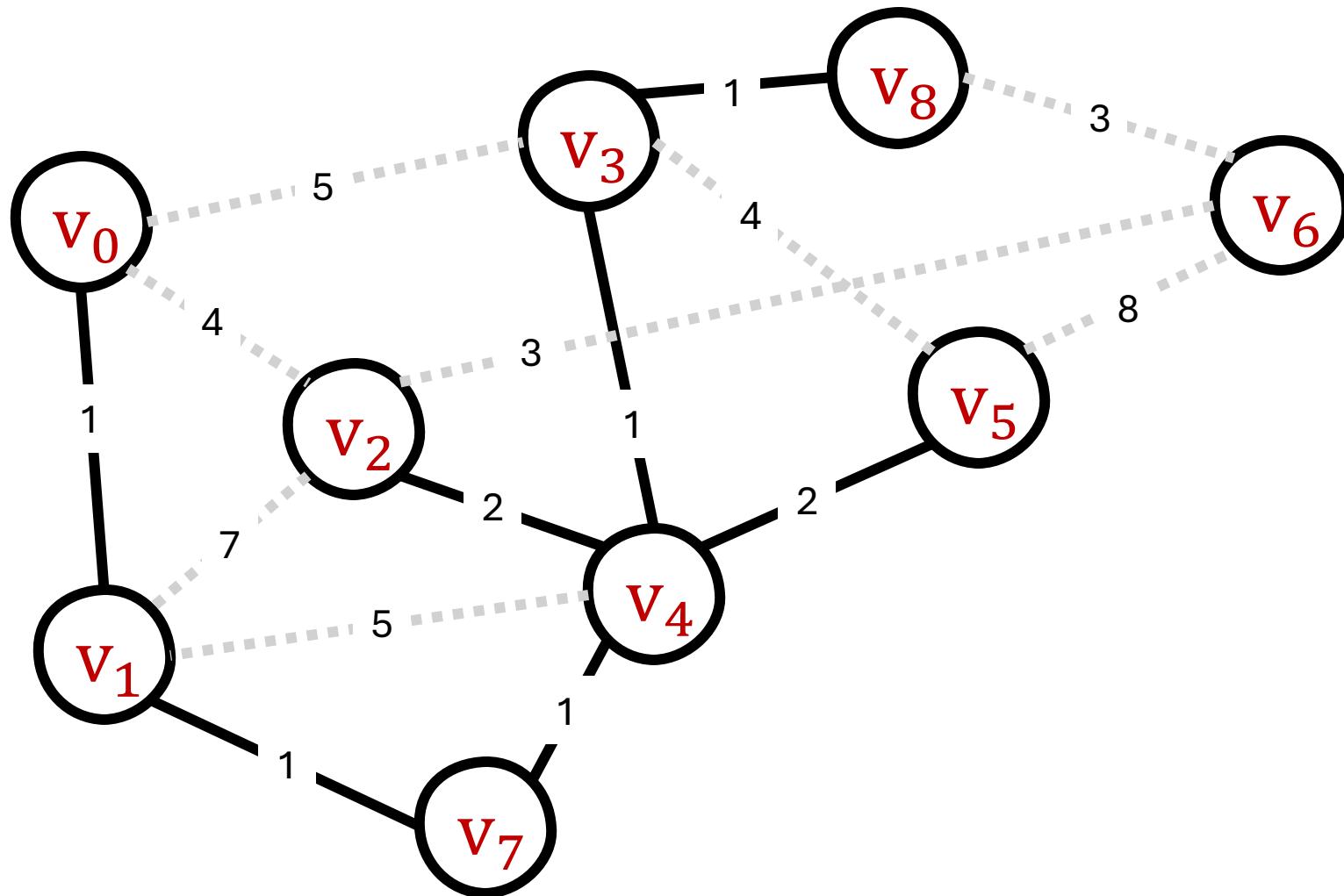
Prim's Algorithm



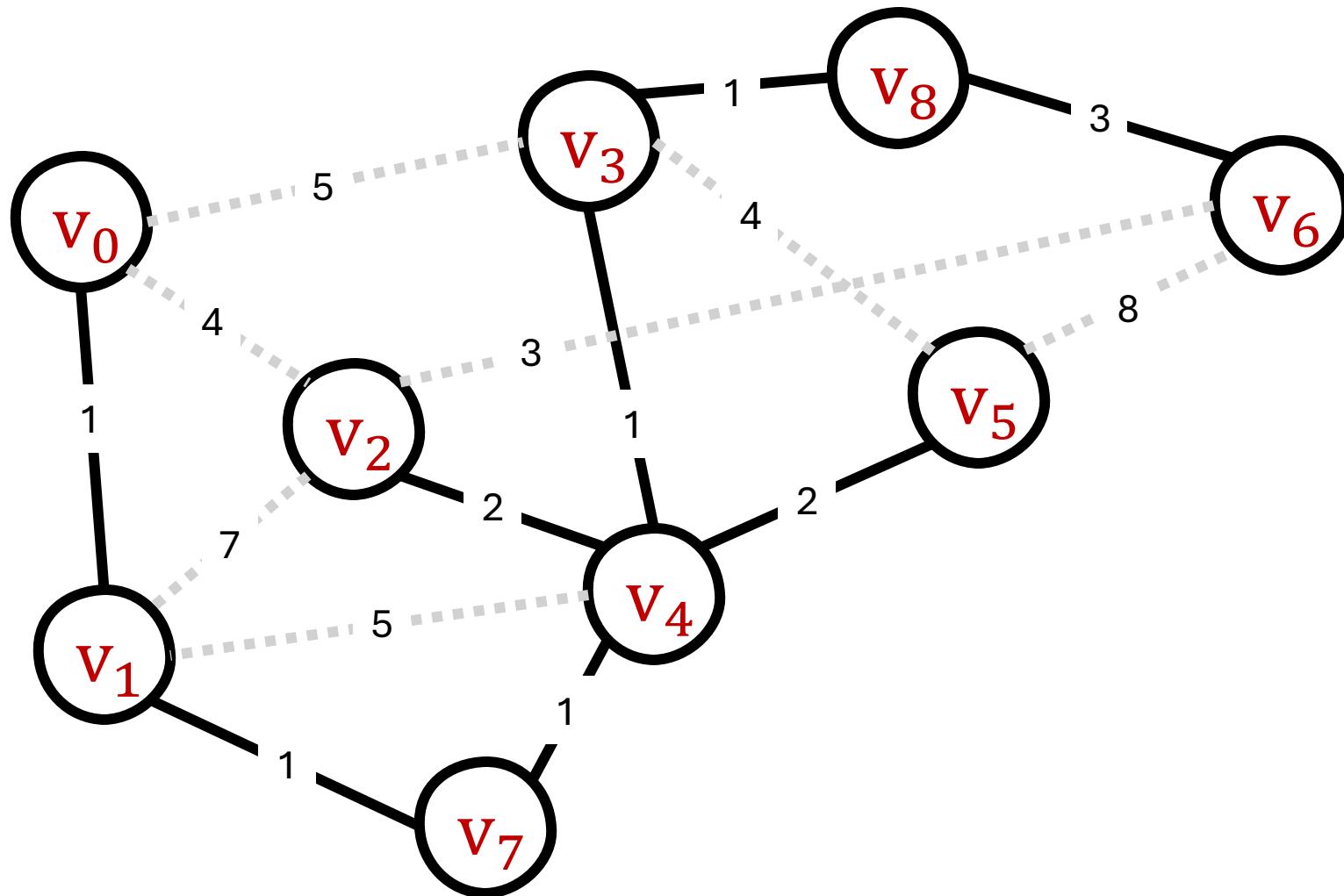
Prim's Algorithm



Prim's Algorithm



Prim's Algorithm



Other Algorithms

Reverse Kruskal's

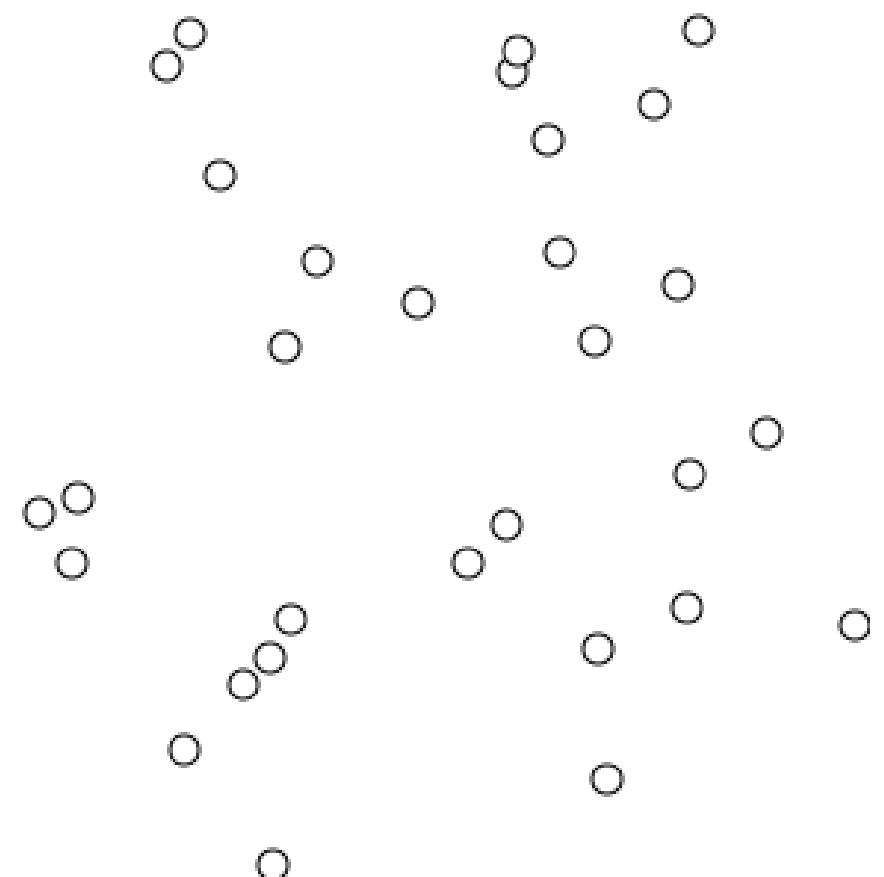
- **Input:** Undirected graph $G = (V, E)$ and weights L
- **Output:** MST of G
 - Sort E using values in L
 - Break ties arbitrarily
 - Let T be a copy of G
 - For e in E backwards:
 - If removing e from T doesn't disconnect the graph, remove it.

Borůvka's

- **Input:** Undirected graph $G = (V, E)$ and weights L
- **Output:** MST of G
 - Let T be an empty graph
 - For c in $CC(T)$:
 - Find edge e leaving c with smallest weight
 - Add e to T

Kruskal's Algorithm

- **Input:** Undirected graph $G = (V, E)$ and weights L
- **Output:** MST of G
 - Sort E using values in L
 - Break ties arbitrarily
 - Let T be an empty graph
 - For e in E :
 - If adding e to T doesn't cause a cycle, add it.



Claim: Kruskal's Algorithm is Correct

Proof:

- Let $e = (u,v)$ be an edge added by Kruskal's algorithm
- Consider the T just before adding e .
 - Let S be the connected component of T that contains u .
 - Then e was the minimum weight edge leaving S and by the Cut Property it must be in the MST.
 - Hence, Kruskal's algorithm only adds edges that must be in the MST.

Claim: Kruskal's Algorithm is Correct

Proof:

- Let $e = (u,v)$ be an edge added by Kruskal's algorithm
- Consider the T just before adding e .
 - Let S be the connected component of T that contains u .
- Then e was the minimum weight edge leaving S and by the Cut Property it must be in the MST.
- Hence, Kruskal's algorithm only adds edges that must be in the MST.
- Finally, we note that if T was not connected then there would have been edge that could have been added without forming a cycle.
- It follows that T is the MST at the end of the algorithm.

Claim: Prim's Algorithm is Correct

Proof:

- Let $e = (u,v)$ be an edge added by Kruskal's algorithm
- Consider the T just before adding e .
 - Let S be the connected component of T that contains u .
- Then e was the minimum weight edge leaving S and by the Cut Property it must be in the MST.
- Hence, Prim's algorithm only adds edges that must be in the MST.
- Finally, we note that if T was not connected then there would have been edge that could have been added without forming a cycle.
- It follows that T is the MST at the end of the algorithm.