
CSE 331:
Algorithms & Complexity

Prof. Charlie Anne Carlson (She/Her)
Lecture 20

Monday October 20, 2025

“MSTs”

Schedule

1.Course Updates
2.Min Spanning Trees
3.Cut Property
4.Kruskal’s Algorithm
5.Prim’s Algorithm

Course Updates

• Midterm Part I Out
• Midterm Part II Out – Soonish
• Post Midterm Grades – Before

Wednesday
• HW 4 Due Tomorrow
• Group Project

• First Problems Oct 31st

Minimum Spanning Trees (MST)

v0

v1

v3

v4

v6

v2
v5

v7

v8

• Q: What if I add 100 to each edge?
• Q: What if I mult each edge by 23?
• Q: What if I take log of each edge?

MST
5

1

4

7

5

1
1

2

3

1

2

8

4

31

MST Algorithms (Greedy) Ideas:

MST• Start with empty graph:
• Kruskal: Add small edge that

connect components.
• Prim: Grow a component by

taking smallest edge leaving it.
• Borůvka: Add min weight edge

leaving each component.
• Start With G:

• Reverse Kruskal: Remove big
edges that aren’t needed.

Cut (Sets)

MST

v0

v1

v3

v4

v6

v2
v5

v7

v8

Def: A cut of a graph 𝐺 = (𝑉, 𝐸) is a
partitioning of 𝑉 into two sets 𝑆 and
𝑉 ∖ S. The cutset of S is the set of
edges with exactly on endpoint in S.

Super Graph
5

1

4

7

5

1
1

2

3

1

2

8

4

31

Cut (Sets)

MST

v0

v1

v3

v4

v6

v2
v5

v7

v8

Def: A cut of a graph 𝐺 = (𝑉, 𝐸) is a
partitioning of 𝑉 into two sets 𝑆 and
𝑉 ∖ S. The cutset of S is the set of
edges with exactly on endpoint in S.

Cut Set of S
5

1

4

7

5

1
1

2

3

1

2

8

4

31

S

Q: Can a cycle intersect a cut set an odd number of
times?

MST

v0

v1

v3

v4

v6

v2
v5

v7

v8

Def: A cut of a graph 𝐺 = (𝑉, 𝐸) is a
partitioning of 𝑉 into two sets 𝑆 and
𝑉 ∖ S. The cutset of S is the set of
edges with exactly on endpoint in S.

Cut Set of S
5

1

4

7

5

1
1

2

3

1

2

8

4

31

A: No. “If it enters, it must leave.”

Spanning Trees

v0

v1

v3

v4

v6

v2
v5

v7

v8

Q: What happens when I add an edge
to a tree?

Tree
5

1

4

7

5

1
1

2

3

1

2

8

4

31

Spanning Not Trees

v0

v1

v3

v4

v6

v2
v5

v7

v8

A: You get a spanning graph with one
cycle.
Q: How do I get a tree again?

Not Tree
5

1

4

7

5

1
1

2

3

1

2

8

4

31

Spanning Trees

v0

v1

v3

v4

v6

v2
v5

v7

v8

A: You remove any edge in the cycle!
Q: How many connected
components do I get when I remove
an edge?

Tree
5

1

4

7

5

1
1

2

3

1

2

8

4

31

Spanning Forest

v0

v1

v3

v4

v6

v2
v5

v7

v8

A: You get two connected
components.
Q: How do I get back a tree?

Forest/Cut
5

1

4

7

5

1
1

2

3

1

2

8

4

31S

Spanning Tree

v0

v1

v3

v4

v6

v2
v5

v7

v8

A: You add any edge in the cut set!

Forest/Cut
5

1

4

7

5

1
1

2

3

1

2

8

4

31S

Cut Property

Lemma: Fix a graph 𝐺 = (𝑉, 𝐸) with edge weights ℓ. Assume that all
edges are distinct. Let 𝑆 be any subset of nodes that is neither empty
or equal to all of 𝑉, and let 𝑒 = (𝑢, 𝑣) be the minimum-cost edge with
on end in 𝑆 and the other in 𝑉 ∖ 𝑆. Then every minimum spanning tree
contains the edge 𝑒.

Proof of Cut Property

• We will do an exchange argument.
• Let T be a spanning tree that doesn’t contain e = (u,v).
• We will show that we can construct a tree T’ that does include e

that has strictly less total weight.
• To this end, we will identify another edge e’ = (x,y) that is in T

and be be “exchanged” with e.

Proof of Cut Property

y

u v

x

S V \ S

e

e’

Tree T’

Proof of Cut Property

y

u v

x

S V \ S

e

e’

Tree T’

Idea: Take cycle that forms by adding e to T.

Proof of Cut Property

y

u v

x

S V \ S

e

e’

Tree T’

This cycle must cross S an even number of times.

Proof of Cut Property

y

u v

x

S V \ S

e

e’

Tree T’

Let e’ be another edge.

Proof of Cut Property

y

u v

x

S V \ S

e

e’

Tree T’

Swap these edges to break cycle and form new Tree.

Proof of Cut Property

• We will do an exchange argument.
• Let T be a spanning tree that doesn’t contain e = (u,v).
• We will show that we can construct a tree T’ that does include e

that has strictly less total weight.
• To this end, we will identify another edge e’ = (x,y) that is in T

and be be “exchanged” with e.
• Since T is a spanning tree there must be a path from u to v.

• Take this path and let e’=(x,y) be first edge to leave S.
• By lemma assumption, we know that ℓ𝑒 < ℓe’.
• Swap e and e’ to make T’.

• T’ is connected and acyclic and total weight went down.

Proof of Cut Property

• We will do an exchange argument.
• …
• T’ is connected and acyclic and total weight went down.

• To see T’ is connected, take any pair of vertices (a,b) and their
path in T.
• If this path used e then ”reroute” to use e’.
• Otherwise, path still exists.

• To see T’ is acyclic, note that the only cycle in T with e must
have been the cycle that contained e and it is no longer a
cycle since e’ was removed.

• To see that the weight went down, recall ℓ𝑒 < ℓe’.

Kruskal’s Algorithm

• Input: Undirected graph G =
(V,E) and weights L

• Output: MST of G
• Sort E using values in L

• Break ties arbitrarily
• Let T be an empty graph
• For e in E:

• If adding e to T doesn’t
case a cycle, add it.

https://en.wikipedia.org/wiki/File:KruskalDemo.gif

Kruskal’s Algorithm

v0

v1

v3

v4

v6

v2
v5

v7

v8 MST
5

1

4

7

5

1
1

2

3

1

2

8

4

31

Kruskal’s Algorithm

v0

v1

v3

v4

v6

v2
v5

v7

v8 MST
5

1

4

7

5

1
1

2

3

1

2

8

4

31

Kruskal’s Algorithm

v0

v1

v3

v4

v6

v2
v5

v7

v8 MST
5

1

4

7

5

1
1

2

3

1

2

8

4

31

Kruskal’s Algorithm

v0

v1

v3

v4

v6

v2
v5

v7

v8 MST
5

1

4

7

5

1
1

2

3

1

2

8

4

31

Kruskal’s Algorithm

v0

v1

v3

v4

v6

v2
v5

v7

v8 MST
5

1

4

7

5

1
1

2

3

1

2

8

4

31

Kruskal’s Algorithm

v0

v1

v3

v4

v6

v2
v5

v7

v8 MST
5

1

4

7

5

1
1

2

3

1

2

8

4

31

Kruskal’s Algorithm

v0

v1

v3

v4

v6

v2
v5

v7

v8 MST
5

1

4

7

5

1
1

2

3

1

2

8

4

31

Kruskal’s Algorithm

v0

v1

v3

v4

v6

v2
v5

v7

v8 MST
5

1

4

7

5

1
1

2

3

1

2

8

4

31

Kruskal’s Algorithm

v0

v1

v3

v4

v6

v2
v5

v7

v8 MST
5

1

4

7

5

1
1

2

3

1

2

8

4

31

Kruskal’s Algorithm

v0

v1

v3

v4

v6

v2
v5

v7

v8 MST
5

1

4

7

5

1
1

2

3

1

2

8

4

31

Prim’s Algorithm

• Input: Undirected graph G = (V,E)
and weights L

• Output: MST of G
• Pick s in V arbitrarily
• Let S = {s}
• While S != V:

• Find minimum weight edge e =
(u,v) where u is in S but v is
not.

• Add v to S

https://en.wikipedia.org/wiki/File:PrimAlgDemo.gif

Prim’s Algorithm

v0

v1

v3

v4

v6

v2
v5

v7

v8 MST
5

1

4

7

5

1
1

2

3

1

2

8

4

31

Prim’s Algorithm

v0

v1

v3

v4

v6

v2
v5

v7

v8 MST
5

1

4

7

5

1
1

2

3

1

2

8

4

31

Prim’s Algorithm

v0

v1

v3

v4

v6

v2
v5

v7

v8 MST
5

1

4

7

5

1
1

2

3

1

2

8

4

31

Prim’s Algorithm

v0

v1

v3

v4

v6

v2
v5

v7

v8 MST
5

1

4

7

5

1
1

2

3

1

2

8

4

31

Prim’s Algorithm

v0

v1

v3

v4

v6

v2
v5

v7

v8 MST
5

1

4

7

5

1
1

2

3

1

2

8

4

31

Prim’s Algorithm

v0

v1

v3

v4

v6

v2
v5

v7

v8 MST
5

1

4

7

5

1
1

2

3

1

2

8

4

31

Prim’s Algorithm

v0

v1

v3

v4

v6

v2
v5

v7

v8 MST
5

1

4

7

5

1
1

2

3

1

2

8

4

31

Prim’s Algorithm

v0

v1

v3

v4

v6

v2
v5

v7

v8 MST
5

1

4

7

5

1
1

2

3

1

2

8

4

31

Other Algorithms

MST
Reverse Kruskal’s
• Input: Undirected graph G =

(V,E) and weights L
• Output: MST of G

• Sort E using values in L
• Break ties arbitrarily

• Let T be a copy of G
• For e in E backwards:

• If removing e from T
doesn’t disconnect the
graph, remove it.

Borůvka's
• Input: Undirected graph G =

(V,E) and weights L
• Output: MST of G

• Let T be an empty graph
• For c in CC(T):

• Find edge e leaving c with
smallest weight

• Add e to T

Kruskal’s Algorithm

• Input: Undirected graph G =
(V,E) and weights L

• Output: MST of G
• Sort E using values in L

• Break ties arbitrarily
• Let T be an empty graph
• For e in E:

• If adding e to T doesn’t
case a cycle, add it.

https://en.wikipedia.org/wiki/File:KruskalDemo.gif

Claim: Kruskal’s Algorithm is Correct

MST
Proof:
• Let e = (u,v) be an edge added by Kruskal’s algorithm
• Consider the T just before adding e.

• Let S be the connected component of T that contains u.
• Then e was the minimum weight edge leaving S and by the Cut

Property it must be in the MST.
• Hence, Kruskal’s algorithm only adds edges that must be in the

MST.

Claim: Kruskal’s Algorithm is Correct

MST
Proof:
• Let e = (u,v) be an edge added by Kruskal’s algorithm
• Consider the T just before adding e.

• Let S be the connected component of T that contains u.
• Then e was the minimum weight edge leaving S and by the Cut

Property it must be in the MST.
• Hence, Kruskal’s algorithm only adds edges that must be in the

MST.
• Finally, we note that if T was not connected then there would have

been edge that could have been added without forming a cycle.
• It follows that T is the MST at the end of the algorithm.

Claim: Prim’s Algorithm is Correct

MST
Proof:
• Let e = (u,v) be an edge added by Kruskal’s algorithm
• Consider the T just before adding e.

• Let S be the connected component of T that contains u.
• Then e was the minimum weight edge leaving S and by the Cut

Property it must be in the MST.
• Hence, Prim’s algorithm only adds edges that must be in the MST.
• Finally, we note that if T was not connected then there would have

been edge that could have been added without forming a cycle.
• It follows that T is the MST at the end of the algorithm.

	Slide 1: CSE 331: Algorithms & Complexity
	Slide 2: Schedule
	Slide 3: Course Updates
	Slide 4: Minimum Spanning Trees (MST)
	Slide 5: MST Algorithms (Greedy) Ideas:
	Slide 6: Cut (Sets)
	Slide 7: Cut (Sets)
	Slide 8: Q: Can a cycle intersect a cut set an odd number of times?
	Slide 9: A: No. “If it enters, it must leave.”
	Slide 10: Spanning Trees
	Slide 11: Spanning Not Trees
	Slide 12: Spanning Trees
	Slide 13: Spanning Forest
	Slide 14: Spanning Tree
	Slide 15: Cut Property
	Slide 16: Proof of Cut Property
	Slide 17: Proof of Cut Property
	Slide 18: Proof of Cut Property
	Slide 19: Proof of Cut Property
	Slide 20: Proof of Cut Property
	Slide 21: Proof of Cut Property
	Slide 22: Proof of Cut Property
	Slide 23: Proof of Cut Property
	Slide 24: Kruskal’s Algorithm
	Slide 25: Kruskal’s Algorithm
	Slide 26: Kruskal’s Algorithm
	Slide 27: Kruskal’s Algorithm
	Slide 28: Kruskal’s Algorithm
	Slide 29: Kruskal’s Algorithm
	Slide 30: Kruskal’s Algorithm
	Slide 31: Kruskal’s Algorithm
	Slide 32: Kruskal’s Algorithm
	Slide 33: Kruskal’s Algorithm
	Slide 34: Kruskal’s Algorithm
	Slide 35: Prim’s Algorithm
	Slide 36: Prim’s Algorithm
	Slide 37: Prim’s Algorithm
	Slide 38: Prim’s Algorithm
	Slide 39: Prim’s Algorithm
	Slide 40: Prim’s Algorithm
	Slide 41: Prim’s Algorithm
	Slide 42: Prim’s Algorithm
	Slide 43: Prim’s Algorithm
	Slide 44: Other Algorithms
	Slide 45: Kruskal’s Algorithm
	Slide 46: Claim: Kruskal’s Algorithm is Correct
	Slide 47: Claim: Kruskal’s Algorithm is Correct
	Slide 48: Claim: Prim’s Algorithm is Correct

