
CSE 331: 
Algorithms & Complexity

Prof. Charlie Anne Carlson (She/Her)
Lecture 20

Monday October 20, 2025

“MSTs”



Schedule

1.Course Updates
2.Min Spanning Trees
3.Cut Property
4.Kruskal’s Algorithm
5.Prim’s Algorithm



Course Updates

• Midterm Part I Out
• Midterm Part II Out – Soonish
• Post Midterm Grades – Before 

Wednesday
• HW 4 Due Tomorrow
• Group Project

• First Problems Oct 31st



Minimum Spanning Trees (MST)
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• Q: What if I add 100 to each edge?
• Q: What if I mult each edge by 23?
• Q: What if I take log of each edge?
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MST Algorithms (Greedy) Ideas:

MST• Start with empty graph: 
• Kruskal: Add small edge that 

connect components.
• Prim: Grow a component by 

taking smallest edge leaving it.
• Borůvka: Add min weight edge 

leaving each component.
• Start With G: 

• Reverse Kruskal: Remove big 
edges that aren’t needed.



Cut (Sets)
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Def: A cut of a graph 𝐺 = (𝑉, 𝐸) is a 
partitioning of 𝑉 into two sets 𝑆 and 
𝑉 ∖ S. The cutset of S is the set of 
edges with exactly on endpoint in S.
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Cut (Sets)
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Def: A cut of a graph 𝐺 = (𝑉, 𝐸) is a 
partitioning of 𝑉 into two sets 𝑆 and 
𝑉 ∖ S. The cutset of S is the set of 
edges with exactly on endpoint in S.
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Q: Can a cycle intersect a cut set an odd number of 
times?
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Def: A cut of a graph 𝐺 = (𝑉, 𝐸) is a 
partitioning of 𝑉 into two sets 𝑆 and 
𝑉 ∖ S. The cutset of S is the set of 
edges with exactly on endpoint in S.
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A: No. “If it enters, it must leave.”



Spanning Trees
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Q: What happens when I add an edge 
to a tree?

Tree
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Spanning Not Trees

v0

v1

v3

v4

v6

v2
v5

v7

v8

A: You get a spanning graph with one 
cycle.
Q: How do I get a tree again?

Not Tree
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Spanning Trees
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A: You remove any edge in the cycle!
Q: How many connected 
components do I get when I remove 
an edge?
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Spanning Forest
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A: You get two connected 
components. 
Q: How do I get back a tree? 

Forest/Cut
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Spanning Tree
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A: You add any edge in the cut set!

Forest/Cut
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Cut Property

Lemma: Fix a graph 𝐺 = (𝑉, 𝐸) with edge weights ℓ. Assume that all 
edges are distinct. Let 𝑆 be any subset of nodes that is neither empty 
or equal to all of 𝑉, and let 𝑒 = (𝑢, 𝑣) be the minimum-cost edge with 
on end in 𝑆 and the other in 𝑉 ∖ 𝑆. Then every minimum spanning tree 
contains the edge 𝑒. 



Proof of Cut Property

• We will do an exchange argument.
• Let T be a spanning tree that doesn’t contain e = (u,v). 
• We will show that we can construct a tree T’ that does include e 

that has strictly less total weight. 
• To this end, we will identify another edge e’ = (x,y) that is in T 

and be be “exchanged” with e. 



Proof of Cut Property
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Proof of Cut Property
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Idea: Take cycle that forms by adding e to T. 



Proof of Cut Property
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This cycle must cross S an even number of times.



Proof of Cut Property
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Let e’ be another edge. 



Proof of Cut Property
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Swap these edges to break cycle and form new Tree.



Proof of Cut Property

• We will do an exchange argument.
• Let T be a spanning tree that doesn’t contain e = (u,v). 
• We will show that we can construct a tree T’ that does include e 

that has strictly less total weight. 
• To this end, we will identify another edge e’ = (x,y) that is in T 

and be be “exchanged” with e. 
• Since T is a spanning tree there must be a path from u to v.

• Take this path and let e’=(x,y) be first edge to leave S.
• By lemma assumption, we know that ℓ𝑒 < ℓe’.
• Swap e and e’ to make T’. 

• T’ is connected and acyclic and total weight went down.



Proof of Cut Property

• We will do an exchange argument.
• …
• T’ is connected and acyclic and total weight went down.

• To see T’ is connected, take any pair of vertices (a,b) and their 
path in T. 
• If this path used e then ”reroute” to use e’. 
• Otherwise, path still exists.

• To see T’ is acyclic, note that the only cycle in T with e must 
have been the cycle that contained e and it is no longer a 
cycle since e’ was removed. 

• To see that the weight went down, recall ℓ𝑒 < ℓe’.



Kruskal’s Algorithm

• Input: Undirected graph G = 
(V,E) and weights L

• Output: MST of G
• Sort E using values in L

• Break ties arbitrarily 
• Let T be an empty graph
• For e in E:

• If adding e to T doesn’t 
case a cycle, add it.

https://en.wikipedia.org/wiki/File:KruskalDemo.gif



Kruskal’s Algorithm
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Kruskal’s Algorithm
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Kruskal’s Algorithm
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Kruskal’s Algorithm
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Kruskal’s Algorithm
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Kruskal’s Algorithm
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Kruskal’s Algorithm
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Kruskal’s Algorithm
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Kruskal’s Algorithm
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Kruskal’s Algorithm
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Prim’s Algorithm

• Input: Undirected graph G = (V,E) 
and weights L

• Output: MST of G
• Pick s in V arbitrarily
• Let S = {s}
• While S != V:

• Find minimum weight edge e = 
(u,v) where u is in S but v is 
not.

• Add v to S

https://en.wikipedia.org/wiki/File:PrimAlgDemo.gif



Prim’s Algorithm
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Prim’s Algorithm
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Prim’s Algorithm
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Prim’s Algorithm
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Prim’s Algorithm
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Prim’s Algorithm
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Prim’s Algorithm
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Prim’s Algorithm
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Other Algorithms

MST
Reverse Kruskal’s
• Input: Undirected graph G = 

(V,E) and weights L
• Output: MST of G

• Sort E using values in L
• Break ties arbitrarily 

• Let T be a copy of G
• For e in E backwards:

• If removing e from T 
doesn’t disconnect the 
graph, remove it.

Borůvka's
• Input: Undirected graph G = 

(V,E) and weights L
• Output: MST of G

• Let T be an empty graph
• For c in CC(T):

• Find edge e leaving c with 
smallest weight

• Add e to T



Kruskal’s Algorithm

• Input: Undirected graph G = 
(V,E) and weights L

• Output: MST of G
• Sort E using values in L

• Break ties arbitrarily 
• Let T be an empty graph
• For e in E:

• If adding e to T doesn’t 
case a cycle, add it.

https://en.wikipedia.org/wiki/File:KruskalDemo.gif



Claim: Kruskal’s Algorithm is Correct

MST
Proof:
• Let e = (u,v) be an edge added by Kruskal’s algorithm
• Consider the T just before adding e.

• Let S be the connected component of T that contains u. 
• Then e was the minimum weight edge leaving S and by the Cut 

Property it must be in the MST. 
• Hence, Kruskal’s algorithm only adds edges that must be in the 

MST.



Claim: Kruskal’s Algorithm is Correct

MST
Proof:
• Let e = (u,v) be an edge added by Kruskal’s algorithm
• Consider the T just before adding e.

• Let S be the connected component of T that contains u. 
• Then e was the minimum weight edge leaving S and by the Cut 

Property it must be in the MST. 
• Hence, Kruskal’s algorithm only adds edges that must be in the 

MST.
• Finally, we note that if T was not connected then there would have 

been edge that could have been added without forming a cycle.
• It follows that T is the MST at the end of the algorithm.



Claim: Prim’s Algorithm is Correct

MST
Proof:
• Let e = (u,v) be an edge added by Kruskal’s algorithm
• Consider the T just before adding e.

• Let S be the connected component of T that contains u. 
• Then e was the minimum weight edge leaving S and by the Cut 

Property it must be in the MST. 
• Hence, Prim’s algorithm only adds edges that must be in the MST.
• Finally, we note that if T was not connected then there would have 

been edge that could have been added without forming a cycle.
• It follows that T is the MST at the end of the algorithm.
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