CSE 331:
Allg(o)r[itt]hunnlg & (C<o>lnnqp>ll<ex[i1ty

“MST Correctness”

Prof. Charlie Anne Carlson (She/Her)
Lecture 21
Wednesday October 229, 2025

L]

G5

University at Buffalo

Schedule

1.Course Updates
2.Cut Property
3.Kruskal’s Algorithm
4.Prim’s Algorithm
5.Divide & Conquer

Course Updates

Midterm Out

Post Midterm Grades

HW 5 Out

Group Project

* First Problems Oct 31¢t

Midterm Grades

Grade = (P1+P2)

Midterm Evals Grades (One HW Drop)

Grade Includes:
e Midterm (45%)

. TopHW (49%) =
.+ UpToHW3 .° o
* Per Part T,
* QUIZ (6%) e N
* Quiz1 .

1-on-1 Meeting With Me

| am happy to meet to discuss your course performance
and help make a plan on how to move forward.

When | make a plan for pushing out midterm eval
grades, | will also make a piazza post with specific
Instructions on how to set up a meeting with me.

You are free to email me now but please include a long
list of times you are available so we can schedule a
zoom chat.

Feedback Survey

Cut Property

Lemma: Fix a graph ¢ = (V, E) with edge weights £. Assume that all

edges are distinct. Let S be any subset of nodes that is neither empty
orequalto allof V, and lete = (u, v) be the minimum-cost edge with
onendin S and the otherinV \ S. Then every minimum spanning tree
contains the edge e.

Prim’s Algorithm

* Input: Undirected graph G = (V,E) o 9 0
and weights L \ L, O
e Output: MST of G q 5
* PicksinV arbitrarily o C o
e LetS={s} o)
+ While S!=V: 0O o
* Find minimum weight edge e = e 6 0 o
(u,v) where uis in S butvis oo
not. . °
* AddvtoS

https://en.wikipedia.org/wiki/File:PrimAlgDemo.gif

Kruskal’s Algorithm

 Input: Undirected graph G =

O O
(V.E) and weights L 0 7 o
e Output: MST of G ©
« Sort E usingvaluesinL °© 5 “ o
* Breakties arbitrarily © ©
* LetT beanempty graph . o °
* ForeinE: “ o°
 Ifadding e to T doesn’t D{:,‘:* o O
case a cycle, add it. o .
O

https://en.wikipedia.org/wiki/File:KruskalDemo.gif

Claim: Kruskal’s Algorithm is Correct

Proof:

* Lete=(u,v)beanedge added by Kruskal’s algorithm

* Considerthe Tjust before adding e.
* LetS bethe connected component of T that contains u.

* Then e was the minimum weight edge leaving S and by the Cut
Property it must be in the MST.

* Hence, Kruskal’s algorithm only adds edges that must be in the
MST.

Claim: Kruskal’s Algorithm is Correct

Proof:

Let e = (u,v) be an edge added by Kruskal’s algorithm

Consider the T just before adding e.

* LetS bethe connected component of T that contains u.

Then e was the minimum weight edge leaving S and by the Cut
Property it must be in the MST.

Hence, Kruskal’s algorithm only adds edges that must be in the
MST.

~inally, we note that if T was not connected then there would have
been edge that could have been added without forming a cycle.

t follows that T is the MST at the end of the algorithm.

Claim: Prim’s Algorithm is Correct

Proof:

* Lete=(u,v)beanedge added by Kruskal’s algorithm

* Considerthe Tjust before adding e.

* LetS bethe connected component of T that contains u.

Then e was the minimum weight edge leaving S and by the Cut
Property it must be in the MST.

* Hence, Prim’s algorithm only adds edges that must be in the MST.
* Finally, we note that if T was not connected then there would have
been edge that could have been added without forming a cycle.

* |tfollowsthatT is the MST at the end of the algorithm.

Prim’s Algorithm Runtime

* Input: Undirected graph G = (V,E) o 9 O

and weights L \ L, O
e Output: MST of G q 5
* PicksinV arbitrarily o C o
e LetS={s} o)
+ While S!=V: 0O o
* Find minimum weight edge e = e 6 0 o
(u,v) where uis in S butvis oo
not. . °
* AddvtoS

https://en.wikipedia.org/wiki/File:PrimAlgDemo.gif

Prim’s Algorithm Runtime O(m log(n))

Claim: Using a priority queue, Prim’s . e

Algorithm can be implemented on a \ o ©
graph with n nodes and m edges to run
In O(mM) time, plus the time for n © o
PopMinand m DecreasePriority o
operations. 0O 0

Corollary: Using a heap-based priority
queue we get a running time of O(m

log(n)).

https://en.wikipedia.org/wiki/File:PrimAlgDemo.gif

Kruskal’s Algorithm Runtime

 Input: Undirected graph G =

O O
(V.E) and weights L 0 7 o
e Output: MST of G ©
« Sort E usingvaluesinL °© 5 “ o
* Breakties arbitrarily © ©
* LetT beanempty graph . o °
* ForeinE: “ o°
 Ifadding e to T doesn’t D{:,‘:* o O
case a cycle, add it. o .
O

https://en.wikipedia.org/wiki/File:KruskalDemo.gif

Kruskal’s Algorithm Runtime O(m log(n))

 Input: Undirected graph G =

O O
(V.E) and weights L © 7 q
e Output: MST of G ©
* Sort E using values in L °© 4 “ o
 Break ties arbitrarily O ©
* LetT beanempty graph . o °
* ForeinE: 2 o>
* IfaddingetoTdoesn’t {:}D{:] o 0 ©
case a cycle, add it. o .
O

https://en.wikipedia.org/wiki/File:KruskalDemo.gif

Kruskal’s Algorithm Runtime O(m log(n))

* To prove this running time, we
need a Union-Find data
structure.

Keeps track of which
elements in a ground set

belong to the same subsets.

Find (u): Returns name of
set that contains u.
Union (A, B) combine sets

A and B into one set.
Read KT 4.6!

O O
O &
O
O
O
O
O - A
O O
O
O
DD O
O O
® O ®
O
Ne
O
O
O

https://en.wikipedia.org/wiki/File:KruskalDemo.gif

Divide & Conqguer (KT 5.1 and KT 5.2)

y

Divide
Problem 1 Problem 2 ° Problem k

Conquer

Solution k

Solution

Why Divide & Conquer?

O
. -
Recursion —

2
El

Problem 1 Problem 2

Solution 1 Solution 2

Why Divide & Conquer?

O
. -
Recursion —

2
El

Idea: If you can easily break apart problems
and combine those solutions then recursion
can let you avoid slow algorithms on big

problems and instead only run slow algorithms
on small problems.

Why Divide & Conquer?

Problem N

O(n)
o Problem 1 N/2 Problem 2 N/2
2 Solution 1 Solution 2
O(n)

Why Divide & Conquer?

Problem 1 N/2

O
. -
Recursion —

2
El

Problem 11 N/4 Problem 12 N/4

Solution 11 Solution 12

Why Divide & Conquer?

Problem 111...1 O(1)

Problem 111...11 Problem 111...12

o
—
—
~—"

— Brute Force

Q

Solution 111...11 Solution111...12

Solution 111...1

Q: How many times can you split in half?

Problem 111...1 O(1)

O(1)
§ Problem 111...11 Problem 111...12
LL
o
D%’ Solution 111...11 Solution 111...12
o(1)

Solution 111...1

A: After log times, you will get a constant!

Problem 111...1 O(1)

o
—
—
~—"

§ Problem 111...11 Problem 111...12
5
D%’ Solution 111...11 Solution 111...12
)

Q

Solution 111...1

Sorting

* Problem: Given alist of n
numbers L, rearrange them in
ascending order.

« E.g. p
 Input:[3,2,5,5,1,6,7,8] 4

. Output:[1,2,3,5,5,6,7,8] f

& A 4

Sorting

* Problem: Given alist of n
numbers L, rearrange them in
ascending order.

* Sorting Algorithms:
* Bubble Sort
* |nsertion Sort
* Mergesort
 Radix Sort
e Quicksort
* |ntrosort

Sorting

* Problem: Given alist of n
numbers L, rearrange them in
ascending order.

* Sorting Algorithms:
* Bubble Sort
* |nsertion Sort
* Mergesort
 Radix Sort
e Quicksort
* |ntrosort

Mergesort

Divides: Divides input into two
pieces of equal size in linear
time.

* Assume even length for now.

Conquer: Recursively calls
mergesort on each piece.
Unite: Merges the two sorted
lists in linear time.

Mergesort

* Base Case: If array has length
less than 2, brute force.

* Divides: Divides input into two
pieces of equal size in linear
time.

* Assume even length for now.

* Conquer: Recursively calls
mergesort on each piece.

* Unite: Merges the two sorted
lists in linear time.

Sorting

e Problem: Given two sorted lists
A and B, find a sorted list of
their union.

O

O
=

Merging

* Input: Two sorted lists A and B of length n/2
* Output: Sorted listof Aand B
* [nitialize list C to be empty
e Leti=0andj=0
* While (i<n/2orj<n/2):
 |fj==n/2 or A[i] <= BJj]:

« C.append(Ali]) O
e j+=1

e Else: (\O
* C.append(B[j]) —
° j+=']

Mergesort Runtime?

* Base Case: If array has length
less than 2, brute force.

* Divides: Divides input into two
pieces of equal size in linear
time.

* Assume even length for now.

* Conquer: Recursively calls
mergesort on each piece.

* Unite: Merges the two sorted
lists in linear time.

Let T(n) be runtime of Mergesort.

* Base Case: If array has length less than 2, brute force. O(1)

* Divides: Divides input into two pieces of equal size in linear time. O(n)
* Assume even length for now.

* Conquer: Recursively calls mergesort on each piece. T(n/2)

* Unite: Merges the two sorted lists in linear time. O(n)

Let T(n) be runtime of Mergesort.

* Base Case: If array has length less than 2, brute force. O(1)

* Divides: Divides input into two pieces of equal size in linear time. O(n)
* Assume even length for now.

* Conquer: Recursively calls mergesort on each piece. T(n/2)

* Unite: Merges the two sorted lists in linear time. O(n)

T(n) <?

Let T(n) be runtime of Mergesort.

« Base Case: If array has length less than 2, brute force. O(1)

* Divides: Divides input into two pieces of equal size in linear time. O(n)
* Assume even length for now.

* Conquer: Recursively calls mergesort on each piece. T(n/2)

* Unite: Merges the two sorted lists in linear time. O(n)

2T(n/2) + O(n) oO.w.

T(n) < 0(1) ifn <2

Let T(n) be runtime of Mergesort.

« Base Case: If array has length less than 2, brute force. O(1)

* Divides: Divides input into two pieces of equal size in linear time. O(n)
* Conquer: Recursively calls mergesort on each piece. T(n/2)

* Unite: Merges the two sorted lists in linear time. O(n)

(C ifn <2

T®) = \1(n/2) + T(In/21+ ¢n ow.

How do you solve a recurrence?

* Unrolling: We analyze the first few "levels” of the recursion, find a

pattern and then prove that the pattern is correct.
* Guess and Check: We guess what the answer and the substitute it in

to check that it works. That is, we prove it works.
e We willtalk about these next time but read KT 5.1 and KT 5.2!

(C f < 2
T®) < {1(in/2)) + T(n/21+ ¢ ow.

	Slide 1: CSE 331: Algorithms & Complexity
	Slide 2: Schedule
	Slide 3: Course Updates
	Slide 4: Midterm Grades
	Slide 5: Midterm Evals Grades (One HW Drop)
	Slide 6: 1-on-1 Meeting With Me
	Slide 7: Feedback Survey
	Slide 8: Cut Property
	Slide 9: Prim’s Algorithm
	Slide 10: Kruskal’s Algorithm
	Slide 11: Claim: Kruskal’s Algorithm is Correct
	Slide 12: Claim: Kruskal’s Algorithm is Correct
	Slide 13: Claim: Prim’s Algorithm is Correct
	Slide 14: Prim’s Algorithm Runtime
	Slide 15: Prim’s Algorithm Runtime O(m log(n))
	Slide 16: Kruskal’s Algorithm Runtime
	Slide 17: Kruskal’s Algorithm Runtime O(m log(n))
	Slide 18: Kruskal’s Algorithm Runtime O(m log(n))
	Slide 19: Divide & Conquer (KT 5.1 and KT 5.2)
	Slide 20: Why Divide & Conquer?
	Slide 21: Why Divide & Conquer?
	Slide 22: Why Divide & Conquer?
	Slide 23: Why Divide & Conquer?
	Slide 24: Why Divide & Conquer?
	Slide 25: Q: How many times can you split in half?
	Slide 26: A: After log times, you will get a constant!
	Slide 27: Sorting
	Slide 28: Sorting
	Slide 29: Sorting
	Slide 30: Mergesort
	Slide 31: Mergesort
	Slide 32: Sorting
	Slide 33: Merging
	Slide 34: Mergesort Runtime?
	Slide 35: Let T(n) be runtime of Mergesort.
	Slide 36: Let T(n) be runtime of Mergesort.
	Slide 37: Let T(n) be runtime of Mergesort.
	Slide 38: Let T(n) be runtime of Mergesort.
	Slide 39: How do you solve a recurrence?

