
CSE 331: 
Algorithms & Complexity

Prof. Charlie Anne Carlson (She/Her)
Lecture 21

Wednesday October 22nd, 2025

“MST Correctness”



Schedule

1.Course Updates
2.Cut Property
3.Kruskal’s Algorithm
4.Prim’s Algorithm
5.Divide & Conquer



Course Updates

• Midterm Out
• Post Midterm Grades 
• HW 5 Out
• Group Project

• First Problems Oct 31st



Midterm Grades
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Grade = (P1+P2)



Midterm Evals Grades (One HW Drop)
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Grade Includes:
• Midterm (45%)
• Top HW (49%)

• Up To HW 3
• Per Part

• QUIZ (6%)
• Quiz 1



1-on-1 Meeting With Me

• I am happy to meet to discuss your course performance 
and help make a plan on how to move forward. 

• When I make a plan for pushing out midterm eval 
grades, I will also make a piazza post with specific 
instructions on how to set up a meeting with me. 

• You are free to email me now but please include a long 
list of times you are available so we can schedule a 
zoom chat. 



Feedback Survey



Cut Property

Lemma: Fix a graph 𝐺 = (𝑉, 𝐸) with edge weights ℓ. Assume that all 
edges are distinct. Let 𝑆 be any subset of nodes that is neither empty 
or equal to all of 𝑉, and let 𝑒 = (𝑢, 𝑣) be the minimum-cost edge with 
on end in 𝑆 and the other in 𝑉 ∖ 𝑆. Then every minimum spanning tree 
contains the edge 𝑒. 



Prim’s Algorithm

• Input: Undirected graph G = (V,E) 
and weights L

• Output: MST of G
• Pick s in V arbitrarily
• Let S = {s}
• While S != V:

• Find minimum weight edge e = 
(u,v) where u is in S but v is 
not.

• Add v to S

https://en.wikipedia.org/wiki/File:PrimAlgDemo.gif



Kruskal’s Algorithm

• Input: Undirected graph G = 
(V,E) and weights L

• Output: MST of G
• Sort E using values in L

• Break ties arbitrarily 
• Let T be an empty graph
• For e in E:

• If adding e to T doesn’t 
case a cycle, add it.

https://en.wikipedia.org/wiki/File:KruskalDemo.gif



Claim: Kruskal’s Algorithm is Correct

MST
Proof:
• Let e = (u,v) be an edge added by Kruskal’s algorithm
• Consider the T just before adding e.

• Let S be the connected component of T that contains u. 
• Then e was the minimum weight edge leaving S and by the Cut 

Property it must be in the MST. 
• Hence, Kruskal’s algorithm only adds edges that must be in the 

MST.



Claim: Kruskal’s Algorithm is Correct

MST
Proof:
• Let e = (u,v) be an edge added by Kruskal’s algorithm
• Consider the T just before adding e.

• Let S be the connected component of T that contains u. 
• Then e was the minimum weight edge leaving S and by the Cut 

Property it must be in the MST. 
• Hence, Kruskal’s algorithm only adds edges that must be in the 

MST.
• Finally, we note that if T was not connected then there would have 

been edge that could have been added without forming a cycle.
• It follows that T is the MST at the end of the algorithm.



Claim: Prim’s Algorithm is Correct

MST
Proof:
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Prim’s Algorithm Runtime

• Input: Undirected graph G = (V,E) 
and weights L

• Output: MST of G
• Pick s in V arbitrarily
• Let S = {s}
• While S != V:

• Find minimum weight edge e = 
(u,v) where u is in S but v is 
not.

• Add v to S

https://en.wikipedia.org/wiki/File:PrimAlgDemo.gif



Prim’s Algorithm Runtime O(m log(n))

Claim: Using a priority queue, Prim’s 
Algorithm can be implemented on a 
graph with n nodes and m  edges to run 
in O(m) time, plus the time for n 
PopMin and m DecreasePriority 
operations. 

Corollary: Using a heap-based priority 
queue we get a running time of O(m 
log(n)). 

https://en.wikipedia.org/wiki/File:PrimAlgDemo.gif



Kruskal’s Algorithm Runtime

• Input: Undirected graph G = 
(V,E) and weights L

• Output: MST of G
• Sort E using values in L

• Break ties arbitrarily 
• Let T be an empty graph
• For e in E:

• If adding e to T doesn’t 
case a cycle, add it.
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Kruskal’s Algorithm Runtime O(m log(n))

• Input: Undirected graph G = 
(V,E) and weights L

• Output: MST of G
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Kruskal’s Algorithm Runtime O(m log(n))

• To prove this running time, we 
need a Union-Find data 
structure.
• Keeps track of which 

elements in a ground set 
belong to the same subsets.

• Find(u): Returns name of 
set that contains u. 

• Union(A,B) combine sets 
A and B into one set. 

• Read KT 4.6!
https://en.wikipedia.org/wiki/File:KruskalDemo.gif



Divide & Conquer (KT 5.1 and KT 5.2)

Problem
Problem 1 Problem 2 Problem k

Solution 1 Solution 2 Solution k

Solution

Divide

Conquer

Unite



Why Divide & Conquer?
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Why Divide & Conquer?
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Idea: If you can easily break apart problems 
and combine those solutions then recursion 

can let you avoid slow algorithms on big 
problems and instead only run slow algorithms 

on small problems.



Why Divide & Conquer?

Problem N
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Why Divide & Conquer?

Problem 1 N/2
Problem 11 N/4 Problem 12 N/4

Solution 11 Solution 12

Solution 1
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Why Divide & Conquer?

Problem 111…1 O(1)
Problem 111…11 Problem 111…12

Solution 111…11 Solution 111…12
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Q: How many times can you split in half?

Problem 111…1 O(1)
Problem 111…11 Problem 111…12

Solution 111…11 Solution 111…12

Solution 111…1
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A: After log times, you will get a constant!

Problem 111…1 O(1)
Problem 111…11 Problem 111…12

Solution 111…11 Solution 111…12

Solution 111…1
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Sorting

• Problem: Given a list of n 
numbers L, rearrange them in 
ascending order.

• E.g.
• Input: [3,2,5,5,1,6,7,8]
• Output: [1,2,3,5,5,6,7,8]



Sorting

• Problem: Given a list of n 
numbers L, rearrange them in 
ascending order.

• Sorting Algorithms:
• Bubble Sort
• Insertion Sort
• Mergesort
• Radix Sort
• Quicksort
• Introsort
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Mergesort

• Divides: Divides input into two 
pieces of equal size in linear 
time. 
• Assume even length for now.

• Conquer: Recursively calls 
mergesort on each piece.

• Unite: Merges the two sorted 
lists in linear time. 



Mergesort

• Base Case: If array has length 
less than 2, brute force. 

• Divides: Divides input into two 
pieces of equal size in linear 
time. 
• Assume even length for now.

• Conquer: Recursively calls 
mergesort on each piece.

• Unite: Merges the two sorted 
lists in linear time. 



Sorting

• Problem: Given two sorted lists 
A and B, find a sorted list of 
their union.



Merging

• Input: Two sorted lists A and B of length n/2
• Output: Sorted list of A and B
• Initialize list C to be empty
• Let i = 0 and j = 0
• While (i < n/2 or j < n/2):

• If j == n/2 or A[i] <= B[j]:
• C.append(A[i])
• i += 1

• Else:
• C.append(B[j])
• j += 1



Mergesort Runtime?

• Base Case: If array has length 
less than 2, brute force. 

• Divides: Divides input into two 
pieces of equal size in linear 
time. 
• Assume even length for now.

• Conquer: Recursively calls 
mergesort on each piece.

• Unite: Merges the two sorted 
lists in linear time. 



Let T(n) be runtime of Mergesort.

• Base Case: If array has length less than 2, brute force. O(1)
• Divides: Divides input into two pieces of equal size in linear time. O(n)

• Assume even length for now.
• Conquer: Recursively calls mergesort on each piece. T(n/2)
• Unite: Merges the two sorted lists in linear time. O(n)



Let T(n) be runtime of Mergesort.

• Base Case: If array has length less than 2, brute force. O(1)
• Divides: Divides input into two pieces of equal size in linear time. O(n)

• Assume even length for now.
• Conquer: Recursively calls mergesort on each piece. T(n/2)
• Unite: Merges the two sorted lists in linear time. O(n)

𝑻(𝒏)  ≤ ? 



Let T(n) be runtime of Mergesort.

• Base Case: If array has length less than 2, brute force. O(1)
• Divides: Divides input into two pieces of equal size in linear time. O(n)

• Assume even length for now.
• Conquer: Recursively calls mergesort on each piece. T(n/2)
• Unite: Merges the two sorted lists in linear time. O(n)

if n ≤ 2
o.w.𝑻(𝒏)  ≤  ቊ

O(1)
2T(n/2)  +  O(n)



Let T(n) be runtime of Mergesort.

• Base Case: If array has length less than 2, brute force. O(1)
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How do you solve a recurrence?

• Unrolling: We analyze the first few ”levels” of the recursion, find a 
pattern and then prove that the pattern is correct.

• Guess and Check: We guess what the answer and the substitute it in 
to check that it works. That is, we prove it works. 

• We will talk about these next time but read KT 5.1 and KT 5.2!

if n ≤ 2
o.w.𝑻(𝒏)  ≤  ቊ

c
T(⌊n/2⌋)  +  T(⌈n/2⌉ +  c’n
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