
CSE 331:
Algorithms & Complexity

Prof. Charlie Anne Carlson (She/Her)
Lecture 21

Wednesday October 22nd, 2025

“MST Correctness”

Schedule

1.Course Updates
2.Cut Property
3.Kruskal’s Algorithm
4.Prim’s Algorithm
5.Divide & Conquer

Course Updates

• Midterm Out
• Post Midterm Grades
• HW 5 Out
• Group Project

• First Problems Oct 31st

Midterm Grades

0

10

20

30

40

50

60

70

80

90

100

R
aw

 G
ra

d
es

Grade = (P1+P2)

Midterm Evals Grades (One HW Drop)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R
aw

 G
ra

d
e

Grade Includes:
• Midterm (45%)
• Top HW (49%)

• Up To HW 3
• Per Part

• QUIZ (6%)
• Quiz 1

1-on-1 Meeting With Me

• I am happy to meet to discuss your course performance
and help make a plan on how to move forward.

• When I make a plan for pushing out midterm eval
grades, I will also make a piazza post with specific
instructions on how to set up a meeting with me.

• You are free to email me now but please include a long
list of times you are available so we can schedule a
zoom chat.

Feedback Survey

Cut Property

Lemma: Fix a graph 𝐺 = (𝑉, 𝐸) with edge weights ℓ. Assume that all
edges are distinct. Let 𝑆 be any subset of nodes that is neither empty
or equal to all of 𝑉, and let 𝑒 = (𝑢, 𝑣) be the minimum-cost edge with
on end in 𝑆 and the other in 𝑉 ∖ 𝑆. Then every minimum spanning tree
contains the edge 𝑒.

Prim’s Algorithm

• Input: Undirected graph G = (V,E)
and weights L

• Output: MST of G
• Pick s in V arbitrarily
• Let S = {s}
• While S != V:

• Find minimum weight edge e =
(u,v) where u is in S but v is
not.

• Add v to S

https://en.wikipedia.org/wiki/File:PrimAlgDemo.gif

Kruskal’s Algorithm

• Input: Undirected graph G =
(V,E) and weights L

• Output: MST of G
• Sort E using values in L

• Break ties arbitrarily
• Let T be an empty graph
• For e in E:

• If adding e to T doesn’t
case a cycle, add it.

https://en.wikipedia.org/wiki/File:KruskalDemo.gif

Claim: Kruskal’s Algorithm is Correct

MST
Proof:
• Let e = (u,v) be an edge added by Kruskal’s algorithm
• Consider the T just before adding e.

• Let S be the connected component of T that contains u.
• Then e was the minimum weight edge leaving S and by the Cut

Property it must be in the MST.
• Hence, Kruskal’s algorithm only adds edges that must be in the

MST.

Claim: Kruskal’s Algorithm is Correct

MST
Proof:
• Let e = (u,v) be an edge added by Kruskal’s algorithm
• Consider the T just before adding e.

• Let S be the connected component of T that contains u.
• Then e was the minimum weight edge leaving S and by the Cut

Property it must be in the MST.
• Hence, Kruskal’s algorithm only adds edges that must be in the

MST.
• Finally, we note that if T was not connected then there would have

been edge that could have been added without forming a cycle.
• It follows that T is the MST at the end of the algorithm.

Claim: Prim’s Algorithm is Correct

MST
Proof:
• Let e = (u,v) be an edge added by Kruskal’s algorithm
• Consider the T just before adding e.

• Let S be the connected component of T that contains u.
• Then e was the minimum weight edge leaving S and by the Cut

Property it must be in the MST.
• Hence, Prim’s algorithm only adds edges that must be in the MST.
• Finally, we note that if T was not connected then there would have

been edge that could have been added without forming a cycle.
• It follows that T is the MST at the end of the algorithm.

Prim’s Algorithm Runtime

• Input: Undirected graph G = (V,E)
and weights L

• Output: MST of G
• Pick s in V arbitrarily
• Let S = {s}
• While S != V:

• Find minimum weight edge e =
(u,v) where u is in S but v is
not.

• Add v to S

https://en.wikipedia.org/wiki/File:PrimAlgDemo.gif

Prim’s Algorithm Runtime O(m log(n))

Claim: Using a priority queue, Prim’s
Algorithm can be implemented on a
graph with n nodes and m edges to run
in O(m) time, plus the time for n
PopMin and m DecreasePriority
operations.

Corollary: Using a heap-based priority
queue we get a running time of O(m
log(n)).

https://en.wikipedia.org/wiki/File:PrimAlgDemo.gif

Kruskal’s Algorithm Runtime

• Input: Undirected graph G =
(V,E) and weights L

• Output: MST of G
• Sort E using values in L

• Break ties arbitrarily
• Let T be an empty graph
• For e in E:

• If adding e to T doesn’t
case a cycle, add it.

https://en.wikipedia.org/wiki/File:KruskalDemo.gif

Kruskal’s Algorithm Runtime O(m log(n))

• Input: Undirected graph G =
(V,E) and weights L

• Output: MST of G
• Sort E using values in L

• Break ties arbitrarily
• Let T be an empty graph
• For e in E:

• If adding e to T doesn’t
case a cycle, add it.

https://en.wikipedia.org/wiki/File:KruskalDemo.gif

Kruskal’s Algorithm Runtime O(m log(n))

• To prove this running time, we
need a Union-Find data
structure.
• Keeps track of which

elements in a ground set
belong to the same subsets.

• Find(u): Returns name of
set that contains u.

• Union(A,B) combine sets
A and B into one set.

• Read KT 4.6!
https://en.wikipedia.org/wiki/File:KruskalDemo.gif

Divide & Conquer (KT 5.1 and KT 5.2)

Problem
Problem 1 Problem 2 Problem k

Solution 1 Solution 2 Solution k

Solution

Divide

Conquer

Unite

Why Divide & Conquer?

Problem
Problem 1 Problem 2

Solution 1 Solution 2

Solution

O(n)

O(n)

R
ec

ur
si

on

Why Divide & Conquer?

Problem
Problem 1 Problem 2

Solution 1 Solution 2

Solution

O(n)

O(n)

R
ec

ur
si

on

Idea: If you can easily break apart problems
and combine those solutions then recursion

can let you avoid slow algorithms on big
problems and instead only run slow algorithms

on small problems.

Why Divide & Conquer?

Problem N
Problem 1 N/2 Problem 2 N/2

Solution 1 Solution 2

Solution

O(n)

O(n)

R
ec

ur
si

on

Why Divide & Conquer?

Problem 1 N/2
Problem 11 N/4 Problem 12 N/4

Solution 11 Solution 12

Solution 1

O(n)

O(n)

R
ec

ur
si

on

Why Divide & Conquer?

Problem 111…1 O(1)
Problem 111…11 Problem 111…12

Solution 111…11 Solution 111…12

Solution 111…1

O(1)

O(1)

B
ru

te
 F

or
ce

Q: How many times can you split in half?

Problem 111…1 O(1)
Problem 111…11 Problem 111…12

Solution 111…11 Solution 111…12

Solution 111…1

O(1)

O(1)

B
ru

te
 F

or
ce

A: After log times, you will get a constant!

Problem 111…1 O(1)
Problem 111…11 Problem 111…12

Solution 111…11 Solution 111…12

Solution 111…1

O(1)

O(1)

B
ru

te
 F

or
ce

Sorting

• Problem: Given a list of n
numbers L, rearrange them in
ascending order.

• E.g.
• Input: [3,2,5,5,1,6,7,8]
• Output: [1,2,3,5,5,6,7,8]

Sorting

• Problem: Given a list of n
numbers L, rearrange them in
ascending order.

• Sorting Algorithms:
• Bubble Sort
• Insertion Sort
• Mergesort
• Radix Sort
• Quicksort
• Introsort

Sorting

• Problem: Given a list of n
numbers L, rearrange them in
ascending order.

• Sorting Algorithms:
• Bubble Sort
• Insertion Sort
• Mergesort
• Radix Sort
• Quicksort
• Introsort

Mergesort

• Divides: Divides input into two
pieces of equal size in linear
time.
• Assume even length for now.

• Conquer: Recursively calls
mergesort on each piece.

• Unite: Merges the two sorted
lists in linear time.

Mergesort

• Base Case: If array has length
less than 2, brute force.

• Divides: Divides input into two
pieces of equal size in linear
time.
• Assume even length for now.

• Conquer: Recursively calls
mergesort on each piece.

• Unite: Merges the two sorted
lists in linear time.

Sorting

• Problem: Given two sorted lists
A and B, find a sorted list of
their union.

Merging

• Input: Two sorted lists A and B of length n/2
• Output: Sorted list of A and B
• Initialize list C to be empty
• Let i = 0 and j = 0
• While (i < n/2 or j < n/2):

• If j == n/2 or A[i] <= B[j]:
• C.append(A[i])
• i += 1

• Else:
• C.append(B[j])
• j += 1

Mergesort Runtime?

• Base Case: If array has length
less than 2, brute force.

• Divides: Divides input into two
pieces of equal size in linear
time.
• Assume even length for now.

• Conquer: Recursively calls
mergesort on each piece.

• Unite: Merges the two sorted
lists in linear time.

Let T(n) be runtime of Mergesort.

• Base Case: If array has length less than 2, brute force. O(1)
• Divides: Divides input into two pieces of equal size in linear time. O(n)

• Assume even length for now.
• Conquer: Recursively calls mergesort on each piece. T(n/2)
• Unite: Merges the two sorted lists in linear time. O(n)

Let T(n) be runtime of Mergesort.

• Base Case: If array has length less than 2, brute force. O(1)
• Divides: Divides input into two pieces of equal size in linear time. O(n)

• Assume even length for now.
• Conquer: Recursively calls mergesort on each piece. T(n/2)
• Unite: Merges the two sorted lists in linear time. O(n)

𝑻(𝒏) ≤ ?

Let T(n) be runtime of Mergesort.

• Base Case: If array has length less than 2, brute force. O(1)
• Divides: Divides input into two pieces of equal size in linear time. O(n)

• Assume even length for now.
• Conquer: Recursively calls mergesort on each piece. T(n/2)
• Unite: Merges the two sorted lists in linear time. O(n)

if n ≤ 2
o.w.𝑻(𝒏) ≤ ቊ

O(1)
2T(n/2) + O(n)

Let T(n) be runtime of Mergesort.

• Base Case: If array has length less than 2, brute force. O(1)
• Divides: Divides input into two pieces of equal size in linear time. O(n)
• Conquer: Recursively calls mergesort on each piece. T(n/2)
• Unite: Merges the two sorted lists in linear time. O(n)

if n ≤ 2
o.w.𝑻(𝒏) ≤ ቊ

c
T(⌊n/2⌋) + T(⌈n/2⌉ + c’n

How do you solve a recurrence?

• Unrolling: We analyze the first few ”levels” of the recursion, find a
pattern and then prove that the pattern is correct.

• Guess and Check: We guess what the answer and the substitute it in
to check that it works. That is, we prove it works.

• We will talk about these next time but read KT 5.1 and KT 5.2!

if n ≤ 2
o.w.𝑻(𝒏) ≤ ቊ

c
T(⌊n/2⌋) + T(⌈n/2⌉ + c’n

	Slide 1: CSE 331: Algorithms & Complexity
	Slide 2: Schedule
	Slide 3: Course Updates
	Slide 4: Midterm Grades
	Slide 5: Midterm Evals Grades (One HW Drop)
	Slide 6: 1-on-1 Meeting With Me
	Slide 7: Feedback Survey
	Slide 8: Cut Property
	Slide 9: Prim’s Algorithm
	Slide 10: Kruskal’s Algorithm
	Slide 11: Claim: Kruskal’s Algorithm is Correct
	Slide 12: Claim: Kruskal’s Algorithm is Correct
	Slide 13: Claim: Prim’s Algorithm is Correct
	Slide 14: Prim’s Algorithm Runtime
	Slide 15: Prim’s Algorithm Runtime O(m log(n))
	Slide 16: Kruskal’s Algorithm Runtime
	Slide 17: Kruskal’s Algorithm Runtime O(m log(n))
	Slide 18: Kruskal’s Algorithm Runtime O(m log(n))
	Slide 19: Divide & Conquer (KT 5.1 and KT 5.2)
	Slide 20: Why Divide & Conquer?
	Slide 21: Why Divide & Conquer?
	Slide 22: Why Divide & Conquer?
	Slide 23: Why Divide & Conquer?
	Slide 24: Why Divide & Conquer?
	Slide 25: Q: How many times can you split in half?
	Slide 26: A: After log times, you will get a constant!
	Slide 27: Sorting
	Slide 28: Sorting
	Slide 29: Sorting
	Slide 30: Mergesort
	Slide 31: Mergesort
	Slide 32: Sorting
	Slide 33: Merging
	Slide 34: Mergesort Runtime?
	Slide 35: Let T(n) be runtime of Mergesort.
	Slide 36: Let T(n) be runtime of Mergesort.
	Slide 37: Let T(n) be runtime of Mergesort.
	Slide 38: Let T(n) be runtime of Mergesort.
	Slide 39: How do you solve a recurrence?

