CSE 331:
Allg(o)r[itt]hunnlg & (C<o>lnnqp>ll<ex[i1ty

L]

“Divide & Conquer”

Prof. Charlie Anne Carlson (She/Her)
Lecture 22
Friday October 24th, 2025

G5

University at Buffalo

Schedule

1.Course Updates
2.Divide & Conquer
3.Merge Sort
4.Solving Recurrences

Course Updates

Post Midterm Grades In Progress
~eedback Survey Soon

HW 4 Solutions Soon

HW 5 Out

Group Project

* First Problems Oct 31¢t

More Example Quizes

Midterm Evals Grades (One HW Drop)

Grade Includes:
e Midterm (45%)

. TopHW (49%) =
.+ UpToHW3 .° o
* Per Part T,
* QUIZ (6%) e N
* Quiz1 .

Midterm Evals Grades (One HW Drop)

Grade Includes:
c M

= WEARE NOT
g DONE!

Reading

* You should have read:
* Finished KT 5.1
 Started KT 5.2

» Before Next Class:

* Finish KT 5.2
e StartKT 5.3

JON KLEINBERG - EVA TARDOS

Prim’s Algorithm Runtime

* Input: Undirected graph G = (V,E) o 9 O

and weights L \ L, O
e Output: MST of G q 5
* PicksinV arbitrarily o C o
e LetS={s} o)
+ While S!=V: 0O o
* Find minimum weight edge e = e 6 0 o
(u,v) where uis in S butvis oo
not. . °
* AddvtoS

https://en.wikipedia.org/wiki/File:PrimAlgDemo.gif

Prim’s Algorithm Runtime O(m log(n))

Claim: Using a priority queue, Prim’s . e

Algorithm can be implemented on a \ o ©
graph with n nodes and m edges to run
In O(mM) time, plus the time for n © o
PopMinand m DecreasePriority o
operations. 0O 0

Corollary: Using a heap-based priority
queue we get a running time of O(m

log(n)).

https://en.wikipedia.org/wiki/File:PrimAlgDemo.gif

Kruskal’s Algorithm Runtime

 Input: Undirected graph G =

O O
(V.E) and weights L 0 7 o
e Output: MST of G ©
« Sort E usingvaluesinL °© 5 “ o
* Breakties arbitrarily © ©
* LetT beanempty graph . o °
* ForeinE: “ o°
 Ifadding e to T doesn’t D{:,‘:* o O
case a cycle, add it. o .
O

https://en.wikipedia.org/wiki/File:KruskalDemo.gif

Kruskal’s Algorithm Runtime O(m log(n))

 Input: Undirected graph G =

O O
(V.E) and weights L © 7 q
e Output: MST of G ©
* Sort E using values in L °© 4 “ o
 Break ties arbitrarily O ©
* LetT beanempty graph . o °
* ForeinE: 2 o>
* IfaddingetoTdoesn’t {:}D{:] o 0 ©
case a cycle, add it. o .
O

https://en.wikipedia.org/wiki/File:KruskalDemo.gif

Kruskal’s Algorithm Runtime O(m log(n))

* To prove this running time, we
need a Union-Find data
structure.

Keeps track of which
elements in a ground set

belong to the same subsets.

Find (u): Returns name of
set that contains u.
Union (A, B) combine sets

A and B into one set.
Read KT 4.6!

O O
O &
O
O
O
O
O - A
O O
O
O
DD O
O O
® O ®
O
Ne
O
O
O

https://en.wikipedia.org/wiki/File:KruskalDemo.gif

Divide & Conqguer (KT 5.1 and KT 5.2)

y

Divide
Problem 1 Problem 2 ° Problem k

Conquer

Solution k

Solution

Why Divide & Conquer?

O
. -
Recursion —

2
El

Problem 1 Problem 2

Solution 1 Solution 2

Why Divide & Conquer?

O
. -
Recursion —

2
El

Idea: If you can easily break apart problems
and combine the solution to those problems
then recursion can let you avoid slow

algorithms on big problems and instead only
run slow algorithms on several small problems.

Why Divide & Conquer?

Problem N

Problem 1 N/2 Problem 2 N/2

Q
3

Recursion

Solution 1 Solution 2

2
El

Why Divide & Conquer?

Problem 1 N/2

O
. -
Recursion —

2
El

Problem 11 N/4 Problem 12 N/4

Solution 11 Solution 12

Why Divide & Conquer?

Problem 111...1 O(1)

Problem 111...11 Problem 111...12

o
—
—
~—"

— Brute Force

Q

Solution 111...11 Solution111...12

Solution 111...1

Q: How many times can you split in half?

Problem 111...1 O(1)

O(1)
§ Problem 111...11 Problem 111...12
LL
o
D%’ Solution 111...11 Solution 111...12
o(1)

Solution 111...1

A: After log times, you will get a constant!

Problem 111...1 O(1)

o
—
—
~—"

§ Problem 111...11 Problem 111...12
5
D%’ Solution 111...11 Solution 111...12
)

Q

Solution 111...1

Another Look

* Consider athermotical problem PROBLEM.

* Suppose we have an algorithm for PROBLEM that takes N*2 time to
run on an input of size N.

e Suppose that we canin N time break PROBLEM into two small
problems of size N/2 such that if we find their solutions we get the
solution the original problem in N time (we can combine the
solutions).

Another Look

N/ N/ N/ N/ N/ N/ N/ N/ N/ N/ N/ N/ N/ N/ N/ N/
16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16

Another Look

* Observe that itwould take N*2 time to use the algorithm for

PROBLEM on the initial input.
* |nstead consider running the same algorithm on the subproblems of

size N/16.
e How much workis done?

N/ N/ N/ N/ N/ N/ N/ N/ N/ N/ N/ N/ N/ N/ N/ N/
16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16

It takes 8N to do splitting and combining

It takes N”*2/16 to do algorithm on small parts.

N/4 N/4

N/ N/ N/ N/ N/ N/ N/ N/ N/ N/ N/ N/ N/ N/ N/ N/
16 16 16 6 16 16 16 16 16 16 16 16 16 16 16 16

1
16 Problems each of size N/16 and each taking time (N/16)"2 time.

Another Look

* Observe that itwould take N*2 time to use the algorithm for
PROBLEM on the initial input.
* |nstead consider running the same algorithm on the subproblems of
size N/16.
e Q:How muchworkisdone?
* A:lttakes atotalof N*2/16 + 10N time.
* Q:WhenisN”*2>N"2/16+ 10N?

N/ N/ N/ N/ N/ N/ N/ N/ N/ N/ N/ N/ N/ N/ N/ N/
16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16

Another Look

* Observe that itwould take N*2 time to use the algorithm for
PROBLEM on the initial input.
* |nstead consider running the same algorithm on the subproblems of
size N/16.
e Q:How muchworkisdone?
* A:lttakes atotalof N*2/16 + 10N time.
* Q:WhenisN*2>N"2/16 + 10N?
* A:WhenN>32/3

N/ N/ N/ N/ N/ N/ N/ N/ N/ N/ N/ N/ N/ N/ N/ N/
16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16

Another Look

* Observe that itwould take N*2 time to use the algorithm for
PROBLEM on the initial input.
* |nstead consider running the same algorithm on the subproblems of
size N/16.
e Q:How muchworkisdone?
* A:lttakes atotalof N*2/16 + 10N time.
* Q:WhenisN*2>N"2/16 + 10N?
* A:When N >32/3<-So thereis speedup as N grows!

N/ N/ N/ N/ N/ N/ N/ N/ N/ N/ N/ N/ N/ N/ N/ N/
16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16

Sorting

* Problem: Given alist of n
numbers L, rearrange them in
ascending order.

« E.g. p
 Input:[3,2,5,5,1,6,7,8] 4

. Output:[1,2,3,5,5,6,7,8] f

& A 4

Sorting

* Problem: Given alist of n
numbers L, rearrange them in
ascending order.

* Sorting Algorithms:
* Bubble Sort
* |nsertion Sort
* Mergesort
 Radix Sort
e Quicksort
* |ntrosort

Sorting

* Problem: Given alist of n
numbers L, rearrange them in
ascending order.

* Sorting Algorithms:
* Bubble Sort
* |nsertion Sort
* Mergesort
 Radix Sort
e Quicksort
* |ntrosort

Mergesort

Divides: Divides input into two
pieces of equal size in linear
time.

* Assume even length for now.

Conquer: Recursively calls
mergesort on each piece.
Unite: Merges the two sorted
lists in linear time.

Mergesort

* Base Case: If array has length
less than 2, brute force.

* Divides: Divides input into two
pieces of equal size in linear
time.

* Assume even length for now.

* Conquer: Recursively calls
mergesort on each piece.

* Unite: Merges the two sorted
lists in linear time.

Sorting

e Problem: Given two sorted lists
A and B, find a sorted list of
their union.

O

O
=

Merging

* Input: Two sorted lists A and B of length n/2
* Output: Sorted listof Aand B
* [nitialize list C to be empty
e Leti=0andj=0
* While (i<n/2orj<n/2):
 |fj==n/2 or A[i] <= BJj]:

« C.append(Ali]) O
e j+=1

e Else: (\O
* C.append(B[j]) —
° j+=']

Mergesort Runtime?

* Base Case: If array has length
less than 2, brute force.

* Divides: Divides input into two
pieces of equal size in linear
time.

* Assume even length for now.

* Conquer: Recursively calls
mergesort on each piece.

* Unite: Merges the two sorted
lists in linear time.

Let T(n) be runtime of Mergesort.

* Base Case: If array has length less than 2, brute force. O(1)

* Divides: Divides input into two pieces of equal size in linear time. O(n)
* Assume even length for now.

* Conquer: Recursively calls mergesort on each piece. T(n/2)

* Unite: Merges the two sorted lists in linear time. O(n)

Let T(n) be runtime of Mergesort.

* Base Case: If array has length less than 2, brute force. O(1)

* Divides: Divides input into two pieces of equal size in linear time. O(n)
* Assume even length for now.

* Conquer: Recursively calls mergesort on each piece. T(n/2)

* Unite: Merges the two sorted lists in linear time. O(n)

T(n) <?

Let T(n) be runtime of Mergesort.

« Base Case: If array has length less than 2, brute force. O(1)

* Divides: Divides input into two pieces of equal size in linear time. O(n)
* Assume even length for now.

* Conquer: Recursively calls mergesort on each piece. T(n/2)

* Unite: Merges the two sorted lists in linear time. O(n)

O(1) n <2

M) <21m/2) + om) o.w.

Let T(n) be runtime of Mergesort.

« Base Case: If array has length less than 2, brute force. O(1)

* Divides: Divides input into two pieces of equal size in linear time. O(n)
* Conquer: Recursively calls mergesort on each piece. T(n/2)

* Unite: Merges the two sorted lists in linear time. O(n)

0(1) n <2

In) < T(In/2]) + T(In/2]+ cn o.w.

How do you solve a recurrence?

* Unrolling: We analyze the first few "levels” of the recursion, find a
pattern and then prove that the pattern is correct.
* Guess and Check: We guess what the answer and the substitute it in

to check that it works. That is, we prove it works.
* REVIEWKT 5.1 and KT 5.2 IF YOU HAVEN’T ALREADY!

0(1) n <2

In) < T(In/2]) + T(In/2]+ cn o.w.

Unrolling

* Unrolling:

Sketch out a few levels of T(n)

the "recursion tree” / \
|dentify how many problems

on each level. T(n/2) T(n/2)

ldentify how much work

done at each level.

dentify h.ow small each c h <2
aroblgm is at each level. T(n) < {ZT(n/Z) L en ow
dentify how many levels

pefore base case.

Unrolli C v
rolling a few levels '™ = {ZT(n/Z) + ¢ rlo.<w.2

n

Unrolli : \
nrolling a few levels '™ = {ZT(n/Z) + ¢n rlo.<w.2

n

/\

n/2 n/2

Unrolling a few levels "™ = {

n

C n<32
2T(n/2) + ¢c’n o.w.

/\

n/2

/\

/\

n/4 n/4 n/4 n/4

. C n<?2
Unrolling a few levels '™ = {ZT(n/Z) +cn ow.

n

n/2 n/2
n/4 n/4 n/4 n/4

N /N /N N

n/8 n/8 n/8 n/8 n/8 n/8 n/8 n/8

. C n<?2
Unrolling a few levels '™ = {ZT(n/Z) +cn ow.

/”\
n/2 n/2
n/4 n/4 n/4 n/4
n/8 n/8 n/8 n/8 n/8 n/8 n/8 n/8

C

Unrolling a few levels "™ = {ZT(n/Z) + ¢'n

n 0
/\

n/2 n/2 1

n/4 n/4 n/4 n/4 2

/N /N /N /N

n/8 n/8 n/8 n/8 n/8 n/8 n/8 n/8 3

A AN AL AN

Problem Size

?

n<?2
0. W.

Total Work

?

C

Unrolling a few levels "™ = {ZT(n/Z) + ¢'n

n 0
/\

n/2 n/2 1

n/4 n/4 n/4 n/4 2

/N /N /N /N

n/8 n/8 n/8 n/8 n/8 n/8 n/8 n/8 3

A AN AL AN

Problem Size

n

n/2

n/4

n/8

n<?2
0. W.

Total Work

?

C n<?2
Unrolling a few levels '™ = {ZT(n/Z) +cn ow.

Level Problem Size | Total Work

n 0 n c’n
/\
n/2 n/z 1 n/2 2*(c’n/2)
n/4 n/4 n/4 n/4 2 n/4 4%(c’n/4)
/N /N /N /N
78\7/§ n/878\ n/87/i n/8 n/8 3 n/8 8*(c'n/8)

C

Unrolling a few levels "™ = {ZT(n/Z) + ¢'n

n 0
/\

n/2 n/2 1

n/4 n/4 n/4 n/4 2

/N /N /N /N

n/8 n/8 n/8 n/8 n/8 n/8 n/8 n/8 3

A AN AL AN

Problem Size

n

n/2

n/4

n/8

n<?2
0. W.

Total Work

c’n

c’n

c’n

c’n

Unrolling a few levels ™ = {

Q: What will be the problem
size and total work done at

level I7?

n

/\
n/2 n/2
n/4 n/4 n/4 n/4
/N /N /N

n/8 n/8 n/8 n/8 n/8 n/8 n/8 n/g

AL AN A A

Level
0

C n<?2

2T(n/2) + c'n

Problem Size

n

n/2

n/4

n/8

0. W.

Total Work

c’n

c’n

c’n

c’n

C n<?2
Unrolling a few levels '™ = {ZT(n/Z) +cn ow.

Level Problem Size | Total Work

A: At level i, the problem size 0 A
(If not the base case) will be

n/2”i. The total work done will e
b
be cn. 1 2 n/4 c’n
/\
n/2 n/2
T T 3 n/8 c’n
n/4 n/4 n/4 n/4
/\ /N /N

n/8 n/8 n/8 n/8 n/8 n/8 n/8 n/g

ACAA AN A

Unrolling a few levels ™ = {

Q: How many levels until base

case”?

n

/\

n/2 n/2
n/4 n/4 n/4 n/4
/N /N /N
n/8 n/8 n/8 n/8 n/8 n/8 n/8 n/g

AL AN A A

Level

C

n<?2

2T(n/2) + c'n

Problem Size

n

n/2

n/4

n/8

0. W,

Total Work

c’n

c’n

c’n

c’n

C n<?2
Unrolling a few levels '™ = {ZT(n/Z) +cn ow.

Level Problem Size | Total Work

A: After O(log(n)) levels, the 0 A
problem size will be at most c

and we can do the base case. 1 e
1 2 n/4 c’n
/\
n/2 n/2
T T 3 n/8 c’n
n/4 n/4 n/4 n/4
/\ /N /N

n/8 n/8 n/8 n/8 n/8 n/8 n/8 n/g

ACAA AN A

Unrolling a few levels "™ = {

Q: How much total work done

over all levels?

/\
n/2 n/2
n/4 n/4 n/4 n/4
/N /N /N

n/8 n/8

n/8 n/8

n/8 n/8

n/8 n/8

AL AN A A

Level
0

C

n<?2

2T(n/2) + ¢c'n

Problem Size

n

n/2

n/4

n/8

0. W,

Total Work

c’n

c’n

c’n

c’n

C n<?2
Unrolling a few levels '™ = {ZT(n/Z) +cn ow.

Level Problem Size | Total Work

A: The work done at each level 0 .
IS ¢c’n and the total number of

levels is O(log(n)). 1 i
Hence, O(n log(n)). n , i
i
n/t}/\n/4 n/”r/\n/‘l 3 n/8 c’n
/N /N /N

n/8 n/8 n/8 n/8 n/8 n/8 n/8 n/g

ACAA AN A

C n<?2
Unrolling a few levels '™ = {ZT(n/Z) +cn ow.

Level Problem Size | Total Work

Work Done is the sum of work done at 0
each level and we “showed” that the

work done at each level is ¢’n and : o
there are at most O(log(n)) levels.

n c’n

c’n

1 2 n/4 c’n
/\
n/2 n/2
T T 3 n/8 c’n
n/4 n/4 n/4 n/4
/N /N /N

n/8 n/8 n/8 n/8 n/8 n/8 n/8 n/g

ACAA AN A

C n<?2

Guess & Check Tn) = {ZT(n/Z) +cn o o.w.

* You might have guessed T(n) = O(nlog(n)) because you’ve
been told that before or because you recognize the
recurrence.

* How could you directly prove T(n) =c’’nlog(n) if you
suspected it was true?

C n<?2

Guess & Check Tn) = {ZT(n/Z) +cn o o.w.

* You might have guessed T(n) = O(nlog(n)) because you’ve
been told that before or because you recognize the

recurrence.
 How could you directly prove T(n) = c’'nlog,(n) if you

suspected it was true?

* You could use induction to show that this solves the

recurrence.

C n<?2

Guess & Check Tn) = {ZT(n/Z) +cn o o.w.

e Base Case:
* \We can sort a list of size at most 2 in constant time,
T(1) <T(2) £ cforsome constant c as desired.

C n<?2

Guess & Check Tn) = {ZT(n/Z) +cn o o.w.

* Base Case:
* \We can sort a list of size at most 2 in constant time,
T(1) <T(2) £ cforsome constant c as desired.
 |H:
* Suppose we know that T(m) < c’'mlog,(m) for some all
m < n.

C n<?2

Guess & Check Tn) = {ZT(n/Z) +cn o o.w.

* Base Case:
* \We can sort a list of size at most 2 in constant time,
T(1) <T(2) £ cforsome constant c as desired.
 |H:
* Suppose we know that T(m) < c¢’'mlog,(m) for some all
m < n.
* Inductive Case:
* Sincethisis notthebasecaseandn/2<m,T(n) < 2 *

c'(n/2)log,(n/2) + c'(n/2)

C

Guess & Check Tn) = {ZT(n/Z) + ¢'n

* |Inductive Case:
e Sincethisis notthe base case and n/2<m,
T(n) <2xc'(n/2)log,(n/2) + c’'n
< c'nlog,(n/2) + c'n
<cn(log,(n) —1)+c'n
<cnlog,(n) —cn+cn
<cnlog,(n)

* This concludes the proof.

C n<?2
Partial Guess Tn) = {ZT(n/Z) +cn o o.w.

* You might not know the coefficients or bases:
T(n) <2xk(n/2)logy,(n/2) + c'n
<knlogy(n/2) +cn Seems like b =2
< kn (log,(n) —1) +c'n

<knlog,(n) —kn+c'n Seems like k=¢’
<cnlog,(n)

Q: What happens?

T,(n) < { C n<?2
qT(n/2) + ¢’n o.w.

T,(n) < { C n<32
2T(n/2) + c’n*2 o.w.

I.n) < { C n <2000
2T(n/2) + c'n 0. W.

	Slide 1: CSE 331: Algorithms & Complexity
	Slide 2: Schedule
	Slide 3: Course Updates
	Slide 4: Midterm Evals Grades (One HW Drop)
	Slide 5: Midterm Evals Grades (One HW Drop)
	Slide 6: Reading
	Slide 7: Prim’s Algorithm Runtime
	Slide 8: Prim’s Algorithm Runtime O(m log(n))
	Slide 9: Kruskal’s Algorithm Runtime
	Slide 10: Kruskal’s Algorithm Runtime O(m log(n))
	Slide 11: Kruskal’s Algorithm Runtime O(m log(n))
	Slide 12: Divide & Conquer (KT 5.1 and KT 5.2)
	Slide 13: Why Divide & Conquer?
	Slide 14: Why Divide & Conquer?
	Slide 15: Why Divide & Conquer?
	Slide 16: Why Divide & Conquer?
	Slide 17: Why Divide & Conquer?
	Slide 18: Q: How many times can you split in half?
	Slide 19: A: After log times, you will get a constant!
	Slide 20: Another Look
	Slide 21: Another Look
	Slide 22: Another Look
	Slide 23: It takes 8N to do splitting and combining
	Slide 24: It takes N^2/16 to do algorithm on small parts.
	Slide 25: Another Look
	Slide 26: Another Look
	Slide 27: Another Look
	Slide 28: Sorting
	Slide 29: Sorting
	Slide 30: Sorting
	Slide 31: Mergesort
	Slide 32: Mergesort
	Slide 33: Sorting
	Slide 34: Merging
	Slide 35: Mergesort Runtime?
	Slide 36: Let T(n) be runtime of Mergesort.
	Slide 37: Let T(n) be runtime of Mergesort.
	Slide 38: Let T(n) be runtime of Mergesort.
	Slide 39: Let T(n) be runtime of Mergesort.
	Slide 40: How do you solve a recurrence?
	Slide 41: Unrolling
	Slide 42: Unrolling a few levels
	Slide 43: Unrolling a few levels
	Slide 44: Unrolling a few levels
	Slide 45: Unrolling a few levels
	Slide 46: Unrolling a few levels
	Slide 47: Unrolling a few levels
	Slide 48: Unrolling a few levels
	Slide 49: Unrolling a few levels
	Slide 50: Unrolling a few levels
	Slide 51: Unrolling a few levels
	Slide 52: Unrolling a few levels
	Slide 53: Unrolling a few levels
	Slide 54: Unrolling a few levels
	Slide 55: Unrolling a few levels
	Slide 56: Unrolling a few levels
	Slide 57: Unrolling a few levels
	Slide 58: Guess & Check
	Slide 59: Guess & Check
	Slide 60: Guess & Check
	Slide 61: Guess & Check
	Slide 62: Guess & Check
	Slide 63: Guess & Check
	Slide 64: Partial Guess
	Slide 65: Q: What happens?

