
CSE 331:
Algorithms & Complexity

Prof. Charlie Anne Carlson (She/Her)
Lecture 22

Friday October 24th, 2025

“Divide & Conquer”

Schedule

1.Course Updates
2.Divide & Conquer
3.Merge Sort
4.Solving Recurrences

Course Updates

• Post Midterm Grades In Progress
• Feedback Survey Soon
• HW 4 Solutions Soon
• HW 5 Out
• Group Project

• First Problems Oct 31st

• More Example Quizes

Midterm Evals Grades (One HW Drop)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R
aw

 G
ra

d
e

Grade Includes:
• Midterm (45%)
• Top HW (49%)

• Up To HW 3
• Per Part

• QUIZ (6%)
• Quiz 1

Midterm Evals Grades (One HW Drop)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R
aw

 G
ra

d
e

Grade Includes:
• Midterm (45%)
• Top HW (49%)

• Up To HW 3
• Per Part

• QUIZ (6%)
• Quiz 1

WE ARE NOT
DONE!

Reading

• You should have read:
• Finished KT 5.1
• Started KT 5.2

• Before Next Class:
• Finish KT 5.2
• Start KT 5.3

Prim’s Algorithm Runtime

• Input: Undirected graph G = (V,E)
and weights L

• Output: MST of G
• Pick s in V arbitrarily
• Let S = {s}
• While S != V:

• Find minimum weight edge e =
(u,v) where u is in S but v is
not.

• Add v to S

https://en.wikipedia.org/wiki/File:PrimAlgDemo.gif

Prim’s Algorithm Runtime O(m log(n))

Claim: Using a priority queue, Prim’s
Algorithm can be implemented on a
graph with n nodes and m edges to run
in O(m) time, plus the time for n
PopMin and m DecreasePriority
operations.

Corollary: Using a heap-based priority
queue we get a running time of O(m
log(n)).

https://en.wikipedia.org/wiki/File:PrimAlgDemo.gif

Kruskal’s Algorithm Runtime

• Input: Undirected graph G =
(V,E) and weights L

• Output: MST of G
• Sort E using values in L

• Break ties arbitrarily
• Let T be an empty graph
• For e in E:

• If adding e to T doesn’t
case a cycle, add it.

https://en.wikipedia.org/wiki/File:KruskalDemo.gif

Kruskal’s Algorithm Runtime O(m log(n))

• Input: Undirected graph G =
(V,E) and weights L

• Output: MST of G
• Sort E using values in L

• Break ties arbitrarily
• Let T be an empty graph
• For e in E:

• If adding e to T doesn’t
case a cycle, add it.

https://en.wikipedia.org/wiki/File:KruskalDemo.gif

Kruskal’s Algorithm Runtime O(m log(n))

• To prove this running time, we
need a Union-Find data
structure.
• Keeps track of which

elements in a ground set
belong to the same subsets.

• Find(u): Returns name of
set that contains u.

• Union(A,B) combine sets
A and B into one set.

• Read KT 4.6!
https://en.wikipedia.org/wiki/File:KruskalDemo.gif

Divide & Conquer (KT 5.1 and KT 5.2)

Problem
Problem 1 Problem 2 Problem k

Solution 1 Solution 2 Solution k

Solution

Divide

Conquer

Unite

Why Divide & Conquer?

Problem
Problem 1 Problem 2

Solution 1 Solution 2

Solution

O(n)

O(n)

R
ec

ur
si

on

Why Divide & Conquer?

Problem
Problem 1 Problem 2

Solution 1 Solution 2

Solution

O(n)

O(n)

R
ec

ur
si

on

Idea: If you can easily break apart problems
and combine the solution to those problems

then recursion can let you avoid slow
algorithms on big problems and instead only

run slow algorithms on several small problems.

Why Divide & Conquer?

Problem N
Problem 1 N/2 Problem 2 N/2

Solution 1 Solution 2

Solution

O(n)

O(n)

R
ec

ur
si

on

Why Divide & Conquer?

Problem 1 N/2
Problem 11 N/4 Problem 12 N/4

Solution 11 Solution 12

Solution 1

O(n)

O(n)

R
ec

ur
si

on

Why Divide & Conquer?

Problem 111…1 O(1)
Problem 111…11 Problem 111…12

Solution 111…11 Solution 111…12

Solution 111…1

O(1)

O(1)

B
ru

te
 F

or
ce

Q: How many times can you split in half?

Problem 111…1 O(1)
Problem 111…11 Problem 111…12

Solution 111…11 Solution 111…12

Solution 111…1

O(1)

O(1)

B
ru

te
 F

or
ce

A: After log times, you will get a constant!

Problem 111…1 O(1)
Problem 111…11 Problem 111…12

Solution 111…11 Solution 111…12

Solution 111…1

O(1)

O(1)

B
ru

te
 F

or
ce

Another Look

N

• Consider a thermotical problem PROBLEM.
• Suppose we have an algorithm for PROBLEM that takes N^2 time to

run on an input of size N.
• Suppose that we can in N time break PROBLEM into two small

problems of size N/2 such that if we find their solutions we get the
solution the original problem in N time (we can combine the
solutions).

N/2 N/2

Another Look

N

N/2

N/4

N/8

N/
16

N/2

N/4 N/4 N/4

N/8 N/8 N/8 N/8 N/8 N/8 N/8

N/
16

N/
16

N/
16

N/
16

N/
16

N/
16

N/
16

N/
16

N/
16

N/
16

N/
16

N/
16

N/
16

N/
16

N/
16

Another Look

N/
16

N/
16

N/
16

N/
16

N/
16

N/
16

N/
16

N/
16

N/
16

N/
16

N/
16

N/
16

N/
16

N/
16

N/
16

N/
16

• Observe that it would take N^2 time to use the algorithm for
PROBLEM on the initial input.

• Instead consider running the same algorithm on the subproblems of
size N/16.
• How much work is done?

It takes 8N to do splitting and combining

N

N/2

N/4

N/8

N/
16

N/2

N/4 N/4 N/4

N/8 N/8 N/8 N/8 N/8 N/8 N/8

N/
16

N/
16

N/
16

N/
16

N/
16

N/
16

N/
16

N/
16

N/
16

N/
16

N/
16

N/
16

N/
16

N/
16

N/
16

2N

2N

2N

2N

It takes N^2/16 to do algorithm on small parts.

N

N/2

N/4

N/8

N/
16

N/2

N/4 N/4 N/4

N/8 N/8 N/8 N/8 N/8 N/8 N/8

N/
16

N/
16

N/
16

N/
16

N/
16

N/
16

N/
16

N/
16

N/
16

N/
16

N/
16

N/
16

N/
16

N/
16

N/
16

16 Problems each of size N/16 and each taking time (N/16)^2 time.

Another Look

N/
16

N/
16

N/
16

N/
16

N/
16

N/
16

N/
16

N/
16

N/
16

N/
16

N/
16

N/
16

N/
16

N/
16

N/
16

N/
16

• Observe that it would take N^2 time to use the algorithm for
PROBLEM on the initial input.

• Instead consider running the same algorithm on the subproblems of
size N/16.
• Q: How much work is done?

• A: It takes a total of N^2/16 + 10N time.
• Q: When is N^2 > N^2/16 + 10N?

Another Look

N/
16

N/
16

N/
16

N/
16

N/
16

N/
16

N/
16

N/
16

N/
16

N/
16

N/
16

N/
16

N/
16

N/
16

N/
16

N/
16

• Observe that it would take N^2 time to use the algorithm for
PROBLEM on the initial input.

• Instead consider running the same algorithm on the subproblems of
size N/16.
• Q: How much work is done?

• A: It takes a total of N^2/16 + 10N time.
• Q: When is N^2 > N^2/16 + 10N?

• A: When N > 32/3

Another Look

N/
16

N/
16

N/
16

N/
16

N/
16

N/
16

N/
16

N/
16

N/
16

N/
16

N/
16

N/
16

N/
16

N/
16

N/
16

N/
16

• Observe that it would take N^2 time to use the algorithm for
PROBLEM on the initial input.

• Instead consider running the same algorithm on the subproblems of
size N/16.
• Q: How much work is done?

• A: It takes a total of N^2/16 + 10N time.
• Q: When is N^2 > N^2/16 + 10N?

• A: When N > 32/3 <- So there is speedup as N grows!

Sorting

• Problem: Given a list of n
numbers L, rearrange them in
ascending order.

• E.g.
• Input: [3,2,5,5,1,6,7,8]
• Output: [1,2,3,5,5,6,7,8]

Sorting

• Problem: Given a list of n
numbers L, rearrange them in
ascending order.

• Sorting Algorithms:
• Bubble Sort
• Insertion Sort
• Mergesort
• Radix Sort
• Quicksort
• Introsort

Sorting

• Problem: Given a list of n
numbers L, rearrange them in
ascending order.

• Sorting Algorithms:
• Bubble Sort
• Insertion Sort
• Mergesort
• Radix Sort
• Quicksort
• Introsort

Mergesort

• Divides: Divides input into two
pieces of equal size in linear
time.
• Assume even length for now.

• Conquer: Recursively calls
mergesort on each piece.

• Unite: Merges the two sorted
lists in linear time.

Mergesort

• Base Case: If array has length
less than 2, brute force.

• Divides: Divides input into two
pieces of equal size in linear
time.
• Assume even length for now.

• Conquer: Recursively calls
mergesort on each piece.

• Unite: Merges the two sorted
lists in linear time.

Sorting

• Problem: Given two sorted lists
A and B, find a sorted list of
their union.

Merging

• Input: Two sorted lists A and B of length n/2
• Output: Sorted list of A and B
• Initialize list C to be empty
• Let i = 0 and j = 0
• While (i < n/2 or j < n/2):

• If j == n/2 or A[i] <= B[j]:
• C.append(A[i])
• i += 1

• Else:
• C.append(B[j])
• j += 1

Mergesort Runtime?

• Base Case: If array has length
less than 2, brute force.

• Divides: Divides input into two
pieces of equal size in linear
time.
• Assume even length for now.

• Conquer: Recursively calls
mergesort on each piece.

• Unite: Merges the two sorted
lists in linear time.

Let T(n) be runtime of Mergesort.

• Base Case: If array has length less than 2, brute force. O(1)
• Divides: Divides input into two pieces of equal size in linear time. O(n)

• Assume even length for now.
• Conquer: Recursively calls mergesort on each piece. T(n/2)
• Unite: Merges the two sorted lists in linear time. O(n)

N

N/2 N/2

Let T(n) be runtime of Mergesort.

• Base Case: If array has length less than 2, brute force. O(1)
• Divides: Divides input into two pieces of equal size in linear time. O(n)

• Assume even length for now.
• Conquer: Recursively calls mergesort on each piece. T(n/2)
• Unite: Merges the two sorted lists in linear time. O(n)

𝑻(𝒏) ≤ ?

Let T(n) be runtime of Mergesort.

• Base Case: If array has length less than 2, brute force. O(1)
• Divides: Divides input into two pieces of equal size in linear time. O(n)

• Assume even length for now.
• Conquer: Recursively calls mergesort on each piece. T(n/2)
• Unite: Merges the two sorted lists in linear time. O(n)

𝑻(𝒏) ≤ ቊ
O(1) n ≤ 2

2T(n/2) + O(n) o. w.

Let T(n) be runtime of Mergesort.

• Base Case: If array has length less than 2, brute force. O(1)
• Divides: Divides input into two pieces of equal size in linear time. O(n)
• Conquer: Recursively calls mergesort on each piece. T(n/2)
• Unite: Merges the two sorted lists in linear time. O(n)

𝑻(𝒏) ≤ ቊ
O(1) n ≤ 2

T(⌊n/2⌋) + T(⌈n/2⌉ + c’n o. w.

How do you solve a recurrence?

• Unrolling: We analyze the first few ”levels” of the recursion, find a
pattern and then prove that the pattern is correct.

• Guess and Check: We guess what the answer and the substitute it in
to check that it works. That is, we prove it works.

• REVIEW KT 5.1 and KT 5.2 IF YOU HAVEN’T ALREADY!

𝑻(𝒏) ≤ ቊ
O(1) n ≤ 2

T(⌊n/2⌋) + T(⌈n/2⌉ + c’n o. w.

Unrolling

• Unrolling:
• Sketch out a few levels of

the ”recursion tree”
• Identify how many problems

on each level.
• Identify how much work

done at each level.
• Identify how small each

problem is at each level.
• Identify how many levels

before base case.

𝑻(𝒏)

𝑻(𝒏/2) 𝑻(𝒏/2)

𝑻(𝒏) ≤ ቊ
c n ≤ 2

2T(n/2) + c’n o. w.

Unrolling a few levels

𝒏

𝒏/2 𝒏/2

𝑻(𝒏) ≤ ቊ
c n ≤ 2

2T(n/2) + c’ o. w.

𝒏/4 𝒏/4 𝒏/4 𝒏/4

𝒏/8 𝒏/8 𝒏/8 𝒏/8 𝒏/8 𝒏/8 𝒏/8 𝒏/8

Unrolling a few levels

𝒏

𝒏/2 𝒏/2

𝑻(𝒏) ≤ ቊ
c n ≤ 2

2T(n/2) + c’n o. w.

𝒏/4 𝒏/4 𝒏/4 𝒏/4

𝒏/8 𝒏/8 𝒏/8 𝒏/8 𝒏/8 𝒏/8 𝒏/8 𝒏/8

Unrolling a few levels

𝒏

𝒏/2 𝒏/2

𝑻(𝒏) ≤ ቊ
c n ≤ 2

2T(n/2) + c’n o. w.

𝒏/4 𝒏/4 𝒏/4 𝒏/4

𝒏/8 𝒏/8 𝒏/8 𝒏/8 𝒏/8 𝒏/8 𝒏/8 𝒏/8

Unrolling a few levels

𝒏

𝒏/2 𝒏/2

𝑻(𝒏) ≤ ቊ
c n ≤ 2

2T(n/2) + c’n o. w.

𝒏/4 𝒏/4 𝒏/4 𝒏/4

𝒏/8 𝒏/8 𝒏/8 𝒏/8 𝒏/8 𝒏/8 𝒏/8 𝒏/8

Unrolling a few levels

𝒏

𝒏/2 𝒏/2

𝑻(𝒏) ≤ ቊ
c n ≤ 2

2T(n/2) + c’n o. w.

𝒏/4 𝒏/4 𝒏/4 𝒏/4

𝒏/8 𝒏/8 𝒏/8 𝒏/8 𝒏/8 𝒏/8 𝒏/8 𝒏/8

Unrolling a few levels 𝑻(𝒏) ≤ ቊ
c n ≤ 2

2T(n/2) + c’n o. w.

Problem Size Total WorkLevel

0 ? ?

1 ? ?

2 ? ?

3 ? ?

Unrolling a few levels 𝑻(𝒏) ≤ ቊ
c n ≤ 2

2T(n/2) + c’n o. w.

Problem Size Total WorkLevel

0 n ?

1 n/2 ?

2 n/4 ?

3 n/8 ?

Unrolling a few levels 𝑻(𝒏) ≤ ቊ
c n ≤ 2

2T(n/2) + c’n o. w.

Problem Size Total WorkLevel

0 n c’n

1 n/2 2*(c’n/2)

2 n/4 4*(c’n/4)

3 n/8 8*(c’n/8)

Unrolling a few levels 𝑻(𝒏) ≤ ቊ
c n ≤ 2

2T(n/2) + c’n o. w.

Problem Size Total WorkLevel

0 n c’n

1 n/2 c’n

2 n/4 c’n

3 n/8 c’n

Unrolling a few levels 𝑻(𝒏) ≤ ቊ
c n ≤ 2

2T(n/2) + c’n o. w.

Problem Size Total WorkLevel

0 n c’n

1 n/2 c’n

2 n/4 c’n

3 n/8 c’n

Q: What will be the problem
size and total work done at
level i?

Unrolling a few levels 𝑻(𝒏) ≤ ቊ
c n ≤ 2

2T(n/2) + c’n o. w.

Problem Size Total WorkLevel

0 n c’n

1 n/2 c’n

2 n/4 c’n

3 n/8 c’n

A: At level i, the problem size
(if not the base case) will be
n/2^i. The total work done will
be c’n.

Unrolling a few levels 𝑻(𝒏) ≤ ቊ
c n ≤ 2

2T(n/2) + c’n o. w.

Problem Size Total WorkLevel

0 n c’n

1 n/2 c’n

2 n/4 c’n

3 n/8 c’n

Q: How many levels until base
case?

Unrolling a few levels 𝑻(𝒏) ≤ ቊ
c n ≤ 2

2T(n/2) + c’n o. w.

Problem Size Total WorkLevel

0 n c’n

1 n/2 c’n

2 n/4 c’n

3 n/8 c’n

A: After O(log(n)) levels, the
problem size will be at most c
and we can do the base case.

Unrolling a few levels 𝑻(𝒏) ≤ ቊ
c n ≤ 2

2T(n/2) + c’n o. w.

Problem Size Total WorkLevel

0 n c’n

1 n/2 c’n

2 n/4 c’n

3 n/8 c’n

Q: How much total work done
over all levels?

Unrolling a few levels 𝑻(𝒏) ≤ ቊ
c n ≤ 2

2T(n/2) + c’n o. w.

Problem Size Total WorkLevel

0 n c’n

1 n/2 c’n

2 n/4 c’n

3 n/8 c’n

A: The work done at each level
is c’n and the total number of
levels is O(log(n)).
Hence, O(n log(n)).

Unrolling a few levels 𝑻(𝒏) ≤ ቊ
c n ≤ 2

2T(n/2) + c’n o. w.

Problem Size Total WorkLevel

0 n c’n

1 n/2 c’n

2 n/4 c’n

3 n/8 c’n

Work Done is the sum of work done at
each level and we “showed” that the
work done at each level is c’n and
there are at most O(log(n)) levels.

Guess & Check 𝑻(𝒏) ≤ ቊ
c n ≤ 2

2T(n/2) + c’n o. w.

• You might have guessed T(n) = O(nlog(n)) because you’ve
been told that before or because you recognize the
recurrence.

• How could you directly prove T(n) = c’’nlog(n) if you
suspected it was true?

Guess & Check 𝑻(𝒏) ≤ ቊ
c n ≤ 2

2T(n/2) + c’n o. w.

• You might have guessed T(n) = O(nlog(n)) because you’ve
been told that before or because you recognize the
recurrence.

• How could you directly prove T(n) = c’n𝑙𝑜𝑔2(n) if you
suspected it was true?
• You could use induction to show that this solves the

recurrence.

Guess & Check 𝑻(𝒏) ≤ ቊ
c n ≤ 2

2T(n/2) + c’n o. w.

• Base Case:
• We can sort a list of size at most 2 in constant time,

𝑇(1) ≤ 𝑇(2) ≤ 𝑐 for some constant c as desired.

Guess & Check 𝑻(𝒏) ≤ ቊ
c n ≤ 2

2T(n/2) + c’n o. w.

• Base Case:
• We can sort a list of size at most 2 in constant time,

𝑇(1) ≤ 𝑇(2) ≤ 𝑐 for some constant c as desired.
• IH:

• Suppose we know that 𝑇 𝑚 ≤ 𝑐’𝑚𝑙𝑜𝑔2(m) for some all
m < n.

Guess & Check 𝑻(𝒏) ≤ ቊ
c n ≤ 2

2T(n/2) + c’n o. w.

• Base Case:
• We can sort a list of size at most 2 in constant time,

𝑇(1) ≤ 𝑇(2) ≤ 𝑐 for some constant c as desired.
• IH:

• Suppose we know that 𝑇 𝑚 ≤ 𝑐’𝑚𝑙𝑜𝑔2(m) for some all
m < n.

• Inductive Case:
• Since this is not the base case and n/2 < m, 𝑇(n) ≤ 2 ∗

c’’(n/2)𝑙𝑜𝑔2(n/2) + c’(n/2)

Guess & Check 𝑻(𝒏) ≤ ቊ
c n ≤ 2

2T(n/2) + c’n o. w.

• Inductive Case:
• Since this is not the base case and n/2 < m,

𝑇 𝑛 ≤ 2 ∗ 𝑐’ 𝑛/2 𝑙𝑜𝑔2 𝑛/2 + 𝑐’n

• This concludes the proof.

≤ 𝑐’n𝑙𝑜𝑔2 𝑛/2 + 𝑐’𝑛
≤ 𝑐’n (𝑙𝑜𝑔2 𝑛 − 1) + 𝑐’𝑛

≤ 𝑐’n 𝑙𝑜𝑔2 𝑛 − c’n + 𝑐’𝑛

≤ 𝑐’n 𝑙𝑜𝑔2 𝑛

Partial Guess 𝑻(𝒏) ≤ ቊ
c n ≤ 2

2T(n/2) + c’n o. w.

• You might not know the coefficients or bases:
𝑇 𝑛 ≤ 2 ∗ k 𝑛/2 𝑙𝑜𝑔b 𝑛/2 + 𝑐’n

≤ k n 𝑙𝑜𝑔b 𝑛/2 + 𝑐’𝑛
≤ kn (𝑙𝑜𝑔2 𝑛 − 1) + 𝑐’𝑛

≤ kn 𝑙𝑜𝑔2 𝑛 − kn + 𝑐’𝑛
≤ c’n 𝑙𝑜𝑔2 𝑛

Seems like b = 2

Seems like k = c’

Q: What happens?

𝑻𝟏(𝒏) ≤ ቊ
c n ≤ 2

qT(n/2) + c’n o. w.

𝑻𝟐(𝒏) ≤ ቊ
c n ≤ 2

2T(n/2) + c’n^2 o. w.

𝑻3(𝒏) ≤ ቊ
c n ≤ 2000

2T(n/2) + c’n o. w.

	Slide 1: CSE 331: Algorithms & Complexity
	Slide 2: Schedule
	Slide 3: Course Updates
	Slide 4: Midterm Evals Grades (One HW Drop)
	Slide 5: Midterm Evals Grades (One HW Drop)
	Slide 6: Reading
	Slide 7: Prim’s Algorithm Runtime
	Slide 8: Prim’s Algorithm Runtime O(m log(n))
	Slide 9: Kruskal’s Algorithm Runtime
	Slide 10: Kruskal’s Algorithm Runtime O(m log(n))
	Slide 11: Kruskal’s Algorithm Runtime O(m log(n))
	Slide 12: Divide & Conquer (KT 5.1 and KT 5.2)
	Slide 13: Why Divide & Conquer?
	Slide 14: Why Divide & Conquer?
	Slide 15: Why Divide & Conquer?
	Slide 16: Why Divide & Conquer?
	Slide 17: Why Divide & Conquer?
	Slide 18: Q: How many times can you split in half?
	Slide 19: A: After log times, you will get a constant!
	Slide 20: Another Look
	Slide 21: Another Look
	Slide 22: Another Look
	Slide 23: It takes 8N to do splitting and combining
	Slide 24: It takes N^2/16 to do algorithm on small parts.
	Slide 25: Another Look
	Slide 26: Another Look
	Slide 27: Another Look
	Slide 28: Sorting
	Slide 29: Sorting
	Slide 30: Sorting
	Slide 31: Mergesort
	Slide 32: Mergesort
	Slide 33: Sorting
	Slide 34: Merging
	Slide 35: Mergesort Runtime?
	Slide 36: Let T(n) be runtime of Mergesort.
	Slide 37: Let T(n) be runtime of Mergesort.
	Slide 38: Let T(n) be runtime of Mergesort.
	Slide 39: Let T(n) be runtime of Mergesort.
	Slide 40: How do you solve a recurrence?
	Slide 41: Unrolling
	Slide 42: Unrolling a few levels
	Slide 43: Unrolling a few levels
	Slide 44: Unrolling a few levels
	Slide 45: Unrolling a few levels
	Slide 46: Unrolling a few levels
	Slide 47: Unrolling a few levels
	Slide 48: Unrolling a few levels
	Slide 49: Unrolling a few levels
	Slide 50: Unrolling a few levels
	Slide 51: Unrolling a few levels
	Slide 52: Unrolling a few levels
	Slide 53: Unrolling a few levels
	Slide 54: Unrolling a few levels
	Slide 55: Unrolling a few levels
	Slide 56: Unrolling a few levels
	Slide 57: Unrolling a few levels
	Slide 58: Guess & Check
	Slide 59: Guess & Check
	Slide 60: Guess & Check
	Slide 61: Guess & Check
	Slide 62: Guess & Check
	Slide 63: Guess & Check
	Slide 64: Partial Guess
	Slide 65: Q: What happens?

