
CSE 331: 
Algorithms & Complexity

Prof. Charlie Anne Carlson (She/Her)
Lecture 23

Monday October 27th, 2025

“Solving recurrence relations”



Schedule

1.Course Updates
2.Mergesort
3.Recurrences 



Course Updates

• Midterm Out
• Post Midterm Grades <-piazza 
• HW 5 Due Tomorrow
• HW 6 Out Tomorrow
• Group Project

• First Problems Oct 31st



Reading

• You should have read:
• Finished KT 5.1 
• Finished KT 5.2
• Started 5.3

• Before Next Class:
• Finish KT 5.3
• Start KT 5.5



Course Update

Check Piazza!



Sorting

• Problem: Given a list of n 
numbers L, rearrange them in 
ascending order.

• E.g.
• Input: [3,2,5,5,1,6,7,8]
• Output: [1,2,3,5,5,6,7,8]



Sorting

• Problem: Given a list of n 
numbers L, rearrange them in 
ascending order.

• Sorting Algorithms:
• Bubble Sort
• Insertion Sort
• Mergesort
• Radix Sort
• Quicksort
• Introsort



Sorting

• Problem: Given a list of n 
numbers L, rearrange them in 
ascending order.

• Sorting Algorithms:
• Bubble Sort
• Insertion Sort
• Mergesort
• Radix Sort
• Quicksort
• Introsort



Mergesort

• Divides: Divides input into two 
pieces of equal size in linear 
time. 
• Assume even length for now.

• Conquer: Recursively calls 
mergesort on each piece.

• Unite: Merges the two sorted 
lists in linear time. 



Mergesort

• Base Case: If array has length 
less than 2, brute force. 

• Divides: Divides input into two 
pieces of equal size in linear 
time. 
• Assume even length for now.

• Conquer: Recursively calls 
mergesort on each piece.

• Unite: Merges the two sorted 
lists in linear time. 



Sorting

• Problem: Given two sorted lists 
A and B, find a sorted list of 
their union.



Merging

• Input: Two sorted lists A and B of length n/2
• Output: Sorted list of A and B
• Initialize list C to be empty
• Let i = 0 and j = 0
• While (i < n/2 or j < n/2):

• If j == n/2 or A[i] <= B[j]:
• C.append(A[i])
• i += 1

• Else:
• C.append(B[j])
• j += 1



Mergesort Runtime?

• Base Case: If array has length 
less than 2, brute force. 

• Divides: Divides input into two 
pieces of equal size in linear 
time. 
• Assume even length for now.

• Conquer: Recursively calls 
mergesort on each piece.

• Unite: Merges the two sorted 
lists in linear time. 



Let T(n) be runtime of Mergesort.

• Base Case: If array has length less than 2, brute force. O(1)
• Divides: Divides input into two pieces of equal size in linear time. O(n)

• Assume even length for now.
• Conquer: Recursively calls mergesort on each piece. T(n/2)
• Unite: Merges the two sorted lists in linear time. O(n)

N

N/2 N/2



Let T(n) be runtime of Mergesort.

• Base Case: If array has length less than 2, brute force. O(1)
• Divides: Divides input into two pieces of equal size in linear time. O(n)

• Assume even length for now.
• Conquer: Recursively calls mergesort on each piece. T(n/2)
• Unite: Merges the two sorted lists in linear time. O(n)

𝑻(𝒏)  ≤ ? 



Let T(n) be runtime of Mergesort.

• Base Case: If array has length less than 2, brute force. O(1)
• Divides: Divides input into two pieces of equal size in linear time. O(n)

• Assume even length for now.
• Conquer: Recursively calls mergesort on each piece. T(n/2)
• Unite: Merges the two sorted lists in linear time. O(n)

𝑻(𝒏)  ≤  ቊ
O(1) n ≤ 2

2T(n/2)  +  O(n) o. w.



Let T(n) be runtime of Mergesort.

• Base Case: If array has length less than 2, brute force. O(1)
• Divides: Divides input into two pieces of equal size in linear time. O(n)
• Conquer: Recursively calls mergesort on each piece. T(n/2)
• Unite: Merges the two sorted lists in linear time. O(n)

𝑻(𝒏)  ≤  ቊ
O(1) n ≤ 2

T(⌊n/2⌋)  +  T(⌈n/2⌉ +  c’n o. w.



How do you solve a recurrence?

• Unrolling: We analyze the first few ”levels” of the recursion, find a 
pattern and then prove that the pattern is correct.

• Guess and Check: We guess what the answer and the substitute it in 
to check that it works. That is, we prove it works. 

• REVIEW KT 5.1 and KT 5.2 IF YOU HAVEN’T ALREADY!

𝑻(𝒏)  ≤  ቊ
O(1) n ≤ 2

T(⌊n/2⌋)  +  T(⌈n/2⌉ +  c’n o. w.



Unrolling

• Unrolling:
• Sketch out a few levels of 

the ”recursion tree”
• Identify how many problems 

on each level.
• Identify how much work 

done at each level.
• Identify how small each 

problem is at each level. 
• Identify how many levels 

before base case.

𝑻(𝒏) 

𝑻(𝒏/2) 𝑻(𝒏/2) 

𝑻(𝒏)  ≤  ቊ
c n ≤ 2

2T(n/2)  +  c’n o. w.



Unrolling a few levels 

𝒏 

𝒏/2 𝒏/2

𝑻(𝒏)  ≤  ቊ
c n ≤ 2

2T(n/2)  +  c’ o. w.

𝒏/4 𝒏/4 𝒏/4 𝒏/4 

𝒏/8 𝒏/8 𝒏/8 𝒏/8 𝒏/8 𝒏/8 𝒏/8 𝒏/8 



Unrolling a few levels 

𝒏 

𝒏/2 𝒏/2

𝑻(𝒏)  ≤  ቊ
c n ≤ 2

2T(n/2)  +  c’n o. w.

𝒏/4 𝒏/4 𝒏/4 𝒏/4 

𝒏/8 𝒏/8 𝒏/8 𝒏/8 𝒏/8 𝒏/8 𝒏/8 𝒏/8 



Unrolling a few levels 

𝒏 

𝒏/2 𝒏/2

𝑻(𝒏)  ≤  ቊ
c n ≤ 2

2T(n/2)  +  c’n o. w.

𝒏/4 𝒏/4 𝒏/4 𝒏/4 

𝒏/8 𝒏/8 𝒏/8 𝒏/8 𝒏/8 𝒏/8 𝒏/8 𝒏/8 



Unrolling a few levels 

𝒏 

𝒏/2 𝒏/2

𝑻(𝒏)  ≤  ቊ
c n ≤ 2

2T(n/2)  +  c’n o. w.

𝒏/4 𝒏/4 𝒏/4 𝒏/4 

𝒏/8 𝒏/8 𝒏/8 𝒏/8 𝒏/8 𝒏/8 𝒏/8 𝒏/8 



Unrolling a few levels 

𝒏 

𝒏/2 𝒏/2

𝑻(𝒏)  ≤  ቊ
c n ≤ 2

2T(n/2)  +  c’n o. w.

𝒏/4 𝒏/4 𝒏/4 𝒏/4 

𝒏/8 𝒏/8 𝒏/8 𝒏/8 𝒏/8 𝒏/8 𝒏/8 𝒏/8 



Unrolling a few levels 𝑻(𝒏)  ≤  ቊ
c n ≤ 2

2T(n/2)  +  c’n o. w.

Problem Size Total WorkLevel

0                         ?                               ?

1                         ?                               ?

2                         ?                               ?

3                         ?                               ?



Unrolling a few levels 𝑻(𝒏)  ≤  ቊ
c n ≤ 2

2T(n/2)  +  c’n o. w.

Problem Size Total WorkLevel

0                         n                                 ?

1                         n/2                               ?

2                         n/4                               ?

3                         n/8                               ?



Unrolling a few levels 𝑻(𝒏)  ≤  ቊ
c n ≤ 2

2T(n/2)  +  c’n o. w.

Problem Size Total WorkLevel

0                         n                                 c’n

1                         n/2                              2*(c’n/2)

2                         n/4                               4*(c’n/4)

3                         n/8                               8*(c’n/8)



Unrolling a few levels 𝑻(𝒏)  ≤  ቊ
c n ≤ 2

2T(n/2)  +  c’n o. w.

Problem Size Total WorkLevel

0                         n                                 c’n

1                         n/2                              c’n

2                         n/4                               c’n

3                         n/8                               c’n



Unrolling a few levels 𝑻(𝒏)  ≤  ቊ
c n ≤ 2

2T(n/2)  +  c’n o. w.

Problem Size Total WorkLevel

0                         n                                 c’n

1                         n/2                              c’n

2                         n/4                               c’n

3                         n/8                               c’n

Q: What will be the problem 
size and total work done at 
level i?



Unrolling a few levels 𝑻(𝒏)  ≤  ቊ
c n ≤ 2

2T(n/2)  +  c’n o. w.

Problem Size Total WorkLevel

0                         n                                 c’n

1                         n/2                              c’n

2                         n/4                               c’n

3                         n/8                               c’n

A: At level i, the problem size 
(if not the base case) will be 
n/2^i. The total work done will 
be c’n.  



Unrolling a few levels 𝑻(𝒏)  ≤  ቊ
c n ≤ 2

2T(n/2)  +  c’n o. w.

Problem Size Total WorkLevel

0                         n                                 c’n

1                         n/2                              c’n

2                         n/4                               c’n

3                         n/8                               c’n

Q: How many levels until base 
case?



Unrolling a few levels 𝑻(𝒏)  ≤  ቊ
c n ≤ 2

2T(n/2)  +  c’n o. w.

Problem Size Total WorkLevel

0                         n                                 c’n

1                         n/2                              c’n

2                         n/4                               c’n

3                         n/8                               c’n

A: After O(log(n)) levels, the 
problem size will be at most c 
and we can do the base case. 



Unrolling a few levels 𝑻(𝒏)  ≤  ቊ
c n ≤ 2

2T(n/2)  +  c’n o. w.

Problem Size Total WorkLevel

0                         n                                 c’n

1                         n/2                              c’n

2                         n/4                               c’n

3                         n/8                               c’n

Q: How much total work done 
over all levels?



Unrolling a few levels 𝑻(𝒏)  ≤  ቊ
c n ≤ 2

2T(n/2)  +  c’n o. w.

Problem Size Total WorkLevel

0                         n                                 c’n

1                         n/2                              c’n

2                         n/4                               c’n

3                         n/8                               c’n

A: The work done at each level 
is c’n and the total number of 
levels is O(log(n)).
Hence, O(n log(n)). 



Unrolling a few levels 𝑻(𝒏)  ≤  ቊ
c n ≤ 2

2T(n/2)  +  c’n o. w.

Problem Size Total WorkLevel

0                         n                                 c’n

1                         n/2                              c’n

2                         n/4                               c’n

3                         n/8                               c’n

Work Done is the sum of work done at 
each level and we “showed” that the 
work done at each level is c’n and 
there are at most O(log(n)) levels.



Guess & Check 𝑻(𝒏)  ≤  ቊ
c n ≤ 2

2T(n/2)  +  c’n o. w.

• You might have guessed T(n) = O(nlog(n)) because you’ve 
been told that before or because you recognize the 
recurrence. 

• How could you directly prove T(n) = c’’nlog(n) if you 
suspected it was true?



Guess & Check 𝑻(𝒏)  ≤  ቊ
c n ≤ 2

2T(n/2)  +  c’n o. w.

• You might have guessed T(n) = O(nlog(n)) because you’ve 
been told that before or because you recognize the 
recurrence. 

• How could you directly prove T(n) = c’n𝑙𝑜𝑔2(n) if you 
suspected it was true?
• You could use induction to show that this solves the 

recurrence. 



Guess & Check 𝑻(𝒏)  ≤  ቊ
c n ≤ 2

2T(n/2)  +  c’n o. w.

• Base Case:
• We can sort a list of size at most 2 in constant time, 

𝑇(1)  ≤ 𝑇(2) ≤  𝑐 for some constant c as desired.



Guess & Check 𝑻(𝒏)  ≤  ቊ
c n ≤ 2

2T(n/2)  +  c’n o. w.

• Base Case:
• We can sort a list of size at most 2 in constant time, 

𝑇(1)  ≤ 𝑇(2) ≤  𝑐 for some constant c as desired.
• IH: 

• Suppose we know that 𝑇 𝑚 ≤ 𝑐’𝑚𝑙𝑜𝑔2(m) for some all 
m < n. 



Guess & Check 𝑻(𝒏)  ≤  ቊ
c n ≤ 2

2T(n/2)  +  c’n o. w.

• Base Case:
• We can sort a list of size at most 2 in constant time, 

𝑇(1)  ≤ 𝑇(2) ≤  𝑐 for some constant c as desired.
• IH: 

• Suppose we know that 𝑇 𝑚 ≤ 𝑐’𝑚𝑙𝑜𝑔2(m) for some all 
m < n. 

• Inductive Case: 
•  Since this is not the base case and n/2 < m, 𝑇(n) ≤  2 ∗

c’’(n/2)𝑙𝑜𝑔2(n/2)  +  c’(n/2)



Guess & Check 𝑻(𝒏)  ≤  ቊ
c n ≤ 2

2T(n/2)  +  c’n o. w.

• Inductive Case: 
•  Since this is not the base case and n/2 < m, 

𝑇 𝑛 ≤ 2 ∗ 𝑐’ 𝑛/2 𝑙𝑜𝑔2 𝑛/2 + 𝑐’n

• This concludes the proof.

≤ 𝑐’n𝑙𝑜𝑔2 𝑛/2 + 𝑐’𝑛
≤ 𝑐’n (𝑙𝑜𝑔2 𝑛 − 1) + 𝑐’𝑛

≤ 𝑐’n 𝑙𝑜𝑔2 𝑛 − c’n + 𝑐’𝑛

≤ 𝑐’n 𝑙𝑜𝑔2 𝑛



Partial Guess 𝑻(𝒏)  ≤  ቊ
c n ≤ 2

2T(n/2)  +  c’n o. w.

• You might not know the coefficients or bases: 
𝑇 𝑛 ≤ 2 ∗ k 𝑛/2 𝑙𝑜𝑔b 𝑛/2 + 𝑐’n

≤ k n 𝑙𝑜𝑔b 𝑛/2 + 𝑐’𝑛
≤ kn (𝑙𝑜𝑔2 𝑛 − 1) + 𝑐’𝑛

≤ kn 𝑙𝑜𝑔2 𝑛 − kn + 𝑐’𝑛
≤ c’n 𝑙𝑜𝑔2 𝑛

Seems like b = 2

Seems like k = c’



Q: What happens?

𝑻𝟏(𝒏)  ≤  ቊ
c n ≤ 2

qT(n/2)  +  c’n o. w.

𝑻𝟐(𝒏)  ≤  ቊ
c n ≤ 2

2T(n/2)  +  c’n^2 o. w.

𝑻3(𝒏)  ≤  ቊ
c n ≤ 2000

2T(n/2)  +  c’n o. w.


	Slide 1: CSE 331:  Algorithms & Complexity
	Slide 2: Schedule
	Slide 3: Course Updates
	Slide 4: Reading
	Slide 5: Course Update
	Slide 6: Sorting
	Slide 7: Sorting
	Slide 8: Sorting
	Slide 9: Mergesort
	Slide 10: Mergesort
	Slide 11: Sorting
	Slide 12: Merging
	Slide 13: Mergesort Runtime?
	Slide 14: Let T(n) be runtime of Mergesort.
	Slide 15: Let T(n) be runtime of Mergesort.
	Slide 16: Let T(n) be runtime of Mergesort.
	Slide 17: Let T(n) be runtime of Mergesort.
	Slide 18: How do you solve a recurrence?
	Slide 19: Unrolling
	Slide 20: Unrolling a few levels 
	Slide 21: Unrolling a few levels 
	Slide 22: Unrolling a few levels 
	Slide 23: Unrolling a few levels 
	Slide 24: Unrolling a few levels 
	Slide 25: Unrolling a few levels 
	Slide 26: Unrolling a few levels 
	Slide 27: Unrolling a few levels 
	Slide 28: Unrolling a few levels 
	Slide 29: Unrolling a few levels 
	Slide 30: Unrolling a few levels 
	Slide 31: Unrolling a few levels 
	Slide 32: Unrolling a few levels 
	Slide 33: Unrolling a few levels 
	Slide 34: Unrolling a few levels 
	Slide 35: Unrolling a few levels 
	Slide 36: Guess & Check
	Slide 37: Guess & Check
	Slide 38: Guess & Check
	Slide 39: Guess & Check
	Slide 40: Guess & Check
	Slide 41: Guess & Check
	Slide 42: Partial Guess
	Slide 43: Q: What happens?

