L]

' CSE 331:

Allg@ﬂfﬁlﬂhﬂﬂﬂlg & (C<o>lnnqp>1l<exiilty
“Solving recurrence relations”

Prof. Charlie Anne Carlson (She/Her)
Lecture 23

Monday October 27", 2025
University at Buffalo

Schedule

1.Course Updates —
2.Mergesort '
3.Recurrences

Course Updates

Midterm Out

Post Midterm Grades <-piazza
HW 5 Due Tomorrow

HW 6 Out Tomorrow

Group Project

* First Problems Oct 31¢t

Reading

* You should have read:
* Finished KT 5.1
* Finished KT 5.2
e Started 5.3
 Before Next Class:
* Finish KT 5.3
e StartKT 5.5

JON KLEINBERG - EVA TARDOS

Course Update

Check Piazza!

Course Updates

Updated 33 minutes ago by Charlie Anne Carlson

Hello All,

Grade Evals:

I'm still working on getting a copy of your grades into UBLearns. For now, you can calculate your grade using the raw grades given on autolab. Here is a little formula that | would suggest using to
compute your "benchmark grade":

Benchmark Grade = MG*(25/55) + HWG*(27/55) + QG*(3/55)
where

¢ MG = (Midterm Grade)/100

¢ HWG = (P1A+P1B+P2A+P2B+P3)/100
o P1A = Max Two Scores for Problem 1A of HW1, HW2, or HW3.
o P1B = Max Two Scores for Problem 1B of HW1, HW2, or HW3.
o P2A = Max Two Scores for Problem 2A of HW1, HW2, or HW3.
o P2B = Max Two Scores for Problem 2B of HW1, HW2, or HWS.
o P3 = Max Two Scores for Problem 3 of HW1, HW2, or HW3.

* Q =(Quiz 1 Grade)/10

Sorting

* Problem: Given alist of n
numbers L, rearrange them in
ascending order.

« E.g. p
 Input:[3,2,5,5,1,6,7,8] 4

. Output:[1,2,3,5,5,6,7,8] f

& A 4

Sorting

* Problem: Given alist of n
numbers L, rearrange them in
ascending order.

* Sorting Algorithms:
* Bubble Sort
* |nsertion Sort
* Mergesort
 Radix Sort
e Quicksort
* |ntrosort

Sorting

* Problem: Given alist of n
numbers L, rearrange them in
ascending order.

* Sorting Algorithms:
* Bubble Sort
* |nsertion Sort
* Mergesort
 Radix Sort
e Quicksort
* |ntrosort

Mergesort

Divides: Divides input into two
pieces of equal size in linear
time.

* Assume even length for now.

Conquer: Recursively calls
mergesort on each piece.
Unite: Merges the two sorted
lists in linear time.

Mergesort

* Base Case: If array has length
less than 2, brute force.

* Divides: Divides input into two
pieces of equal size in linear
time.

* Assume even length for now.

* Conquer: Recursively calls
mergesort on each piece.

* Unite: Merges the two sorted
lists in linear time.

Sorting

e Problem: Given two sorted lists
A and B, find a sorted list of
their union.

O

O
=

Merging

* Input: Two sorted lists A and B of length n/2
* Output: Sorted listof Aand B
* [nitialize list C to be empty
e Leti=0andj=0
* While (i<n/2orj<n/2):
 |fj==n/2 or A[i] <= BJj]:

« C.append(Ali]) O
e j+=1

e Else: (\O
* C.append(B[j]) —
° j+=']

Mergesort Runtime?

* Base Case: If array has length
less than 2, brute force.

* Divides: Divides input into two
pieces of equal size in linear
time.

* Assume even length for now.

* Conquer: Recursively calls
mergesort on each piece.

* Unite: Merges the two sorted
lists in linear time.

Let T(n) be runtime of Mergesort.

* Base Case: If array has length less than 2, brute force. O(1)

* Divides: Divides input into two pieces of equal size in linear time. O(n)
* Assume even length for now.

* Conquer: Recursively calls mergesort on each piece. T(n/2)

* Unite: Merges the two sorted lists in linear time. O(n)

Let T(n) be runtime of Mergesort.

* Base Case: If array has length less than 2, brute force. O(1)

* Divides: Divides input into two pieces of equal size in linear time. O(n)
* Assume even length for now.

* Conquer: Recursively calls mergesort on each piece. T(n/2)

* Unite: Merges the two sorted lists in linear time. O(n)

T(n) <?

Let T(n) be runtime of Mergesort.

« Base Case: If array has length less than 2, brute force. O(1)

* Divides: Divides input into two pieces of equal size in linear time. O(n)
* Assume even length for now.

* Conquer: Recursively calls mergesort on each piece. T(n/2)

* Unite: Merges the two sorted lists in linear time. O(n)

O(1) n <2

M) <21m/2) + om) o.w.

Let T(n) be runtime of Mergesort.

« Base Case: If array has length less than 2, brute force. O(1)

* Divides: Divides input into two pieces of equal size in linear time. O(n)
* Conquer: Recursively calls mergesort on each piece. T(n/2)

* Unite: Merges the two sorted lists in linear time. O(n)

0(1) n <2

In) < T(In/2]) + T(In/2]+ cn o.w.

How do you solve a recurrence?

* Unrolling: We analyze the first few "levels” of the recursion, find a
pattern and then prove that the pattern is correct.
* Guess and Check: We guess what the answer and the substitute it in

to check that it works. That is, we prove it works.
* REVIEWKT 5.1 and KT 5.2 IF YOU HAVEN’T ALREADY!

0(1) n <2

In) < T(In/2]) + T(In/2]+ cn o.w.

Unrolling

* Unrolling:

Sketch out a few levels of T(n)

the "recursion tree” / \
|dentify how many problems

on each level. T(n/2) T(n/2)

ldentify how much work

done at each level.

dentify h.ow small each c h <2
aroblgm is at each level. T(n) < {ZT(n/Z) L en ow
dentify how many levels

pefore base case.

Unrolli C v
rolling a few levels '™ = {ZT(n/Z) + ¢ rlo.<w.2

n

Unrolli : \
nrolling a few levels '™ = {ZT(n/Z) + ¢n rlo.<w.2

n

/\

n/2 n/2

Unrolling a few levels "™ = {

n

C n<32
2T(n/2) + ¢c’n o.w.

/\

n/2

/\

/\

n/4 n/4 n/4 n/4

. C n<?2
Unrolling a few levels '™ = {ZT(n/Z) +cn ow.

n

n/2 n/2
n/4 n/4 n/4 n/4

N /N /N N

n/8 n/8 n/8 n/8 n/8 n/8 n/8 n/8

. C n<?2
Unrolling a few levels '™ = {ZT(n/Z) +cn ow.

/”\
n/2 n/2
n/4 n/4 n/4 n/4
n/8 n/8 n/8 n/8 n/8 n/8 n/8 n/8

C

Unrolling a few levels "™ = {ZT(n/Z) + ¢'n

n 0
/\

n/2 n/2 1

n/4 n/4 n/4 n/4 2

/N /N /N /N

n/8 n/8 n/8 n/8 n/8 n/8 n/8 n/8 3

A AN AL AN

Problem Size

?

n<?2
0. W.

Total Work

?

C

Unrolling a few levels "™ = {ZT(n/Z) + ¢'n

n 0
/\

n/2 n/2 1

n/4 n/4 n/4 n/4 2

/N /N /N /N

n/8 n/8 n/8 n/8 n/8 n/8 n/8 n/8 3

A AN AL AN

Problem Size

n

n/2

n/4

n/8

n<?2
0. W.

Total Work

?

C n<?2
Unrolling a few levels '™ = {ZT(n/Z) +cn ow.

Level Problem Size | Total Work

n 0 n c’n
/\
n/2 n/z 1 n/2 2*(c’n/2)
n/4 n/4 n/4 n/4 2 n/4 4%(c’n/4)
/N /N /N /N
78\7/§ n/878\ n/87/i n/8 n/8 3 n/8 8*(c'n/8)

C

Unrolling a few levels "™ = {ZT(n/Z) + ¢'n

n 0
/\

n/2 n/2 1

n/4 n/4 n/4 n/4 2

/N /N /N /N

n/8 n/8 n/8 n/8 n/8 n/8 n/8 n/8 3

A AN AL AN

Problem Size

n

n/2

n/4

n/8

n<?2
0. W.

Total Work

c’n

c’n

c’n

c’n

Unrolling a few levels ™ = {

Q: What will be the problem
size and total work done at

level I7?

n

/\
n/2 n/2
n/4 n/4 n/4 n/4
/N /N /N

n/8 n/8 n/8 n/8 n/8 n/8 n/8 n/g

AL AN A A

Level
0

C n<?2

2T(n/2) + c'n

Problem Size

n

n/2

n/4

n/8

0. W.

Total Work

c’n

c’n

c’n

c’n

C n<?2
Unrolling a few levels '™ = {ZT(n/Z) +cn ow.

Level Problem Size | Total Work

A: At level i, the problem size 0 A
(If not the base case) will be

n/2”i. The total work done will e
b
be cn. 1 2 n/4 c’n
/\
n/2 n/2
T T 3 n/8 c’n
n/4 n/4 n/4 n/4
/\ /N /N

n/8 n/8 n/8 n/8 n/8 n/8 n/8 n/g

ACAA AN A

Unrolling a few levels ™ = {

Q: How many levels until base

case”?

n

/\

n/2 n/2
n/4 n/4 n/4 n/4
/N /N /N
n/8 n/8 n/8 n/8 n/8 n/8 n/8 n/g

AL AN A A

Level

C

n<?2

2T(n/2) + c'n

Problem Size

n

n/2

n/4

n/8

0. W,

Total Work

c’n

c’n

c’n

c’n

C n<?2
Unrolling a few levels '™ = {ZT(n/Z) +cn ow.

Level Problem Size | Total Work

A: After O(log(n)) levels, the 0 A
problem size will be at most c

and we can do the base case. 1 e
1 2 n/4 c’n
/\
n/2 n/2
T T 3 n/8 c’n
n/4 n/4 n/4 n/4
/\ /N /N

n/8 n/8 n/8 n/8 n/8 n/8 n/8 n/g

ACAA AN A

Unrolling a few levels "™ = {

Q: How much total work done

over all levels?

/\
n/2 n/2
n/4 n/4 n/4 n/4
/N /N /N

n/8 n/8

n/8 n/8

n/8 n/8

n/8 n/8

AL AN A A

Level
0

C

n<?2

2T(n/2) + ¢c'n

Problem Size

n

n/2

n/4

n/8

0. W,

Total Work

c’n

c’n

c’n

c’n

C n<?2
Unrolling a few levels '™ = {ZT(n/Z) +cn ow.

Level Problem Size | Total Work

A: The work done at each level 0 .
IS ¢c’n and the total number of

levels is O(log(n)). 1 i
Hence, O(n log(n)). n , i
i
n/t}/\n/4 n/”r/\n/‘l 3 n/8 c’n
/N /N /N

n/8 n/8 n/8 n/8 n/8 n/8 n/8 n/g

ACAA AN A

C n<?2
Unrolling a few levels '™ = {ZT(n/Z) +cn ow.

Level Problem Size | Total Work

Work Done is the sum of work done at 0
each level and we “showed” that the

work done at each level is ¢’n and : o
there are at most O(log(n)) levels.

n c’n

c’n

1 2 n/4 c’n
/\
n/2 n/2
T T 3 n/8 c’n
n/4 n/4 n/4 n/4
/N /N /N

n/8 n/8 n/8 n/8 n/8 n/8 n/8 n/g

ACAA AN A

C n<?2

Guess & Check Tn) = {ZT(n/Z) +cn o o.w.

* You might have guessed T(n) = O(nlog(n)) because you’ve
been told that before or because you recognize the
recurrence.

* How could you directly prove T(n) =c’’nlog(n) if you
suspected it was true?

C n<?2

Guess & Check Tn) = {ZT(n/Z) +cn o o.w.

* You might have guessed T(n) = O(nlog(n)) because you’ve
been told that before or because you recognize the

recurrence.
 How could you directly prove T(n) = c’'nlog,(n) if you

suspected it was true?

* You could use induction to show that this solves the

recurrence.

C n<?2

Guess & Check Tn) = {ZT(n/Z) +cn o o.w.

e Base Case:
* \We can sort a list of size at most 2 in constant time,
T(1) <T(2) £ cforsome constant c as desired.

C n<?2

Guess & Check Tn) = {ZT(n/Z) +cn o o.w.

* Base Case:
* \We can sort a list of size at most 2 in constant time,
T(1) <T(2) £ cforsome constant c as desired.
 |H:
* Suppose we know that T(m) < c’'mlog,(m) for some all
m < n.

C n<?2

Guess & Check Tn) = {ZT(n/Z) +cn o o.w.

* Base Case:
* \We can sort a list of size at most 2 in constant time,
T(1) <T(2) £ cforsome constant c as desired.
 |H:
* Suppose we know that T(m) < c¢’'mlog,(m) for some all
m < n.
* Inductive Case:
* Sincethisis notthebasecaseandn/2<m,T(n) < 2 *

c'(n/2)log,(n/2) + c'(n/2)

C

Guess & Check Tn) = {ZT(n/Z) + ¢'n

* |Inductive Case:
e Sincethisis notthe base case and n/2<m,
T(n) <2xc'(n/2)log,(n/2) + c’'n
< c'nlog,(n/2) + c'n
<cn(log,(n) —1)+c'n
<cnlog,(n) —cn+cn
<cnlog,(n)

* This concludes the proof.

C n<?2
Partial Guess Tn) = {ZT(n/Z) +cn o o.w.

* You might not know the coefficients or bases:
T(n) <2xk(n/2)logy,(n/2) + c'n
<knlogy(n/2) +cn Seems like b =2
< kn (log,(n) —1) +c'n

<knlog,(n) —kn+c'n Seems like k=¢’
<cnlog,(n)

Q: What happens?

T,(n) < { C n<?2
qT(n/2) + ¢’n o.w.

T,(n) < { C n<32
2T(n/2) + c’n*2 o.w.

I.n) < { C n <2000
2T(n/2) + c'n 0. W.

	Slide 1: CSE 331: Algorithms & Complexity
	Slide 2: Schedule
	Slide 3: Course Updates
	Slide 4: Reading
	Slide 5: Course Update
	Slide 6: Sorting
	Slide 7: Sorting
	Slide 8: Sorting
	Slide 9: Mergesort
	Slide 10: Mergesort
	Slide 11: Sorting
	Slide 12: Merging
	Slide 13: Mergesort Runtime?
	Slide 14: Let T(n) be runtime of Mergesort.
	Slide 15: Let T(n) be runtime of Mergesort.
	Slide 16: Let T(n) be runtime of Mergesort.
	Slide 17: Let T(n) be runtime of Mergesort.
	Slide 18: How do you solve a recurrence?
	Slide 19: Unrolling
	Slide 20: Unrolling a few levels
	Slide 21: Unrolling a few levels
	Slide 22: Unrolling a few levels
	Slide 23: Unrolling a few levels
	Slide 24: Unrolling a few levels
	Slide 25: Unrolling a few levels
	Slide 26: Unrolling a few levels
	Slide 27: Unrolling a few levels
	Slide 28: Unrolling a few levels
	Slide 29: Unrolling a few levels
	Slide 30: Unrolling a few levels
	Slide 31: Unrolling a few levels
	Slide 32: Unrolling a few levels
	Slide 33: Unrolling a few levels
	Slide 34: Unrolling a few levels
	Slide 35: Unrolling a few levels
	Slide 36: Guess & Check
	Slide 37: Guess & Check
	Slide 38: Guess & Check
	Slide 39: Guess & Check
	Slide 40: Guess & Check
	Slide 41: Guess & Check
	Slide 42: Partial Guess
	Slide 43: Q: What happens?

