

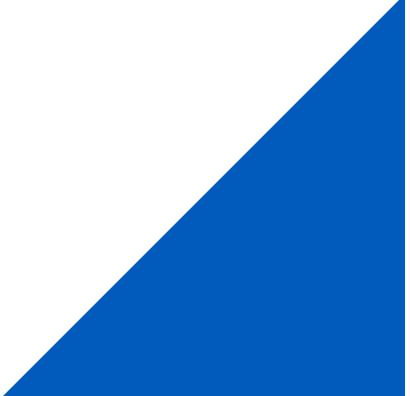
CSE 331: Algorithms & Complexity “Solving recurrence relations”

Prof. Charlie Anne Carlson (She/Her)

Lecture 23

Monday October 27th, 2025

University at Buffalo®

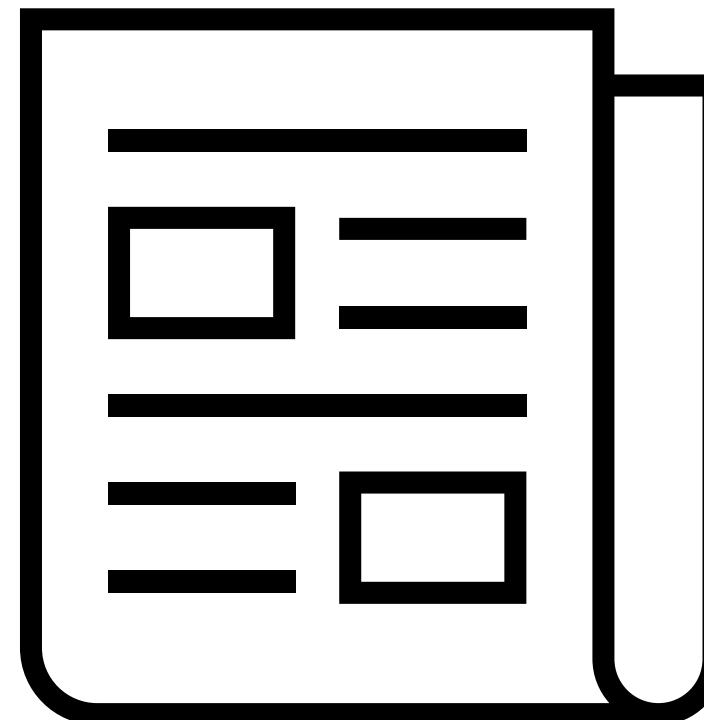


Schedule

1. Course Updates
2. Mergesort
3. Recurrences

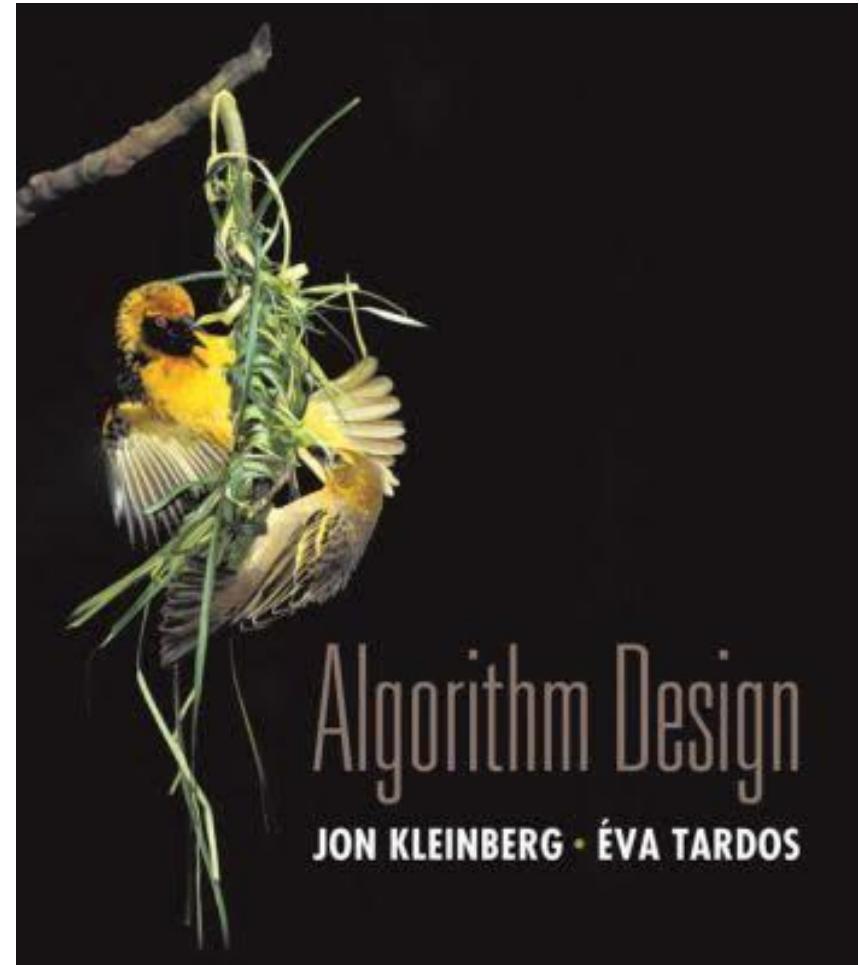
Course Updates

- Midterm Out
- Post Midterm Grades <-piazza
- HW 5 Due Tomorrow
- HW 6 Out Tomorrow
- Group Project
 - First Problems Oct 31st



Reading

- You should have read:
 - Finished KT 5.1
 - Finished KT 5.2
 - Started 5.3
- Before Next Class:
 - Finish KT 5.3
 - Start KT 5.5



Course Update

Check Piazza!

Course Updates

Updated 33 minutes ago by Charlie Anne Carlson

Hello All,

Grade Eval:

I'm still working on getting a copy of your grades into UBLearn. For now, you can calculate your grade using the raw grades given on autolab. Here is a little formula that I would suggest using to compute your "benchmark grade":

$$\text{Benchmark Grade} = \text{MG}*(25/55) + \text{HWG}*(27/55) + \text{QG}*(3/55)$$

where

- MG = (Midterm Grade)/100
- HWG = (P1A+P1B+P2A+P2B+P3)/100
 - P1A = Max Two Scores for Problem 1A of HW1, HW2, or HW3.
 - P1B = Max Two Scores for Problem 1B of HW1, HW2, or HW3.
 - P2A = Max Two Scores for Problem 2A of HW1, HW2, or HW3.
 - P2B = Max Two Scores for Problem 2B of HW1, HW2, or HW3.
 - P3 = Max Two Scores for Problem 3 of HW1, HW2, or HW3.
- Q = (Quiz 1 Grade)/10

Sorting

- **Problem:** Given a list of n numbers L , rearrange them in ascending order.
- E.g.
 - **Input:** [3,2,5,5,1,6,7,8]
 - **Output:** [1,2,3,5,5,6,7,8]

Sorting

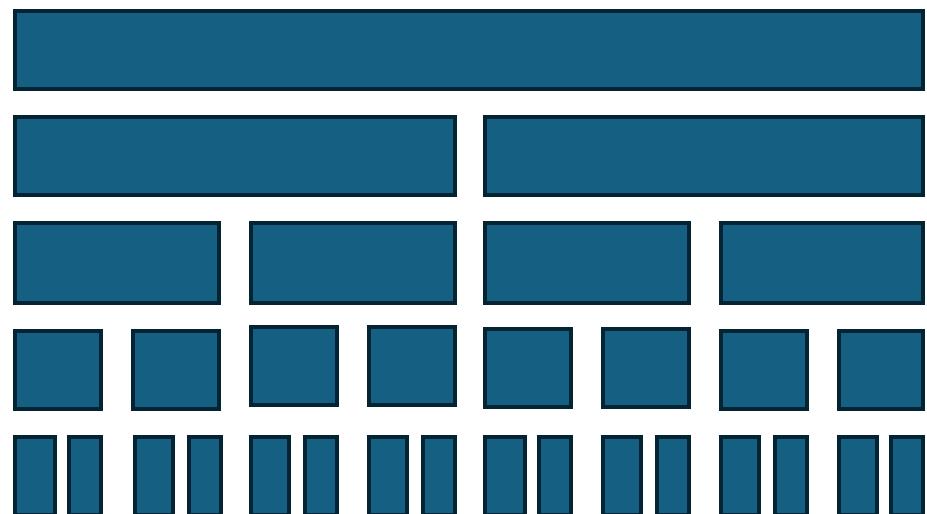
- **Problem:** Given a list of n numbers L , rearrange them in ascending order.
- Sorting Algorithms:
 - Bubble Sort
 - Insertion Sort
 - Mergesort
 - Radix Sort
 - Quicksort
 - Introsort

Sorting

- **Problem:** Given a list of n numbers L , rearrange them in ascending order.
- Sorting Algorithms:
 - Bubble Sort
 - Insertion Sort
 - **Mergesort**
 - Radix Sort
 - Quicksort
 - Introsort

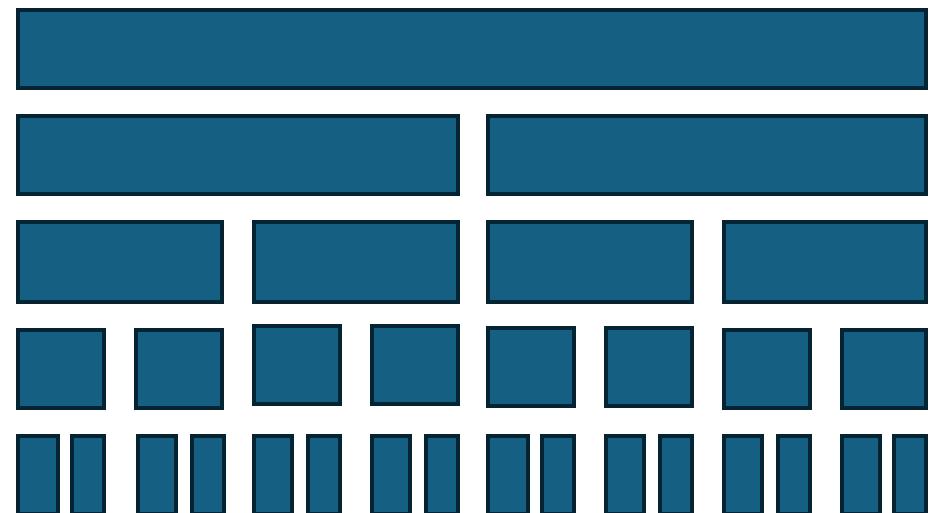
Mergesort

- **Divides**: Divides input into two pieces of equal size in linear time.
 - Assume even length for now.
- **Conquer**: Recursively calls mergesort on each piece.
- **Unite**: Merges the two sorted lists in linear time.



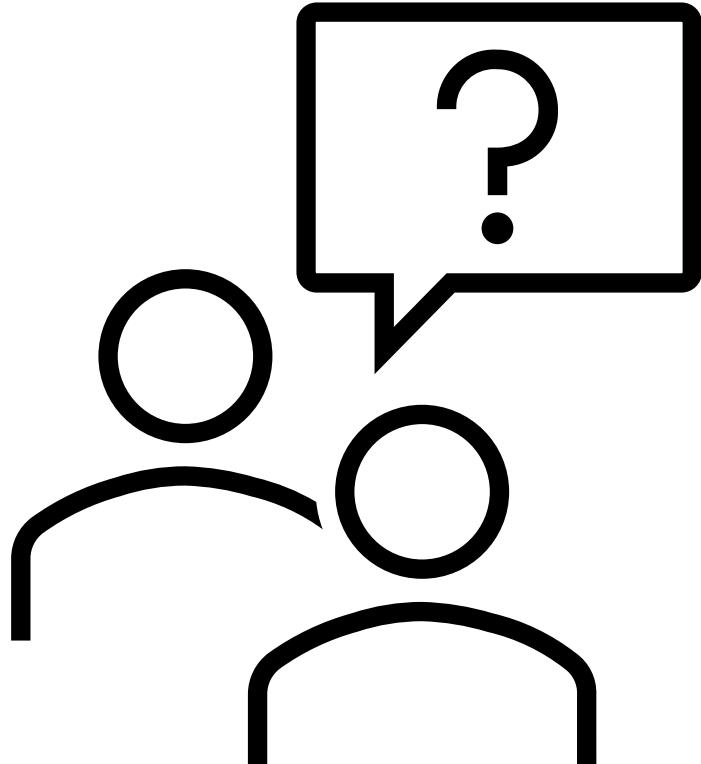
Mergesort

- **Base Case:** If array has length less than 2, brute force.
- **Divides:** Divides input into two pieces of equal size in linear time.
 - Assume even length for now.
- **Conquer:** Recursively calls mergesort on each piece.
- **Unite:** Merges the two sorted lists in linear time.



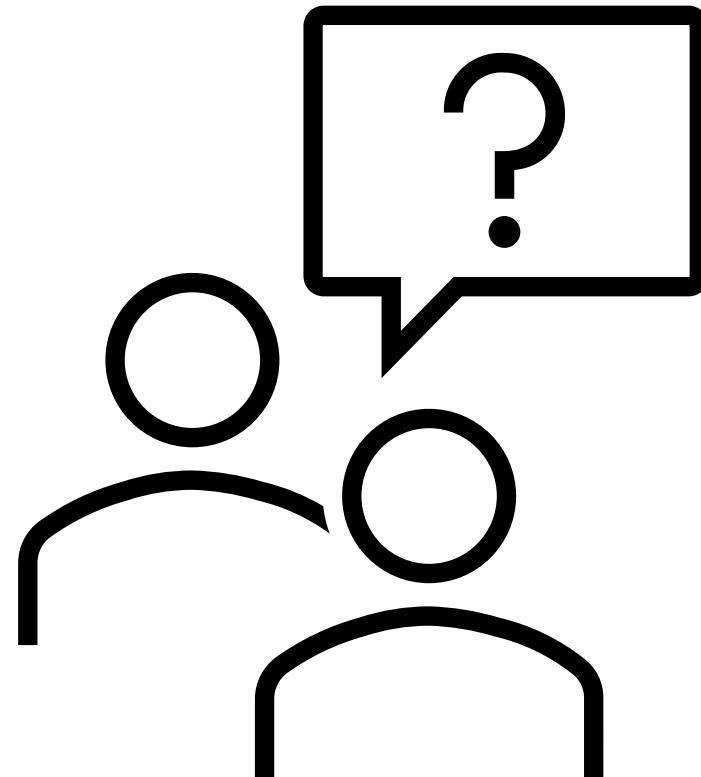
Sorting

- **Problem:** Given two sorted lists A and B, find a sorted list of their union.



Merging

- **Input:** Two sorted lists A and B of length $n/2$
- **Output:** Sorted list of A and B
- Initialize list C to be empty
- Let $i = 0$ and $j = 0$
- While ($i < n/2$ or $j < n/2$):
 - If $j == n/2$ or $A[i] \leq B[j]$:
 - C.append(A[i])
 - $i += 1$
 - Else:
 - C.append(B[j])
 - $j += 1$



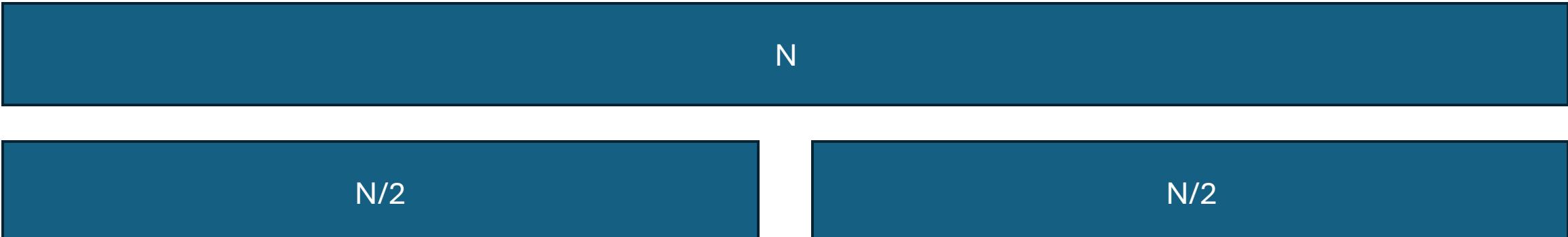
Mergesort Runtime?

- **Base Case:** If array has length less than 2, brute force.
- **Divides:** Divides input into two pieces of equal size in linear time.
 - Assume even length for now.
- **Conquer:** Recursively calls mergesort on each piece.
- **Unite:** Merges the two sorted lists in linear time.



Let $T(n)$ be runtime of Mergesort.

- **Base Case:** If array has length less than 2, brute force. $O(1)$
- **Divides:** Divides input into two pieces of equal size in linear time. $O(n)$
 - Assume even length for now.
- **Conquer:** Recursively calls mergesort on each piece. $T(n/2)$
- **Unite:** Merges the two sorted lists in linear time. $O(n)$



N

N/2

N/2

Let $T(n)$ be runtime of Mergesort.

- **Base Case:** If array has length less than 2, brute force. $O(1)$
- **Divides:** Divides input into two pieces of equal size in linear time. $O(n)$
 - Assume even length for now.
- **Conquer:** Recursively calls mergesort on each piece. $T(n/2)$
- **Unite:** Merges the two sorted lists in linear time. $O(n)$

$$T(n) \leq ?$$

Let $T(n)$ be runtime of Mergesort.

- **Base Case:** If array has length less than 2, brute force. $O(1)$
- **Divides:** Divides input into two pieces of equal size in linear time. $O(n)$
 - Assume even length for now.
- **Conquer:** Recursively calls mergesort on each piece. $T(n/2)$
- **Unite:** Merges the two sorted lists in linear time. $O(n)$

$$T(n) \leq \begin{cases} O(1) & n \leq 2 \\ 2T(n/2) + O(n) & \text{o. w.} \end{cases}$$

Let $T(n)$ be runtime of Mergesort.

- **Base Case:** If array has length less than 2, brute force. $O(1)$
- **Divides:** Divides input into two pieces of equal size in linear time. $O(n)$
- **Conquer:** Recursively calls mergesort on each piece. $T(n/2)$
- **Unite:** Merges the two sorted lists in linear time. $O(n)$

$$T(n) \leq \begin{cases} O(1) & n \leq 2 \\ T(\lfloor n/2 \rfloor) + T(\lceil n/2 \rceil) + c'n & \text{o. w.} \end{cases}$$

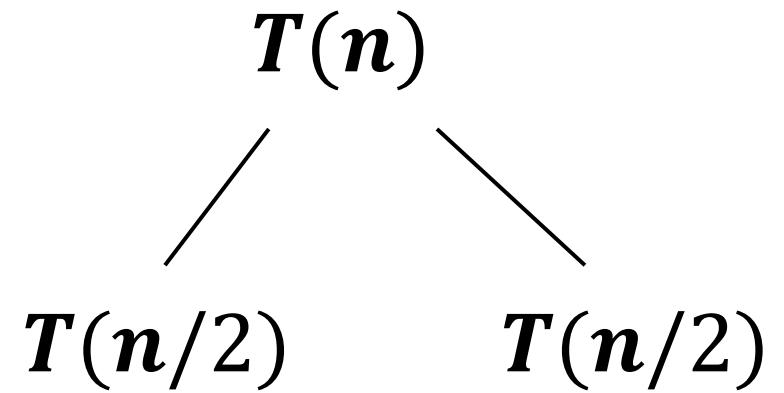
How do you solve a recurrence?

- **Unrolling:** We analyze the first few "levels" of the recursion, find a pattern and then prove that the pattern is correct.
- **Guess and Check:** We guess what the answer and the substitute it in to check that it works. That is, we prove it works.
- REVIEW KT 5.1 and KT 5.2 IF YOU HAVEN'T ALREADY!

$$T(n) \leq \begin{cases} O(1) & n \leq 2 \\ T(\lfloor n/2 \rfloor) + T(\lceil n/2 \rceil + c'n) & \text{o. w.} \end{cases}$$

Unrolling

- **Unrolling:**
 - Sketch out a few levels of the “recursion tree”
 - Identify how many problems on each level.
 - Identify how much work done at each level.
 - Identify how small each problem is at each level.
 - Identify how many levels before base case.



$$T(n) \leq \begin{cases} c & n \leq 2 \\ 2T(n/2) + c'n & \text{o.w.} \end{cases}$$

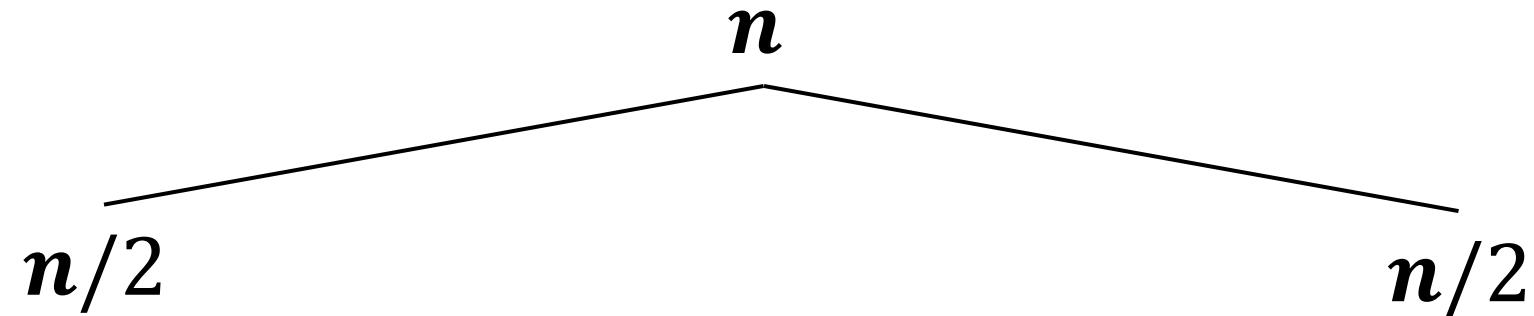
Unrolling a few levels

$$T(n) \leq \begin{cases} c & n \leq 2 \\ 2T(n/2) + c' & \text{o.w.} \end{cases}$$

n

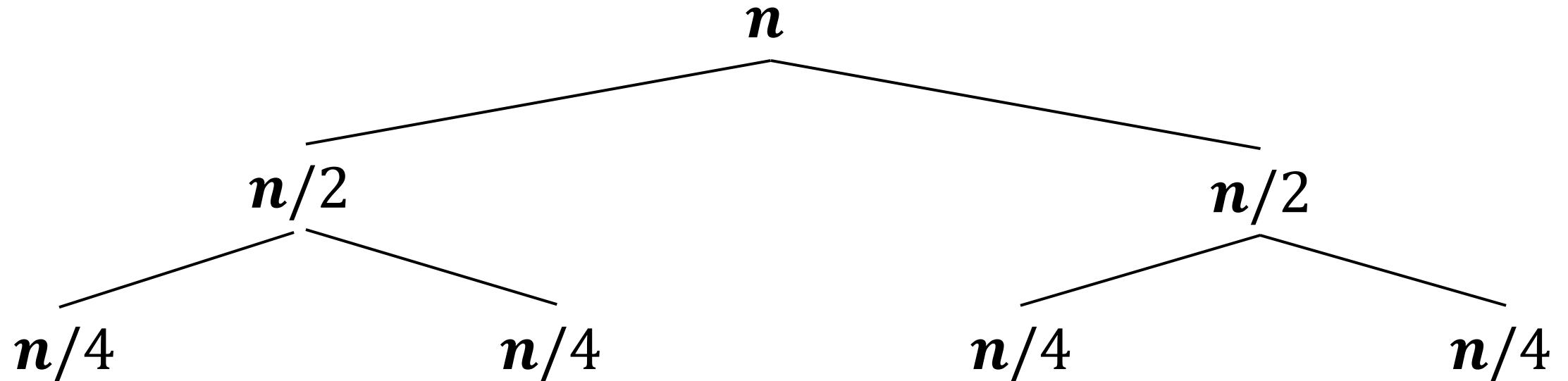
Unrolling a few levels

$$T(n) \leq \begin{cases} c & n \leq 2 \\ 2T(n/2) + c'n & \text{o.w.} \end{cases}$$



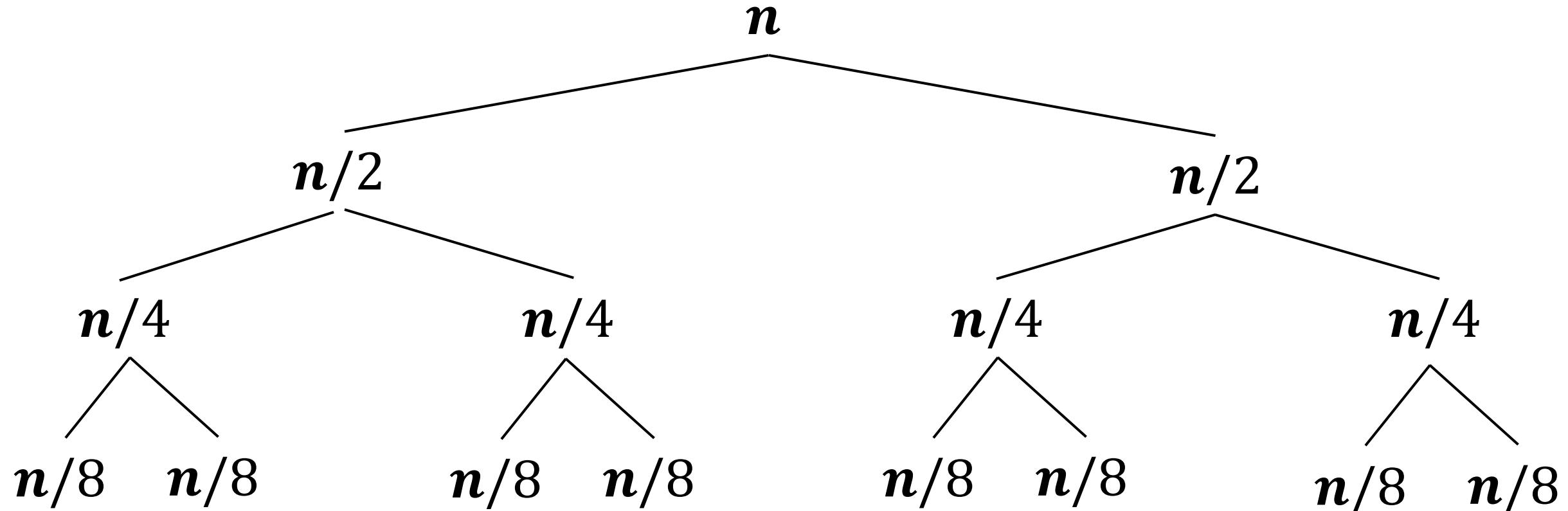
Unrolling a few levels

$$T(n) \leq \begin{cases} c & n \leq 2 \\ 2T(n/2) + c'n & \text{o.w.} \end{cases}$$



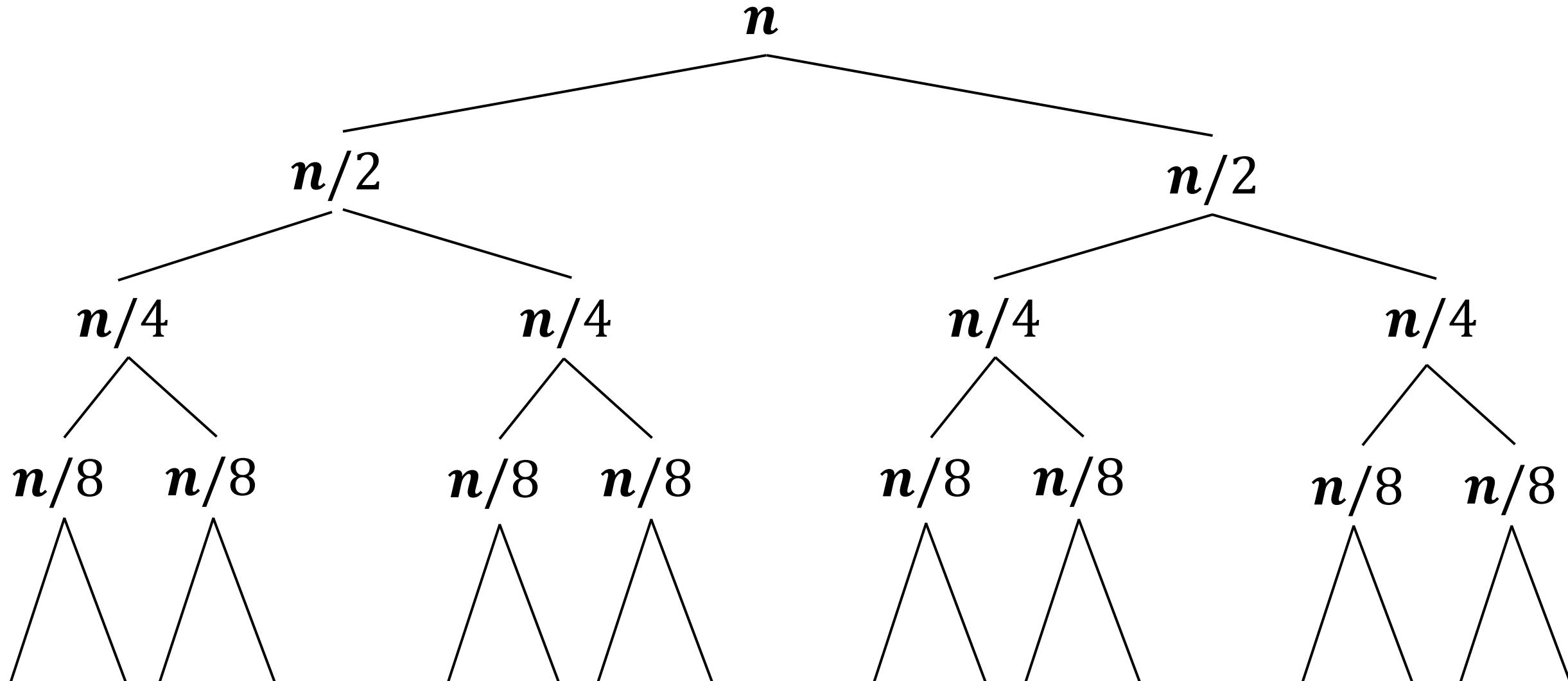
Unrolling a few levels

$$T(n) \leq \begin{cases} c & n \leq 2 \\ 2T(n/2) + c'n & \text{o.w.} \end{cases}$$



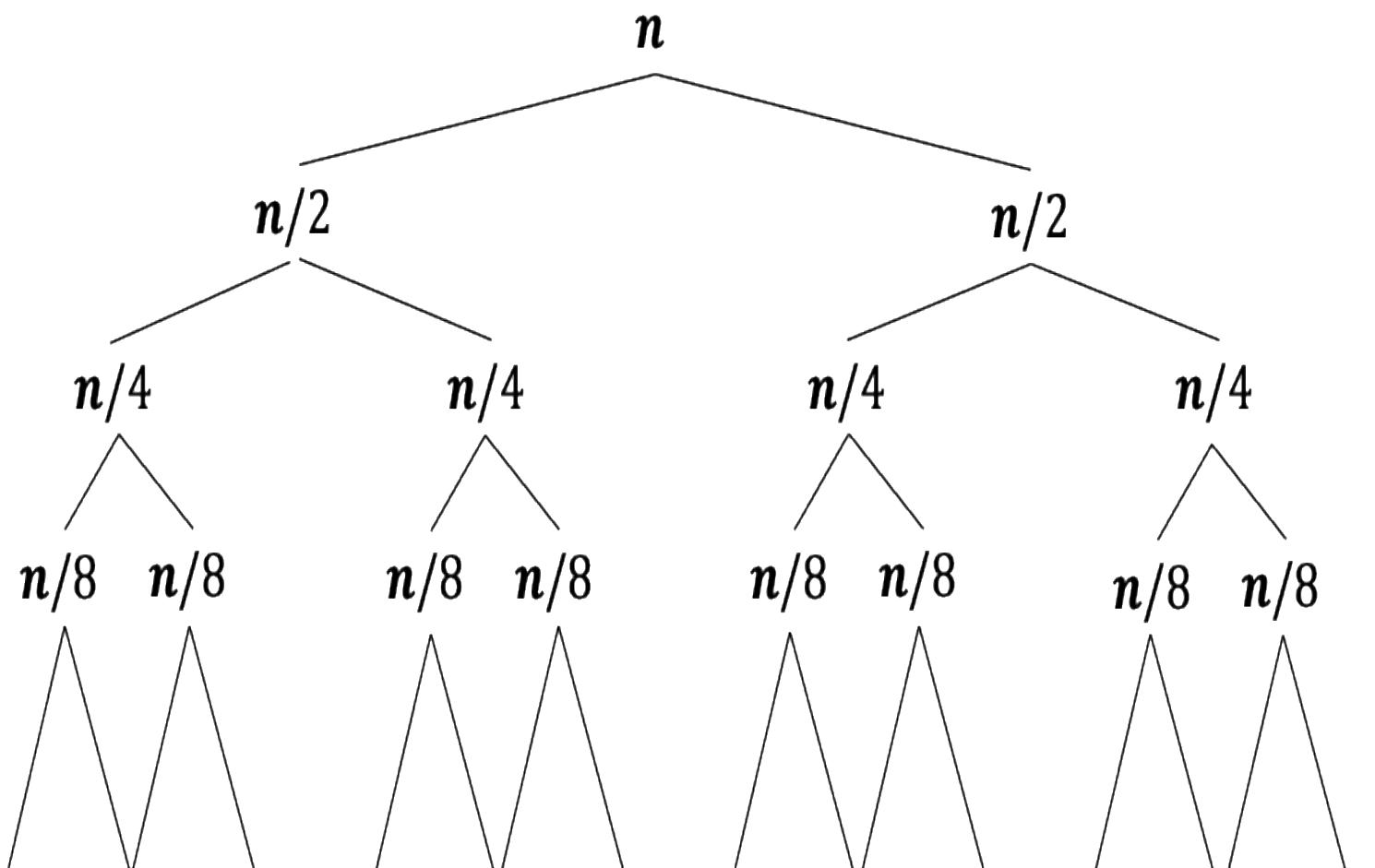
Unrolling a few levels

$$T(n) \leq \begin{cases} c & n \leq 2 \\ 2T(n/2) + c'n & \text{o.w.} \end{cases}$$



Unrolling a few levels

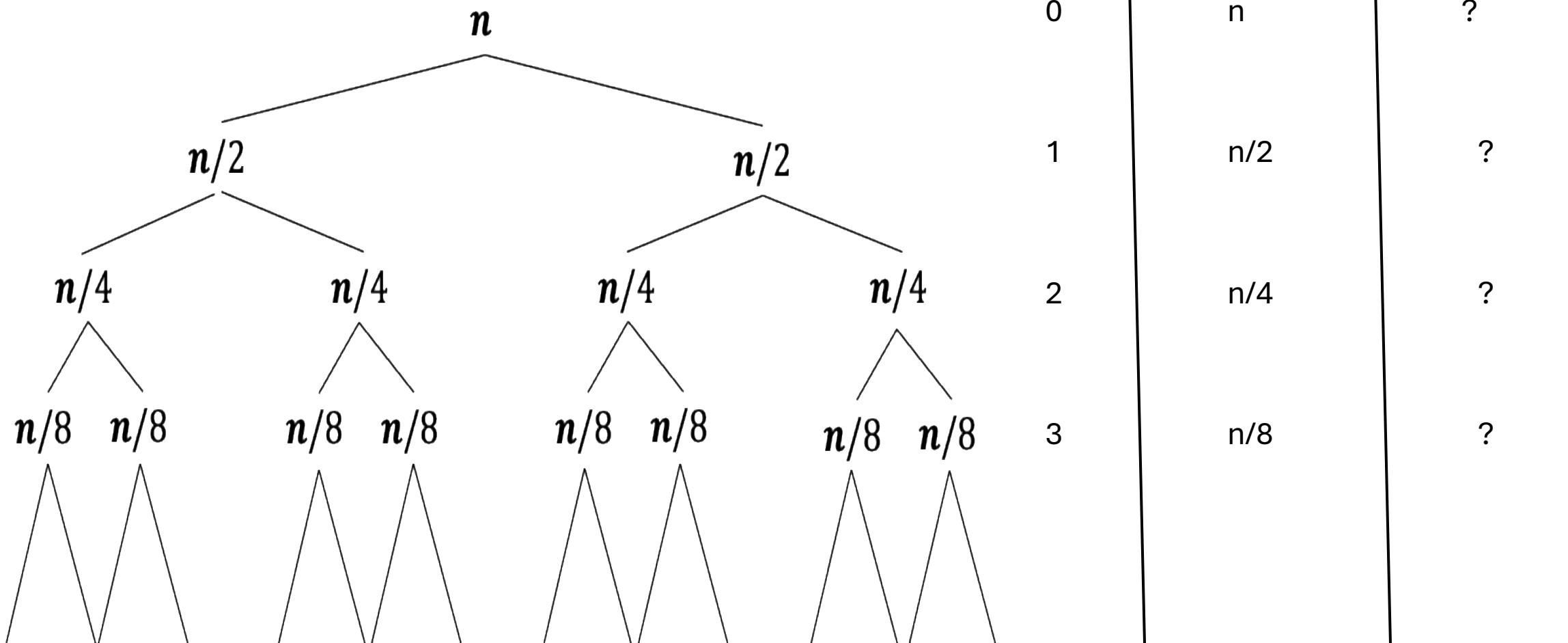
$$T(n) \leq \begin{cases} c & n \leq 2 \\ 2T(n/2) + c'n & \text{o.w.} \end{cases}$$



Level	Problem Size	Total Work
0	?	?
1	?	?
2	?	?
3	?	?

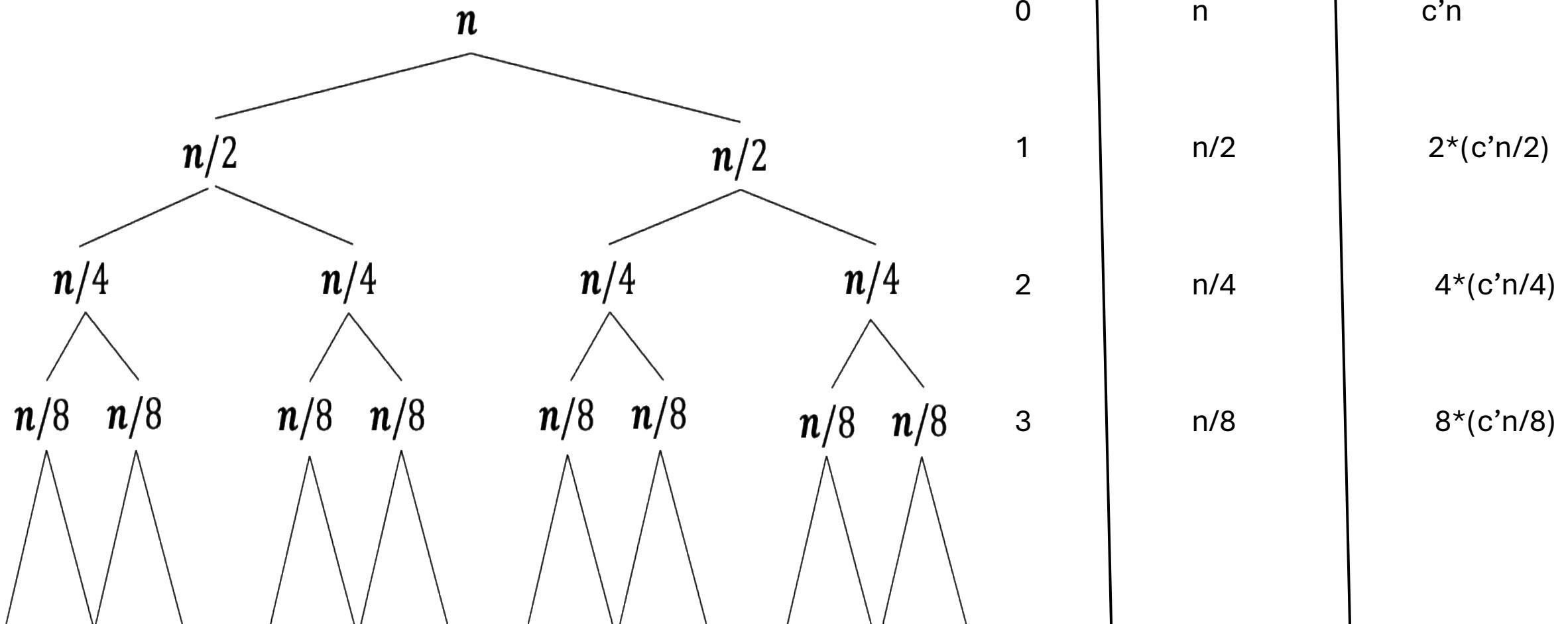
Unrolling a few levels

$$T(n) \leq \begin{cases} c & n \leq 2 \\ 2T(n/2) + c'n & \text{o.w.} \end{cases}$$



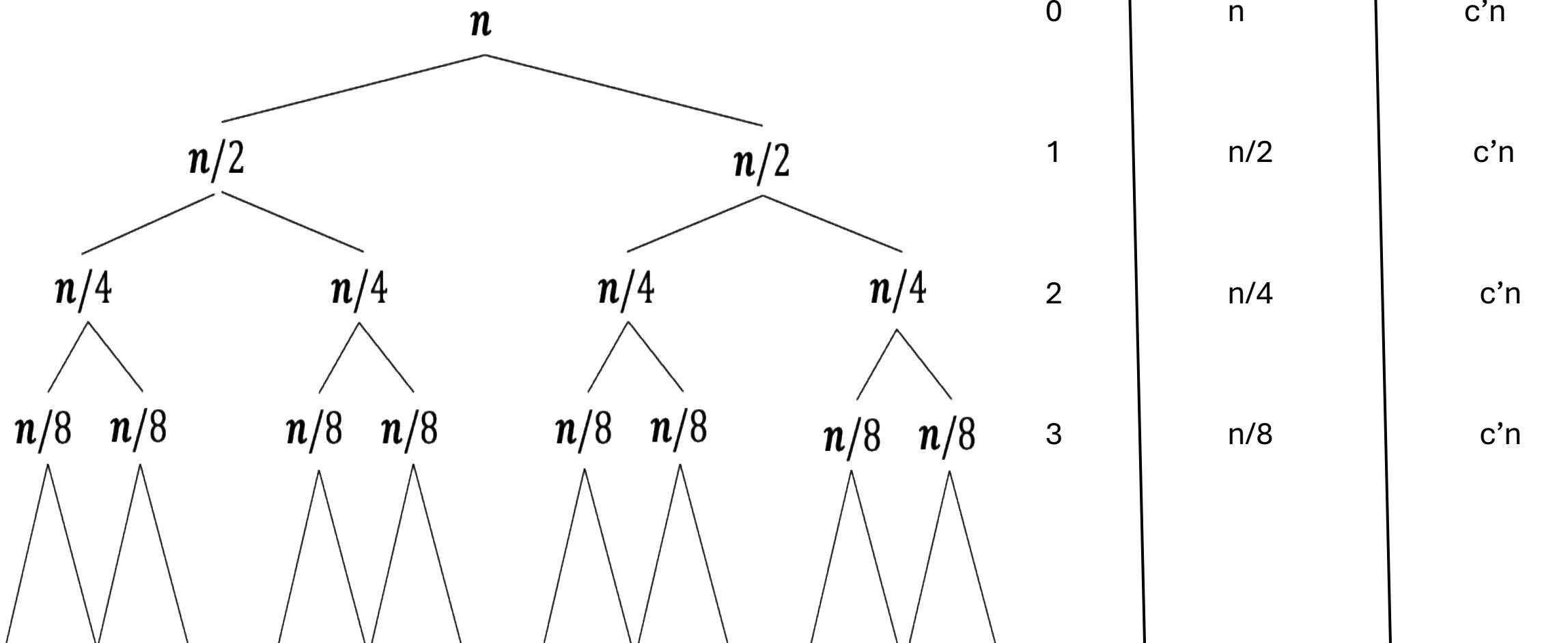
Unrolling a few levels

$$T(n) \leq \begin{cases} c & n \leq 2 \\ 2T(n/2) + c'n & \text{o.w.} \end{cases}$$



Unrolling a few levels

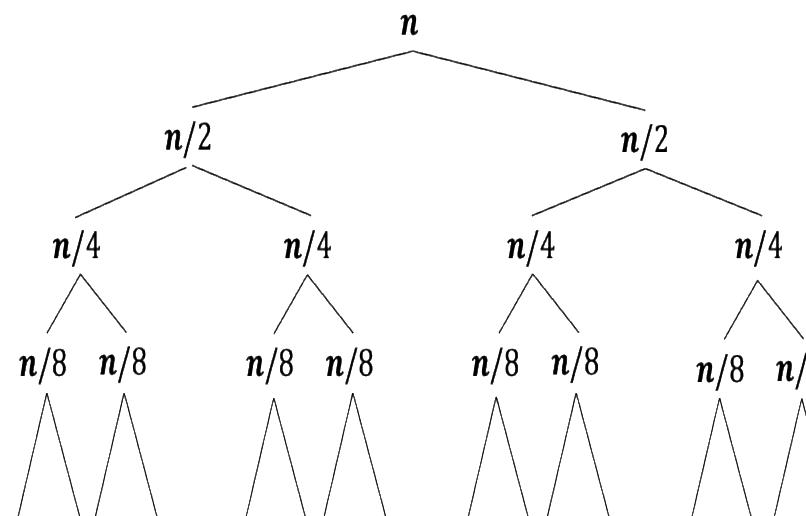
$$T(n) \leq \begin{cases} c & n \leq 2 \\ 2T(n/2) + c'n & \text{o.w.} \end{cases}$$



Unrolling a few levels

$$T(n) \leq \begin{cases} c & n \leq 2 \\ 2T(n/2) + c'n & \text{o.w.} \end{cases}$$

Q: What will be the problem size and total work done at level i ?

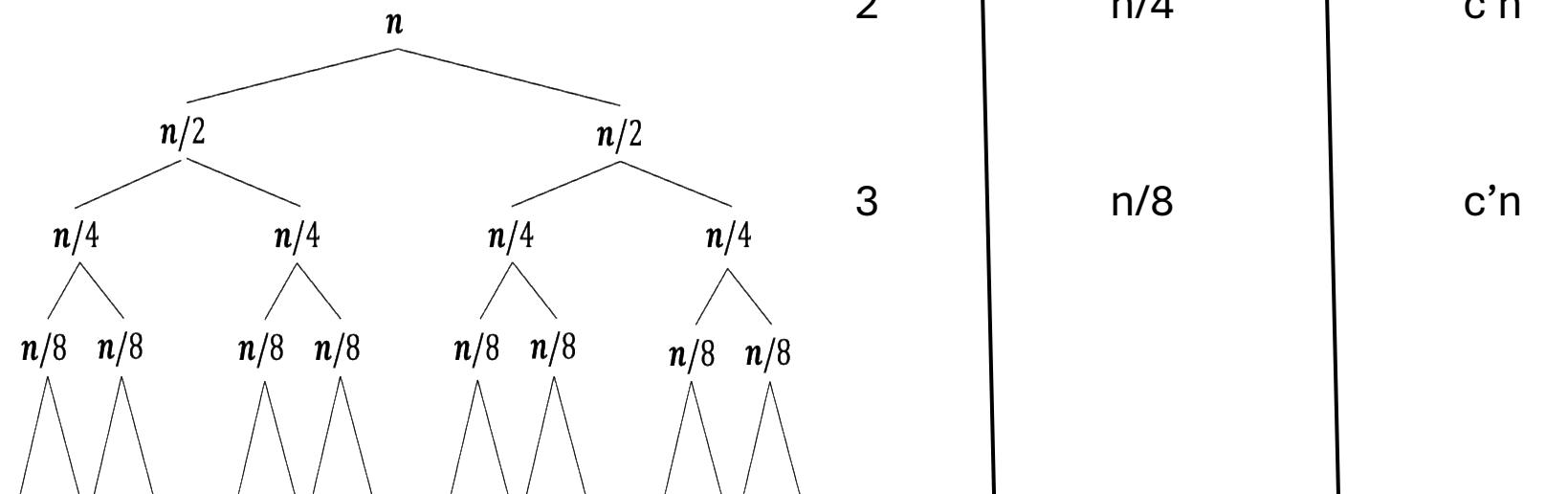


Level	Problem Size	Total Work
0	n	$c'n$
1	$n/2$	$c'n$
2	$n/4$	$c'n$
3	$n/8$	$c'n$

Unrolling a few levels

$$T(n) \leq \begin{cases} c & n \leq 2 \\ 2T(n/2) + c'n & \text{o.w.} \end{cases}$$

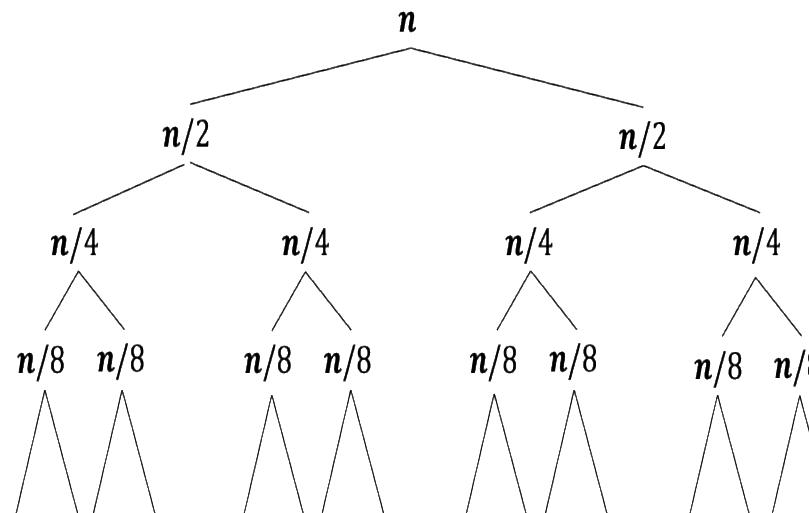
A: At level i , the problem size (if not the base case) will be $n/2^i$. The total work done will be $c'n$.



Unrolling a few levels

$$T(n) \leq \begin{cases} c & n \leq 2 \\ 2T(n/2) + c'n & \text{o.w.} \end{cases}$$

Q: How many levels until base case?

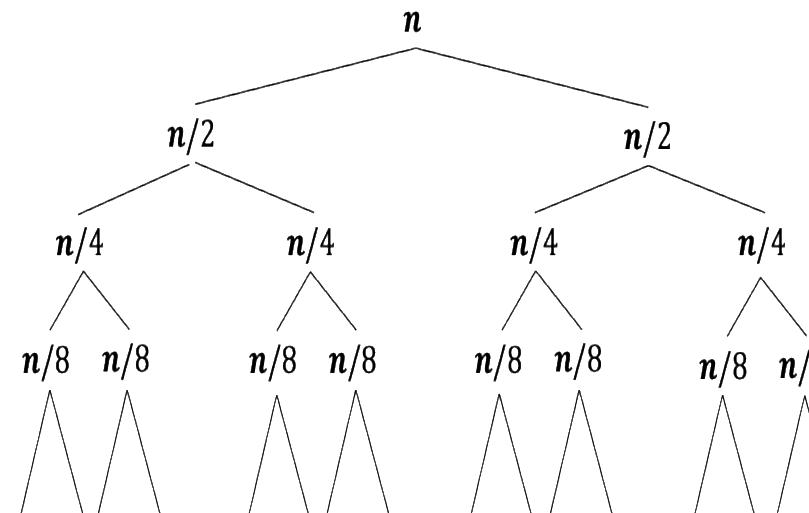


Level	Problem Size	Total Work
0	n	$c'n$
1	$n/2$	$c'n$
2	$n/4$	$c'n$
3	$n/8$	$c'n$

Unrolling a few levels

$$T(n) \leq \begin{cases} c & n \leq 2 \\ 2T(n/2) + c'n & \text{o.w.} \end{cases}$$

A: After $O(\log(n))$ levels, the problem size will be at most c and we can do the base case.

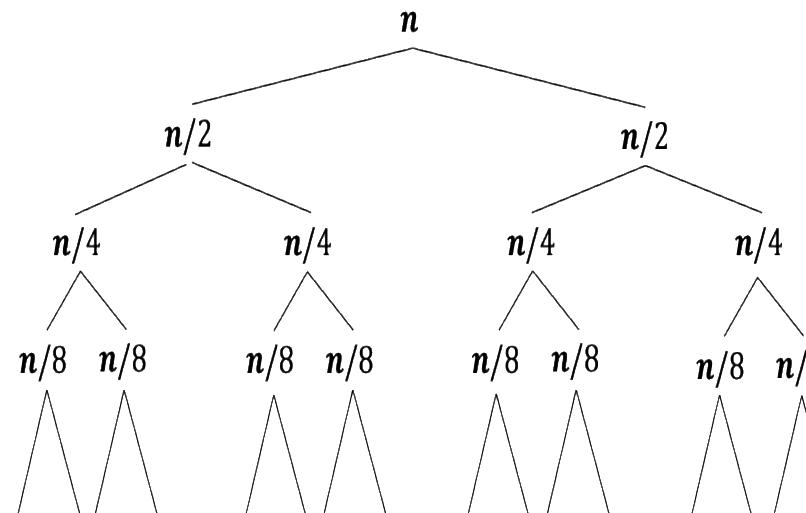


Level	Problem Size	Total Work
0	n	$c'n$
1	$n/2$	$c'n$
2	$n/4$	$c'n$
3	$n/8$	$c'n$

Unrolling a few levels

$$T(n) \leq \begin{cases} c & n \leq 2 \\ 2T(n/2) + c'n & \text{o.w.} \end{cases}$$

Q: How much total work done over all levels?

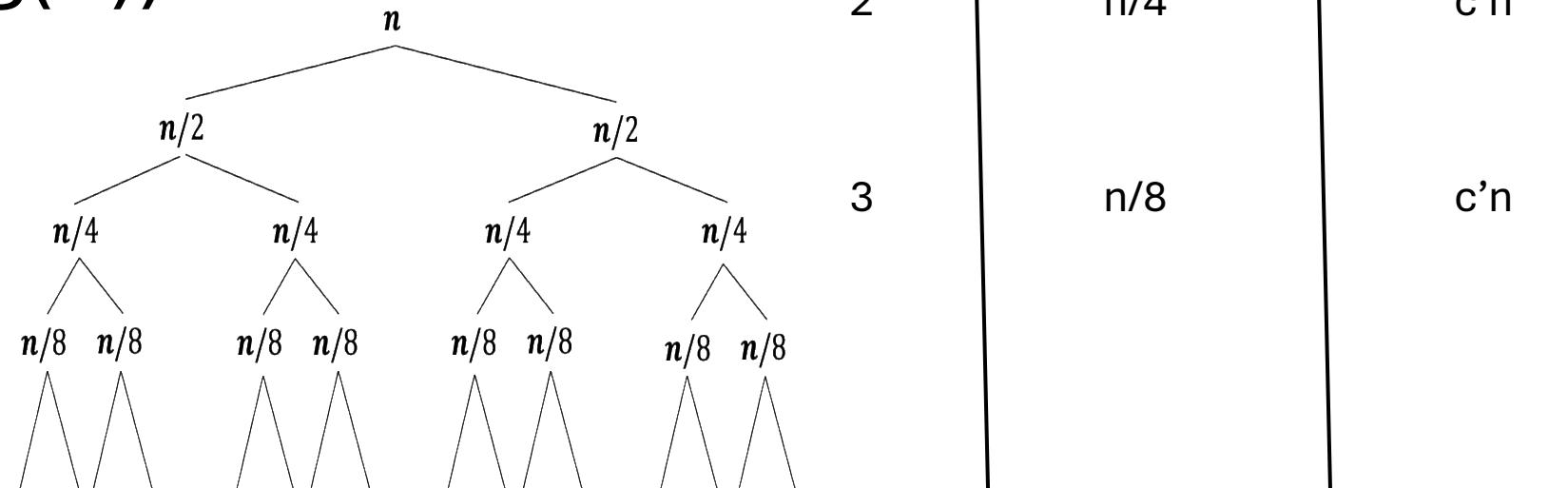


Level	Problem Size	Total Work
0	n	$c'n$
1	$n/2$	$c'n$
2	$n/4$	$c'n$
3	$n/8$	$c'n$

Unrolling a few levels

$$T(n) \leq \begin{cases} c & n \leq 2 \\ 2T(n/2) + c'n & \text{o.w.} \end{cases}$$

A: The work done at each level is $c'n$ and the total number of levels is $O(\log(n))$.
Hence, $O(n \log(n))$.

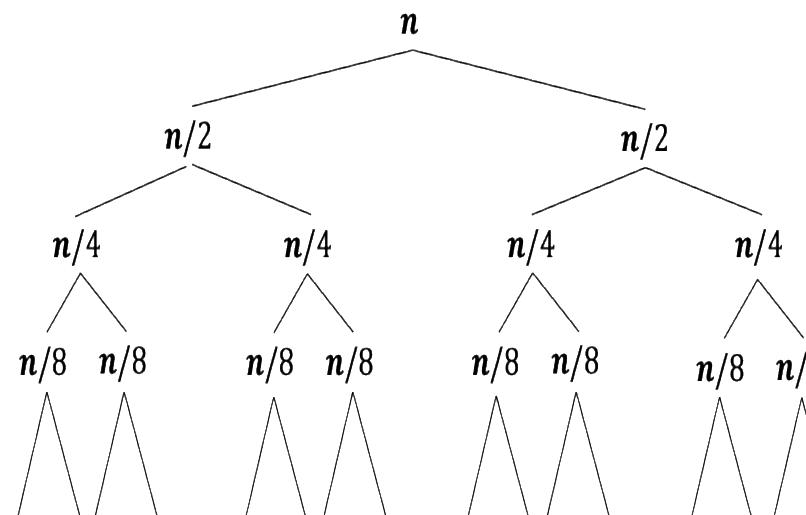


Unrolling a few levels

$$T(n) \leq \begin{cases} c & n \leq 2 \\ 2T(n/2) + c'n & \text{o.w.} \end{cases}$$

Work Done is the sum of work done at each level and we “showed” that the work done at each level is $c'n$ and there are at most $O(\log(n))$ levels.

Level	Problem Size	Total Work
0	n	$c'n$
1	$n/2$	$c'n$
2	$n/4$	$c'n$
3	$n/8$	$c'n$



Guess & Check

$$T(n) \leq \begin{cases} c & n \leq 2 \\ 2T(n/2) + c'n & \text{o.w.} \end{cases}$$

- You might have guessed $T(n) = O(n \log(n))$ because you've been told that before or because you recognize the recurrence.
- How could you directly prove $T(n) = c'n \log(n)$ if you suspected it was true?

Guess & Check

$$T(n) \leq \begin{cases} c & n \leq 2 \\ 2T(n/2) + c'n & \text{o.w.} \end{cases}$$

- You might have guessed $T(n) = O(n \log(n))$ because you've been told that before or because you recognize the recurrence.
- How could you directly prove $T(n) = c'n \log_2(n)$ if you suspected it was true?
 - You could use induction to show that this solves the recurrence.

Guess & Check

$$T(n) \leq \begin{cases} c & n \leq 2 \\ 2T(n/2) + c'n & \text{o.w.} \end{cases}$$

- **Base Case:**
 - We can sort a list of size at most 2 in constant time,
 $T(1) \leq T(2) \leq c$ for some constant c as desired.

Guess & Check

$$T(n) \leq \begin{cases} c & n \leq 2 \\ 2T(n/2) + c'n & \text{o.w.} \end{cases}$$

- **Base Case:**
 - We can sort a list of size at most 2 in constant time,
 $T(1) \leq T(2) \leq c$ for some constant c as desired.
- **IH:**
 - Suppose we know that $T(m) \leq c'm\log_2(m)$ for some all $m < n$.

Guess & Check

$$T(n) \leq \begin{cases} c & n \leq 2 \\ 2T(n/2) + c'n & \text{o.w.} \end{cases}$$

- **Base Case:**
 - We can sort a list of size at most 2 in constant time, $T(1) \leq T(2) \leq c$ for some constant c as desired.
- **IH:**
 - Suppose we know that $T(m) \leq c'm\log_2(m)$ for some all $m < n$.
- **Inductive Case:**
 - Since this is not the base case and $n/2 < m$, $T(n) \leq 2 * c''(n/2)\log_2(n/2) + c'(n/2)$

Guess & Check

$$T(n) \leq \begin{cases} c & n \leq 2 \\ 2T(n/2) + c'n & \text{o.w.} \end{cases}$$

- **Inductive Case:**

- Since this is not the base case and $n/2 < m$,

$$\begin{aligned} T(n) &\leq 2 * c'(n/2) \log_2(n/2) + c'n \\ &\leq c'n \log_2(n/2) + c'n \\ &\leq c'n (\log_2(n) - 1) + c'n \\ &\leq c'n \log_2(n) - c'n + c'n \\ &\leq c'n \log_2(n) \end{aligned}$$

- This concludes the proof.

Partial Guess

$$T(n) \leq \begin{cases} c & n \leq 2 \\ 2T(n/2) + c'n & \text{o.w.} \end{cases}$$

- You might not know the coefficients or bases:

$$T(n) \leq 2 * k(n/2) \log_b(n/2) + c'n$$

$$\leq k n \log_b(n/2) + c'n$$

Seems like $b = 2$

$$\leq kn (\log_2(n) - 1) + c'n$$

$$\leq kn \log_2(n) - kn + c'n$$

Seems like $k = c'$

$$\leq c'n \log_2(n)$$

Q: What happens?

$$T_1(n) \leq \begin{cases} c & n \leq 2 \\ qT(n/2) + c'n & \text{o.w.} \end{cases}$$

$$T_2(n) \leq \begin{cases} c & n \leq 2 \\ 2T(n/2) + c'n^2 & \text{o.w.} \end{cases}$$

$$T_3(n) \leq \begin{cases} c & n \leq 2000 \\ 2T(n/2) + c'n & \text{o.w.} \end{cases}$$