CSE 331:
Allg(o)r[itt]hunnlg & (C<o>lnnqp>ll<ex[i1ty

L]

“Counting Inversions”

Prof. Charlie Anne Carlson (She/Her)
Lecture 24
Wednesday October 29", 2025

G5

University at Buffalo

Schedule

1] Cou rse U pdates . —
2.Counting Inversions '

Course Updates

Post Midterm Grades <-piazza
HW4 Grades Out

HW4 Solutions Out

HW 6 Out Soon

Group Project

e Code Problems Oct 315t
 Reflections November 3rd

Reading

* You should have read:
* Finished KT 5.1
* Finished KT 5.2
* Finished KT 5.3
 Before Next Class:
e StartKT 5.5
e StartKT 5.4

JON KLEINBERG - EVA TARDOS

Rankings

* Fix asetofobjectsand
consider ordering them by
some known preference.

* E.g.Given the following
“animals,” rank your
preference for having them

asS pets:
Cat e Snake
Dog * Rock

Rankings

* Twp people may have very
different preferences for
pets.

* Question: How can you
measure the difference
between two people’s
preferences/ranks?

Charlie

Cat
Dog
Snake

Rock

Not-Charlie

Dog
Rock
Cat

Snake

Rankings

* Twp people may have very
different preferences for
pets.

* Answer: You might create a
measure that is O when the
preferences match and
Increases the more
different they are.

Charlie

Cat
Dog
Snake

Rock

Not-Charlie

Dog
Rock

Cat

Snake

Rankings

* Twp people may have very
different preferences for
pets.

* Answer: You might create a
measure that is O when the
preferences match and
Increases the more different
they are.

 Let’s fix Charlie’s preference
as the “ordering”.

Charlie

1. Cat
2.Dog
3. Snake

4. Rock

Not-Charlie

2.Dog
4. Rock
1. Cat

3. Snake

Inversions

* A natural measure for
measuring difference is
counting inversions.

* Definition: Given a list of
numbers a4, ..., a,, we say
two indices1 < jform an
inversion if a; > a;.

Inversions

Definition: Given a list of
numbers a4, ..., a,, We say
two indices1 < jform an
inversion if a; > a;.

Let’s ighore Charlie for a
second and just look at the

numbers on the right:
° [2’ 4’ 1’ 3]

Inversions

Definition: Given a list of

numbers a4, ..., a,, We say

two indices1 < jform an

inversion if a; > a;.

Let’s ighore Charlie for a

second and just look at the

numbers on the right:

e [2,4,1, 3]

¢ (2,1), (4,1),and (4,3) are
all inversions.

Inversions

Let’s ighore Charlie for a

second and just look at the

numbers on the right:

e [2,4,1, 3]

¢ (2,1), (4,1),and (4,3) are
all inversions.

Observe that if you look at

the lines, an inversion is

marked by a crossing.

Problem: Finding Inversions

* Input: List of elements A
e Goal: Find all the inversionsin A

O
O
P

Problem: Finding Inversions

* Input: List of elements A
e Goal: Find all the inversionsin A

Input: List A
Inversions = []
For i in [n]:
For J in [1+1l..n]:
1f A[1] > A[j].
inversions.append((1,73))

Return Inversions

Problem: Finding Inversions

* Input: List of elements A
e Goal: Find all the inversionsin A

Input: List A This will take n"2.timeto
compute the list of

Inversions .) '
inversions!

|
| I—

For 1 1n [n]:
For 7 1n |
1f A[1] > A[7]]:
inversions.append((1,J))
Return Inversions

Problem: Finding Inversions

* Input: List of elements A
e Goal: Find number of inversions in A

O
O
P

Recursive Algorithm

* The same algorithm works, just
return the size of the final
Inversions list.

* However, we can use recursion to
do better.

 Let’s make a few observations
about the problem before we
decide how to use recursion.

Simple Case

* How many inversions can we have
If our listis empty?

* How many inversions can we have []
If our listis size 17?

* How many inversions can we have 2
If our listis size 27 []
* How can you solve this small

[3,1]

Divide & Conqguer

* |fwe aren’tinthe simple/base case, then we want to break
the problem into smaller problems and recurse.

EE
EE

Merging

* |fwe aren’tinthe simple/base case, then we want to break
the problem into smaller problems and recurse.

LG e I
IIZIIZI

There are 3 inversions:), and (12, 2) There is 4 inversions:), and (9,7)

Question: Are these all the inversions?

Merging

* |fwe aren’tinthe simple/base case, then we want to break
the problem into smaller problems and recurse.

CACICCC
IIZIIZI

There are 3 inversions:), and (12, 2) There is 4 inversions:), and (9,7)

Answer: No!

More Merging

* Once we have the solution to our subproblems, we have to
find a way to combine them together.

CACICCC
IIZIIZI

There are 3 inversions:), and (12, 2) There is 4 inversions:), and (9,7)

Naive ldea

* Question: How long could it take to check all of this
“spanning” inversions?

CACICCC
IIZIIZI

There are 3 inversions:), and (12, 2) There is 4 inversions:), and (9,7)

Naive ldea

e Answer: If we assume that nis even then it would take
(n/2)"2 comparisons.

CACICCC
IIZIIZI

There are 3 inversions:), and (12, 2) There is 4 inversions:), and (9,7)

Easy Case

* Question: What if we knew that both lists were sorted?

CACICCC
IIZIIZI

There are 3 inversions:), and (12, 2) There is 4 inversions:), and (9,7)

Easy Case

* Question: What if we knew that both sublists were sorted?

EE
EE

There are 0 inversions. There is O inversions.

Easy Case

e Answer: Noinversions in each sublist but we can count the
spanning inversions easier.

EE
EE

There are 0 inversions. There is O inversions.

Merge & Count

* Let’s do something like our
merge step from mergesort but
also count the number of -'--H
Inversions.
* Work through both lists and add
the smallest element to the ElIZI
merged list.
* Now, we also compute the
number of inversions when
we add the smallest element

Merge & Count

Question: How many inversions involving 17?

L]
BEnan
LI

Merge & Count

Answer: None because smaller than everything?

e L]
BEnan
LI

Merge & Count

I--q
gonn
L-_
I--q
BEHEEBRB
L.

IEENEEEEEN

Merge & Count
Ll e L]
poaEn
IEEEEEEEEN

Merge & Count

IoENEEEEEN

Merge & Count
Ll e e]
poaEn
IaEEEEEEEN

Merge & Count

Question: How many inversions involving 47

L-_

BEOan
/

I NEEEEEN

Merge & Count

Answer: There are two: (7,4) and (12,4)

LIz L]
aanan
LGOI

Merge & Count

Question: How may inversion involving 5?

73]
L-_

= scun

IaEDEEEEEN

Merge & Count

Answer: There are two: (7,5) and (12,5)
Il]
aRann

G]

Merge & Count

Question: How may inversion involving 67
E_'I
|——1
Eaan
LI

Merge & Count

Answer: There are two: (7,6) and (12,6)
Il]
[dle iz i

G]

Merge & Count

Question: How may inversion involving the top 7?

i)
da %R
L]

Merge & Count

Answer: There were 3, but we already listed them.
e e I I
Oaoan

L C]

Merge & Count

Question: How may inversion involving the bottom 77
j— ="
L T
L.
j— ="
i
L.

L C]

Merge & Count

Answer: Thereis 1:(12,7)
e L i
[l le e e

LG C]

Merge & Count

Question: How many involving 97?

I--q

L-_

I--q
"

LG C]

L.

Merge & Count

Answer: Thereis 1:(12,9)
e e I I
oanan

LG C]

Merge & Count

Question: How many involving 127

LG C]

Merge & Count

Answer: There were 5 but we listed them already.

EE

EE

Merge & Count

Question: How would you describe
our new merge process?

. 2 3 7 12
Question: What was the rule for
counting inversions?

oanan

EE

Merge & Count

Answer: When we added to our list
from the second smaller list, we knew

that there was going to be a new
.« . X
inversion for every remaining element
In the top list.
oanan
L e e I I I e]

Merge & Count

Observation: If b_j < a_ithen we know A

that b_jis goingto be in |Al-i

Inversions. DDI“
N

e]
I

Merge & Count

Observation: If b_j<a_ithen we know
that b_jis goingto be in |Al-i
Inversions.

A

IZIDEIEIEI e]

Merge & Count

* We can see that a_(i-1) must have been smaller
* We can also see that a_(i+1) must be bigger.

Not an inversion

IZIDEIEIEI DEIEII:II:I

N/

Is an inversion

Divide & Conqguer

* Question: How should we use this merge and count
algorithm?

EE
EE

Divide & Conquer Algorithm

* We will use the logic of the previous few slides to make a
Merge-and-Count(A,B) algorithm that will merge two sorted
lists and count the number of “spanning” inversions.

* We will now make a new algorithm called Sort-and-
Count(L) that will take a list and return the list sorted and
return the number of inversions before being sorted.

Sort-and-Count

1. Input: list L of length n

2 If the 1list has on element:

3 there are no inversions

4 Else:

5 Divide the 1list into two halves:
6. A contains first [n/2] elements
7 B contains second |n/2| elements
8 (r,A) = Sort-and-Count (A)

9 (q,B) = Sort-and-Count (B)
10. (k,L) = Merge—-and-Count (A, B)
11. Return (r+gtk,L)

When is each type of inversion counted?

1. Input: list L of length n

2 If the list has on element:

3 there are no inversions

4, Else:

5 Divide the list into two halves:
6. A contains first [n/2] elements
7 B contains second |n/2| elements
8 (r,A) = Sort—and-Count (A)

9 (g,B) = Sort-and-Count (B)

1

1

0. (k,L) = Merge—-and-Count (A,B)
1. Return (r+g+k,L)
‘IIII“WIIIIHIIIIMIIII[WIIIIHIIiIM[:::][:::]WIIIIHIIII\

Sort-and-Count Runtime?

1. Input: list L of length n

2 If the 1list has on element:

3 there are no inversions

4 Else:

5 Divide the 1list into two halves:
6. A contains first [n/2] elements
7 B contains second |n/2| elements
8 (r,A) = Sort-and-Count (A)

9 (q,B) = Sort-and-Count (B)
10. (k,L) = Merge—-and-Count (A, B)
11. Return (r+gtk,L)

Sort-and-Count Runtime?

* Observations:

‘akes O(n) time to divide.

* Takes 2T(n/2) time to do recursive calls.
‘akes O(n) time to merge.

‘akes O(1) time to do base case.

1. Input: 1list L of length n

2 If the list has on element:

3 there are no inversions

4, Else:

5 Divide the list into two halves:
6. A contains first [n/2] elements
7 B contains second |n/2| elements
8 (r,A) Sort—-and-Count (A)

9 (g, B) Sort—and-Count (B)
10. (k,L) = Merge—-and-Count (A, B)
11. Return (r+gtk,L)

Sort-and-Count Runtime

* We have the same recurrence we had for mergesort and if we solve
It using the methods from before, we get the same runtime of
O(nlog(n)).

1. Input: list L of length n

2 If the list has on element:

3 there are no inversions

4., Else:

5 Divide the list into two halves:
6. A contains first [n/2] elements
7 B contains second |n/2] elements
8 (r,A) = Sort—-and-Count (A)

9 (g,B) = Sort-and-Count (B)

1 (k, L) = Merge-and-Count (A, B)

1

0.
1. Return (r+gt+k,L)

Sort-and-Count Runtime?

* Question: What would you change to get the list of all inversions?
* Question: How would this change the runtime?

1. Input: list L of length n

2 If the list has on element:

3 there are no inversions

4 Else:

5 Divide the list into two halves:
6. A contains first [n/2] elements
7 B contains second |n/2| elements
8 (r,A) = Sort—-and-Count (A)

9 (g,B) = Sort-and-Count (B)
10. (k,L) = Merge—-and-Count (A, B)
11. Return (r+gt+k,L)

Sort-and-Count Runtime?

* Answer: You’d want to change your Sort-and-Count to return list of
Inversions.

* Answer: This would take longer because we do have to list all pairs

N some cases. 1. Input: list L of length n
2. If the list has on element:
3 there are no inversions
4 Else:
5 Divide the list into two halves:
6 A contains first [n/2] elements
7. B contains second |n/2| elements
8 (r,A) = Sort—-and-Count (A)
9 (g,B) = Sort-and-Count (B)
10. (k,L) = Merge—-and-Count (A, B)
11. Return (r+gt+k,L)

	Slide 1: CSE 331: Algorithms & Complexity
	Slide 2: Schedule
	Slide 3: Course Updates
	Slide 4: Reading
	Slide 5: Rankings
	Slide 6: Rankings
	Slide 7: Rankings
	Slide 8: Rankings
	Slide 9: Inversions
	Slide 10: Inversions
	Slide 11: Inversions
	Slide 12: Inversions
	Slide 13: Problem: Finding Inversions
	Slide 14: Problem: Finding Inversions
	Slide 15: Problem: Finding Inversions
	Slide 16: Problem: Finding Inversions
	Slide 17: Recursive Algorithm
	Slide 18: Simple Case
	Slide 19: Divide & Conquer
	Slide 20: Merging
	Slide 21: Merging
	Slide 22: More Merging
	Slide 23: Naive Idea
	Slide 24: Naive Idea
	Slide 25: Easy Case
	Slide 26: Easy Case
	Slide 27: Easy Case
	Slide 28: Merge & Count
	Slide 29: Merge & Count
	Slide 30: Merge & Count
	Slide 31: Merge & Count
	Slide 32: Merge & Count
	Slide 33: Merge & Count
	Slide 34: Merge & Count
	Slide 35: Merge & Count
	Slide 36: Merge & Count
	Slide 37: Merge & Count
	Slide 38: Merge & Count
	Slide 39: Merge & Count
	Slide 40: Merge & Count
	Slide 41: Merge & Count
	Slide 42: Merge & Count
	Slide 43: Merge & Count
	Slide 44: Merge & Count
	Slide 45: Merge & Count
	Slide 46: Merge & Count
	Slide 47: Merge & Count
	Slide 48: Merge & Count
	Slide 49: Merge & Count
	Slide 50: Merge & Count
	Slide 51: Merge & Count
	Slide 52: Merge & Count
	Slide 53: Merge & Count
	Slide 54: Divide & Conquer
	Slide 55: Divide & Conquer Algorithm
	Slide 56: Sort-and-Count
	Slide 57: When is each type of inversion counted?
	Slide 58: Sort-and-Count Runtime?
	Slide 59: Sort-and-Count Runtime?
	Slide 60: Sort-and-Count Runtime
	Slide 61: Sort-and-Count Runtime?
	Slide 62: Sort-and-Count Runtime?

