
CSE 331:
Algorithms & Complexity

Prof. Charlie Anne Carlson (She/Her)
Lecture 24

Wednesday October 29th, 2025

“Counting Inversions”

Schedule

1.Course Updates
2.Counting Inversions

Course Updates

• Post Midterm Grades <-piazza
• HW4 Grades Out
• HW4 Solutions Out
• HW 6 Out Soon
• Group Project

• Code Problems Oct 31st

• Reflections November 3rd

Reading

• You should have read:
• Finished KT 5.1
• Finished KT 5.2
• Finished KT 5.3

• Before Next Class:
• Start KT 5.5
• Start KT 5.4

Rankings

• Fix a set of objects and
consider ordering them by
some known preference.

• E.g. Given the following
“animals,” rank your
preference for having them
as pets:
• Cat
• Dog

• Snake
• Rock

Rankings

• Twp people may have very
different preferences for
pets.

• Question: How can you
measure the difference
between two people’s
preferences/ranks?

Charlie Not-Charlie

Cat

Dog

Snake

Rock

Dog

Rock

Cat

Snake

Rankings

• Twp people may have very
different preferences for
pets.

• Answer: You might create a
measure that is 0 when the
preferences match and
increases the more
different they are.

Charlie Not-Charlie

Cat

Dog

Snake

Rock

Dog

Rock

Cat

Snake

Rankings

• Twp people may have very
different preferences for
pets.

• Answer: You might create a
measure that is 0 when the
preferences match and
increases the more different
they are.

• Let’s fix Charlie’s preference
as the ”ordering”.

Charlie Not-Charlie

1. Cat

2. Dog

3. Snake

4. Rock

2. Dog

4. Rock

1. Cat

3. Snake

Inversions

• A natural measure for
measuring difference is
counting inversions.

• Definition: Given a list of
numbers 𝑎1, … , 𝑎𝑛, we say
two indices i < j form an
inversion if 𝑎𝑖 > 𝑎𝑗.

Inversions

• Definition: Given a list of
numbers 𝑎1, … , 𝑎𝑛, we say
two indices i < j form an
inversion if 𝑎𝑖 > 𝑎𝑗.

• Let’s ignore Charlie for a
second and just look at the
numbers on the right:
• [2, 4, 1, 3]

Inversions

• Definition: Given a list of
numbers 𝑎1, … , 𝑎𝑛, we say
two indices i < j form an
inversion if 𝑎𝑖 > 𝑎𝑗.

• Let’s ignore Charlie for a
second and just look at the
numbers on the right:
• [2, 4, 1, 3]
• (2,1), (4,1), and (4,3) are

all inversions.

Inversions

• Let’s ignore Charlie for a
second and just look at the
numbers on the right:
• [2, 4, 1, 3]
• (2,1), (4,1), and (4,3) are

all inversions.
• Observe that if you look at

the lines, an inversion is
marked by a crossing.

Problem: Finding Inversions

• Input: List of elements A
• Goal: Find all the inversions in A

Problem: Finding Inversions

• Input: List of elements A
• Goal: Find all the inversions in A

Input: List A

Inversions = []

For i in [n]:

 For j in [i+1..n]:

 if A[i] > A[j]:

 inversions.append((i,j))

Return Inversions

Problem: Finding Inversions

• Input: List of elements A
• Goal: Find all the inversions in A

Input: List A

Inversions = []

For i in [n]:

 For j in [i+1..n]:

 if A[i] > A[j]:

 inversions.append((i,j))

Return Inversions

This will take n^2 time to
compute the list of

inversions!

Problem: Finding Inversions

• Input: List of elements A
• Goal: Find number of inversions in A

Recursive Algorithm

• The same algorithm works, just
return the size of the final
inversions list.

• However, we can use recursion to
do better.

• Let’s make a few observations
about the problem before we
decide how to use recursion.

Simple Case

• How many inversions can we have
if our list is empty?

• How many inversions can we have
if our list is size 1?

• How many inversions can we have
if our list is size 2?
• How can you solve this small

case?

[]
[2]

[3,1]

Divide & Conquer

• If we aren’t in the simple/base case, then we want to break
the problem into smaller problems and recurse.

1 7 3 12 2 5 6 9 3 7

1 7 3 12 2 5 6 9 3 7

Merging

• If we aren’t in the simple/base case, then we want to break
the problem into smaller problems and recurse.

1 7 3 12 2 5 6 9 4 7

1 7 3 12 2 5 6 9 4 7

There are 3 inversions: (7,3), (3,2), and (12, 2) There is 4 inversions: (5,4), (6,4), (9,4), and (9,7)

Question: Are these all the inversions?

Merging

• If we aren’t in the simple/base case, then we want to break
the problem into smaller problems and recurse.

1 7 3 12 2 5 6 9 4 7

1 7 3 12 2 5 6 9 4 7

There are 3 inversions: (7,3), (3,2), and (12, 2) There is 4 inversions: (5,4), (6,4), (9,4), and (9,7)

Answer: No!

More Merging

• Once we have the solution to our subproblems, we have to
find a way to combine them together.

1 7 3 12 2 5 6 9 4 7

1 7 3 12 2 5 6 9 4 7

There are 3 inversions: (7,3), (3,2), and (12, 2) There is 4 inversions: (5,4), (6,4), (9,4), and (9,7)

Naive Idea

• Question: How long could it take to check all of this
“spanning” inversions?

1 7 3 12 2 5 6 9 4 7

1 7 3 12 2 5 6 9 4 7

There are 3 inversions: (7,3), (3,2), and (12, 2) There is 4 inversions: (5,4), (6,4), (9,4), and (9,7)

Naive Idea

• Answer: If we assume that n is even then it would take
(n/2)^2 comparisons.

1 7 3 12 2 5 6 9 4 7

1 7 3 12 2 5 6 9 4 7

There are 3 inversions: (7,3), (3,2), and (12, 2) There is 4 inversions: (5,4), (6,4), (9,4), and (9,7)

Easy Case

• Question: What if we knew that both lists were sorted?

1 7 3 12 2 5 6 9 4 7

1 7 3 12 2 5 6 9 4 7

There are 3 inversions: (7,3), (3,2), and (12, 2) There is 4 inversions: (5,4), (6,4), (9,4), and (9,7)

Easy Case

• Question: What if we knew that both sublists were sorted?

1 2 3 7 12 4 5 6 7 9

1 2 3 7 12 4 5 6 7 9

There are 0 inversions. There is 0 inversions.

Easy Case

• Answer: No inversions in each sublist but we can count the
spanning inversions easier.

1 2 3 7 12 4 5 6 7 9

1 2 3 7 12 4 5 6 7 9

There are 0 inversions. There is 0 inversions.

Merge & Count

• Let’s do something like our
merge step from mergesort but
also count the number of
inversions.

• Work through both lists and add
the smallest element to the
merged list.
• Now, we also compute the

number of inversions when
we add the smallest element

1 2 3 7 12

4 5 6 7 9

Merge & Count

1 2 3 7 12

4 5 6 7 9

1

Question: How many inversions involving 1?

Merge & Count

1 2 3 7 12

4 5 6 7 9

1

Answer: None because smaller than everything?

Merge & Count

1

1 2 3 7 12

4 5 6 7 9

Merge & Count

1 2 3 7 12

4 5 6 7 9

1 2

Merge & Count

1 2 3 7 12

4 5 6 7 9

1 2

Merge & Count

1 2 3 7 12

4 5 6 7 9

1 2 3

Merge & Count

1 2 3 7 12

4 5 6 7 9

1 2 3

Question: How many inversions involving 4?

Merge & Count

1 2 3 7 12

4 5 6 7 9

1 2 3 4

Answer: There are two: (7,4) and (12,4)

Merge & Count

1 2 3 7 12

4 5 6 7 9

1 2 3 4

Question: How may inversion involving 5?

Merge & Count

1 2 3 7 12

4 5 6 7 9

1 2 3 4 5

Answer: There are two: (7,5) and (12,5)

Merge & Count

1 2 3 7 12

4 5 6 7 9

1 2 3 4 5

Question: How may inversion involving 6?

Merge & Count

1 2 3 7 12

4 5 6 7 9

1 2 3 4 5 6

Answer: There are two: (7,6) and (12,6)

Merge & Count

1 2 3 7 12

4 5 6 7 9

1 2 3 4 5 6

Question: How may inversion involving the top 7?

Merge & Count

x 2 3 7 12

4 5 6 7 9

1 2 3 4 5 6 7

Answer: There were 3, but we already listed them.

Merge & Count

x 2 3 7 12

4 5 6 7 9

1 2 3 4 5 6 7

Question: How may inversion involving the bottom 7?

Merge & Count

x 2 3 7 12

4 5 6 7 9

1 2 3 4 5 6 7 7

Answer: There is 1: (12,7)

Merge & Count

x 2 3 7 12

4 5 6 7 9

1 2 3 4 5 6 7 7

Question: How many involving 9?

Merge & Count

x 2 3 7 12

4 5 6 7 9

1 2 3 4 5 6 7 7 9

Answer: There is 1: (12,9)

Merge & Count

x 2 3 7 12

4 5 6 7 9

1 2 3 4 5 6 7 7 9

Question: How many involving 12?

Merge & Count

x 2 3 7 12

4 5 6 7 9

1 2 3 4 5 6 7 7 9 12

Answer: There were 5 but we listed them already.

Merge & Count

x 2 3 7 12

4 5 6 7 9

1 2 3 4 5 6 7 7 9 12

Question: How would you describe
our new merge process?

Question: What was the rule for
counting inversions?

Merge & Count

x 2 3 7 12

4 5 6 7 9

1 2 3 4 5 6 7 7 9 12

Answer: When we added to our list
from the second smaller list, we knew
that there was going to be a new
inversion for every remaining element
in the top list.

Merge & Count

a_i

b_j

?

Observation: If b_j < a_i then we know
that b_j is going to be in |A|-i
inversions.

Merge & Count

b_j

Observation: If b_j < a_i then we know
that b_j is going to be in |A|-i
inversions.

a_i

Merge & Count

b_j

• We can see that a_(i-1) must have been smaller
• We can also see that a_(i+1) must be bigger.

a_i

Not an inversion

Is an inversion

Divide & Conquer

• Question: How should we use this merge and count
algorithm?

1 7 3 12 2 5 6 9 3 7

1 7 3 12 2 5 6 9 3 7

Divide & Conquer Algorithm

• We will use the logic of the previous few slides to make a
Merge-and-Count(A,B) algorithm that will merge two sorted
lists and count the number of “spanning” inversions.

• We will now make a new algorithm called Sort-and-
Count(L) that will take a list and return the list sorted and
return the number of inversions before being sorted.

Sort-and-Count
1. Input: list L of length n

2. If the list has on element:

3. there are no inversions

4. Else:

5. Divide the list into two halves:

6. A contains first ⌈𝑛/2⌉ elements
7. B contains second ⌊𝑛/2⌋ elements
8. (r,A) = Sort-and-Count(A)

9. (q,B) = Sort-and-Count(B)

10. (k,L) = Merge-and-Count(A,B)

11. Return (r+q+k,L)

When is each type of inversion counted?

1 7 3 12 2 5 6 9 3 7

Sort-and-Count Runtime?
1. Input: list L of length n

2. If the list has on element:

3. there are no inversions

4. Else:

5. Divide the list into two halves:

6. A contains first ⌈𝑛/2⌉ elements
7. B contains second ⌊𝑛/2⌋ elements
8. (r,A) = Sort-and-Count(A)

9. (q,B) = Sort-and-Count(B)

10. (k,L) = Merge-and-Count(A,B)

11. Return (r+q+k,L)

Sort-and-Count Runtime?

• Observations:
• Takes O(n) time to divide.
• Takes 2T(n/2) time to do recursive calls.
• Takes O(n) time to merge.
• Takes O(1) time to do base case.

Sort-and-Count Runtime

• We have the same recurrence we had for mergesort and if we solve
it using the methods from before, we get the same runtime of
O(nlog(n)).

Sort-and-Count Runtime?

• Question: What would you change to get the list of all inversions?
• Question: How would this change the runtime?

Sort-and-Count Runtime?

• Answer: You’d want to change your Sort-and-Count to return list of
inversions.

• Answer: This would take longer because we do have to list all pairs
in some cases.

	Slide 1: CSE 331: Algorithms & Complexity
	Slide 2: Schedule
	Slide 3: Course Updates
	Slide 4: Reading
	Slide 5: Rankings
	Slide 6: Rankings
	Slide 7: Rankings
	Slide 8: Rankings
	Slide 9: Inversions
	Slide 10: Inversions
	Slide 11: Inversions
	Slide 12: Inversions
	Slide 13: Problem: Finding Inversions
	Slide 14: Problem: Finding Inversions
	Slide 15: Problem: Finding Inversions
	Slide 16: Problem: Finding Inversions
	Slide 17: Recursive Algorithm
	Slide 18: Simple Case
	Slide 19: Divide & Conquer
	Slide 20: Merging
	Slide 21: Merging
	Slide 22: More Merging
	Slide 23: Naive Idea
	Slide 24: Naive Idea
	Slide 25: Easy Case
	Slide 26: Easy Case
	Slide 27: Easy Case
	Slide 28: Merge & Count
	Slide 29: Merge & Count
	Slide 30: Merge & Count
	Slide 31: Merge & Count
	Slide 32: Merge & Count
	Slide 33: Merge & Count
	Slide 34: Merge & Count
	Slide 35: Merge & Count
	Slide 36: Merge & Count
	Slide 37: Merge & Count
	Slide 38: Merge & Count
	Slide 39: Merge & Count
	Slide 40: Merge & Count
	Slide 41: Merge & Count
	Slide 42: Merge & Count
	Slide 43: Merge & Count
	Slide 44: Merge & Count
	Slide 45: Merge & Count
	Slide 46: Merge & Count
	Slide 47: Merge & Count
	Slide 48: Merge & Count
	Slide 49: Merge & Count
	Slide 50: Merge & Count
	Slide 51: Merge & Count
	Slide 52: Merge & Count
	Slide 53: Merge & Count
	Slide 54: Divide & Conquer
	Slide 55: Divide & Conquer Algorithm
	Slide 56: Sort-and-Count
	Slide 57: When is each type of inversion counted?
	Slide 58: Sort-and-Count Runtime?
	Slide 59: Sort-and-Count Runtime?
	Slide 60: Sort-and-Count Runtime
	Slide 61: Sort-and-Count Runtime?
	Slide 62: Sort-and-Count Runtime?

