
CSE 331: 
Algorithms & Complexity

Prof. Charlie Anne Carlson (She/Her)
Lecture 24

Wednesday October 29th, 2025

“Counting Inversions”



Schedule

1.Course Updates
2.Counting Inversions



Course Updates

• Post Midterm Grades <-piazza 
• HW4 Grades Out
• HW4 Solutions Out
• HW 6 Out Soon
• Group Project

• Code Problems Oct 31st

• Reflections November 3rd



Reading

• You should have read:
• Finished KT 5.1 
• Finished KT 5.2
• Finished KT 5.3

• Before Next Class:
• Start KT 5.5
• Start KT 5.4



Rankings

• Fix a set of objects and 
consider ordering them by 
some known preference. 

• E.g. Given the following 
“animals,” rank your 
preference for having them 
as pets:
• Cat
• Dog

• Snake
• Rock



Rankings

• Twp people may have very 
different preferences for 
pets.

• Question: How can you 
measure the difference 
between two people’s 
preferences/ranks?

Charlie Not-Charlie

Cat

Dog

Snake

Rock

Dog

Rock

Cat

Snake



Rankings

• Twp people may have very 
different preferences for 
pets.

• Answer: You might create a 
measure that is 0 when the 
preferences match and 
increases the more 
different they are. 

Charlie Not-Charlie

Cat

Dog

Snake

Rock

Dog

Rock

Cat

Snake



Rankings

• Twp people may have very 
different preferences for 
pets.

• Answer: You might create a 
measure that is 0 when the 
preferences match and 
increases the more different 
they are. 

• Let’s fix Charlie’s preference 
as the ”ordering”.

Charlie Not-Charlie

1. Cat

2. Dog

3. Snake

4. Rock

2. Dog

4. Rock

1. Cat

3. Snake



Inversions

• A natural measure for 
measuring difference is 
counting inversions.

• Definition: Given a list of 
numbers 𝑎1, … , 𝑎𝑛, we say 
two indices i <  j form an 
inversion if 𝑎𝑖 > 𝑎𝑗.



Inversions

• Definition: Given a list of 
numbers 𝑎1, … , 𝑎𝑛, we say 
two indices i <  j form an 
inversion if 𝑎𝑖 > 𝑎𝑗.

• Let’s ignore Charlie for a 
second and just look at the 
numbers on the right: 
• [2, 4, 1, 3]



Inversions

• Definition: Given a list of 
numbers 𝑎1, … , 𝑎𝑛, we say 
two indices i <  j form an 
inversion if 𝑎𝑖 > 𝑎𝑗.

• Let’s ignore Charlie for a 
second and just look at the 
numbers on the right: 
• [2, 4, 1, 3]
• (2,1), (4,1), and (4,3) are 

all inversions.



Inversions

• Let’s ignore Charlie for a 
second and just look at the 
numbers on the right: 
• [2, 4, 1, 3]
• (2,1), (4,1), and (4,3) are 

all inversions.
• Observe that if you look at 

the lines, an inversion is 
marked by a crossing.



Problem: Finding Inversions

• Input: List of elements A
• Goal: Find all the inversions in A



Problem: Finding Inversions

• Input: List of elements A
• Goal: Find all the inversions in A

Input: List A

Inversions = []

For i in [n]:

  For j in [i+1..n]:

    if A[i] > A[j]:

      inversions.append((i,j))

Return Inversions



Problem: Finding Inversions

• Input: List of elements A
• Goal: Find all the inversions in A

Input: List A

Inversions = []

For i in [n]:

  For j in [i+1..n]:

    if A[i] > A[j]:

      inversions.append((i,j))

Return Inversions

This will take n^2 time to 
compute the list of 

inversions!



Problem: Finding Inversions

• Input: List of elements A
• Goal: Find number of inversions in A



Recursive Algorithm

• The same algorithm works, just 
return the size of the final 
inversions list. 

• However, we can use recursion to 
do better.

• Let’s make a few observations 
about the problem before we 
decide how to use recursion. 



Simple Case

• How many inversions can we have 
if our list is empty?

• How many inversions can we have 
if our list is size 1?

• How many inversions can we have 
if our list is size 2?
• How can you solve this small 

case?

[]
[2]

[3,1]



Divide & Conquer

• If we aren’t in the simple/base case, then we want to break 
the problem into smaller problems and recurse. 

1 7 3 12 2 5 6 9 3 7

1 7 3 12 2 5 6 9 3 7



Merging

• If we aren’t in the simple/base case, then we want to break 
the problem into smaller problems and recurse. 

1 7 3 12 2 5 6 9 4 7

1 7 3 12 2 5 6 9 4 7

There are 3 inversions: (7,3), (3,2), and (12, 2) There is 4 inversions: (5,4), (6,4), (9,4), and (9,7)

Question: Are these all the inversions?



Merging

• If we aren’t in the simple/base case, then we want to break 
the problem into smaller problems and recurse. 

1 7 3 12 2 5 6 9 4 7

1 7 3 12 2 5 6 9 4 7

There are 3 inversions: (7,3), (3,2), and (12, 2) There is 4 inversions: (5,4), (6,4), (9,4), and (9,7)

Answer: No!



More Merging 

• Once we have the solution to our subproblems, we have to 
find a way to combine them together.

1 7 3 12 2 5 6 9 4 7

1 7 3 12 2 5 6 9 4 7

There are 3 inversions: (7,3), (3,2), and (12, 2) There is 4 inversions: (5,4), (6,4), (9,4), and (9,7)



Naive Idea

• Question: How long could it take to check all of this 
“spanning” inversions?

1 7 3 12 2 5 6 9 4 7

1 7 3 12 2 5 6 9 4 7

There are 3 inversions: (7,3), (3,2), and (12, 2) There is 4 inversions: (5,4), (6,4), (9,4), and (9,7)



Naive Idea

• Answer: If we assume that n is even then it would take 
(n/2)^2 comparisons. 

1 7 3 12 2 5 6 9 4 7

1 7 3 12 2 5 6 9 4 7

There are 3 inversions: (7,3), (3,2), and (12, 2) There is 4 inversions: (5,4), (6,4), (9,4), and (9,7)



Easy Case

• Question: What if we knew that both lists were sorted?

1 7 3 12 2 5 6 9 4 7

1 7 3 12 2 5 6 9 4 7

There are 3 inversions: (7,3), (3,2), and (12, 2) There is 4 inversions: (5,4), (6,4), (9,4), and (9,7)



Easy Case

• Question: What if we knew that both sublists were sorted?

1 2 3 7 12 4 5 6 7 9

1 2 3 7 12 4 5 6 7 9

There are 0 inversions. There is 0 inversions.



Easy Case

• Answer: No inversions in each sublist but we can count the 
spanning inversions easier.

1 2 3 7 12 4 5 6 7 9

1 2 3 7 12 4 5 6 7 9

There are 0 inversions. There is 0 inversions.



Merge & Count

• Let’s do something like our 
merge step from mergesort but 
also count the number of 
inversions.

• Work through both lists and add 
the smallest element to the 
merged list.
• Now, we also compute the 

number of inversions when 
we add the smallest element

1 2 3 7 12

4 5 6 7 9



Merge & Count

1 2 3 7 12

4 5 6 7 9

1

Question: How many inversions involving 1? 



Merge & Count

1 2 3 7 12

4 5 6 7 9

1

Answer: None because smaller than everything? 



Merge & Count

1

1 2 3 7 12

4 5 6 7 9



Merge & Count

1 2 3 7 12

4 5 6 7 9

1 2



Merge & Count

1 2 3 7 12

4 5 6 7 9

1 2



Merge & Count

1 2 3 7 12

4 5 6 7 9

1 2 3



Merge & Count

1 2 3 7 12

4 5 6 7 9

1 2 3

Question: How many inversions involving 4? 



Merge & Count

1 2 3 7 12

4 5 6 7 9

1 2 3 4

Answer: There are two: (7,4) and (12,4) 



Merge & Count

1 2 3 7 12

4 5 6 7 9

1 2 3 4

Question: How may inversion involving 5?



Merge & Count

1 2 3 7 12

4 5 6 7 9

1 2 3 4 5

Answer: There are two: (7,5) and (12,5) 



Merge & Count

1 2 3 7 12

4 5 6 7 9

1 2 3 4 5

Question: How may inversion involving 6?



Merge & Count

1 2 3 7 12

4 5 6 7 9

1 2 3 4 5 6

Answer: There are two: (7,6) and (12,6) 



Merge & Count

1 2 3 7 12

4 5 6 7 9

1 2 3 4 5 6

Question: How may inversion involving the top 7?



Merge & Count

x 2 3 7 12

4 5 6 7 9

1 2 3 4 5 6 7

Answer: There were 3, but we already listed them.



Merge & Count

x 2 3 7 12

4 5 6 7 9

1 2 3 4 5 6 7

Question: How may inversion involving the bottom 7?



Merge & Count

x 2 3 7 12

4 5 6 7 9

1 2 3 4 5 6 7 7

Answer: There is 1: (12,7)



Merge & Count

x 2 3 7 12

4 5 6 7 9

1 2 3 4 5 6 7 7

Question: How many involving 9?



Merge & Count

x 2 3 7 12

4 5 6 7 9

1 2 3 4 5 6 7 7 9

Answer: There is 1: (12,9)



Merge & Count

x 2 3 7 12

4 5 6 7 9

1 2 3 4 5 6 7 7 9

Question: How many involving 12?



Merge & Count

x 2 3 7 12

4 5 6 7 9

1 2 3 4 5 6 7 7 9 12

Answer: There were 5 but we listed them already. 



Merge & Count

x 2 3 7 12

4 5 6 7 9

1 2 3 4 5 6 7 7 9 12

Question: How would you describe 
our new merge process?

Question: What was the rule for 
counting inversions?



Merge & Count

x 2 3 7 12

4 5 6 7 9

1 2 3 4 5 6 7 7 9 12

Answer: When we added to our list 
from the second smaller list, we knew 
that there was going to be a new 
inversion for every remaining element 
in the top list.



Merge & Count

a_i

b_j

?

Observation: If b_j < a_i then we know 
that b_j is going to be in |A|-i 
inversions. 



Merge & Count

b_j

Observation: If b_j < a_i then we know 
that b_j is going to be in |A|-i 
inversions. 

a_i



Merge & Count

b_j

• We can see that a_(i-1) must have been smaller
• We can also see that a_(i+1) must be bigger.

a_i

Not an inversion

Is an inversion



Divide & Conquer

• Question: How should we use this merge and count 
algorithm?

1 7 3 12 2 5 6 9 3 7

1 7 3 12 2 5 6 9 3 7



Divide & Conquer Algorithm

• We will use the logic of the previous few slides to make a 
Merge-and-Count(A,B) algorithm that will merge two sorted 
lists and count the number of “spanning” inversions. 

• We will now make a new algorithm called Sort-and-
Count(L) that will take a list and return the list sorted and 
return the number of inversions before being sorted.



Sort-and-Count
1. Input: list L of length n

2.  If the list has on element:

3.   there are no inversions

4.  Else:

5.   Divide the list into two halves:

6.    A contains first ⌈𝑛/2⌉ elements
7.    B contains second ⌊𝑛/2⌋ elements
8.   (r,A) = Sort-and-Count(A)

9.   (q,B) = Sort-and-Count(B)

10. (k,L) = Merge-and-Count(A,B)

11. Return (r+q+k,L)



When is each type of inversion counted?

1 7 3 12 2 5 6 9 3 7



Sort-and-Count Runtime?
1. Input: list L of length n

2.  If the list has on element:

3.   there are no inversions

4.  Else:

5.   Divide the list into two halves:

6.    A contains first ⌈𝑛/2⌉ elements
7.    B contains second ⌊𝑛/2⌋ elements
8.   (r,A) = Sort-and-Count(A)

9.   (q,B) = Sort-and-Count(B)

10. (k,L) = Merge-and-Count(A,B)

11. Return (r+q+k,L)



Sort-and-Count Runtime?

• Observations:
• Takes O(n) time to divide.
• Takes 2T(n/2) time to do recursive calls.
• Takes O(n) time to merge.
• Takes O(1) time to do base case.



Sort-and-Count Runtime

• We have the same recurrence we had for mergesort and if we solve 
it using the methods from before, we get the same runtime of 
O(nlog(n)). 



Sort-and-Count Runtime?

• Question: What would you change to get the list of all inversions?
• Question: How would this change the runtime?



Sort-and-Count Runtime?

• Answer: You’d want to change your Sort-and-Count to return list of 
inversions.

• Answer: This would take longer because we do have to list all pairs 
in some cases. 
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