

CSE 331: Algorithms & Complexity “Counting Inversions”

Prof. Charlie Anne Carlson (She/Her)

Lecture 24

Wednesday October 29th, 2025

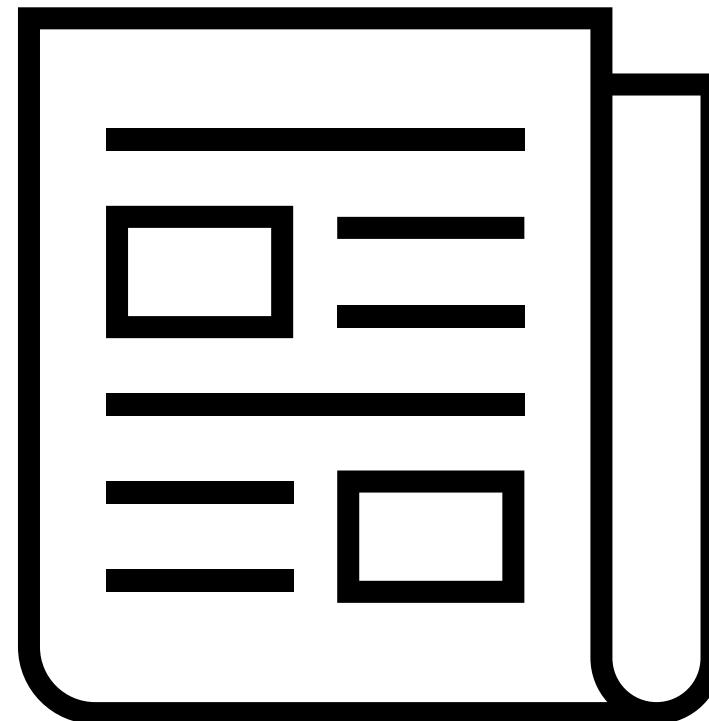
University at Buffalo®

Schedule

1. Course Updates
2. Counting Inversions

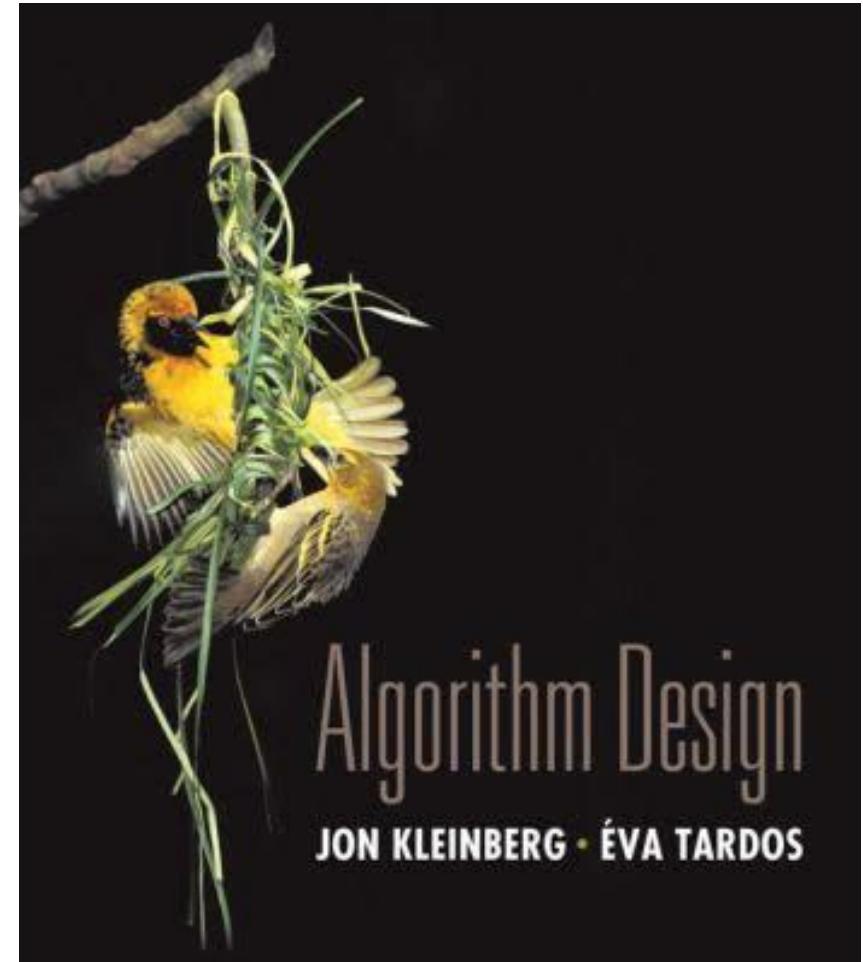
Course Updates

- Post Midterm Grades <-piazza
- HW4 Grades Out
- HW4 Solutions Out
- HW 6 Out Soon
- Group Project
 - Code Problems Oct 31st
 - Reflections November 3rd



Reading

- You should have read:
 - Finished KT 5.1
 - Finished KT 5.2
 - Finished KT 5.3
- Before Next Class:
 - Start KT 5.5
 - Start KT 5.4



Rankings

- Fix a set of objects and consider ordering them by some known preference.
- E.g. Given the following “animals,” *rank* your preference for having them as pets:
 - Cat
 - Dog
 - Snake
 - Rock

Rankings

- Two people may have very different preferences for pets.
- Question:** How can you measure the difference between two people's preferences/ranks?

Charlie

Cat

Dog

Snake

Rock

Not-Charlie

Dog

Rock

Cat

Snake

Rankings

- Two people may have very different preferences for pets.
- **Answer:** You might create a **measure** that is 0 when the preferences match and increases the more different they are.

Charlie

Cat

Dog

Snake

Rock

Not-Charlie

Dog

Rock

Cat

Snake

Rankings

- Two people may have very different preferences for pets.
- **Answer:** You might create a **measure** that is 0 when the preferences match and increases the more different they are.
- Let's fix Charlie's preference as the "ordering".

Charlie

1. Cat

2. Dog

3. Snake

4. Rock

Not-Charlie

2. Dog

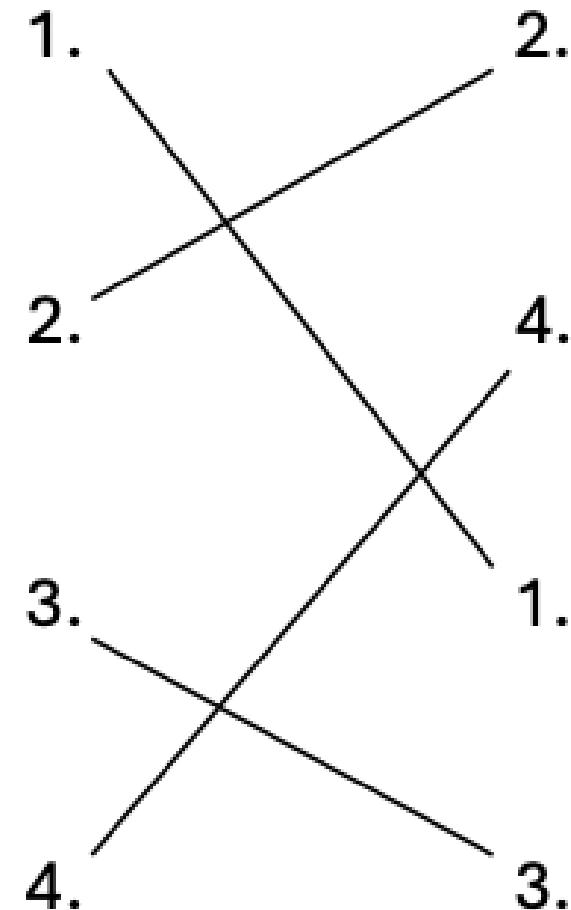
4. Rock

1. Cat

3. Snake

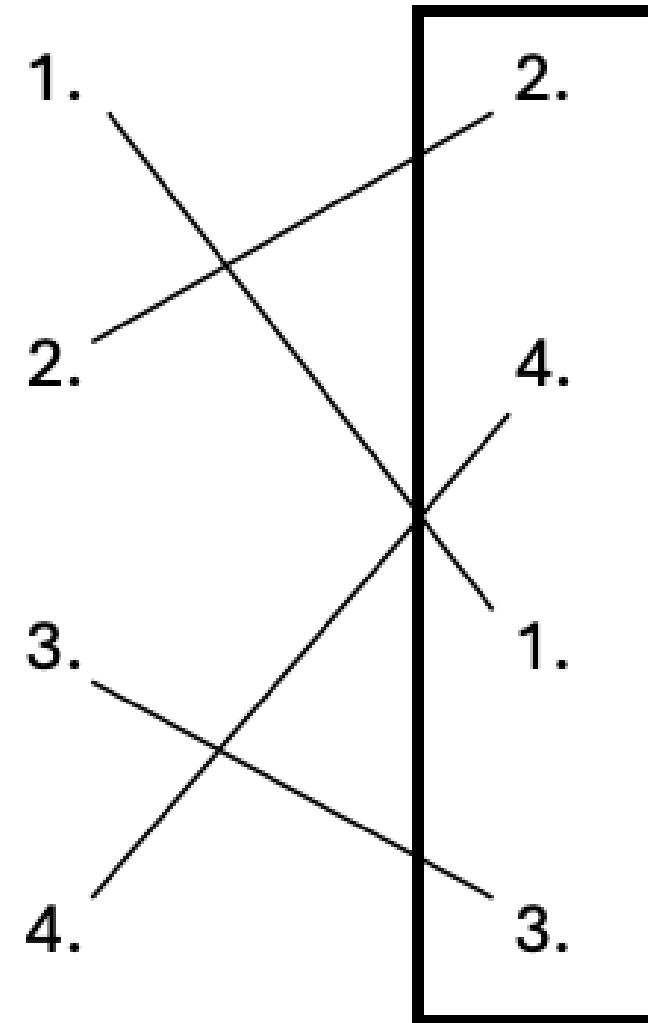
Inversions

- A natural measure for measuring difference is counting *inversions*.
- **Definition:** Given a list of numbers a_1, \dots, a_n , we say two indices $i < j$ form an inversion if $a_i > a_j$.



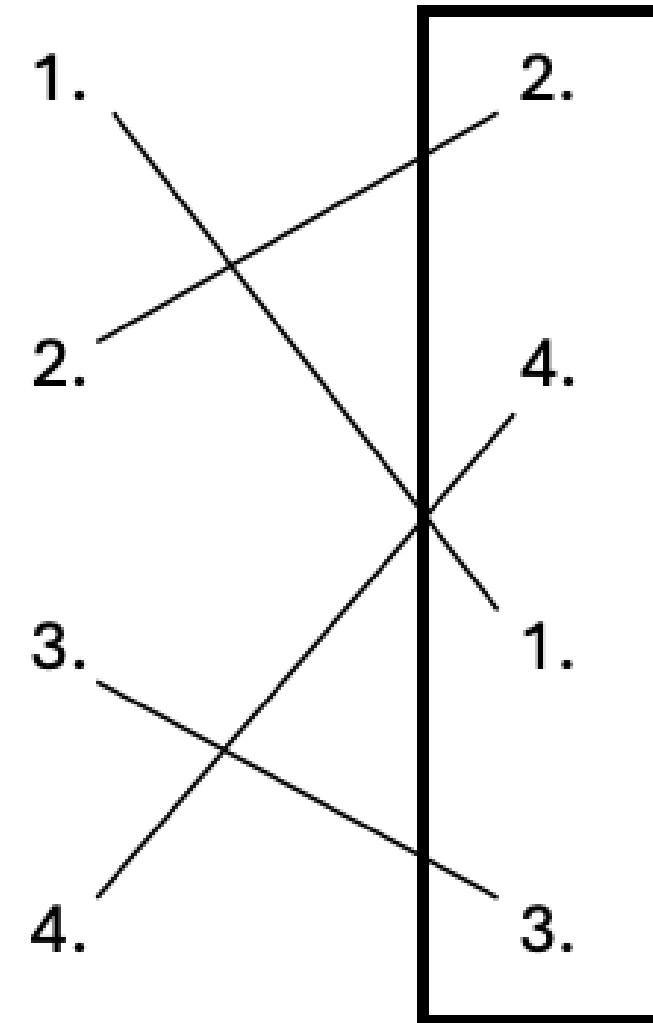
Inversions

- **Definition:** Given a list of numbers a_1, \dots, a_n , we say two indices $i < j$ form an inversion if $a_i > a_j$.
- Let's ignore Charlie for a second and just look at the numbers on the right:
 - [2, 4, 1, 3]



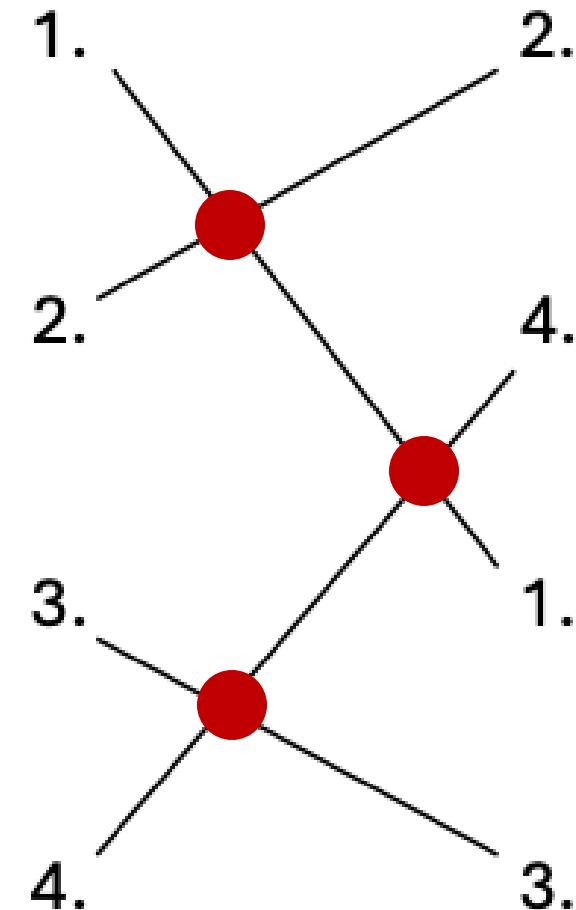
Inversions

- **Definition:** Given a list of numbers a_1, \dots, a_n , we say two indices $i < j$ form an inversion if $a_i > a_j$.
- Let's ignore Charlie for a second and just look at the numbers on the right:
 - [2, 4, 1, 3]
 - (2,1), (4,1), and (4,3) are all inversions.



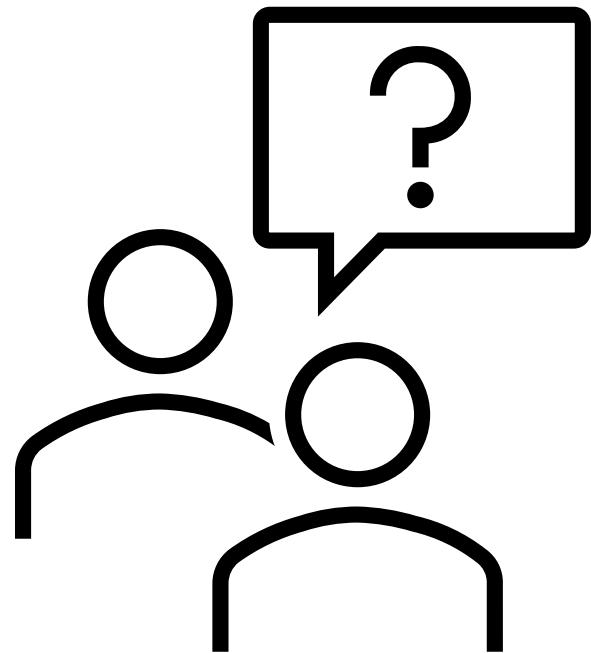
Inversions

- Let's ignore Charlie for a second and just look at the numbers on the right:
 - [2, 4, 1, 3]
 - (2,1), (4,1), and (4,3) are all inversions.
- Observe that if you look at the lines, an inversion is marked by a crossing.



Problem: Finding Inversions

- **Input:** List of elements A
- **Goal:** Find all the inversions in A



Problem: Finding Inversions

- **Input:** List of elements A
- **Goal:** Find all the inversions in A

```
Input: List A
Inversions = []
For i in [n]:
    For j in [i+1..n]:
        if A[i] > A[j]:
            inversions.append((i, j))
Return Inversions
```


Problem: Finding Inversions

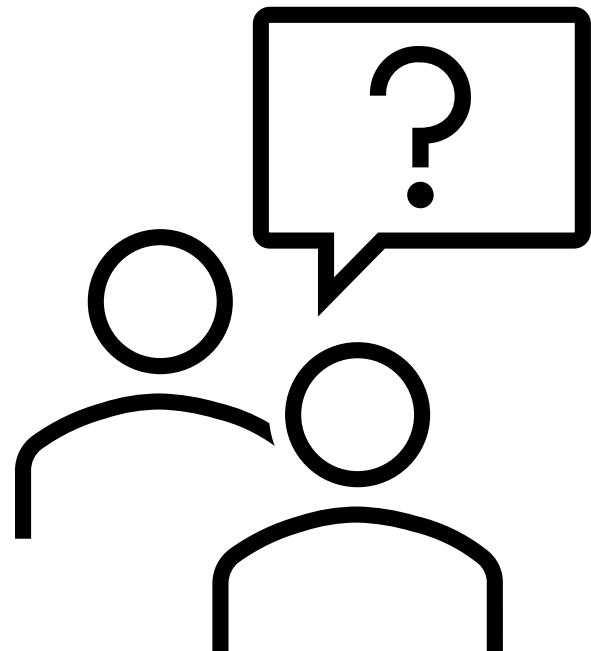
- **Input:** List of elements A
- **Goal:** Find all the inversions in A

```
Input: List A
Inversions = []
For i in [n]:
    For j in [i+1..n]:
        if A[i] > A[j]:
            inversions.append((i, j))
Return Inversions
```

This will take n^2 time to
compute the list of
inversions!

Problem: Finding Inversions

- **Input:** List of elements A
- **Goal:** Find number of inversions in A



Recursive Algorithm

- The same algorithm works, just return the size of the final inversions list.
- However, we can use recursion to do better.
- Let's make a few observations about the problem before we decide how to use recursion.

Simple Case

- How many inversions can we have if our list is empty?
- How many inversions can we have if our list is size 1?
- How many inversions can we have if our list is size 2?
 - How can you solve this small case?

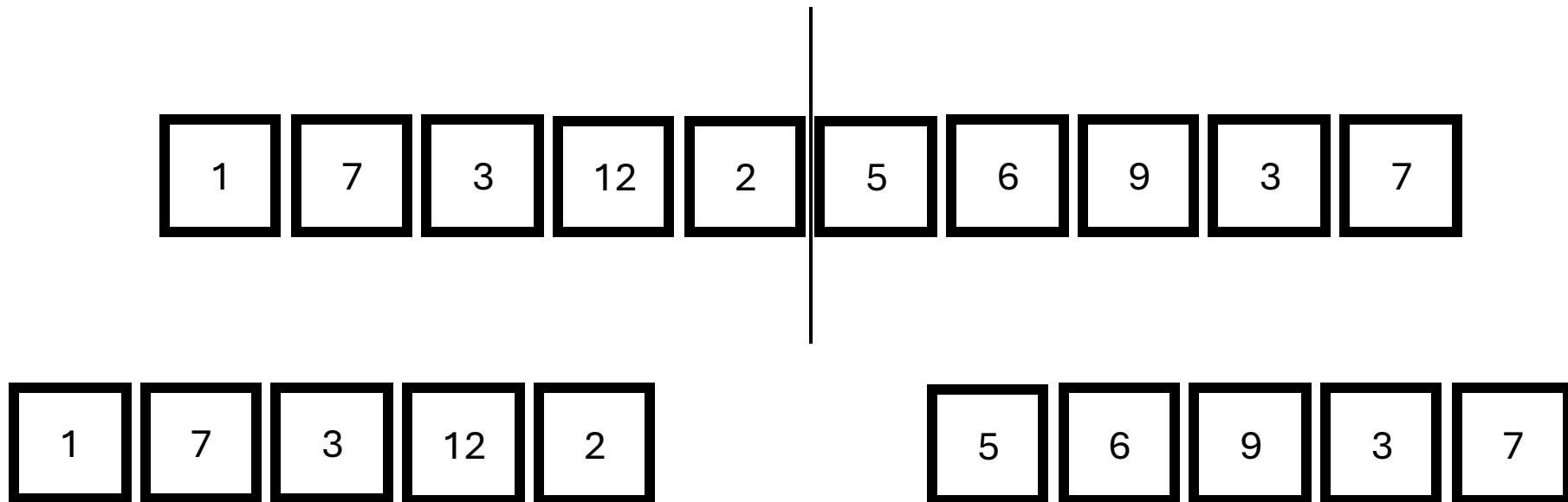
[]

[2]

[3, 1]

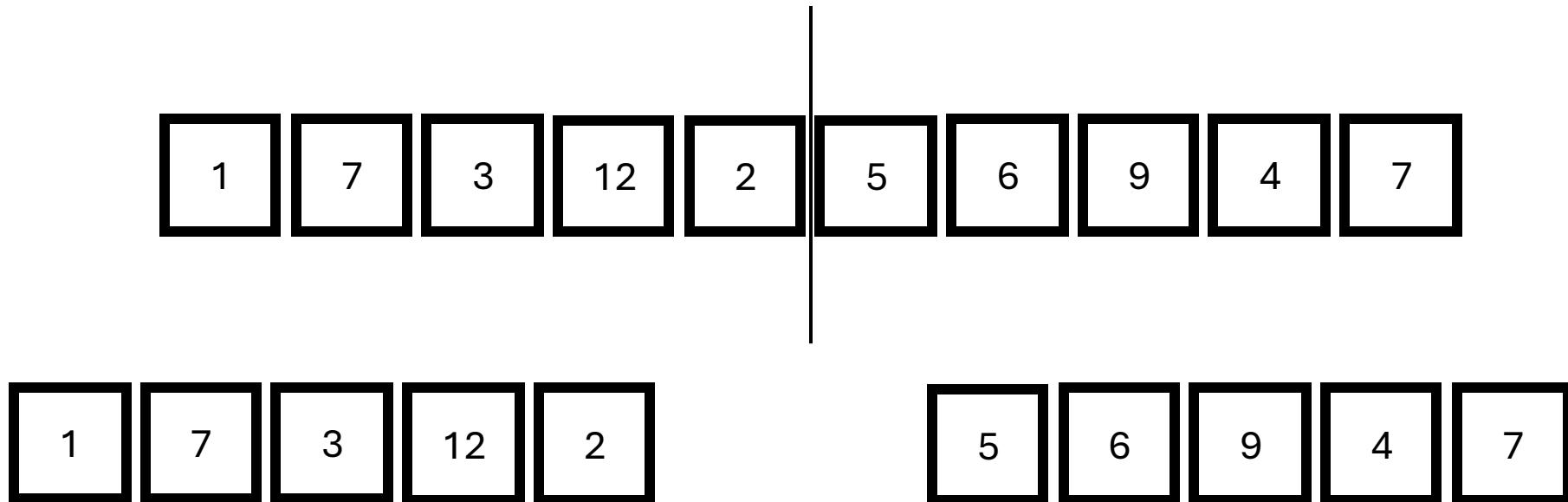
Divide & Conquer

- If we aren't in the simple/base case, then we want to break the problem into smaller problems and recurse.



Merging

- If we aren't in the simple/base case, then we want to break the problem into smaller problems and recurse.



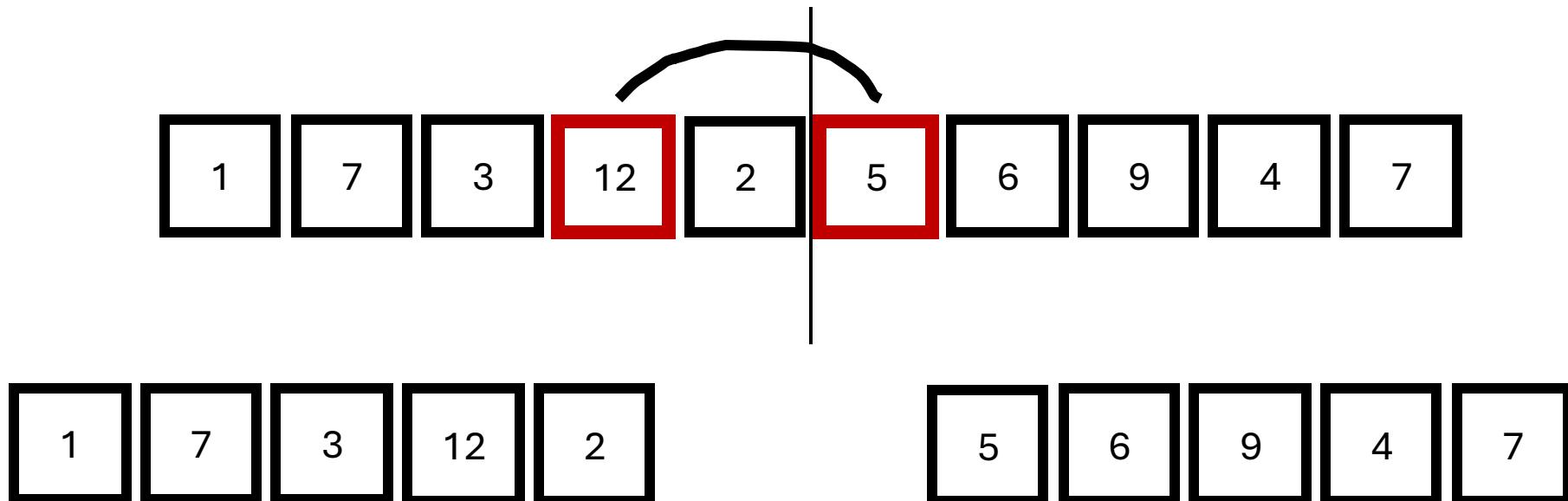
There are 3 inversions: (7,3), (3,2), and (12, 2)

There are 4 inversions: (5,4), (6,4), (9,4), and (9,7)

Question: Are these all the inversions?

Merging

- If we aren't in the simple/base case, then we want to break the problem into smaller problems and recurse.



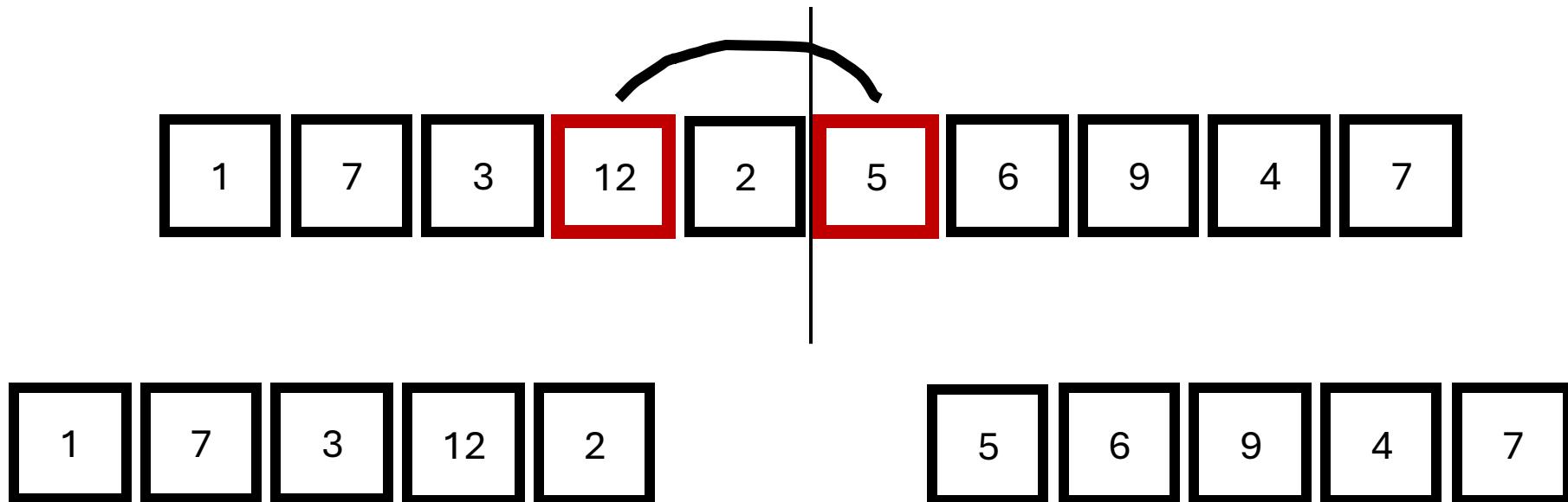
There are 3 inversions: (7,3), (3,2), and (12, 2)

Answer: No!

There is 4 inversions: (5,4), (6,4), (9,4), and (9,7)

More Merging

- Once we have the solution to our subproblems, we have to find a way to combine them together.

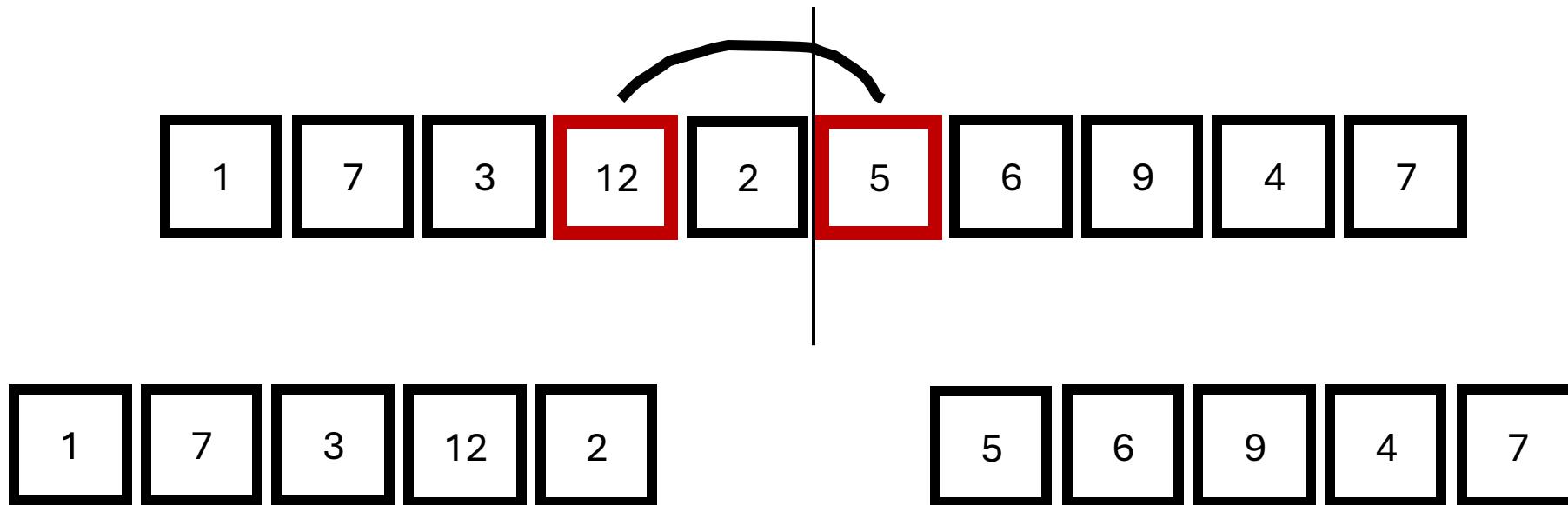


There are 3 inversions: (7,3), (3,2), and (12, 2)

There is 4 inversions: (5,4), (6,4), (9,4), and (9,7)

Naive Idea

- **Question:** How long could it take to check all of this “spanning” inversions?

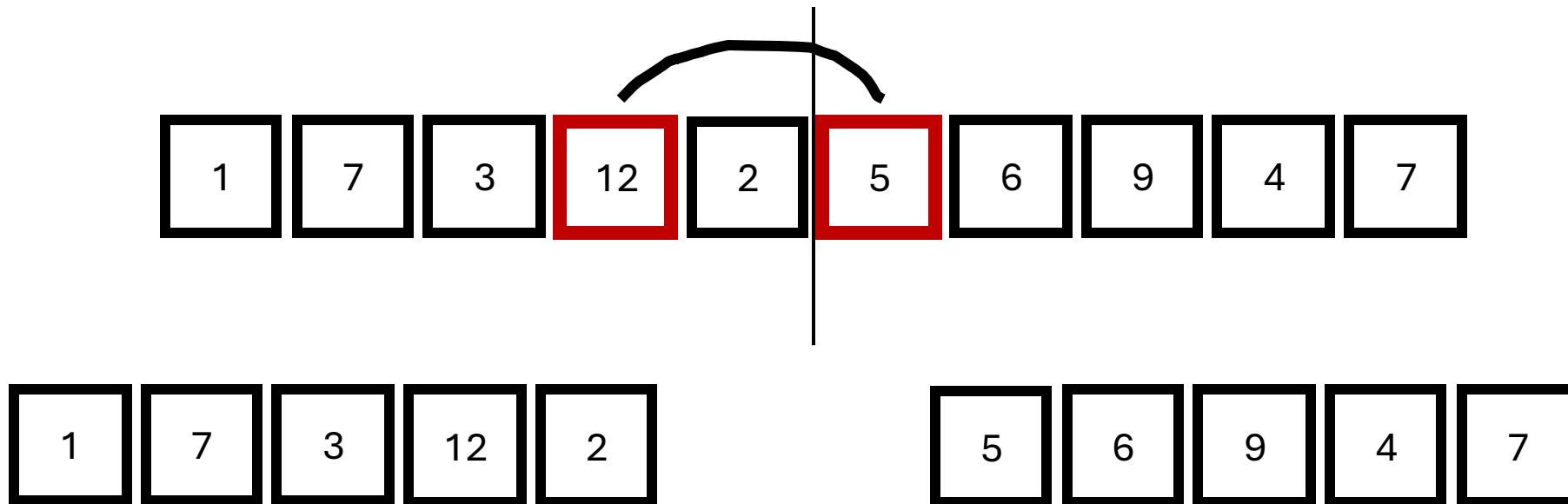


There are 3 inversions: (7,3), (3,2), and (12, 2)

There are 4 inversions: (5,4), (6,4), (9,4), and (9,7)

Naive Idea

- **Answer:** If we assume that n is even then it would take $(n/2)^2$ comparisons.

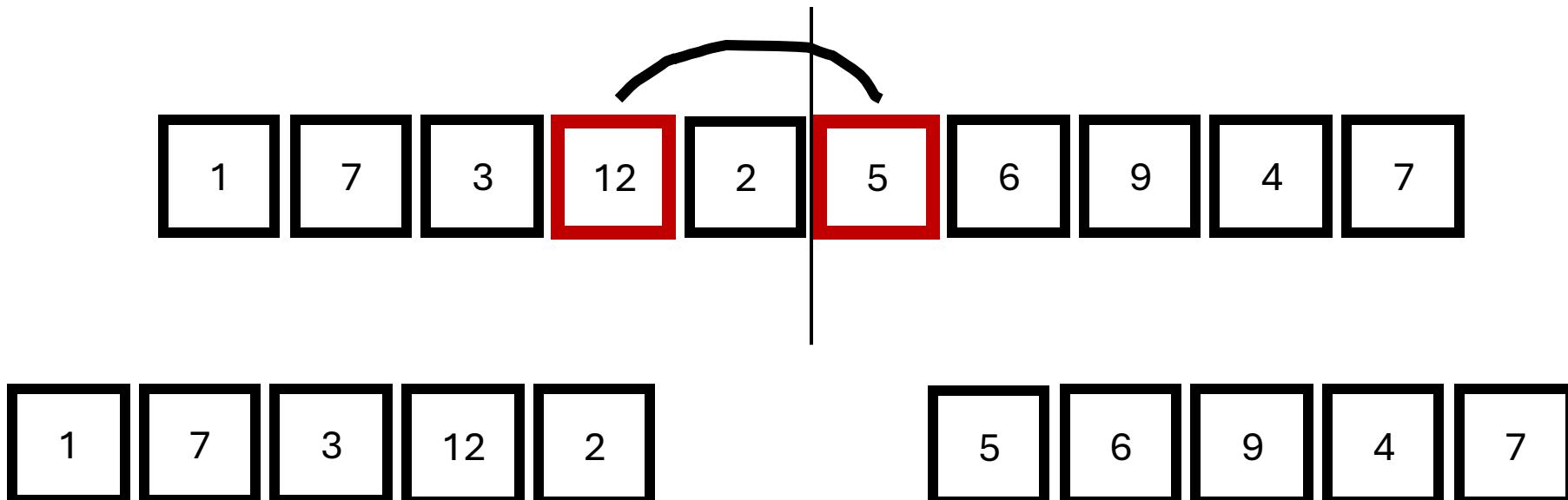


There are 3 inversions: (7,3), (3,2), and (12, 2)

There is 4 inversions: (5,4), (6,4), (9,4), and (9,7)

Easy Case

- **Question:** What if we knew that both lists were sorted?

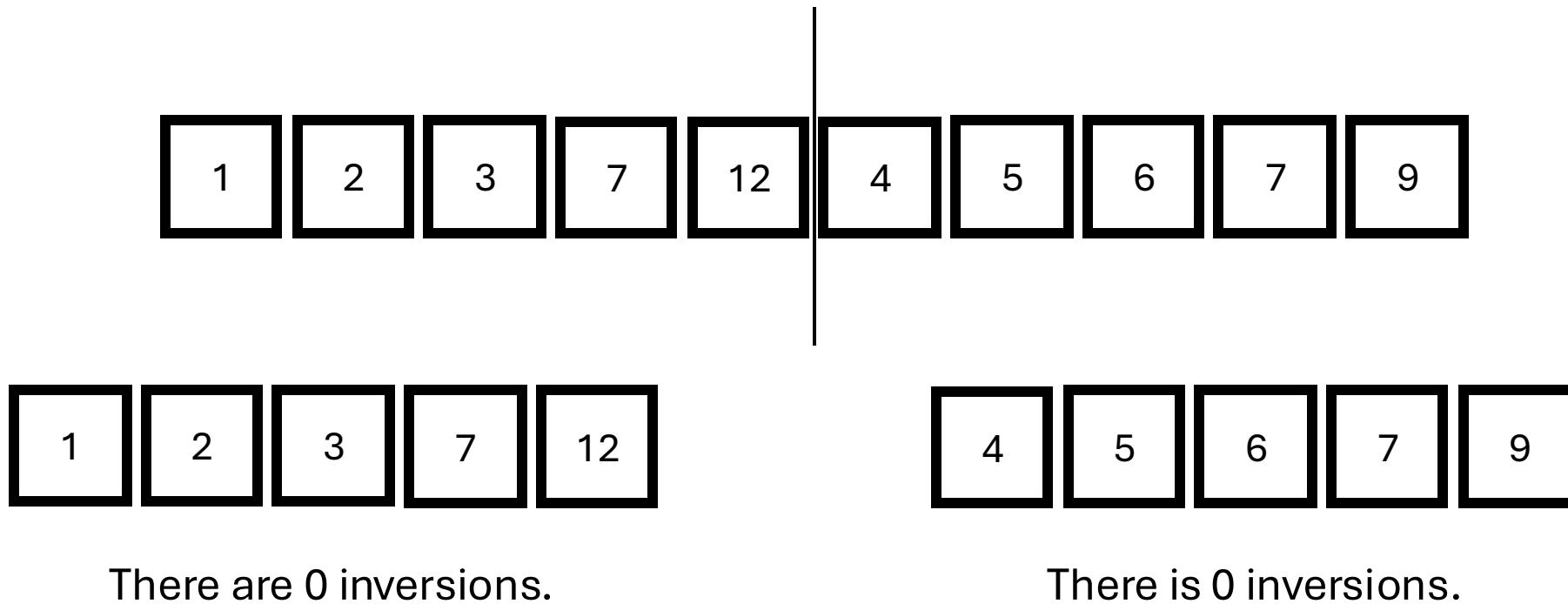


There are 3 inversions: (7,3), (3,2), and (12, 2)

There is 4 inversions: (5,4), (6,4), (9,4), and (9,7)

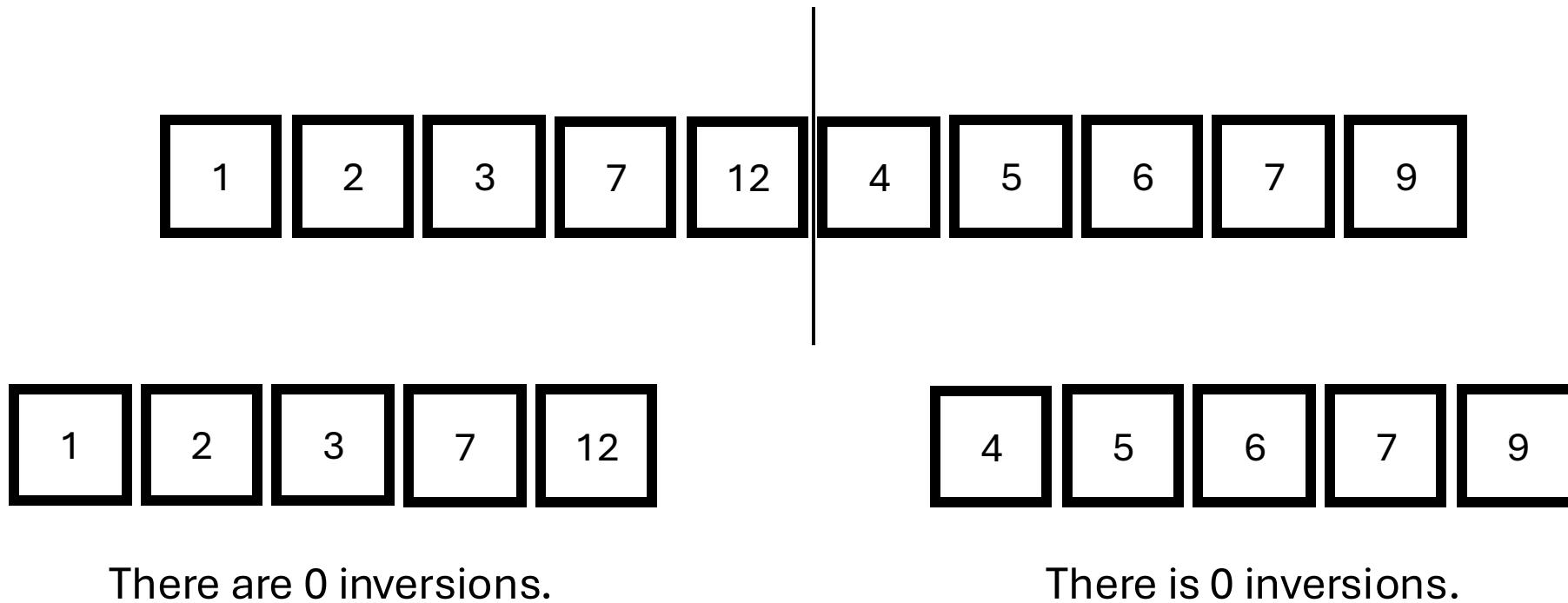
Easy Case

- **Question:** What if we knew that both sublists were sorted?



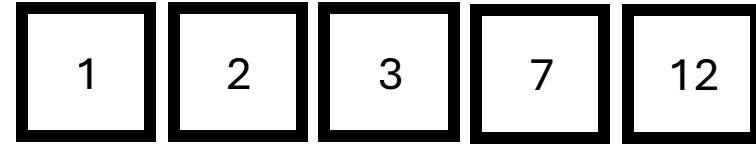
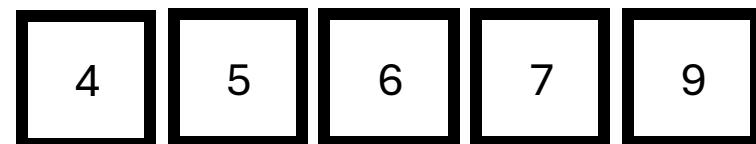
Easy Case

- **Answer:** No inversions in each sublist but we can count the spanning inversions easier.



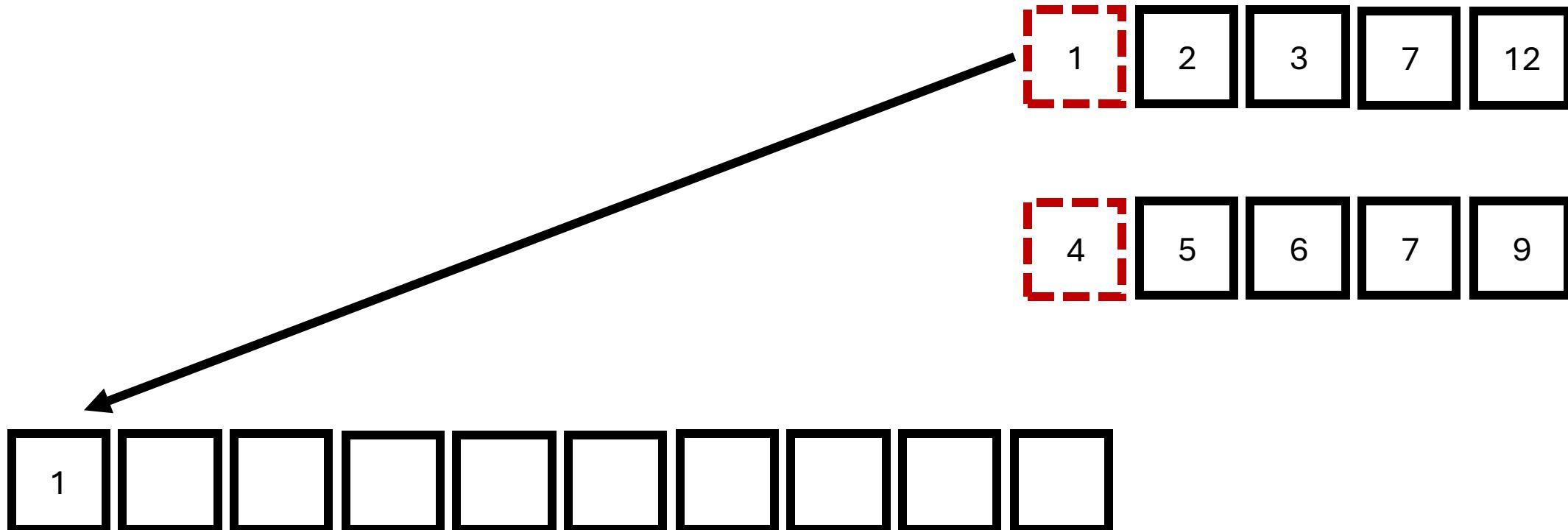
Merge & Count

- Let's do something like our merge step from mergesort but also count the number of inversions.
- Work through both lists and add the smallest element to the merged list.
 - Now, we also compute the number of inversions when we add the smallest element



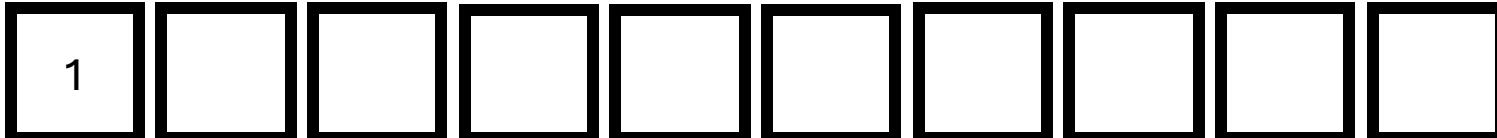
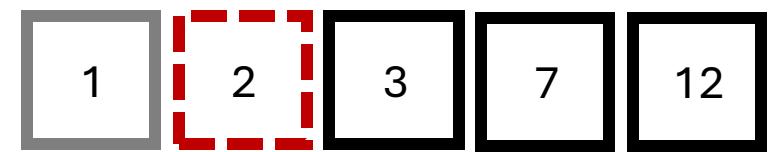
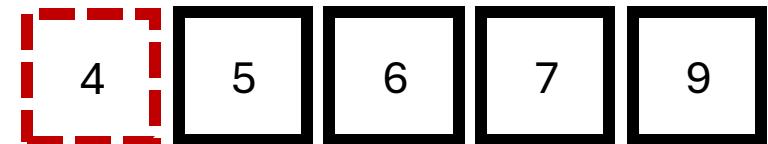
Merge & Count

Question: How many inversions involving 1?

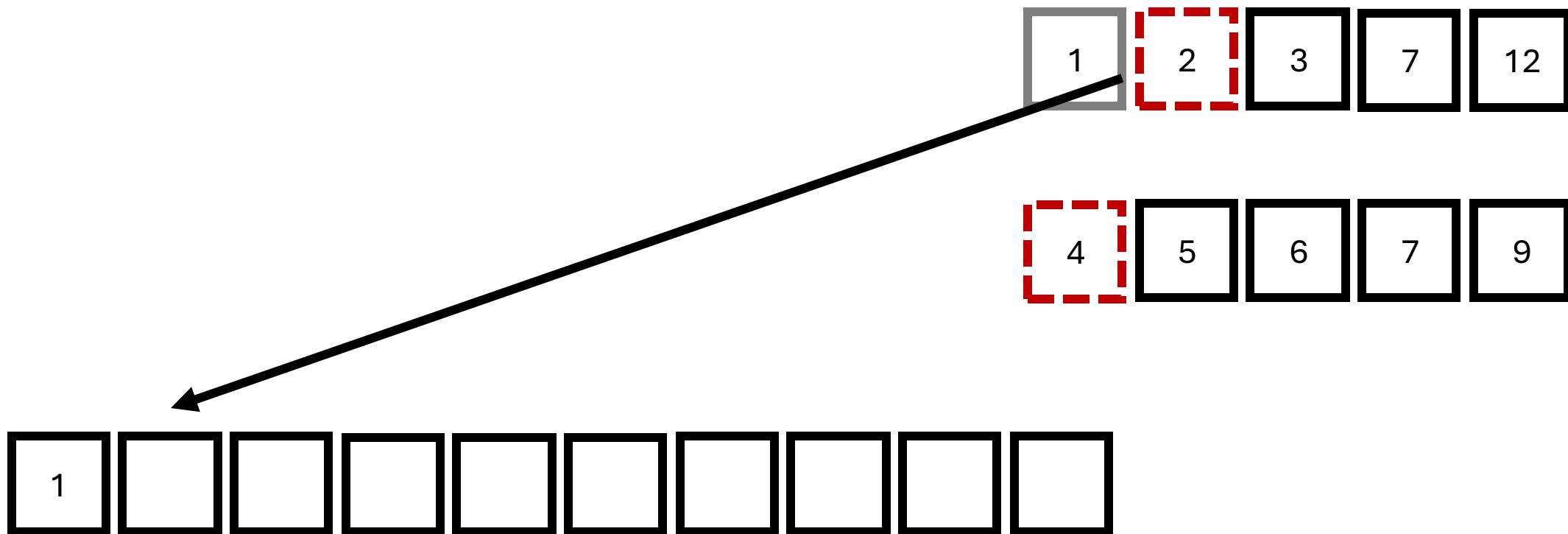


Merge & Count

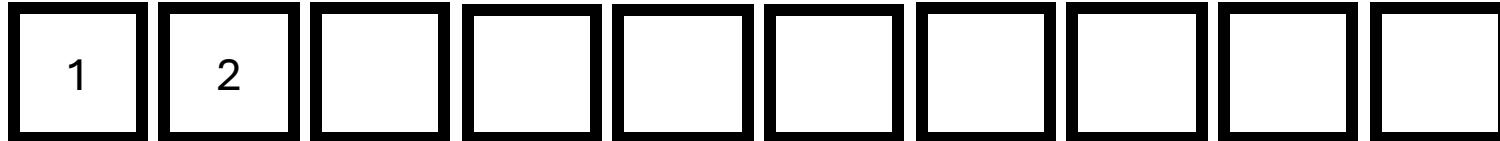
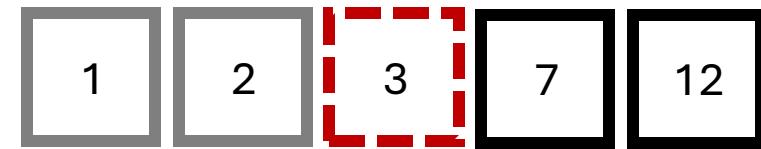
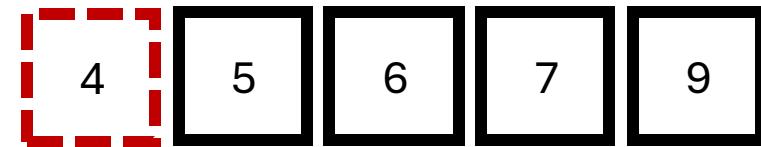
Answer: None because smaller than everything?



Merge & Count



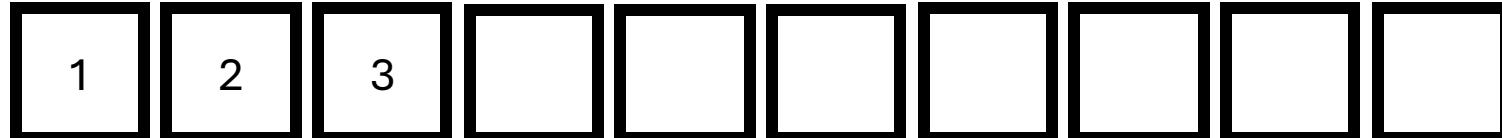
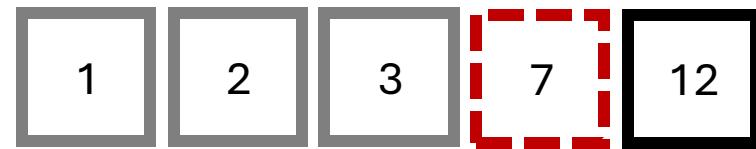
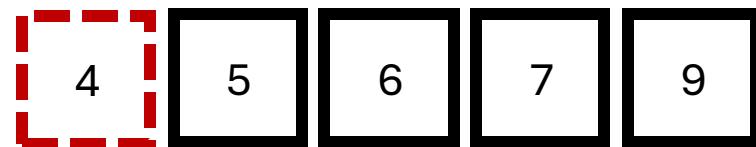
Merge & Count



Merge & Count

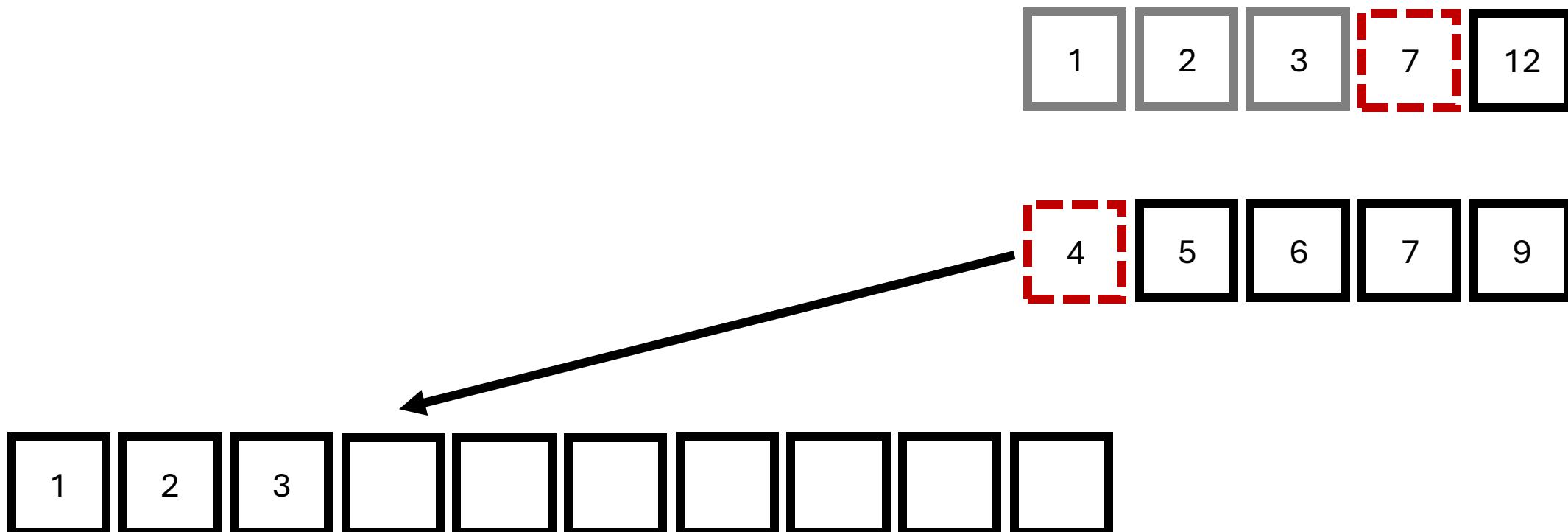


Merge & Count



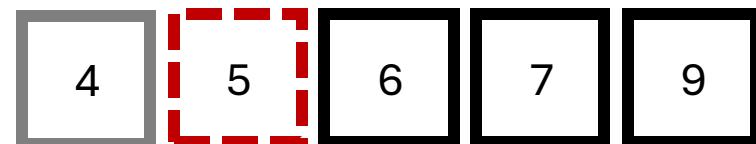
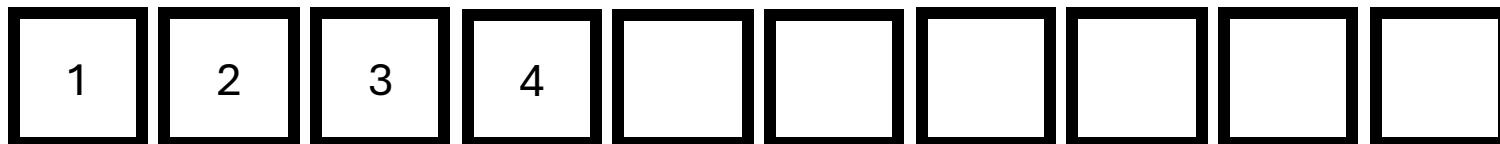
Merge & Count

Question: How many inversions involving 4?



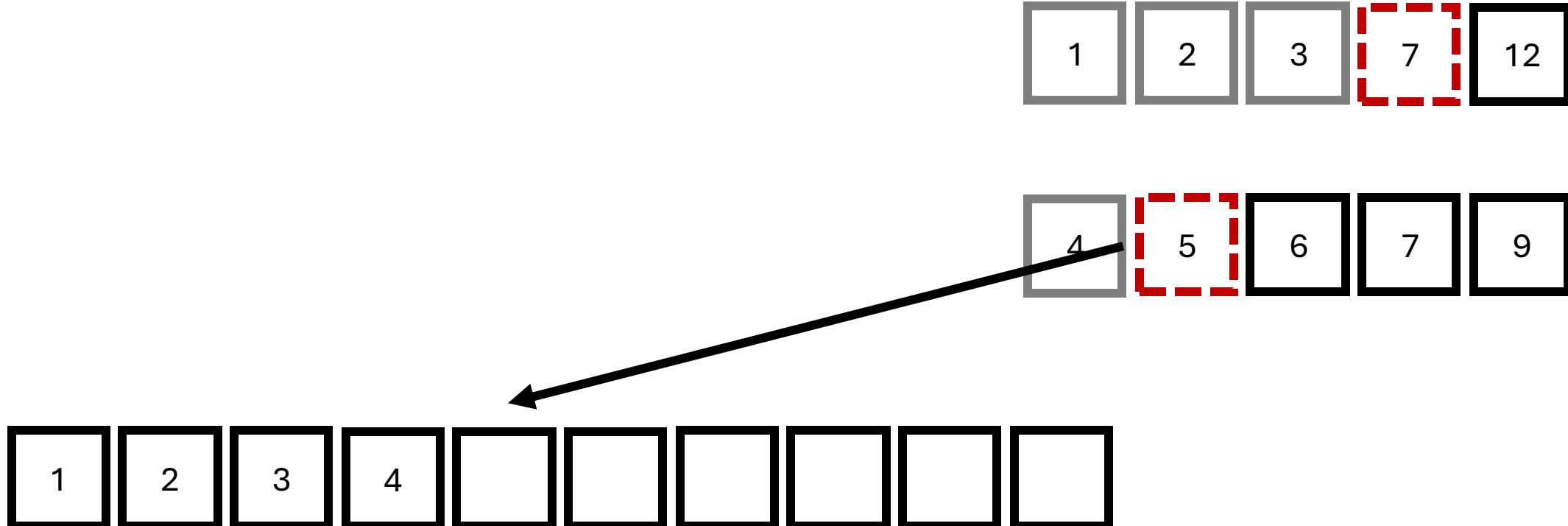
Merge & Count

Answer: There are two: (7,4) and (12,4)



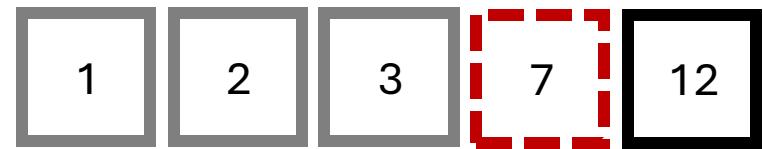
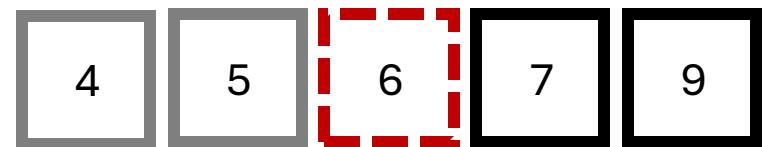
Merge & Count

Question: How many inversions involving 5?



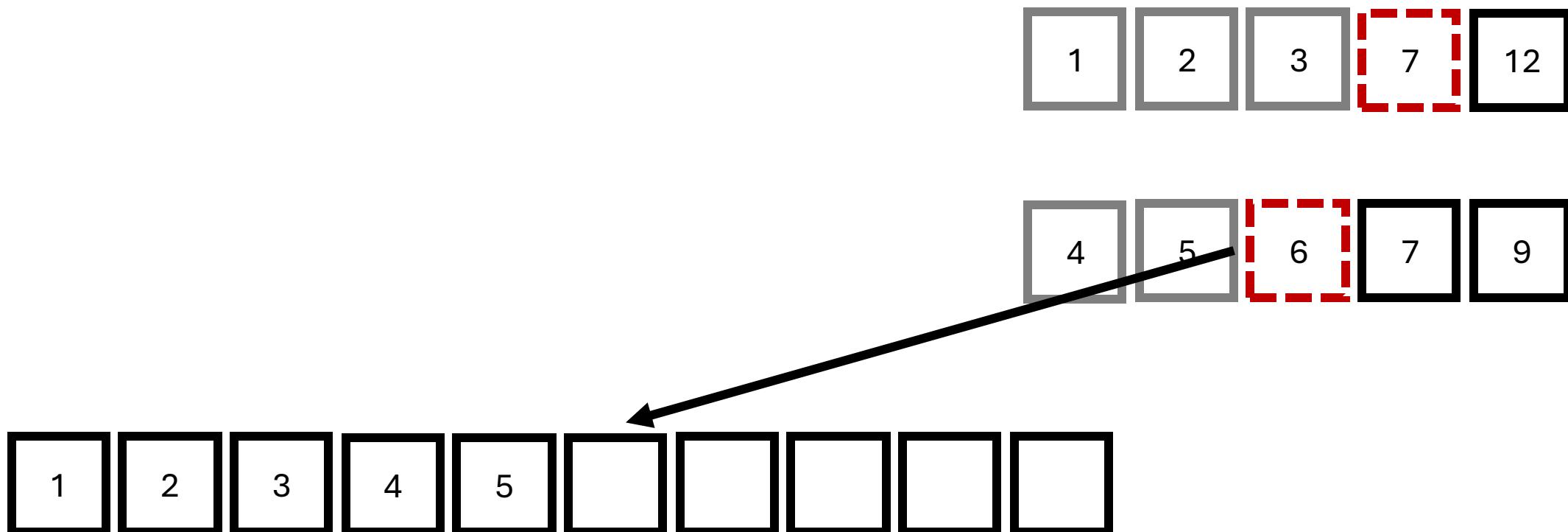
Merge & Count

Answer: There are two: (7,5) and (12,5)



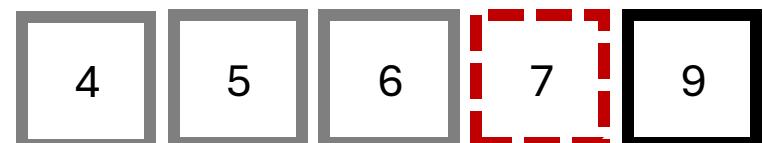
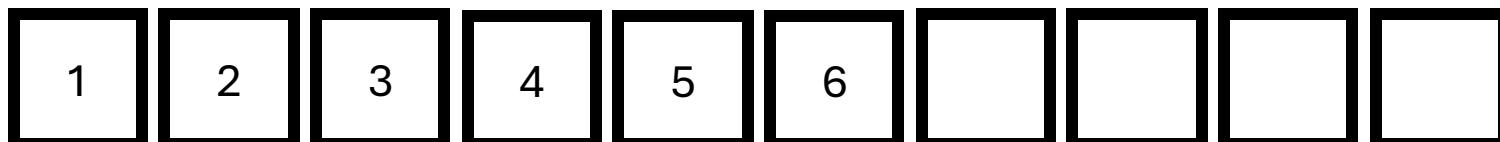
Merge & Count

Question: How many inversions involving 6?



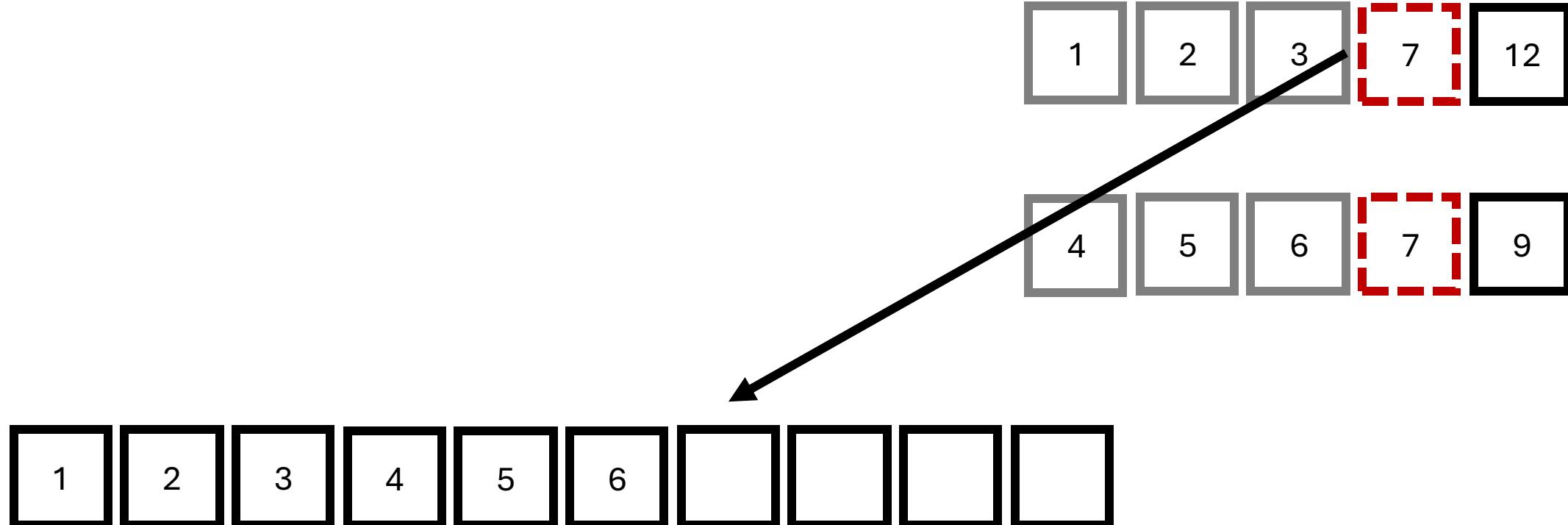
Merge & Count

Answer: There are two: (7,6) and (12,6)



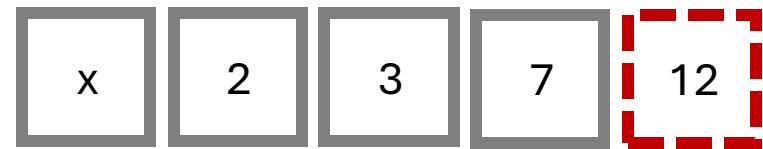
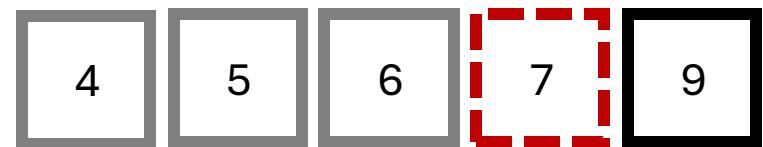
Merge & Count

Question: How many inversions involving the top 7?



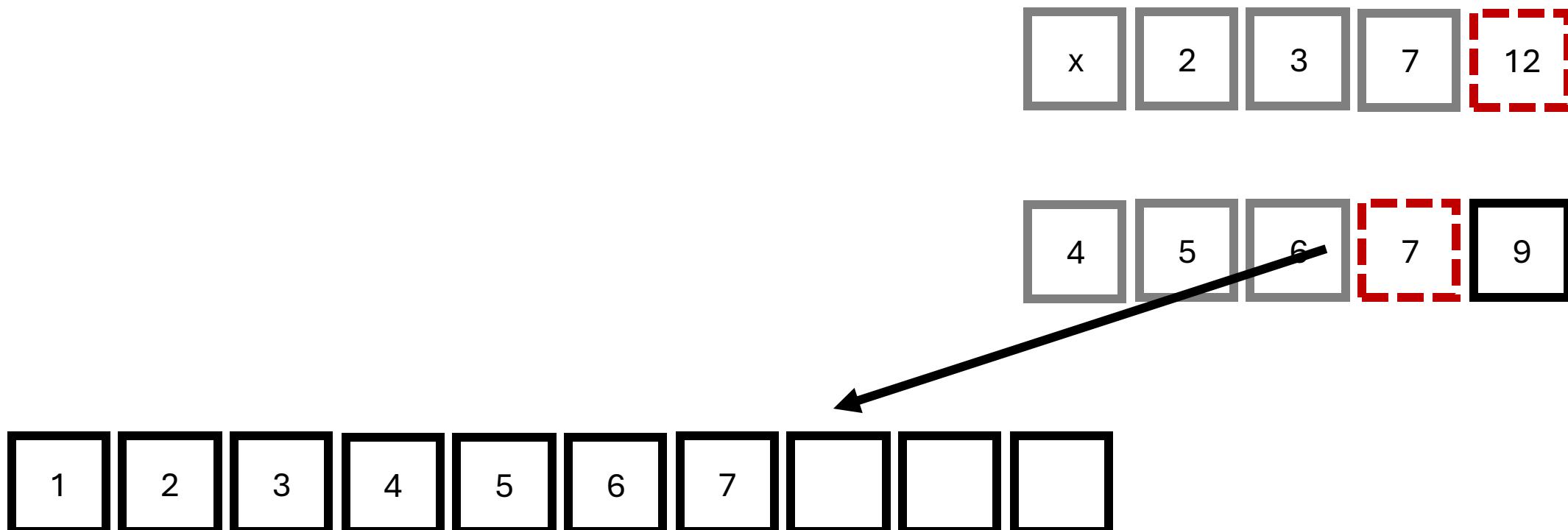
Merge & Count

Answer: There were 3, but we already listed them.



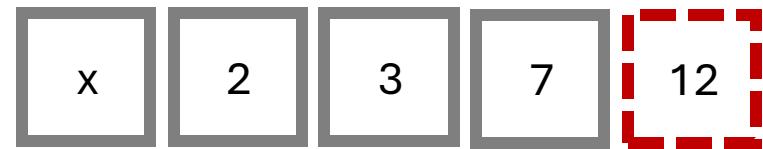
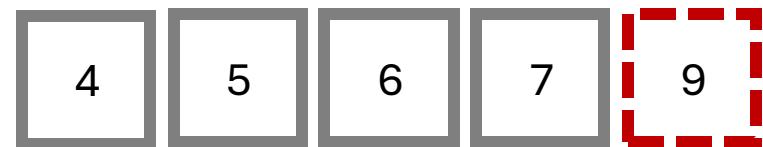
Merge & Count

Question: How many inversions involving the bottom 7?



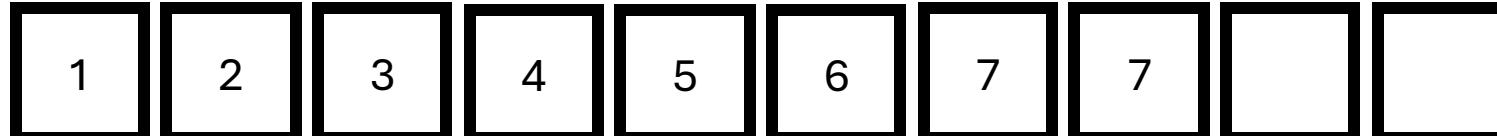
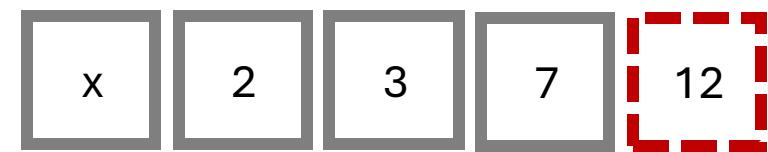
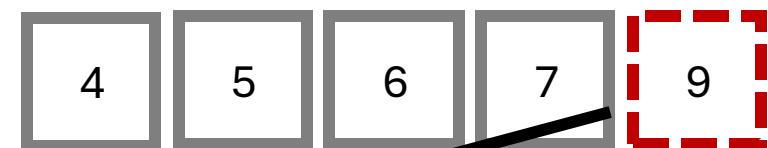
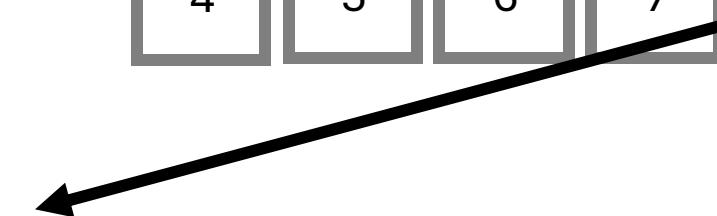
Merge & Count

Answer: There is 1: (12,7)



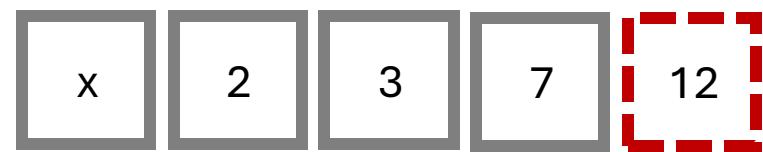
Merge & Count

Question: How many involving 9?



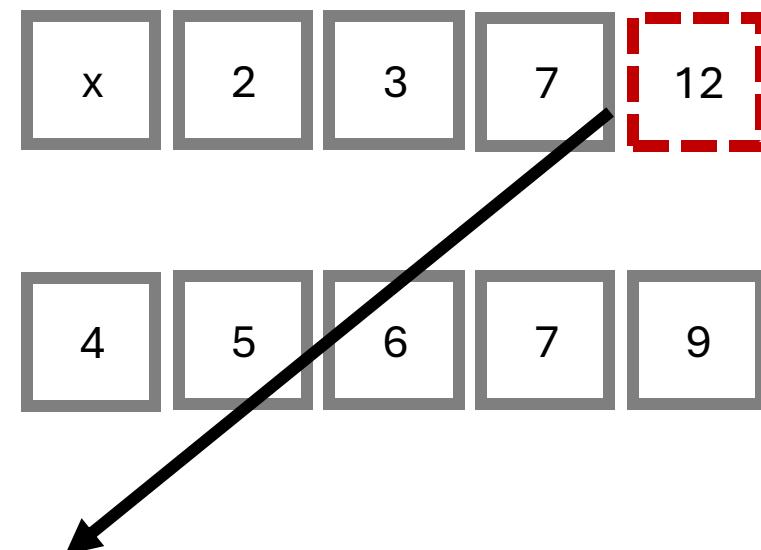
Merge & Count

Answer: There is 1: (12,9)



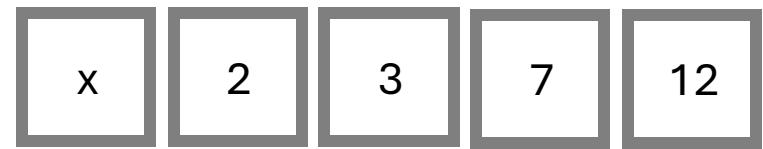
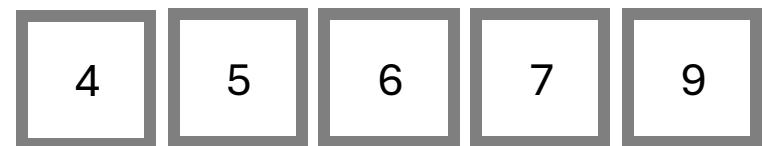
Merge & Count

Question: How many involving 12?



Merge & Count

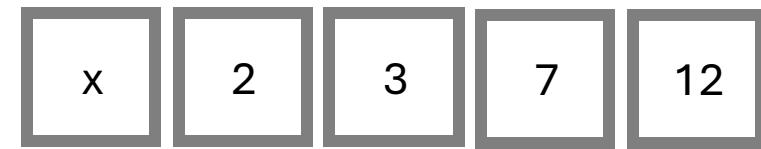
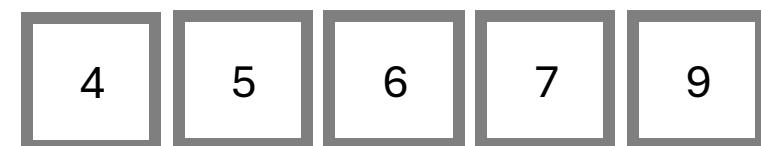
Answer: There were 5 but we listed them already.



Merge & Count

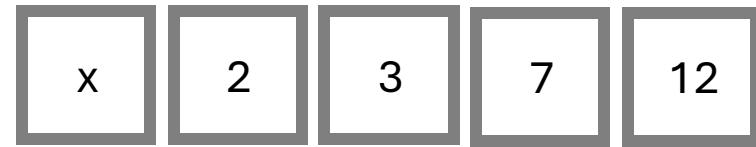
Question: How would you describe our new merge process?

Question: What was the rule for counting inversions?



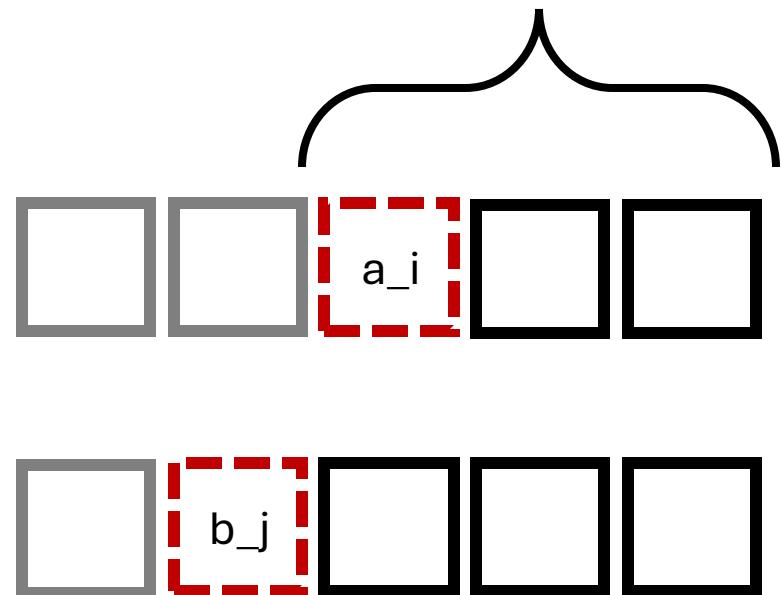
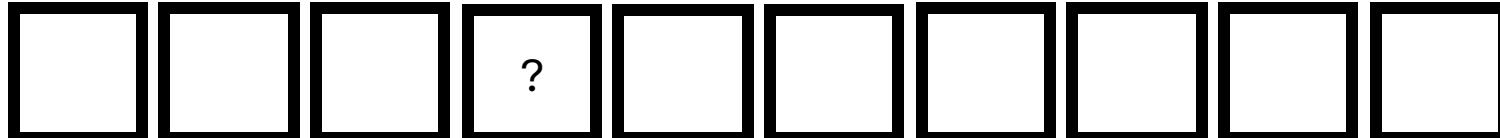
Merge & Count

Answer: When we added to our list from the second smaller list, we knew that there was going to be a new inversion for every remaining element in the top list.



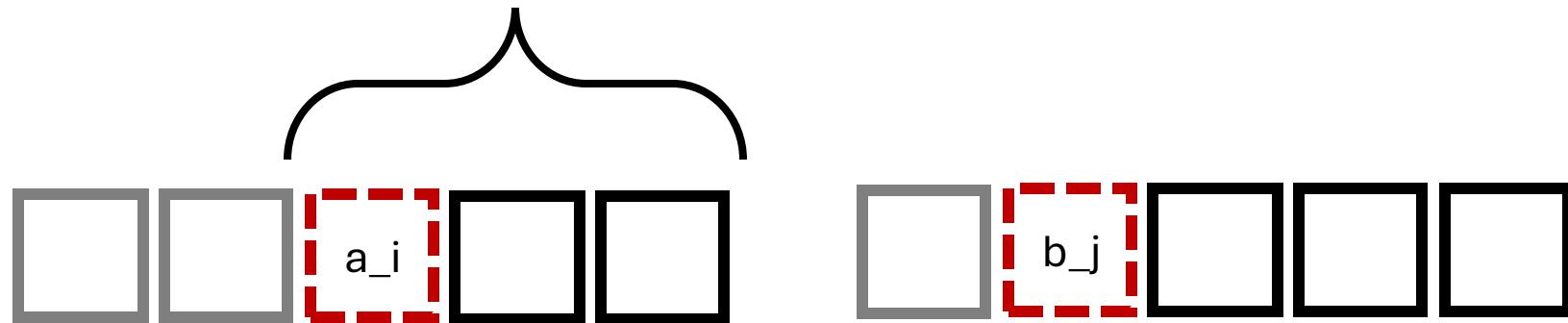
Merge & Count

Observation: If $b_j < a_i$ then we know that b_j is going to be in $|A|-i$ inversions.



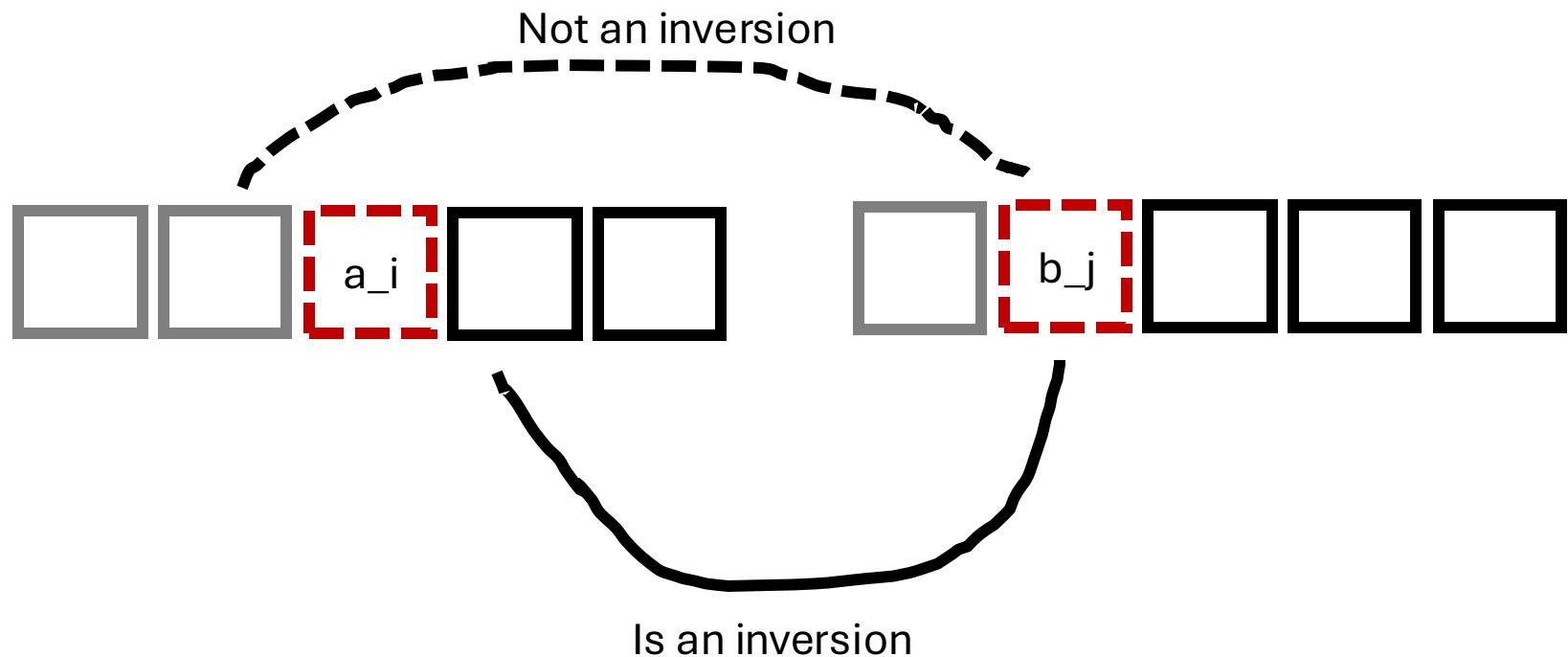
Merge & Count

Observation: If $b_j < a_i$ then we know that b_j is going to be in $|A|-i$ inversions.



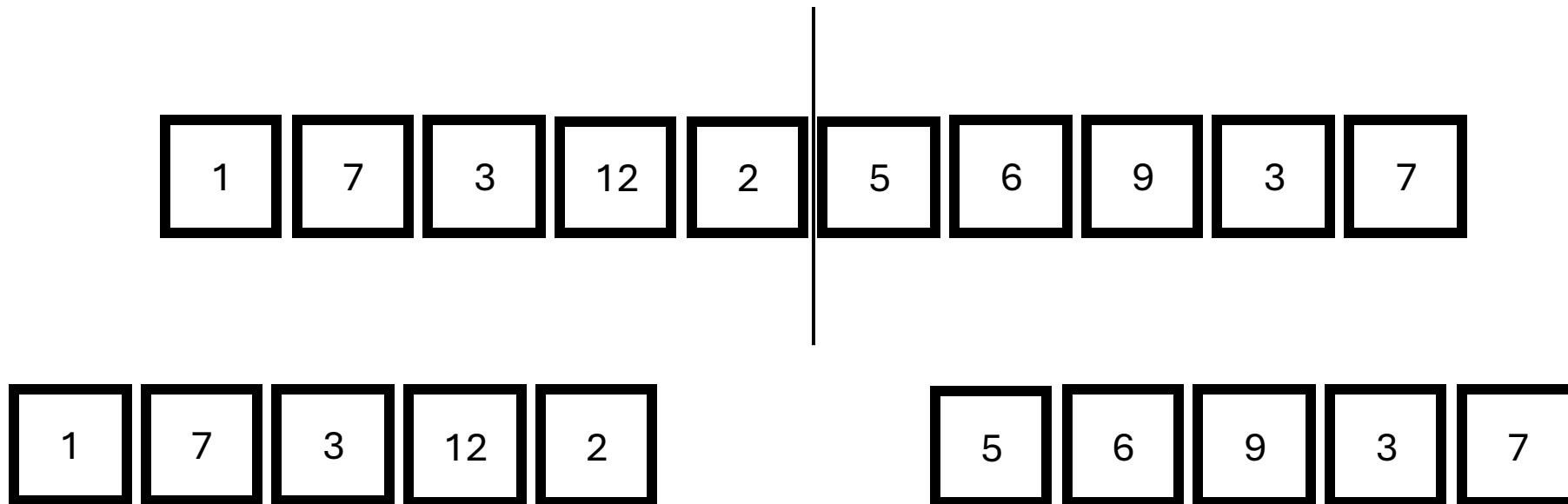
Merge & Count

- We can see that $a_{(i-1)}$ must have been smaller
- We can also see that $a_{(i+1)}$ must be bigger.



Divide & Conquer

- **Question:** How should we use this merge and count algorithm?



Divide & Conquer Algorithm

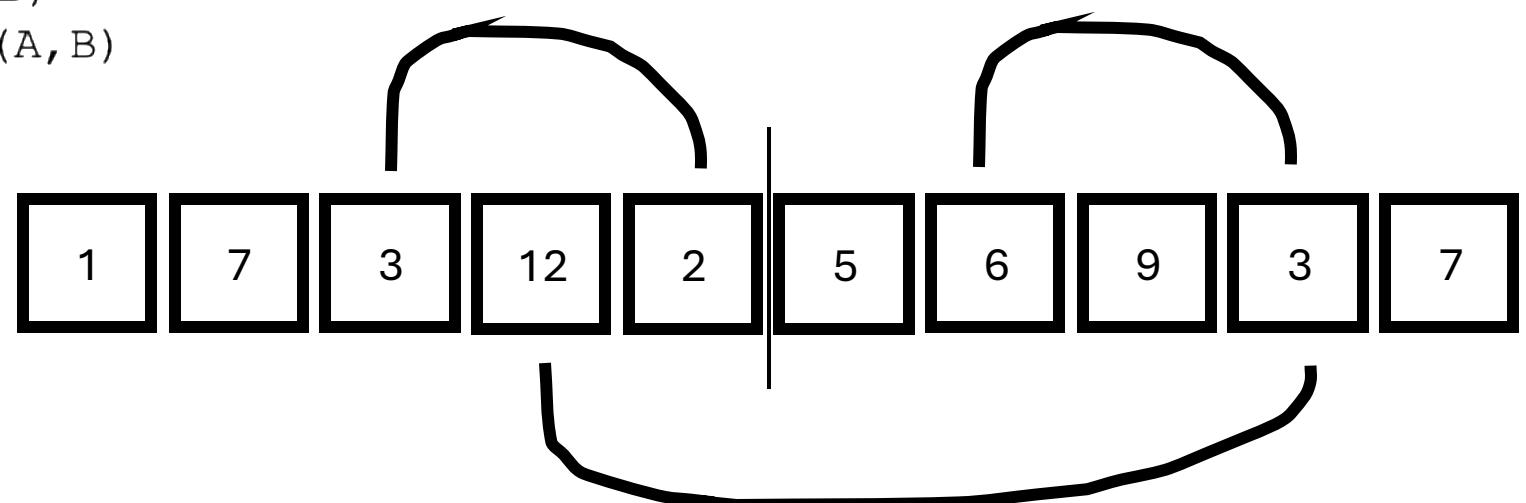
- We will use the logic of the previous few slides to make a Merge-and-Count(A, B) algorithm that will merge two sorted lists and count the number of “spanning” inversions.
- We will now make a new algorithm called Sort-and-Count(L) that will take a list and return the list sorted and return the number of inversions before being sorted.

Sort-and-Count

1. Input: list L of length n
2. If the list has one element:
3. there are no inversions
4. Else:
5. Divide the list into two halves:
6. A contains first $\lceil n/2 \rceil$ elements
7. B contains second $\lceil n/2 \rceil$ elements
8. $(r, A) = \text{Sort-and-Count}(A)$
9. $(q, B) = \text{Sort-and-Count}(B)$
10. $(k, L) = \text{Merge-and-Count}(A, B)$
11. Return $(r+q+k, L)$

When is each type of inversion counted?

1. Input: list L of length n
2. If the list has one element:
3. there are no inversions
4. Else:
5. Divide the list into two halves:
6. A contains first $\lceil n/2 \rceil$ elements
7. B contains second $\lceil n/2 \rceil$ elements
8. $(r, A) = \text{Sort-and-Count}(A)$
9. $(q, B) = \text{Sort-and-Count}(B)$
10. $(k, L) = \text{Merge-and-Count}(A, B)$
11. Return $(r+q+k, L)$



Sort-and-Count Runtime?

1. Input: list L of length n
2. If the list has one element:
3. there are no inversions
4. Else:
5. Divide the list into two halves:
6. A contains first $\lceil n/2 \rceil$ elements
7. B contains second $\lceil n/2 \rceil$ elements
8. $(r, A) = \text{Sort-and-Count}(A)$
9. $(q, B) = \text{Sort-and-Count}(B)$
10. $(k, L) = \text{Merge-and-Count}(A, B)$
11. Return $(r+q+k, L)$

Sort-and-Count Runtime?

- Observations:
 - Takes $O(n)$ time to divide.
 - Takes $2T(n/2)$ time to do recursive calls.
 - Takes $O(n)$ time to merge.
 - Takes $O(1)$ time to do base case.

1. Input: list L of length n
2. If the list has one element:
3. there are no inversions
4. Else:
5. Divide the list into two halves:
6. A contains first $[n/2]$ elements
7. B contains second $[n/2]$ elements
8. $(r, A) = \text{Sort-and-Count}(A)$
9. $(q, B) = \text{Sort-and-Count}(B)$
10. $(k, L) = \text{Merge-and-Count}(A, B)$
11. Return $(r+q+k, L)$

Sort-and-Count Runtime

- We have the same recurrence we had for mergesort and if we solve it using the methods from before, we get the same runtime of $O(n \log(n))$.

1. Input: list L of length n
2. If the list has one element:
3. there are no inversions
4. Else:
5. Divide the list into two halves:
6. A contains first $\lfloor n/2 \rfloor$ elements
7. B contains second $\lfloor n/2 \rfloor$ elements
8. $(r, A) = \text{Sort-and-Count}(A)$
9. $(q, B) = \text{Sort-and-Count}(B)$
10. $(k, L) = \text{Merge-and-Count}(A, B)$
11. Return $(r+q+k, L)$

Sort-and-Count Runtime?

- **Question:** What would you change to get the list of all inversions?
- **Question:** How would this change the runtime?
 1. Input: list L of length n
 2. If the list has one element:
 3. there are no inversions
 4. Else:
 5. Divide the list into two halves:
 6. A contains first $[n/2]$ elements
 7. B contains second $[n/2]$ elements
 8. $(r, A) = \text{Sort-and-Count}(A)$
 9. $(q, B) = \text{Sort-and-Count}(B)$
 10. $(k, L) = \text{Merge-and-Count}(A, B)$
 11. Return $(r+q+k, L)$

Sort-and-Count Runtime?

- **Answer:** You'd want to change your Sort-and-Count to return list of inversions.
- **Answer:** This would take longer because we do have to list all pairs in some cases.
 1. Input: list L of length n
 2. If the list has one element:
 - 3. there are no inversions
 4. Else:
 5. Divide the list into two halves:
 6. A contains first $[n/2]$ elements
 7. B contains second $[n/2]$ elements
 8. $(r, A) = \text{Sort-and-Count}(A)$
 9. $(q, B) = \text{Sort-and-Count}(B)$
 10. $(k, L) = \text{Merge-and-Count}(A, B)$
 11. Return $(r+q+k, L)$