

CSE 331: Algorithms & Complexity “Multiplication”

Prof. Charlie Anne Carlson (She/Her)

Lecture 25

Friday Dec 25th, 2025

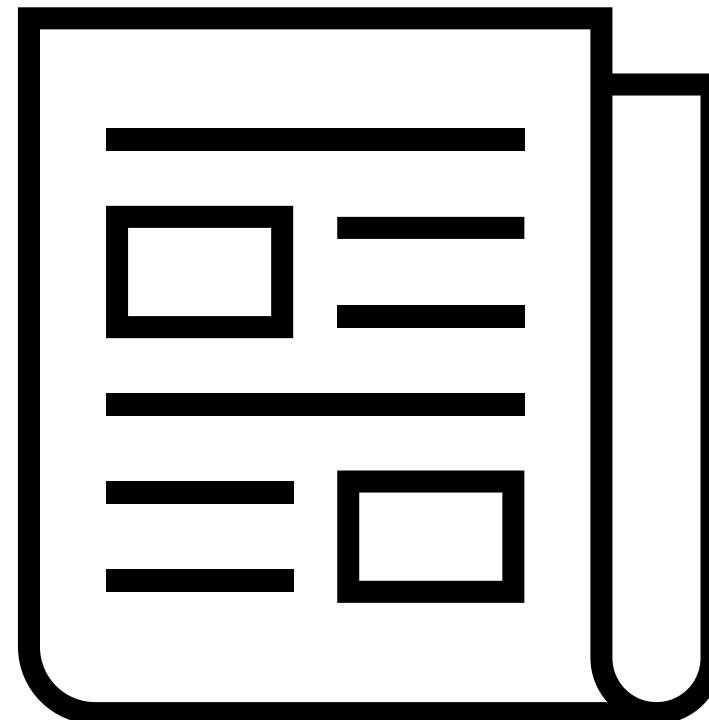
University at Buffalo®

Schedule

1. Course Updates
2. Counting Inversions
3. Multiplication

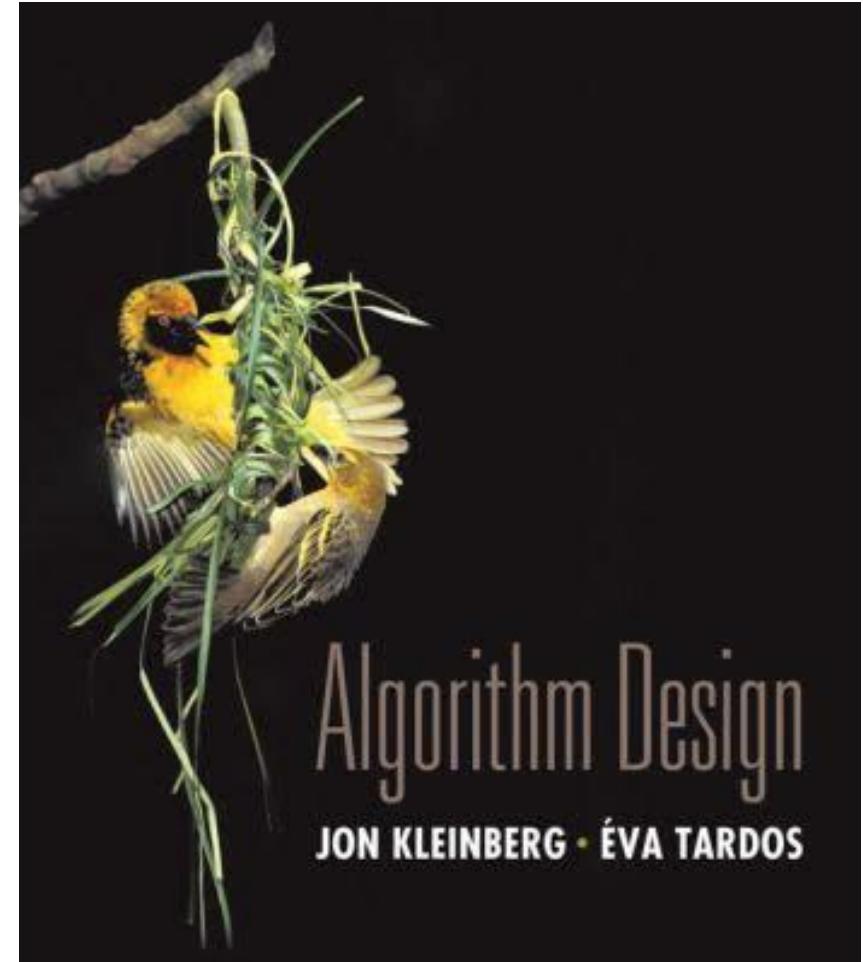
Course Updates

- HW 6 Out
- Group Project
 - Code 1 & 2 Due ?
 - Reflections 1 & 2 Due ?



Reading

- You should have read:
 - Started 5.5
 - Started 5.4
- Before Next Class:
 - Finished KT 5.5
 - Finished KT 5.4
 - Read Unraveling the mystery behind the identity



Divide & Conquer Algorithm

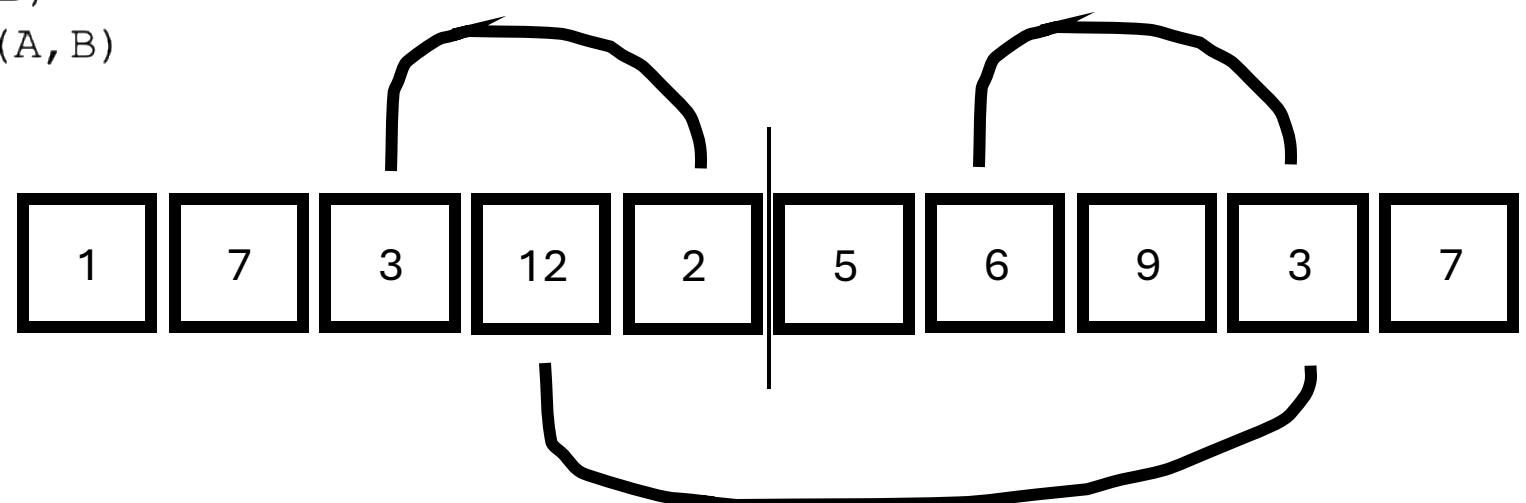
- We will use the logic of the previous lecture to make a Merge-and-Count(A, B) algorithm that will merge two sorted lists and count the number of “spanning” inversions.
- We will now make a new algorithm called Sort-and-Count(L) that will take a list and return the list sorted and return the number of inversions before being sorted.

Sort-and-Count

1. Input: list L of length n
2. If the list has one element:
3. there are no inversions
4. Else:
5. Divide the list into two halves:
6. A contains first $\lceil n/2 \rceil$ elements
7. B contains second $\lceil n/2 \rceil$ elements
8. $(r, A) = \text{Sort-and-Count}(A)$
9. $(q, B) = \text{Sort-and-Count}(B)$
10. $(k, L) = \text{Merge-and-Count}(A, B)$
11. Return $(r+q+k, L)$

When is each type of inversion counted?

1. Input: list L of length n
2. If the list has one element:
3. there are no inversions
4. Else:
5. Divide the list into two halves:
6. A contains first $\lceil n/2 \rceil$ elements
7. B contains second $\lceil n/2 \rceil$ elements
8. $(r, A) = \text{Sort-and-Count}(A)$
9. $(q, B) = \text{Sort-and-Count}(B)$
10. $(k, L) = \text{Merge-and-Count}(A, B)$
11. Return $(r+q+k, L)$



Sort-and-Count Runtime?

1. Input: list L of length n
2. If the list has one element:
3. there are no inversions
4. Else:
5. Divide the list into two halves:
6. A contains first $\lceil n/2 \rceil$ elements
7. B contains second $\lceil n/2 \rceil$ elements
8. $(r, A) = \text{Sort-and-Count}(A)$
9. $(q, B) = \text{Sort-and-Count}(B)$
10. $(k, L) = \text{Merge-and-Count}(A, B)$
11. Return $(r+q+k, L)$

Sort-and-Count Runtime?

- Observations:
 - Takes $O(n)$ time to divide.
 - Takes $2T(n/2)$ time to do recursive calls.
 - Takes $O(n)$ time to merge.
 - Takes $O(1)$ time to do base case.

1. Input: list L of length n
2. If the list has one element:
3. there are no inversions
4. Else:
5. Divide the list into two halves:
6. A contains first $[n/2]$ elements
7. B contains second $[n/2]$ elements
8. $(r, A) = \text{Sort-and-Count}(A)$
9. $(q, B) = \text{Sort-and-Count}(B)$
10. $(k, L) = \text{Merge-and-Count}(A, B)$
11. Return $(r+q+k, L)$

Sort-and-Count Runtime

- We have the same recurrence we had for mergesort and if we solve it using the methods from before, we get the same runtime of $O(n \log(n))$.

1. Input: list L of length n
2. If the list has one element:
3. there are no inversions
4. Else:
5. Divide the list into two halves:
6. A contains first $\lfloor n/2 \rfloor$ elements
7. B contains second $\lfloor n/2 \rfloor$ elements
8. $(r, A) = \text{Sort-and-Count}(A)$
9. $(q, B) = \text{Sort-and-Count}(B)$
10. $(k, L) = \text{Merge-and-Count}(A, B)$
11. Return $(r+q+k, L)$

Sort-and-Count Runtime?

- **Question:** What would you change to get the list of all inversions?
- **Question:** How would this change the runtime?
 1. Input: list L of length n
 2. If the list has one element:
 3. there are no inversions
 4. Else:
 5. Divide the list into two halves:
 6. A contains first $[n/2]$ elements
 7. B contains second $[n/2]$ elements
 8. $(r, A) = \text{Sort-and-Count}(A)$
 9. $(q, B) = \text{Sort-and-Count}(B)$
 10. $(k, L) = \text{Merge-and-Count}(A, B)$
 11. Return $(r+q+k, L)$

Sort-and-Count Runtime?

- **Answer:** You'd want to change your Sort-and-Count to return list of inversions.
- **Answer:** This would take longer because we do have to list all pairs in some cases.
 1. Input: list L of length n
 2. If the list has one element:
 - 3. there are no inversions
 4. Else:
 5. Divide the list into two halves:
 6. A contains first $[n/2]$ elements
 7. B contains second $[n/2]$ elements
 8. $(r, A) = \text{Sort-and-Count}(A)$
 9. $(q, B) = \text{Sort-and-Count}(B)$
 10. $(k, L) = \text{Merge-and-Count}(A, B)$
 11. Return $(r+q+k, L)$

Multiplication

- Input: Given two numbers a and b in binary
 - $a = (a_1, a_2, \dots, a_n)$
 - $b = (b_1, b_2, \dots, b_n)$
- Goal: Compute $c = a \times b$

WRONG TIMES TABLE
THE INCORRECT ANSWERS THAT
FEEL MOST RIGHT TO ME

	1	2	3	4	5	6	7	8	9	10
1	0	$\frac{1}{2}$	4	5	6	7	8	9	10	9
2	$\frac{1}{2}$	8	5	6	12	14	12	18	19	22
3	4	5	10	16	13	12	24	32	21	33
4	5	6	16	32	25	25	29	36	28	48
5	6	12	13	25	50	24	40	45	40	60
6	7	14	12	25	24	32	48	50	72	72
7	8	12	24	29	40	48	42	54	60	84
8	9	18	32	36	45	50	54	48	74	56
9	10	19	21	28	40	72	60	74	72	81
10	9	22	33	48	60	72	84	56	81	110

Multiplication

- Input: Given two numbers a and b in binary
 - $a = (a_1, a_2, \dots, a_n)$
 - $b = (b_1, b_2, \dots, b_n)$
- Goal: Compute $c = a \times b$

WRONG TIMES TABLE
THE INCORRECT ANSWERS THAT
FEEL MOST RIGHT TO ME

	1	2	3	4	5	6	7	8	9	10
1	0	$\frac{1}{2}$	4	5	6	7	8	9	10	9
2	$\frac{1}{2}$	8	5	6	12	14	12	18	19	22
3	4	5	10	16	13	12	24	32	21	33
4	5	6	16	32	25	25	29	36	28	48
5	6	12	13	25	50	24	40	45	40	60
6	7	14	12	25	24	32	48	50	72	72
7	8	12	24	29	40	48	42	54	60	84
8	9	18	32	36	45	50	54	48	74	56
9	10	19	21	28	40	72	60	74	72	81
10	9	22	33	48	60	72	84	56	81	110

Grade School Algorithm

- Compute a “partial product” for each digit of a by b.
- Add up all partial products.
 - Don’t forget how to add!
- Question: What is the runtime of this algorithm for two n bit numbers?

$$\begin{array}{r} 1100 \\ \times 1101 \\ \hline 1100 \\ 0000 \\ \hline 1100 \\ + 1100 \\ \hline 10011100 \end{array}$$

Grade School Algorithm

- Compute a “partial product” for each digit of a by b.
- Add up all partial products.
 - Don’t forget how to add!
- Answer: It is an $O(n^2)$ algorithm!

$$\begin{array}{r} 1100 \\ \times 1101 \\ \hline 1100 \\ 0000 \\ \hline 1100 \\ + 1100 \\ \hline 10011100 \end{array}$$

Divide and Conquer Algorithm

- We will rewrite a and b into their high and low bit components.

- $m = \lfloor n/2 \rfloor$
- $a = a^H \cdot 2^m + a^L$
 - $a^H = \lfloor a/2^m \rfloor$
 - $a^L = a \bmod 2^m$
- $b = b^H \cdot 2^m + b^L$
 - $b^H = \lfloor b/2^m \rfloor$
 - $b^L = b \bmod 2^m$

E.g.:

$$\begin{aligned} a &= 10001101 \\ b &= 11100001 \end{aligned}$$

The diagram shows two binary numbers, a and b , each represented by a 7-bit string. Braces above the numbers group the first four bits as the high component (a^H and b^H) and the last four bits as the low component (a^L and b^L).

Divide and Conquer Algorithm

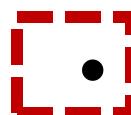
- We can now write:

$$\begin{aligned}a \cdot b &= (a^H \cdot 2^m + a^L)(b^H \cdot 2^m + b^L) \\&= a^H \cdot b^H \cdot 2^{(2m)} + (a^H \cdot b^L + a^L \cdot b^H) \cdot 2^m + a^L \cdot b^L\end{aligned}$$

Divide and Conquer Algorithm

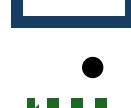
- We can now write:

$$\begin{aligned} a \cdot b &= (a^H \cdot 2^m + a^L)(b^H \cdot 2^m + b^L) \\ &= \boxed{a^H \cdot b^H} \cdot 2^{(2m)} + \boxed{a^H \cdot b^L + a^L \cdot b^H} \cdot 2^m + \boxed{a^L \cdot b^L} \end{aligned}$$



There are 4 subproblems of size $\sim n/2$

- There are two shifts by $O(n)$

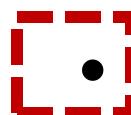


- There are two sums of $O(n)$ bit numbers

What is the runtime, $T(n)$?

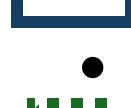
- We can now write:

$$\begin{aligned} a \cdot b &= (a^H \cdot 2^m + a^L)(b^H \cdot 2^m + b^L) \\ &= \boxed{a^H \cdot b^H} \cdot 2^{(2m)} + \boxed{a^H \cdot b^L + a^L \cdot b^H} \cdot 2^m + \boxed{a^L \cdot b^L} \end{aligned}$$



There are 4 subproblems of size $\sim n/2$

- There are two shifts by $O(n)$



- There are two sums of $O(n)$ bit numbers

What is the runtime, $T(n)$?

- We can now write:

$$\begin{aligned} a \cdot b &= (a^H \cdot 2^m + a^L)(b^H \cdot 2^m + b^L) \\ &= \boxed{a^H \cdot b^H} \cdot 2^{(2m)} + \boxed{a^H \cdot b^L + a^L \cdot b^H} \cdot 2^m + \boxed{a^L \cdot b^L} \end{aligned}$$

- There are 4 subproblems of size $\sim n/2 \leftarrow 4T(n/2)$ time
- There are two shifts by $O(n) \leftarrow O(n)$ time
- There are two sums of $O(n)$ bit numbers $\leftarrow O(n)$ time

What is the runtime, $T(n)$?

- We can now write:

$$\begin{aligned} a \cdot b &= (a^H \cdot 2^m + a^L)(b^H \cdot 2^m + b^L) \\ &= \boxed{a^H \cdot b^H} \cdot 2^{(2m)} + \boxed{a^H \cdot b^L + a^L \cdot b^H} \cdot 2^m + \boxed{a^L \cdot b^L} \end{aligned}$$

- $T(n) \leq 4T(n/2) + cn$ when n big
- $T(1) \leq c$

What is the runtime, $T(n)$?

- We can now write:

$$\begin{aligned} a \cdot b &= (a^H \cdot 2^m + a^L)(b^H \cdot 2^m + b^L) \\ &= \boxed{a^H \cdot b^H} \cdot 2^{(2m)} + \boxed{a^H \cdot b^L + a^L \cdot b^H} \cdot 2^m + \boxed{a^L \cdot b^L} \end{aligned}$$

- $T(n) \leq 4T(n/2) + cn$ when n big
- $T(1) \leq c$
- This is not that good, $T(n)$ is $O(n^2)$

What is the runtime, $T(n)$?

- We can now write:

$$\begin{aligned} a \cdot b &= (a^H \cdot 2^m + a^L)(b^H \cdot 2^m + b^L) \\ &= \boxed{a^H \cdot b^H} \cdot 2^{(2m)} + \boxed{a^H \cdot b^L + a^L \cdot b^H} \cdot 2^m + \boxed{a^L \cdot b^L} \end{aligned}$$

- $T(n) \leq 4T(n/2) + cn$ when n big
- $T(1) \leq c$
- This is not that good, $T(n)$ is $O(n^2)$

What is the runtime, $T(n)$?

- We can now write:

$$\begin{aligned} a \cdot b &= (a^H \cdot 2^m + a^L)(b^H \cdot 2^m + b^L) \\ &= a^H \cdot b^H \cdot 2^{(2m)} + (a^H \cdot b^L + a^L \cdot b^H) \cdot 2^m + a^L \cdot b^L \end{aligned}$$

- We know from Section 5.2 that if instead of 4 recursive calls, we did only 3, we could get a much better running time.
 - We would get $T(n) \in O(n^{1.59})$

Reducing Calls

- We can now write:

$$\begin{aligned} a \cdot b &= (a^H \cdot 2^m + a^L)(b^H \cdot 2^m + b^L) \\ &= a^H \cdot b^H \cdot 2^{(2m)} + (a^H \cdot b^L + a^L \cdot b^H) \cdot 2^m + a^L \cdot b^L \end{aligned}$$

- **Key Observation:**

$$(a^H + a^L) \cdot (b^H + b^L) = a^H \cdot b^H + a^H \cdot b^L + a^L \cdot b^H + a^L \cdot b^L$$

Reducing Calls

- We can now write:

$$a \cdot b = (a^H \cdot 2^m + a^L)(b^H \cdot 2^m + b^L)$$

$$= a^H \cdot b^H \cdot 2^{(2m)} + (a^H \cdot b^L + a^L \cdot b^H) \cdot 2^m + a^L \cdot b^L$$

- **Key Observation:**

$$(a^H + a^L) \cdot (b^H + b^L) = a^H \cdot b^H + a^H \cdot b^L + a^L \cdot b^H + a^L \cdot b^L$$

Reducing Calls

- We can now write:

$$a \cdot b = (a^H \cdot 2^m + a^L)(b^H \cdot 2^m + b^L)$$

$$= a^H \cdot b^H \cdot 2^{(2m)} + (a^H \cdot b^L + a^L \cdot b^H) \cdot 2^m + a^L \cdot b^L$$

- **Key Observation:**

$$(a^H + a^L) \cdot (b^H + b^L) = a^H \cdot b^H + a^H \cdot b^L + a^L \cdot b^H + a^L \cdot b^L$$

- We can compute $a^H \cdot b^H$ and $a^L \cdot b^L$ and then use all these values to compute $a^H \cdot b^L + a^L \cdot b^H$!

Reducing Calls

- Instead of compute all of these coefficients with a call

$$a^H \cdot b^H \cdot 2^{(2m)} + (a^H \cdot b^L + a^L \cdot b^H) \cdot 2^m + a^L \cdot b^L$$

we can compute $(a^H + a^L) \cdot (b^H + b^L)$, $a^H \cdot b^H$ and $a^L \cdot b^L$ with three calls and then do $O(n)$ work to combine (subtraction, addition, shifts) them together to get all the coefficients!

$$(a^H + a^L) \cdot (b^H + b^L) = a^H \cdot b^H + a^H \cdot b^L + a^L \cdot b^H + a^L \cdot b^L$$

Recursive Algorithm

Recursive-Multiply(x, y) :

 Write $x = x_1 \cdot 2^{n/2} + x_0$

$y = y_1 \cdot 2^{n/2} + y_0$

 Compute $x_1 + x_0$ and $y_1 + y_0$

$p = \text{Recursive-Multiply}(x_1 + x_0, y_1 + y_0)$

$x_1y_1 = \text{Recursive-Multiply}(x_1, y_1)$

$x_0y_0 = \text{Recursive-Multiply}(x_0, y_0)$

 Return $x_1y_1 \cdot 2^n + (p - x_1y_1 - x_0y_0) \cdot 2^{n/2} + x_0y_0$

Runtime

Recursive-Multiply(x, y):

 Write $x = x_1 \cdot 2^{n/2} + x_0$

$y = y_1 \cdot 2^{n/2} + y_0$

 Compute $x_1 + x_0$ and $y_1 + y_0$

$p = \text{Recursive-Multiply}(x_1 + x_0, y_1 + y_0)$

$x_1y_1 = \text{Recursive-Multiply}(x_1, y_1)$

$x_0y_0 = \text{Recursive-Multiply}(x_0, y_0)$

 Return $x_1y_1 \cdot 2^n + (p - x_1y_1 - x_0y_0) \cdot 2^{n/2} + x_0y_0$

- In the non recursive case, we do three calls of size $n/2$.
 - Hence, $T(n) \leq 3T(n/2) + cn$ when n is big.
 - Thus, $T(n) \in O(n^{\log_2(3)})$ - **See K.T. 5.2**

Runtime

Recursive-Multiply(x, y):

 Write $x = x_1 \cdot 2^{n/2} + x_0$

$y = y_1 \cdot 2^{n/2} + y_0$

 Compute $x_1 + x_0$ and $y_1 + y_0$

$p = \text{Recursive-Multiply}(x_1 + x_0, y_1 + y_0)$

$x_1y_1 = \text{Recursive-Multiply}(x_1, y_1)$

$x_0y_0 = \text{Recursive-Multiply}(x_0, y_0)$

 Return $x_1y_1 \cdot 2^n + (p - x_1y_1 - x_0y_0) \cdot 2^{n/2} + x_0y_0$

- In the non recursive case, we do three calls of size $n/2$.
 - Hence, $T(n) \leq 3T(n/2) + cn$ when n is big.
 - Thus, $T(n) \in O(n^{\log_2(3)})$ - **See K.T. 5.2**

Want to know more?

De-Mystifying the Integer Multiplication Algorithm

In class, we saw an $O(n^{\log_2 3})$ time algorithm to multiply two n bit numbers that used an identity that seemed to be plucked out of thin air. In this note, we will try and de-mystify how one might come about thinking of this identity in the first place.

The setup

We first recall the problem that we are trying to solve:

Multiplying Integers

Given two n bit numbers $a = (a_{n-1}, \dots, a_0)$ and $b = (b_{n-1}, \dots, b_0)$, output their product $c = a \times b$.