CSE 331:
Allg(o)r[ilt]hunnls & (C<o>lnnqp>ll<exiilty

L]

“Multiplication”

Prof. Charlie Anne Carlson (She/Her)
Lecture 25
Friday Dec 25th, 2025

G5

University at Buffalo

Schedule

1.Course Updates
2.Counting Inversions
3.Multiplication

Course Updates

c HWG6Out
e Group Project
* Code1&2Due?
* Reflections1&2Due?

Reading

* You should have read:
 Started 5.5
e Started 5.4

* Before Next Class:
* Finished KT 5.5
* Finished KT 5.4
 Read Unraveling the

mystery behind the
identity

JON KLEINBERG - EVA TARDOS

https://cse.buffalo.edu/courses/cse331/support/int-mult/index.html
https://cse.buffalo.edu/courses/cse331/support/int-mult/index.html
https://cse.buffalo.edu/courses/cse331/support/int-mult/index.html

Divide & Conquer Algorithm

* We will use the logic of the previous lecture to make a
Merge-and-Count(A,B) algorithm that will merge two sorted
lists and count the number of “spanning” inversions.

* We will now make a new algorithm called Sort-and-
Count(L) that will take a list and return the list sorted and
return the number of inversions before being sorted.

Sort-and-Count

1. Input: list L of length n

2 If the 1list has on element:

3 there are no inversions

4 Else:

5 Divide the 1list into two halves:
6. A contains first [n/2] elements
7 B contains second |n/2| elements
8 (r,A) = Sort-and-Count (A)

9 (q,B) = Sort-and-Count (B)
10. (k,L) = Merge—-and-Count (A, B)
11. Return (r+gtk,L)

When is each type of inversion counted?

1. Input: list L of length n

2 If the list has on element:

3 there are no inversions

4, Else:

5 Divide the list into two halves:
6. A contains first [n/2] elements
7 B contains second |n/2| elements
8 (r,A) = Sort—and-Count (A)

9 (g,B) = Sort-and-Count (B)

1

1

0. (k,L) = Merge—-and-Count (A,B)
1. Return (r+g+k,L)
‘IIII“WIIIIHIIIIMIIII[WIIIIHIIiIM[:::][:::]WIIIIHIIII\

Sort-and-Count Runtime?

1. Input: list L of length n

2 If the 1list has on element:

3 there are no inversions

4 Else:

5 Divide the 1list into two halves:
6. A contains first [n/2] elements
7 B contains second |n/2| elements
8 (r,A) = Sort-and-Count (A)

9 (q,B) = Sort-and-Count (B)
10. (k,L) = Merge—-and-Count (A, B)
11. Return (r+gtk,L)

Sort-and-Count Runtime?

* Observations:

‘akes O(n) time to divide.

* Takes 2T(n/2) time to do recursive calls.
‘akes O(n) time to merge.

‘akes O(1) time to do base case.

1. Input: 1list L of length n

2 If the list has on element:

3 there are no inversions

4, Else:

5 Divide the list into two halves:
6. A contains first [n/2] elements
7 B contains second |n/2| elements
8 (r,A) Sort—-and-Count (A)

9 (g, B) Sort—and-Count (B)
10. (k,L) = Merge—-and-Count (A, B)
11. Return (r+gtk,L)

Sort-and-Count Runtime

* We have the same recurrence we had for mergesort and if we solve
It using the methods from before, we get the same runtime of
O(nlog(n)).

1. Input: list L of length n

2 If the list has on element:

3 there are no inversions

4., Else:

5 Divide the list into two halves:
6. A contains first [n/2] elements
7 B contains second |n/2] elements
8 (r,A) = Sort—-and-Count (A)

9 (g,B) = Sort-and-Count (B)

1 (k, L) = Merge-and-Count (A, B)

1

0.
1. Return (r+gt+k,L)

Sort-and-Count Runtime?

* Question: What would you change to get the list of all inversions?
* Question: How would this change the runtime?

1. Input: list L of length n

2 If the list has on element:

3 there are no inversions

4 Else:

5 Divide the list into two halves:
6. A contains first [n/2] elements
7 B contains second |n/2| elements
8 (r,A) = Sort—-and-Count (A)

9 (g,B) = Sort-and-Count (B)
10. (k,L) = Merge—-and-Count (A, B)
11. Return (r+gt+k,L)

Sort-and-Count Runtime?

* Answer: You’d want to change your Sort-and-Count to return list of
Inversions.

* Answer: This would take longer because we do have to list all pairs

N some cases. 1. Input: list L of length n
2. If the list has on element:
3 there are no inversions
4 Else:
5 Divide the list into two halves:
6 A contains first [n/2] elements
7. B contains second |n/2| elements
8 (r,A) = Sort—-and-Count (A)
9 (g,B) = Sort-and-Count (B)
10. (k,L) = Merge—-and-Count (A, B)
11. Return (r+gt+k,L)

Multiplication

* |nput: Given two numbers a
and b in binary
* a= (a4, ay,..,a,)
* b= (by,by, .., by)

e Goal:Computec=axb

S o JOU CWHN —

WRONG TIMES TABLE

THE INCORRECT ANSWERS THAT
FEEL MOST RIGHT TO ME

|23H56?89fg

0% 4|5|6/7 8|7 |I0|9
“|8|15|6|(12)1412]18 19|22
4|5/10|16|13|12|24|32| 21 |33
516 |1632|25|25/29|36/28 |48
6 |12|13|25/50| 21|40 | 45|40 | €O
7 |14]12|25|24|32|48|50|72 |72
8 [12|24/29|40 48 |42 |54 | 60| 8
9 11832/36|45 (50|54 | 48| 74| 5%
10]19]21]28 40|72 |60 | 74|72 8! |
|9 122|33|48|60| 72| 84| 56| 81 110

https://xkcd.com/2313/

https://xkcd.com/2313

Multiplication

* |nput: Given two numbers a
and b in binary
* a = (aq,ay,...,ay)
* b= (by,by, .., by)

e Goal:Computec=axb

S o JOU CWHN —

WRONG TIMES TABLE

THE INCORRECT ANSWERS THAT
FEEL MOST RIGHT TO ME

|23H56?89fg

0% 4|5|6/7 8|7 |I0|9
“|8|15|6|(12)1412]18 19|22
4|5/10|16|13|12|24|32| 21 |33
516 |1632|25|25/29|36/28 |48
6 |12|13|25/50| 21|40 | 45|40 | €O
7 |14]12|25|24|32|48|50|72 |72
8 [12|24/29|40 48 |42 |54 | 60| 8
9 11832/36|45 (50|54 | 48| 74| 5%
10]19]21]28 40|72 |60 | 74|72 8! |
|9 122|33|48|60| 72| 84| 56| 81 110

https://xkcd.com/2313/

https://xkcd.com/2313

Grade School Algorithm

Compute a “partial product”
for each digit of a by b.

* Add up all partial products.

* Don’tforget how to add!

Question: What is the runtime
of this algorithm for two n bit
numbers?

1100
x 1101
1100
0000
1100
+ 1100

10011100

Grade School Algorithm

»

« Compute a “partial product
for each digit of a by b.

* Add up all partial products.
* Don’tforget how to add!

* Answer: ltisan O(n"2)
algorithm!

1100
x 1101
1100
0000
1100
+ 1100

10011100

Divide and Conquer Algorithm

* We will rewrite a and b into their
high and low bit components.

* m:lg/zj . . . 5L

c a=a"-2M+a .8-¢ A A
' af = la/2™| a2 = 10001101
;)—ab:aZzu-)l—dsz b = 11100001
° bH — lb/ZmJ HE HL

e bl =bmod2™

Divide and Conquer Algorithm

e \We can now write:

a-b=(a?- 2™+ a")(b" - 2™ + bL)
=qfl - pH . 2@m) 4 (qH . pL 4 gL - pH) . 2™ 4 gL . L

Divide and Conquer Algorithm

e \We can now write:

a-b=(a’-2M+ aL)(bH 2m 4 bL)

=i

[y

There are 4 subproblems of size ~n/2
There are two shifts by O(n)

There is two sums of O(n) bit bumbers

What is the runtime, T(n)?

e \We can now write:

a-b=(a’-2M+ aL)(bH 2m 4 bL)

=i

[y

There are 4 subproblems of size ~n/2
There are two shifts by O(n)

There is two sums of O(n) bit bumbers

What is the runtime, T(n)?

e \We can now write:

a-b=(a’-2M+ aL)(bH 2m 4 bL)

There are 4 subproblems of size ~n/2 <-4T(n/2) time
There are two shifts by O(n) <- O(n) time
* Thereistwo sums of O(n) bit bumbers <- O(n) time

[y

=i

What is the runtime, T(n)?

e \We can now write:

a-b—(aH 2m+aL)(bH 2m+bL)

* T(n) <£4T(n/2) + cnwhen n big
« T(1) <c

What is the runtime, T(n)?

e \We can now write:

a-b—(aH 2m+aL)(bH 2m+bL)

* T(n) <£4T(n/2) + cnwhen n big
¢« T(1) <c
 This is not that good, T(n) is O(n"2)

What is the runtime, T(n)?

e \We can now write:

a-b—(aH 2m+aL)(bH 2m+bL)

* T(n) <£4T(n/2) + cnwhen n big
¢« T(1) <c
 This is not that good, T(n) is O(n"2)

What is the runtime, T(n)?

e \We can now write:

a-b=(a?- 2™+ a")(b" - 2™ + bL)
=qfl - pH . 2@m) 4 (qH . pL 4 gL - pH) . 2™ 4 gL . L

e We know from Section 5.2 that if instead of 4 recursive

calls, we did only 3, we could get a much better running
time.

« Wewould getT(n) € 0(n'>°)

Reducing Calls

* \We can now write:
a-b=(a?- 2™+ a")(b" - 2™ + bL)
=qfl - pH . 2@m) 4 (qH . pL 4 gL - pH) . 2™ 4 gL . L
« Key Observation:

(a" +ab) - (b +bY) =a” - b" +a” - b + a* - b" + a - b*

Reducing Calls

* \We can now write:
a-b=(a?- 2™+ a")(b" - 2™ + bL)
=qfl - pH . 2@m) 4 (qH . pL 4 gL - pH) . 2™ 4 gL . L
 Key Observation: H ,(

(a" +ab) - (b +bY) =a” - b" +a” - b + a* - b" + a - b*

Reducing Calls

e \We can now write:

a-b=(a?- 2™+ a")(b" - 2™ + bL)
=qfl - pH . 2@m) 4 (qH . pL 4 gL - pH) . 2™ 4 gL . L
« Key Observation: H ,(
(a" +ab) - (b +bY) =a” - b" +a” - b + a* - b" + a - b*
e We can compute a'! - b and a’ - b* and then use all these
values to compute a” - b* + a* - !

Reducing Calls

* |nstead of compute all of these coefficients with a call
a . pH . 2@m) 4 (gH . pL 4 gL . pH) . 2m 4 gL . pL

we can compute (a + a*) - (b" + b*), a” - b¥ and a* - b*
with three calls and then do O(n) work to combine

(subtraction, addition, shifts) them together to get all the
coefficients!

(a +a¥)- b +bY) =a” - b" +a" - bY + av - b¥ + a* - b*

Recursive Algorithm

Recursive-Multiply(x,y):
Write x=x;-2"% 4+ x,
y=y;-2"*+y,
Compute x;+xp and y;+yg
p = Recursive~Multiply(x;+xg, ¥;+ Vo)
x1¥1 = Recursive-Multiply(x;, y;)
XpYo = Recursive-Multiply(xy, yg)
Return xy; - 2" + (p — x191 — Xg¥a) - 2% + xgyp

Runtime

Recursive-Multiply(x,v):
Write x=x;-22 4+ x,
y=y1-2"*+yq
Compute x;+ x5 and y; + yg
p = Recursive-Multiply(x; +xg, ¥;+ Vo)
x1¥; = Recursive-Multiply(x;, y;)
XpYo = Recursive-Multiply(xg, yg)
Return xy; - 2" + (p — x1yy — xg¥g) - 2"/2 + XoYo

* |nthe nonrecursive case, we do three calls of size n/2.
 Hence, T(n) < 3T(n/2) + cnwhennis big.
* Thus, T(n) € 0(n'°82(3)) <- See K.T. 5.2

Runtime

Recursive-Multiply(x,v):
Write x=x;-22 4+ x,
y=y1-2"*+yq
Compute x;+ x5 and y; + yg
p = Recursive-Multiply(x; +xg, ¥;+ Vo)
x1¥; = Recursive-Multiply(x;, y;)
XpYo = Recursive-Multiply(xg, yg)
Return xy; - 2" + (p — x1yy — xg¥g) - 2"/2 + XoYo

* |nthe nonrecursive case, we do three calls of size n/2.
 Hence, T(n) < 3T(n/2) + cnwhennis big.
* Thus, T(n) € 0(n'°82(3)) <- See K.T. 5.2

Want to know more?

De-Mystifying the Integer
Multiplication Algorithm

In class, we saw an O (nlogz 3) time algorithm to multiply two n bit numbers that used an identity that seemed to be

plucked out of thin air. In this note, we will try and de-mystify how one might come about thinking of this identity in the
first place.

The setup

We first recall the problem that we are trying to solve:

Multiplying Integers

Given two n bit numbers a = (a,_; ,...,ap) and b = (b,_; , ... ,by), output their productc = a X b.

	Slide 1: CSE 331: Algorithms & Complexity
	Slide 2: Schedule
	Slide 3: Course Updates
	Slide 4: Reading
	Slide 5: Divide & Conquer Algorithm
	Slide 6: Sort-and-Count
	Slide 7: When is each type of inversion counted?
	Slide 8: Sort-and-Count Runtime?
	Slide 9: Sort-and-Count Runtime?
	Slide 10: Sort-and-Count Runtime
	Slide 11: Sort-and-Count Runtime?
	Slide 12: Sort-and-Count Runtime?
	Slide 13: Multiplication
	Slide 14: Multiplication
	Slide 15: Grade School Algorithm
	Slide 16: Grade School Algorithm
	Slide 17: Divide and Conquer Algorithm
	Slide 18: Divide and Conquer Algorithm
	Slide 19: Divide and Conquer Algorithm
	Slide 20: What is the runtime, T(n)?
	Slide 21: What is the runtime, T(n)?
	Slide 22: What is the runtime, T(n)?
	Slide 23: What is the runtime, T(n)?
	Slide 24: What is the runtime, T(n)?
	Slide 25: What is the runtime, T(n)?
	Slide 26: Reducing Calls
	Slide 27: Reducing Calls
	Slide 28: Reducing Calls
	Slide 29: Reducing Calls
	Slide 30: Recursive Algorithm
	Slide 31: Runtime
	Slide 32: Runtime
	Slide 33: Want to know more?

