
CSE 331: 
Algorithms & Complexity

Prof. Charlie Anne Carlson (She/Her)
Lecture 25

Friday Dec 25th, 2025

“Multiplication”



Schedule

1.Course Updates
2.Counting Inversions
3.Multiplication



Course Updates

• HW 6 Out
• Group Project

• Code 1 & 2 Due ?
• Reflections 1 & 2 Due ?



Reading

• You should have read:
• Started 5.5
• Started 5.4

• Before Next Class:
• Finished KT 5.5
• Finished KT 5.4
• Read Unraveling the 

mystery behind the 
identity

https://cse.buffalo.edu/courses/cse331/support/int-mult/index.html
https://cse.buffalo.edu/courses/cse331/support/int-mult/index.html
https://cse.buffalo.edu/courses/cse331/support/int-mult/index.html


Divide & Conquer Algorithm

• We will use the logic of the previous lecture to make a 
Merge-and-Count(A,B) algorithm that will merge two sorted 
lists and count the number of “spanning” inversions. 

• We will now make a new algorithm called Sort-and-
Count(L) that will take a list and return the list sorted and 
return the number of inversions before being sorted.



Sort-and-Count
1. Input: list L of length n

2.  If the list has on element:

3.   there are no inversions

4.  Else:

5.   Divide the list into two halves:

6.    A contains first ⌈𝑛/2⌉ elements
7.    B contains second ⌊𝑛/2⌋ elements
8.   (r,A) = Sort-and-Count(A)

9.   (q,B) = Sort-and-Count(B)

10. (k,L) = Merge-and-Count(A,B)

11. Return (r+q+k,L)



When is each type of inversion counted?

1 7 3 12 2 5 6 9 3 7



Sort-and-Count Runtime?
1. Input: list L of length n

2.  If the list has on element:

3.   there are no inversions

4.  Else:

5.   Divide the list into two halves:

6.    A contains first ⌈𝑛/2⌉ elements
7.    B contains second ⌊𝑛/2⌋ elements
8.   (r,A) = Sort-and-Count(A)

9.   (q,B) = Sort-and-Count(B)

10. (k,L) = Merge-and-Count(A,B)

11. Return (r+q+k,L)



Sort-and-Count Runtime?

• Observations:
• Takes O(n) time to divide.
• Takes 2T(n/2) time to do recursive calls.
• Takes O(n) time to merge.
• Takes O(1) time to do base case.



Sort-and-Count Runtime

• We have the same recurrence we had for mergesort and if we solve 
it using the methods from before, we get the same runtime of 
O(nlog(n)). 



Sort-and-Count Runtime?

• Question: What would you change to get the list of all inversions?
• Question: How would this change the runtime?



Sort-and-Count Runtime?

• Answer: You’d want to change your Sort-and-Count to return list of 
inversions.

• Answer: This would take longer because we do have to list all pairs 
in some cases. 



Multiplication

• Input: Given two numbers 𝑎 
and 𝑏 in binary
• 𝑎 =  (𝑎1, 𝑎2, … , 𝑎n)
• b =  (b1, b2, … , bn)

• Goal: Compute 𝑐 = 𝑎 𝑥 𝑏

https://xkcd.com/2313/

https://xkcd.com/2313
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Grade School Algorithm

• Compute a “partial product” 
for each digit of a by b.

• Add up all partial products.
• Don’t forget how to add!

• Question: What is the runtime 
of this algorithm for two n bit 
numbers? 

1100
1101x
1100

0000

1100
1100+
10011100



Grade School Algorithm

• Compute a “partial product” 
for each digit of a by b.

• Add up all partial products.
• Don’t forget how to add!

• Answer: It is an O(n^2) 
algorithm!

1100
1101x
1100

0000

1100
1100+
10011100



Divide and Conquer Algorithm

• We will rewrite a and b into their 
high and low bit components.
• 𝑚 = 𝑛/2
• 𝑎 = 𝑎H ⋅ 2m + 𝑎L

• 𝑎H  = 𝑎/2m  
• 𝑎L = 𝑎 𝑚𝑜𝑑 2𝑚

• b = bH ⋅ 2m + bL

• bH  = b/2m  
• bL = b 𝑚𝑜𝑑 2𝑚

E.g.:
a = 10001101

b = 11100001

aH aL

bH bL



Divide and Conquer Algorithm

• We can now write:

𝑎 ⋅ 𝑏 = 𝑎𝐻 ⋅ 2𝑚 + 𝑎𝐿 𝑏𝐻 ⋅ 2𝑚 + 𝑏𝐿

= 𝑎𝐻 ⋅ 𝑏𝐻 ⋅ 2 2𝑚 + 𝑎𝐻 ⋅ 𝑏𝐿 + 𝑎𝐿 ⋅ 𝑏𝐻 ⋅ 2𝑚 + 𝑎𝐿 ⋅ 𝑏𝐿



Divide and Conquer Algorithm

• We can now write:

• There are 4 subproblems of size ~n/2
• There are two shifts by O(n)
• There is two sums of O(n)  bit bumbers

𝑎 ⋅ 𝑏 = 𝑎𝐻 ⋅ 2𝑚 + 𝑎𝐿 𝑏𝐻 ⋅ 2𝑚 + 𝑏𝐿

= 𝑎𝐻 ⋅ 𝑏𝐻 ⋅ 2 2𝑚 + 𝑎𝐻 ⋅ 𝑏𝐿 + 𝑎𝐿 ⋅ 𝑏𝐻 ⋅ 2𝑚 + 𝑎𝐿 ⋅ 𝑏𝐿



What is the runtime, T(n)?

• We can now write:

• There are 4 subproblems of size ~n/2
• There are two shifts by O(n)
• There is two sums of O(n)  bit bumbers

𝑎 ⋅ 𝑏 = 𝑎𝐻 ⋅ 2𝑚 + 𝑎𝐿 𝑏𝐻 ⋅ 2𝑚 + 𝑏𝐿

= 𝑎𝐻 ⋅ 𝑏𝐻 ⋅ 2 2𝑚 + 𝑎𝐻 ⋅ 𝑏𝐿 + 𝑎𝐿 ⋅ 𝑏𝐻 ⋅ 2𝑚 + 𝑎𝐿 ⋅ 𝑏𝐿



What is the runtime, T(n)?

• We can now write:

• There are 4 subproblems of size ~n/2 <- 4T(n/2) time
• There are two shifts by O(n) <- O(n) time
• There is two sums of O(n)  bit bumbers <- O(n) time

𝑎 ⋅ 𝑏 = 𝑎𝐻 ⋅ 2𝑚 + 𝑎𝐿 𝑏𝐻 ⋅ 2𝑚 + 𝑏𝐿

= 𝑎𝐻 ⋅ 𝑏𝐻 ⋅ 2 2𝑚 + 𝑎𝐻 ⋅ 𝑏𝐿 + 𝑎𝐿 ⋅ 𝑏𝐻 ⋅ 2𝑚 + 𝑎𝐿 ⋅ 𝑏𝐿



What is the runtime, T(n)?

• We can now write:

• T(n)  ≤ 4T(n/2)  + cn when n big
• T(1)  ≤ c

𝑎 ⋅ 𝑏 = 𝑎𝐻 ⋅ 2𝑚 + 𝑎𝐿 𝑏𝐻 ⋅ 2𝑚 + 𝑏𝐿

= 𝑎𝐻 ⋅ 𝑏𝐻 ⋅ 2 2𝑚 + 𝑎𝐻 ⋅ 𝑏𝐿 + 𝑎𝐿 ⋅ 𝑏𝐻 ⋅ 2𝑚 + 𝑎𝐿 ⋅ 𝑏𝐿



What is the runtime, T(n)?

• We can now write:

• T(n)  ≤ 4T(n/2)  + cn when n big
• 𝑇 1 ≤ 𝑐
• This is not that good, T(n) is O(n^2)

𝑎 ⋅ 𝑏 = 𝑎𝐻 ⋅ 2𝑚 + 𝑎𝐿 𝑏𝐻 ⋅ 2𝑚 + 𝑏𝐿

= 𝑎𝐻 ⋅ 𝑏𝐻 ⋅ 2 2𝑚 + 𝑎𝐻 ⋅ 𝑏𝐿 + 𝑎𝐿 ⋅ 𝑏𝐻 ⋅ 2𝑚 + 𝑎𝐿 ⋅ 𝑏𝐿
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What is the runtime, T(n)?

• We can now write:

• We know from Section 5.2 that if instead of 4 recursive 
calls, we did only 3, we could get a much better running 
time.
• We would get 𝑇 𝑛 ∈ 𝑂 𝑛1.59

𝑎 ⋅ 𝑏 = 𝑎𝐻 ⋅ 2𝑚 + 𝑎𝐿 𝑏𝐻 ⋅ 2𝑚 + 𝑏𝐿

= 𝑎𝐻 ⋅ 𝑏𝐻 ⋅ 2 2𝑚 + 𝑎𝐻 ⋅ 𝑏𝐿 + 𝑎𝐿 ⋅ 𝑏𝐻 ⋅ 2𝑚 + 𝑎𝐿 ⋅ 𝑏𝐿



Reducing Calls

• We can now write:

• Key Observation:

𝑎 ⋅ 𝑏 = 𝑎𝐻 ⋅ 2𝑚 + 𝑎𝐿 𝑏𝐻 ⋅ 2𝑚 + 𝑏𝐿

= 𝑎𝐻 ⋅ 𝑏𝐻 ⋅ 2 2𝑚 + 𝑎𝐻 ⋅ 𝑏𝐿 + 𝑎𝐿 ⋅ 𝑏𝐻 ⋅ 2𝑚 + 𝑎𝐿 ⋅ 𝑏𝐿

𝑎𝐻 + 𝑎𝐿 ⋅ 𝑏𝐻 + 𝑏𝐿 = 𝑎𝐻 ⋅ 𝑏𝐻 + 𝑎𝐻 ⋅ 𝑏𝐿 + 𝑎𝐿 ⋅ 𝑏𝐻 + 𝑎𝐿 ⋅ 𝑏𝐿



• We can now write:

• Key Observation:

Reducing Calls

𝑎 ⋅ 𝑏 = 𝑎𝐻 ⋅ 2𝑚 + 𝑎𝐿 𝑏𝐻 ⋅ 2𝑚 + 𝑏𝐿

= 𝑎𝐻 ⋅ 𝑏𝐻 ⋅ 2 2𝑚 + 𝑎𝐻 ⋅ 𝑏𝐿 + 𝑎𝐿 ⋅ 𝑏𝐻 ⋅ 2𝑚 + 𝑎𝐿 ⋅ 𝑏𝐿
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• We can now write:

• Key Observation:

• We can compute 𝑎𝐻 ⋅ 𝑏𝐻  and 𝑎𝐿 ⋅ 𝑏𝐿  and then use all these 
values to compute 𝑎𝐻 ⋅ 𝑏𝐿 + 𝑎𝐿 ⋅ 𝑏𝐻! 

Reducing Calls

𝑎 ⋅ 𝑏 = 𝑎𝐻 ⋅ 2𝑚 + 𝑎𝐿 𝑏𝐻 ⋅ 2𝑚 + 𝑏𝐿

= 𝑎𝐻 ⋅ 𝑏𝐻 ⋅ 2 2𝑚 + 𝑎𝐻 ⋅ 𝑏𝐿 + 𝑎𝐿 ⋅ 𝑏𝐻 ⋅ 2𝑚 + 𝑎𝐿 ⋅ 𝑏𝐿

𝑎𝐻 + 𝑎𝐿 ⋅ 𝑏𝐻 + 𝑏𝐿 = 𝑎𝐻 ⋅ 𝑏𝐻 + 𝑎𝐻 ⋅ 𝑏𝐿 + 𝑎𝐿 ⋅ 𝑏𝐻 + 𝑎𝐿 ⋅ 𝑏𝐿



• Instead of compute all of these coefficients with a call

we can compute 𝑎𝐻 + 𝑎𝐿 ⋅ 𝑏𝐻 + 𝑏𝐿 , 𝑎𝐻 ⋅ 𝑏𝐻  and 𝑎𝐿 ⋅ 𝑏𝐿   
with three calls and then do O(n) work to combine 
(subtraction, addition, shifts) them together to get all the 
coefficients!

Reducing Calls

𝑎𝐻 ⋅ 𝑏𝐻 ⋅ 2 2𝑚 + 𝑎𝐻 ⋅ 𝑏𝐿 + 𝑎𝐿 ⋅ 𝑏𝐻 ⋅ 2𝑚 + 𝑎𝐿 ⋅ 𝑏𝐿

𝑎𝐻 + 𝑎𝐿 ⋅ 𝑏𝐻 + 𝑏𝐿 = 𝑎𝐻 ⋅ 𝑏𝐻 + 𝑎𝐻 ⋅ 𝑏𝐿 + 𝑎𝐿 ⋅ 𝑏𝐻 + 𝑎𝐿 ⋅ 𝑏𝐿



Recursive Algorithm



Runtime

• In the non recursive case, we do three calls of size n/2.
• Hence, T(n)  ≤  3T(n/2)  +  cn when n is big.
• Thus, 𝑇 𝑛 ∈ 𝑂 𝑛log2 3  <- See K.T. 5.2



Runtime

• In the non recursive case, we do three calls of size n/2.
• Hence, T(n)  ≤  3T(n/2)  +  cn when n is big.
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Want to know more?
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