
CSE 331:
Algorithms & Complexity

Prof. Charlie Anne Carlson (She/Her)
Lecture 25

Friday Dec 25th, 2025

“Multiplication”

Schedule

1.Course Updates
2.Counting Inversions
3.Multiplication

Course Updates

• HW 6 Out
• Group Project

• Code 1 & 2 Due ?
• Reflections 1 & 2 Due ?

Reading

• You should have read:
• Started 5.5
• Started 5.4

• Before Next Class:
• Finished KT 5.5
• Finished KT 5.4
• Read Unraveling the

mystery behind the
identity

https://cse.buffalo.edu/courses/cse331/support/int-mult/index.html
https://cse.buffalo.edu/courses/cse331/support/int-mult/index.html
https://cse.buffalo.edu/courses/cse331/support/int-mult/index.html

Divide & Conquer Algorithm

• We will use the logic of the previous lecture to make a
Merge-and-Count(A,B) algorithm that will merge two sorted
lists and count the number of “spanning” inversions.

• We will now make a new algorithm called Sort-and-
Count(L) that will take a list and return the list sorted and
return the number of inversions before being sorted.

Sort-and-Count
1. Input: list L of length n

2. If the list has on element:

3. there are no inversions

4. Else:

5. Divide the list into two halves:

6. A contains first ⌈𝑛/2⌉ elements
7. B contains second ⌊𝑛/2⌋ elements
8. (r,A) = Sort-and-Count(A)

9. (q,B) = Sort-and-Count(B)

10. (k,L) = Merge-and-Count(A,B)

11. Return (r+q+k,L)

When is each type of inversion counted?

1 7 3 12 2 5 6 9 3 7

Sort-and-Count Runtime?
1. Input: list L of length n

2. If the list has on element:

3. there are no inversions

4. Else:

5. Divide the list into two halves:

6. A contains first ⌈𝑛/2⌉ elements
7. B contains second ⌊𝑛/2⌋ elements
8. (r,A) = Sort-and-Count(A)

9. (q,B) = Sort-and-Count(B)

10. (k,L) = Merge-and-Count(A,B)

11. Return (r+q+k,L)

Sort-and-Count Runtime?

• Observations:
• Takes O(n) time to divide.
• Takes 2T(n/2) time to do recursive calls.
• Takes O(n) time to merge.
• Takes O(1) time to do base case.

Sort-and-Count Runtime

• We have the same recurrence we had for mergesort and if we solve
it using the methods from before, we get the same runtime of
O(nlog(n)).

Sort-and-Count Runtime?

• Question: What would you change to get the list of all inversions?
• Question: How would this change the runtime?

Sort-and-Count Runtime?

• Answer: You’d want to change your Sort-and-Count to return list of
inversions.

• Answer: This would take longer because we do have to list all pairs
in some cases.

Multiplication

• Input: Given two numbers 𝑎
and 𝑏 in binary
• 𝑎 = (𝑎1, 𝑎2, … , 𝑎n)
• b = (b1, b2, … , bn)

• Goal: Compute 𝑐 = 𝑎 𝑥 𝑏

https://xkcd.com/2313/

https://xkcd.com/2313

Multiplication

• Input: Given two numbers 𝑎
and 𝑏 in binary
• 𝑎 = (𝑎1, 𝑎2, … , 𝑎n)
• b = (b1, b2, … , bn)

• Goal: Compute 𝑐 = 𝑎 𝑥 𝑏

https://xkcd.com/2313/

https://xkcd.com/2313

Grade School Algorithm

• Compute a “partial product”
for each digit of a by b.

• Add up all partial products.
• Don’t forget how to add!

• Question: What is the runtime
of this algorithm for two n bit
numbers?

1100
1101x
1100

0000

1100
1100+
10011100

Grade School Algorithm

• Compute a “partial product”
for each digit of a by b.

• Add up all partial products.
• Don’t forget how to add!

• Answer: It is an O(n^2)
algorithm!

1100
1101x
1100

0000

1100
1100+
10011100

Divide and Conquer Algorithm

• We will rewrite a and b into their
high and low bit components.
• 𝑚 = 𝑛/2
• 𝑎 = 𝑎H ⋅ 2m + 𝑎L

• 𝑎H = 𝑎/2m
• 𝑎L = 𝑎 𝑚𝑜𝑑 2𝑚

• b = bH ⋅ 2m + bL

• bH = b/2m
• bL = b 𝑚𝑜𝑑 2𝑚

E.g.:
a = 10001101

b = 11100001

aH aL

bH bL

Divide and Conquer Algorithm

• We can now write:

𝑎 ⋅ 𝑏 = 𝑎𝐻 ⋅ 2𝑚 + 𝑎𝐿 𝑏𝐻 ⋅ 2𝑚 + 𝑏𝐿

= 𝑎𝐻 ⋅ 𝑏𝐻 ⋅ 2 2𝑚 + 𝑎𝐻 ⋅ 𝑏𝐿 + 𝑎𝐿 ⋅ 𝑏𝐻 ⋅ 2𝑚 + 𝑎𝐿 ⋅ 𝑏𝐿

Divide and Conquer Algorithm

• We can now write:

• There are 4 subproblems of size ~n/2
• There are two shifts by O(n)
• There is two sums of O(n) bit bumbers

𝑎 ⋅ 𝑏 = 𝑎𝐻 ⋅ 2𝑚 + 𝑎𝐿 𝑏𝐻 ⋅ 2𝑚 + 𝑏𝐿

= 𝑎𝐻 ⋅ 𝑏𝐻 ⋅ 2 2𝑚 + 𝑎𝐻 ⋅ 𝑏𝐿 + 𝑎𝐿 ⋅ 𝑏𝐻 ⋅ 2𝑚 + 𝑎𝐿 ⋅ 𝑏𝐿

What is the runtime, T(n)?

• We can now write:

• There are 4 subproblems of size ~n/2
• There are two shifts by O(n)
• There is two sums of O(n) bit bumbers

𝑎 ⋅ 𝑏 = 𝑎𝐻 ⋅ 2𝑚 + 𝑎𝐿 𝑏𝐻 ⋅ 2𝑚 + 𝑏𝐿

= 𝑎𝐻 ⋅ 𝑏𝐻 ⋅ 2 2𝑚 + 𝑎𝐻 ⋅ 𝑏𝐿 + 𝑎𝐿 ⋅ 𝑏𝐻 ⋅ 2𝑚 + 𝑎𝐿 ⋅ 𝑏𝐿

What is the runtime, T(n)?

• We can now write:

• There are 4 subproblems of size ~n/2 <- 4T(n/2) time
• There are two shifts by O(n) <- O(n) time
• There is two sums of O(n) bit bumbers <- O(n) time

𝑎 ⋅ 𝑏 = 𝑎𝐻 ⋅ 2𝑚 + 𝑎𝐿 𝑏𝐻 ⋅ 2𝑚 + 𝑏𝐿

= 𝑎𝐻 ⋅ 𝑏𝐻 ⋅ 2 2𝑚 + 𝑎𝐻 ⋅ 𝑏𝐿 + 𝑎𝐿 ⋅ 𝑏𝐻 ⋅ 2𝑚 + 𝑎𝐿 ⋅ 𝑏𝐿

What is the runtime, T(n)?

• We can now write:

• T(n) ≤ 4T(n/2) + cn when n big
• T(1) ≤ c

𝑎 ⋅ 𝑏 = 𝑎𝐻 ⋅ 2𝑚 + 𝑎𝐿 𝑏𝐻 ⋅ 2𝑚 + 𝑏𝐿

= 𝑎𝐻 ⋅ 𝑏𝐻 ⋅ 2 2𝑚 + 𝑎𝐻 ⋅ 𝑏𝐿 + 𝑎𝐿 ⋅ 𝑏𝐻 ⋅ 2𝑚 + 𝑎𝐿 ⋅ 𝑏𝐿

What is the runtime, T(n)?

• We can now write:

• T(n) ≤ 4T(n/2) + cn when n big
• 𝑇 1 ≤ 𝑐
• This is not that good, T(n) is O(n^2)

𝑎 ⋅ 𝑏 = 𝑎𝐻 ⋅ 2𝑚 + 𝑎𝐿 𝑏𝐻 ⋅ 2𝑚 + 𝑏𝐿

= 𝑎𝐻 ⋅ 𝑏𝐻 ⋅ 2 2𝑚 + 𝑎𝐻 ⋅ 𝑏𝐿 + 𝑎𝐿 ⋅ 𝑏𝐻 ⋅ 2𝑚 + 𝑎𝐿 ⋅ 𝑏𝐿

What is the runtime, T(n)?

• We can now write:

• T(n) ≤ 4T(n/2) + cn when n big
• 𝑇 1 ≤ 𝑐
• This is not that good, T(n) is O(n^2)

𝑎 ⋅ 𝑏 = 𝑎𝐻 ⋅ 2𝑚 + 𝑎𝐿 𝑏𝐻 ⋅ 2𝑚 + 𝑏𝐿

= 𝑎𝐻 ⋅ 𝑏𝐻 ⋅ 2 2𝑚 + 𝑎𝐻 ⋅ 𝑏𝐿 + 𝑎𝐿 ⋅ 𝑏𝐻 ⋅ 2𝑚 + 𝑎𝐿 ⋅ 𝑏𝐿

What is the runtime, T(n)?

• We can now write:

• We know from Section 5.2 that if instead of 4 recursive
calls, we did only 3, we could get a much better running
time.
• We would get 𝑇 𝑛 ∈ 𝑂 𝑛1.59

𝑎 ⋅ 𝑏 = 𝑎𝐻 ⋅ 2𝑚 + 𝑎𝐿 𝑏𝐻 ⋅ 2𝑚 + 𝑏𝐿

= 𝑎𝐻 ⋅ 𝑏𝐻 ⋅ 2 2𝑚 + 𝑎𝐻 ⋅ 𝑏𝐿 + 𝑎𝐿 ⋅ 𝑏𝐻 ⋅ 2𝑚 + 𝑎𝐿 ⋅ 𝑏𝐿

Reducing Calls

• We can now write:

• Key Observation:

𝑎 ⋅ 𝑏 = 𝑎𝐻 ⋅ 2𝑚 + 𝑎𝐿 𝑏𝐻 ⋅ 2𝑚 + 𝑏𝐿

= 𝑎𝐻 ⋅ 𝑏𝐻 ⋅ 2 2𝑚 + 𝑎𝐻 ⋅ 𝑏𝐿 + 𝑎𝐿 ⋅ 𝑏𝐻 ⋅ 2𝑚 + 𝑎𝐿 ⋅ 𝑏𝐿

𝑎𝐻 + 𝑎𝐿 ⋅ 𝑏𝐻 + 𝑏𝐿 = 𝑎𝐻 ⋅ 𝑏𝐻 + 𝑎𝐻 ⋅ 𝑏𝐿 + 𝑎𝐿 ⋅ 𝑏𝐻 + 𝑎𝐿 ⋅ 𝑏𝐿

• We can now write:

• Key Observation:

Reducing Calls

𝑎 ⋅ 𝑏 = 𝑎𝐻 ⋅ 2𝑚 + 𝑎𝐿 𝑏𝐻 ⋅ 2𝑚 + 𝑏𝐿

= 𝑎𝐻 ⋅ 𝑏𝐻 ⋅ 2 2𝑚 + 𝑎𝐻 ⋅ 𝑏𝐿 + 𝑎𝐿 ⋅ 𝑏𝐻 ⋅ 2𝑚 + 𝑎𝐿 ⋅ 𝑏𝐿

𝑎𝐻 + 𝑎𝐿 ⋅ 𝑏𝐻 + 𝑏𝐿 = 𝑎𝐻 ⋅ 𝑏𝐻 + 𝑎𝐻 ⋅ 𝑏𝐿 + 𝑎𝐿 ⋅ 𝑏𝐻 + 𝑎𝐿 ⋅ 𝑏𝐿

• We can now write:

• Key Observation:

• We can compute 𝑎𝐻 ⋅ 𝑏𝐻 and 𝑎𝐿 ⋅ 𝑏𝐿 and then use all these
values to compute 𝑎𝐻 ⋅ 𝑏𝐿 + 𝑎𝐿 ⋅ 𝑏𝐻!

Reducing Calls

𝑎 ⋅ 𝑏 = 𝑎𝐻 ⋅ 2𝑚 + 𝑎𝐿 𝑏𝐻 ⋅ 2𝑚 + 𝑏𝐿

= 𝑎𝐻 ⋅ 𝑏𝐻 ⋅ 2 2𝑚 + 𝑎𝐻 ⋅ 𝑏𝐿 + 𝑎𝐿 ⋅ 𝑏𝐻 ⋅ 2𝑚 + 𝑎𝐿 ⋅ 𝑏𝐿

𝑎𝐻 + 𝑎𝐿 ⋅ 𝑏𝐻 + 𝑏𝐿 = 𝑎𝐻 ⋅ 𝑏𝐻 + 𝑎𝐻 ⋅ 𝑏𝐿 + 𝑎𝐿 ⋅ 𝑏𝐻 + 𝑎𝐿 ⋅ 𝑏𝐿

• Instead of compute all of these coefficients with a call

we can compute 𝑎𝐻 + 𝑎𝐿 ⋅ 𝑏𝐻 + 𝑏𝐿 , 𝑎𝐻 ⋅ 𝑏𝐻 and 𝑎𝐿 ⋅ 𝑏𝐿
with three calls and then do O(n) work to combine
(subtraction, addition, shifts) them together to get all the
coefficients!

Reducing Calls

𝑎𝐻 ⋅ 𝑏𝐻 ⋅ 2 2𝑚 + 𝑎𝐻 ⋅ 𝑏𝐿 + 𝑎𝐿 ⋅ 𝑏𝐻 ⋅ 2𝑚 + 𝑎𝐿 ⋅ 𝑏𝐿

𝑎𝐻 + 𝑎𝐿 ⋅ 𝑏𝐻 + 𝑏𝐿 = 𝑎𝐻 ⋅ 𝑏𝐻 + 𝑎𝐻 ⋅ 𝑏𝐿 + 𝑎𝐿 ⋅ 𝑏𝐻 + 𝑎𝐿 ⋅ 𝑏𝐿

Recursive Algorithm

Runtime

• In the non recursive case, we do three calls of size n/2.
• Hence, T(n) ≤ 3T(n/2) + cn when n is big.
• Thus, 𝑇 𝑛 ∈ 𝑂 𝑛log2 3 <- See K.T. 5.2

Runtime

• In the non recursive case, we do three calls of size n/2.
• Hence, T(n) ≤ 3T(n/2) + cn when n is big.
• Thus, 𝑇 𝑛 ∈ 𝑂 𝑛log2 3 <- See K.T. 5.2

Want to know more?

	Slide 1: CSE 331: Algorithms & Complexity
	Slide 2: Schedule
	Slide 3: Course Updates
	Slide 4: Reading
	Slide 5: Divide & Conquer Algorithm
	Slide 6: Sort-and-Count
	Slide 7: When is each type of inversion counted?
	Slide 8: Sort-and-Count Runtime?
	Slide 9: Sort-and-Count Runtime?
	Slide 10: Sort-and-Count Runtime
	Slide 11: Sort-and-Count Runtime?
	Slide 12: Sort-and-Count Runtime?
	Slide 13: Multiplication
	Slide 14: Multiplication
	Slide 15: Grade School Algorithm
	Slide 16: Grade School Algorithm
	Slide 17: Divide and Conquer Algorithm
	Slide 18: Divide and Conquer Algorithm
	Slide 19: Divide and Conquer Algorithm
	Slide 20: What is the runtime, T(n)?
	Slide 21: What is the runtime, T(n)?
	Slide 22: What is the runtime, T(n)?
	Slide 23: What is the runtime, T(n)?
	Slide 24: What is the runtime, T(n)?
	Slide 25: What is the runtime, T(n)?
	Slide 26: Reducing Calls
	Slide 27: Reducing Calls
	Slide 28: Reducing Calls
	Slide 29: Reducing Calls
	Slide 30: Recursive Algorithm
	Slide 31: Runtime
	Slide 32: Runtime
	Slide 33: Want to know more?

