
CSE 331:
Algorithms & Complexity

Prof. Charlie Anne Carlson (She/Her)
Lecture 26

Monday Nov 3, 2025

“Closest Pair”

Schedule

1.Course Updates
2.Closest Pair

Course Updates

• HW 6 Out
• Autolab Soon
• Due November 11th

• Group Project
• Code 1 & 2 Due Today
• Reflections 1 & 2 Due Today

• Check Piazza for Google Form
Review Link

Reading

• You should have read:
• Finished 5.5
• Finished 5.4
• Finished Unraveling the

mystery behind the
identity

• Before Next Class:
• Start 6.1
• Start 6.2

https://cse.buffalo.edu/courses/cse331/support/int-mult/index.html
https://cse.buffalo.edu/courses/cse331/support/int-mult/index.html
https://cse.buffalo.edu/courses/cse331/support/int-mult/index.html

Closest Pair 2D

• Input: Given n points in the
plane.

• Goal: Find pair of points with
smallest Euclidean distance
between them.

Closest Pair 2D

• Input: Given n points in the
plane.

• Goal: Find pair of points with
smallest Euclidean distance
between them.

Closest Pair 2D

• Input: Given n points in the
plane.

• Goal: Find pair of points with
smallest Euclidean distance
between them.

• Assumptions:
• No two points have same

x and y coordinate.

x

y

Closest Pair 2D

• Question: What is a simple
algorithm that solves this
problem in polynomial time?

x

y

Closest Pair 2D

• Answer: Check all pairs in
O(n^2) time.

x

y

Closest Pair 1D

• Input: Given n points ON the
LINE.

• Goal: Find pair of points with
smallest Euclidean distance
between them.

• Assumptions:
• No two points have same

x coordinate.

x

Closest Pair 1D

• Input: Given n points ON the
LINE.

• Goal: Find pair of points with
smallest Euclidean distance
between them.

• Assumptions:
• No two points have same

x coordinate.

x

Closest Pair 1D

• Question: What is a simple
algorithm that solves this
problem in polynomial time?

x

Closest Pair 1D

• Answer: Sort the list by x
coordinate in O(nlog(n)) time
and then loop over to find
shortest distance in O(n) time.

x

Closest Pair 2D

• Question: Can we use
sorting to help with the 2D
version of this problem?

x

y

Closest Pair 2D

• Answer: Not without more
work because being close in
x-coordinate doesn’t mean
they are very close.

x

y

Very close in x-coordinate!

Very close in y-coordinate!

Divide & Conquer Closest Pair

• Question: How can we do
divide and conquer here?

x

y

Divide & Conquer Closest Pair

• Answer: Break plane into
pieces and recurse. Then
merge the answers together.

x

y

Divide Closest Pair Find line L to separate SET in half.

Divide Closest Pair
Will be n/2 = 7 points in each part.

Divide Closest Pair Pieces aren’t always equal size.

Divide Closest Pair Can’t always break into 4 equal pieces.

Conquer Closest Pair
Find closest pair in each part.

Merge Closest Pair
Take shortest amongst the two.

Closest Pair Algo Idea

• Break plane into two
parts with equal number
of points using line L.

• Recursively find closest
pair in each part.

• Return the nearest of
the two pairs.

• Question: Does this
work?

Closest Pair Algo Idea

• Break plane into two parts
with equal number of points
using line L.

• Recursively find closest pair
in each part.

• Return the nearest of the
two pairs.

• Question: Not always!

The closest pair may span the cut!

Closest Pair Algo Idea

• So, our merge step idea
doesn’t work.
• We need to consider

pairs that span the line L.
• Question: What is a naïve

way of considering those
vertices?

Closest Pair Algo Idea

• So, our merge step idea
doesn’t work.
• We need to consider

pairs that span the line L.
• Answer: We could just

check every pair but that is
O(n^2) again and we don’t
like that.

Closest Pair Algo Idea

• So, our merge step idea
doesn’t work.
• We need to consider

pairs that span the line L.
• Answer: We could just

check every pair but that is
O(n^2) again and we don’t
like that.

New Algo Idea

• Still divide into two
smaller parts Q and R.

• Still find closest pairs in
each part, q and r.

• Define δ to be the
minimum distance
between the two pairs.

• Now we need to find if
any pair is closer.

δ

Finding Closer Pairs

• Consider slice S of
length 2𝛿 around L.

• Question: How long
does it take to check all
pairs that are in the
slice?

δ

Finding Closer Pairs

• Consider slice S of
length 2𝛿 around L.

• Answer: If you do it
naively then it could
still take O(n^2).

δ

Finding Closer Pairs

• Let’s assume that you
had an algorithm that
could check the slice in
O(n) time.

• Question: Can you come
up with a O(n log(n))
algorithm for Closest Pair
2D?

δ

Closest Pair Algo Idea

• Break plane into two
parts with equal number
of points using line L.
• Can be O(n) time if

you sort by x-
coordinate first.

• Find n/2 item with
smallest x-coordinate
for one side…

Closest Pair Algo Idea

• Recurse on each of the
smaller planes to get
closest pair.
• This takes 2T(n/2)

time if you assume n
even.

• Use the min distance
from these two closest
pairs to define slice S.

Closest Pair Algo Idea

• Assume you can find
closest pair in slice in
time O(n).

• If slice has closer point,
return it. Otherwise
return closest pair from
amongst the two
recursive calls.

• Don’t forget base case!

Closest Pair Algo Idea

• Observe that you only
need to sort once.

• Question: What is the
runtime of our algorithm
if we assume that we
can search the slice in
O(n) time?

Closest Pair Algo Idea

• Observe that you only
need to sort once.

• Answer: Since the base
case can be handled in
constant time, we have
the same recurrence as
mergesort and thus, the
same running time.

Closest-Pair(P):

• Input: n 2D points P = {p1, p2, … , pn}, pi = xi, yi

• Sorted to get Px and Py

1. If n ≤ 4, the do brute force.

2. Let Q be first half of Px and let R be rest

3. Compute Qx, Qy, Rx, and Ry using Px and Py

4. qx, qy = Closest-Pair(Qx, Qy)

5. rx, ry = Closest-Pair(Rx, Ry)

6. δ = min(qx, qy , rx, ry)

7. Let S be points (xi, yi) in P s.t. xi– x∗ ≤ δ

8. rx, ry = Closets-Pair(Sx, Sy)

9. Return min(qx, qy , rx, ry , rx, ry)

Closest-Pair(P):

• Input: n 2D points P = {p1, p2, … , pn}, pi = xi, yi

• Sorted to get Px and Py

1. If n ≤ 4, the do brute force.

2. Let Q be first half of Px and let R be rest

3. Compute Qx, Qy, Rx, and Ry using Px and Py

4. qx, qy = Closest-Pair(Qx, Qy)

5. rx, ry = Closest-Pair(Rx, Ry)

6. δ = min(qx, qy , rx, ry)

7. Let S be points (xi, yi) in P s.t. xi– x∗ ≤ δ

8. rx, ry = Find-Closer(S, δ)

9. Return min(qx, qy , rx, ry , rx, ry)

Clever Closer Pairs

• We can show that a
closer pair must be in S
(See 5.8 in Section 5.4)

• We break S into blocks
of size δ/2 by δ/2

Find-Closer

• We break S into blocks
of size δ/2 by δ/2.

• Question: How many
points can be in one
box?

Find-Closer

• We break S into blocks
of size δ/2 by δ/2.

• Answer: At most one
point can be in a box
since otherwise, it
would contradict that
the nearest pair on
either side was
distance δ away.

Kickass Property Lemma (KT 5.10 in S 5.4)

Lemma: If s, s’ ∈ S have the property that
d(s, s’) ≤ δ then s and s’ are within 15
positions of each other in the list S when
sorted by y-coordinates, 𝑆y.

That is, if you sort the points in the slice by
their y-coordinates, then any pair that is
closer than δ must be within 15 spaces of
each other in the sorted list.

Kickass Property Lemma Picture

Fix a point a.

Kickass Property Lemma Picture

Fix a point a.

Recall at most one point
per box.

Kickass Property Lemma Picture

Fix a point a.

Recall at most one point
per box.

Any point b that is at least
15 spaces away in sorted
array must be down here.

Kickass Property Lemma Picture

Fix a point a.

Recall at most one point
per box.

Any point b that is at least
15 spaces away in sorted
array must be down here.

That means there are
always at least three
stacked boxes between
them, i.e. distance > 3𝛿/2

	Slide 1: CSE 331: Algorithms & Complexity
	Slide 2: Schedule
	Slide 3: Course Updates
	Slide 4: Reading
	Slide 5: Closest Pair 2D
	Slide 6: Closest Pair 2D
	Slide 7: Closest Pair 2D
	Slide 8: Closest Pair 2D
	Slide 9: Closest Pair 2D
	Slide 10: Closest Pair 1D
	Slide 11: Closest Pair 1D
	Slide 12: Closest Pair 1D
	Slide 13: Closest Pair 1D
	Slide 14: Closest Pair 2D
	Slide 15: Closest Pair 2D
	Slide 16: Divide & Conquer Closest Pair
	Slide 17: Divide & Conquer Closest Pair
	Slide 18: Divide Closest Pair
	Slide 19: Divide Closest Pair
	Slide 20: Divide Closest Pair
	Slide 21: Divide Closest Pair
	Slide 22: Conquer Closest Pair
	Slide 23: Merge Closest Pair
	Slide 24: Closest Pair Algo Idea
	Slide 25: Closest Pair Algo Idea
	Slide 26: Closest Pair Algo Idea
	Slide 27: Closest Pair Algo Idea
	Slide 28: Closest Pair Algo Idea
	Slide 29: New Algo Idea
	Slide 30: Finding Closer Pairs
	Slide 31: Finding Closer Pairs
	Slide 32: Finding Closer Pairs
	Slide 33: Closest Pair Algo Idea
	Slide 34: Closest Pair Algo Idea
	Slide 35: Closest Pair Algo Idea
	Slide 36: Closest Pair Algo Idea
	Slide 37: Closest Pair Algo Idea
	Slide 38
	Slide 39
	Slide 40: Clever Closer Pairs
	Slide 41: Find-Closer
	Slide 42: Find-Closer
	Slide 43: Kickass Property Lemma (KT 5.10 in S 5.4)
	Slide 44: Kickass Property Lemma Picture
	Slide 45: Kickass Property Lemma Picture
	Slide 46: Kickass Property Lemma Picture
	Slide 47: Kickass Property Lemma Picture

