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“Dynamic Programming”



https://xkcd.com/399/

https://xkcd.com/399


Schedule

1.Course Updates
2.Weighted Interval 

Scheduling
3.Memoization
4.Dynamic 

Programming



Course Updates
• HW 6 Out 

• Autolab Up
• Due November 11th

• Group Project
• Code 3 Due November 24th

• Reflections 3 Due December 1st

• Check Piazza for Google Form 
Review Link (before Friday)

• Next Quiz is December 1st



Reading

• You should have read:
• Started 6.1
• Started 6.2

• Before Next Class:
• Finish 6.1
• Finish 6.2



Weighted Interval Scheduling
• Input: A list of n jobs L

• Each job i has a start time 𝑠𝑖  and finish time 𝑓𝑖

• Two jobs are “compatible” if they don’t overlap
•  Each job i as a weight v𝑖

• Goal: Find the max-weight subset of mutually compatible jobs.

Start End

Time:

Job 1 (1)

Job 2 (5)

Job 3 (1) Job 5 (1)

Job 4 (3)



Weighted Interval Scheduling
• Input: A list of n jobs L

• Each job i has a start time 𝑠𝑖  and finish time 𝑓𝑖

• Two jobs are “compatible” if they don’t overlap
•  Each job i as a weight v𝑖

• Goal: Find the max-weight subset of mutually compatible jobs.

Start End

Time:

Job 1 (1)

Job 2 (1)

Job 3 (1) Job 5 (1)

Job 4 (1)

Job i (v𝑖)



Weighted Interval Scheduling
• Input: A list of n jobs L

• Each job i has a start time 𝑠𝑖  and finish time 𝑓𝑖

• Two jobs are “compatible” if they don’t overlap
•  Each job i as a weight v

• Goal: Find the max-weight subset of mutually compatible jobs.

Start End

Time:

Job 1 (1)

Job 2 (1)

Job 3 (1) Job 5 (1)

Job 4 (1)



Unweighted Case
• Question: What algorithm do we use to find the maximum weight 

subset when the weight of each job is 1?
 

Start End

Time:

Job 1 (1)

Job 2 (1)

Job 3 (1) Job 5 (1)

Job 4 (1)



Unweighted Case
• Question: What algorithm do we use to find the maximum weight 

subset when the weight of each job is 1?
• Answer: We use a greedy algorithm where we scan from left to right 

and always take the next job to finish. 
 

Start End

Time:

Job 1 (1)

Job 2 (1)

Job 3 (1) Job 5 (1)

Job 4 (1)



Weighted Case
• Question: Does this greedy algorithm work for other weights?
 

Start End

Time:

Job 1 (?)

Job 2 (?)

Job 3 (?) Job 5 (?)

Job 4 (?)



Weighted Case
• Question: Does this greedy algorithm work for other weights?
• Answer: No, there could be a situation where the number of jobs 

isn’t the thing to maximize. 
 

Start End

Time:

Job 1 (1)

Job 2 (5)

Job 3 (1) Job 5 (1)

Job 4 (5)



Weighted Case
• Question: Does this greedy algorithm work for other weights?
• Answer: No, there could be a situation where the number of jobs 

isn’t the thing to maximize. 
 

Start End

Time:

Job 1 (1)

Job 2 (5)

Job 3 (1) Job 5 (1)

Job 4 (5)



Divide & Conquer Approach 
• Question: How would divide and conquer work for this problem?
 

Start End

Time:

Job 1 (1)

Job 2 (5)

Job 3 (1) Job 5 (1)

Job 4 (5)



Divide & Conquer Approach 
• Question: How would divide and conquer work for this problem?
• Answer: You might try to split the time in half or even put half of the 

jobs in both halves.
 

Start End

Time:

Job 1 (1)

Job 2 (5)

Job 3 (1) Job 5 (1)

Job 4 (5)

Cut



Divide & Conquer Approach 
• Question: How would divide and conquer work for this problem?
• Answer: You might try to split the time in half or even put half of the 

jobs in both halves.
• However, some problems may not split as easily…

 

Start End

Time:

Job 1 (1)

Job 2 (5)

Job 3 (1) Job 5 (1)

Job 4 (5)

Cut

Job 6 (1)



Divide & Conquer Approach 
• Question: How would divide and conquer work for this problem?
• Answer: You might try to split the time in half or even put half of the 

jobs in both halves.
• However, some problems may not split as easily…

 

Start End

Time:

Job 1 (1)

Job 2 (5)

Job 3 (1) Job 5 (1)

Job 4 (5)

Cut

Job 6 (1)



Divide & Conquer Approach 
• Question: Consider an arbitrary instance with optimal solution OPT. 

What do we know about job 1?
 

End

Time:

Start End

Job 1 (?)

Job 2 (?)

Job 3 (?) Job 5 (?)

Job 4 (?)

Job 6 (?)



Binary Choice
• Question: Consider an arbitrary instance with optimal solution OPT. 

What do we know about job 1?
• Answer: It is either in OPT or it is not.
 

End

Time:

Start End

Job 1 (?)

Job 2 (?)

Job 3 (?) Job 5 (?)

Job 4 (?)

Job 6 (?)



Binary Choice
• In a greedy algorithm we are assuming about if job 1 is in the 

optimal solution. 
• Our greedy rule doesn’t work anymore if we don’t know the 

weight.
• Question: Why not try both options?
 

End

Time:

Start End

Job 1 (?)

Job 2 (?)

Job 3 (?) Job 5 (?)

Job 4 (?)

Job 6 (?)



Binary Choice

• Suppose I gave you the hint that Job 1 was in OPT.
• Question: What do you need to do to find the rest of 

OPT?

End

Time:

Start End

Job 1 (?)

Job 2 (?)

Job 3 (?) Job 5 (?)

Job 4 (?)

Job 6 (?)



Binary Choice

• Suppose I gave you the hint that Job 1 was in OPT.
• Question: What do you need to do to find the rest of 

OPT?
• Answer: Recurse on a job without Job 1 or Job 2 

(since they don’t agree). 

End

Time:

Start End

Job 3 (?) Job 5 (?)

Job 4 (?)

Job 6 (?)



Binary Choice

• Suppose I gave you the hint that Job 1 was in OPT.
• Question: What do you need to do to find the rest of 

OPT?

End

Time:

Start End

Job 1 (?)

Job 2 (?)

Job 3 (?) Job 5 (?)

Job 4 (?)

Job 6 (?)



Binary Choice

• Suppose I gave you the hint that Job 1 was not in OPT.
• Question: What do you need to do to find the rest of 

OPT?
• Answer: Recurse on a job without Job 1. 

End

Time:

Start End

Job 3 (?) Job 5 (?)

Job 2 (?)

Job 3 (?) Job 5 (?)

Job 4 (?)

Job 6 (?)



Binary Choice

• Observation: In both cases, we found a smaller 
instance of the problem to consider! 

End

Time:

Start End

Job 3 (?) Job 5 (?)

Job 2 (?)

Job 3 (?) Job 5 (?)

Job 4 (?)

Job 6 (?)

Job 1 (?)



Binary Choice

• Assume our list of n jobs are sorted by finish times.
• For all j ∈ [n], 
• Let 𝑆𝑗  be the optimal solution on the first j jobs.
• Let OPT(j) be the value of that solution. 
• Let p(j) be largest i such that i <  j and Job i is 

computable with Job j. 
• Let p(j) = 0 if no jobs exist.

End

Time:

Start End



Binary Choice
• p(1) = 0
• p(2) = 0
• p(3) = 2
• p(4) = 2
• p(5) = 3
• p(6) = 1

End

Time:

Start End

Job 3 (?) Job 5 (?)

Job 2 (?)

Job 3 (?) Job 5 (?)

Job 4 (?)

Job 6 (?)

Job 1 (?)



Binary Choice
• Now we can write

𝑂𝑃𝑇(𝑗)  =  𝑚𝑎𝑥{(𝑣𝑗 + 𝑂𝑃𝑇(𝑝(𝑗)), 𝑂𝑃𝑇(𝑗 − 1)}

 

End

Time:

Start End



Binary Choice
• Now we can write

𝑂𝑃𝑇(𝑗)  =  𝑚𝑎𝑥{(𝑣𝑗 + 𝑂𝑃𝑇(𝑝(𝑗)), 𝑂𝑃𝑇(𝑗 − 1)}

English: The optimum solution for the first j jobs either uses 
Job j or it does not. The maximum of these two choices is the 
optimum.
 

End

Time:

Start End



Binary Choice
• Now we can write

𝑂𝑃𝑇(𝑗)  =  𝑚𝑎𝑥{(𝑣𝑗 + 𝑂𝑃𝑇(𝑝(𝑗)), 𝑂𝑃𝑇(𝑗 − 1)}

English: The optimum solution for the first j jobs either uses 
Job j or it does not. The maximum of these two choices is the 
optimum.
 

End

Time:

Start End

We take Job J. We consider the next job.



Binary Choice Algorithm
Brute-Force(L):

 Sort L by job finish times.

 Compute p[i] for each i using binary search.

 Return Compute-Opt(n)

Compute-Opt(j):

 If (j == 0):

   Return 0

 else:

  Return Max(Compute-Opt(j-1), v[j] + Compute-Opt(p[j])}

End

Time:

Start End



Question: What is the runtime?
Brute-Force(L):

 Sort L by job finish times.

 Compute p[i] for each i using binary search.

 Return Compute-Opt(n)

Compute-Opt(j):

 If (j == 0):

   Return 0

 else:

  Return Max(Compute-Opt(j-1), v[j] + Compute-Opt(p[j])}

End

Time:

Start End



Question: What is the runtime?
Brute-Force(L):

 Sort L by job finish times.

 Compute p[i] for each i using binary search.

 Return Compute-Opt(n)

Compute-Opt(j):

 If (j == 0):

   Return 0

 else:

  Return Max(Compute-Opt(j-1), v[j] + Compute-Opt(p[j])}

End

Time:

Start End

O(nlog(n))



Answer: Could be exponential
Brute-Force(L):

 Sort L by job finish times.

 Compute p[i] for each i using binary search.

 Return Compute-Opt(n)

Compute-Opt(j):

 If (j == 0):

   Return 0

 else:

  Return Max(Compute-Opt(j-1), v[j] + Compute-Opt(p[j])}

End

Time:

Start End



Recursion Tree
• For each OPT(i) we draw an 

arrow to the subproblems 
we need to solve to solve it.

• It is possible that the tree 
has linear depth, and each 
internal node has two 
children.

• Notice that some problems 
appear more than once!



Memoization
• Notice that some problems 

appear more than once!
• What if our algorithm never 

computed the answer to the 
same subproblem more 
than once?

• Let’s keep track of our 
answers using an array.



https://xkcd.com/2318/

https://xkcd.com/2318


Remember Remember
Brute-Force(L):

 Sort L by job finish times.

 Compute p[i] for each i using binary search.

 Global M = [], M[0] = 0

 Return Compute-Opt(n)

M-Compute-Opt(j):

 If j not in M:

  M[j] = Max(M-Compute-Opt(j-1), v[j] + M-Compute-Opt(p[j])}

 Return M[j]

End

Time:

Start End



Memoization Runtime
Brute-Force(L):

 Sort L by job finish times.

 Compute p[i] for each i using binary search.

 Global M = [], M[0] = 0

 Return Compute-Opt(n)

M-Compute-Opt(j):

 If j not in M:

  M[j] = Max(M-Compute-Opt(j-1), v[j] + M-Compute-Opt(p[j])}

 Return M[j]

End

Time:

Start End



Memoization Runtime
• We will show that the runtime is O(nlog(n)).

• The preprocessing takes O(nlog(n)) time.
• The M-Compute-Opt(n) call takes O(n) time.

End

Time:

Start End



Memoization Runtime
• The M-Compute-Opt(n) call takes O(n) time.

• To bound the runtime, we will introduce a ”progress measure”. Namely, we 
will track how many entries in M are uninitialized. 

• Each time we initialize an entry of M, we make two recursive calls which 
takes constant time. 

• Since M will only have at most O(n) entries, it follows that the runtime is at 
most O(n) as desired.

End

Time:

Start End



Top-Down Dynamic Programming
Brute-Force(L):

 Sort L by job finish times.

 Compute p[i] for each i using binary search.

 Global M = [], M[0] = 0

 Return Compute-Opt(n)

M-Compute-Opt(j):

 If j not in M:

  M[j] = Max(M-Compute-Opt(j-1), v[j] + M-Compute-Opt(p[j])}

 Return M[j]

End

Time:

Start End



Top-Down Dynamic Programming



Next Time
• Recover Optimal Solutions
• Bottom-Up Dynamic Programming
• Process of coming up with Dynamic Programming 

algorithm.
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