L]

' CSE 331:

A]lg(o)]r[ilt]hunnls & (C<o>lnnqp>ll<exiilty
“Dynamic Programming”

Prof. Charlie Anne Carlson (She/Her)
Lecture 28

Monday Nov 7th, 2025
University at Buffalo

BROTE-FORCE
SOL-UTTON:

O(n!)

DYNAMIC.
PROGEAMMING
ALGORITHMS:

O (n*2")

SELUNG ON ERAY:

0(1)

STILL WORKING
ON YOUR ROUTE?

AN

~

SHUT THE
HEW VR

https://xkcd.com/399/

https://xkcd.com/399

Schedule

1.Course Updates

2.Weighted Interval
Scheduling

3.Memoization

4.Dynamic
Programming

Course Updates

HW 6 Out
Autolab Up
Due November 111"
Group Project
Code 3 Due November 24t
Reflections 3 Due December 15t

Check Piazza for Google Form
Review Link (before Friday)

Next Quiz is December 15t

Reading

* You should have read:
e Started 6.1
e Started 6.2
* Before Next Class:
* Finish 6.1
* Finish 6.2

JON KLEINBERG - EVA TARDOS

Weighted Interval Scheduling

* Input: AlistofnjobsL
 Eachjobihas astarttime s; and finish time f;
* Two jobs are “compatible” if they don’t overlap
* Eachjobiasaweightv;
* Goal: Find the max-weight subset of mutually compatible jobs.

Job 2 (5)

Weighted Interval Scheduling

* Input: AlistofnjobsL
 Eachjobihas astarttime s; and finish time f;
* Two jobs are “compatible” if they don’t overlap
* Eachjobiasaweightv;

* Goal: Find the max-weight subset of mutually compatible jobs.

Jobii (v;)

Job 4 (1)

Job 2 (1)

Weighted Interval Scheduling

* Input: AlistofnjobsL
 Eachjobihas astarttime s; and finish time f;
* Two jobs are “compatible” if they don’t overlap
* Eachjobi1asaweightv
* Goal: Find the max-weight subset of mutually compatible jobs.

Unweighted Case

* Question: What algorithm do we use to find the maximum weight
subset when the weight of each job is 17

Unweighted Case

* Question: What algorithm do we use to find the maximum weight
subset when the weight of each job is 17

* Answer: We use a greedy algorithm where we scan from left to right
and always take the next job to finish.

Weighted Case

* Question: Does this greedy algorithm work for other weights?

Weighted Case

* Question: Does this greedy algorithm work for other weights?
* Answer: No, there could be a situation where the number of jobs
iIsn’t the thing to maximize.

Job 4 (5)

Weighted Case

* Question: Does this greedy algorithm work for other weights?
* Answer: No, there could be a situation where the number of jobs
iIsn’t the thing to maximize.

Divide & Conquer Approach

* Question: How would divide and conquer work for this problem?

Divide & Conquer Approach

* Question: How would divide and conquer work for this problem?
* Answer: You might try to split the time in half or even put half of the
jobs in both halves.

Divide & Conquer Approach

* Question: How would divide and conquer work for this problem?
* Answer: You might try to split the time in half or even put half of the

jobs in both halves.
* However, some problems may not split as easily...

Divide & Conquer Approach

* Question: How would divide and conquer work for this problem?
* Answer: You might try to split the time in half or even put half of the

jobs in both halves.
* However, some problems may not split as easily...

Divide & Conquer Approach

* Question: Consider an arbitrary instance with optimal solution OPT.

What do we know about job 17?

Job 6 (?)
Job 2 (?)

Binary Choice

* Question: Consider an arbitrary instance with optimal solution OPT.
What do we know about job 17?
* Answer: Itiseitherin OPT oritis not.

Binary Choice

* |Inagreedy algorithm we are assuming about ifjob 1isin the
optimal solution.
* QOurgreedyrule doesn’t work anymore if we don’t know the
weight.
* Question: Why not try both options?

Job 6 (?)
Job 2 (?)

Binary Choice

* Suppose | gave you the hint that Job 1 was in OPT.
* Question: What do you need to do to find the rest of
OPT?

Job 6 (?)

Binary Choice

* Suppose | gave you the hint that Job 1 was in OPT.

* Question: What do you need to do to find the rest of
OPT?

* Answer: Recurse on ajob withoutJob 1 orJob 2
(since they don’t agree). Job 4 (2)

Job 6 (?)

Binary Choice

* Suppose | gave you the hint that Job 1 was in OPT.
* Question: What do you need to do to find the rest of
OPT?

Job 6 (?)

Binary Choice

* Suppose | gave you the hint that Job 1 was not in OPT.

* Question: What do you need to do to find the rest of
OPT?

* Answer: Recurse on ajob withoutJob 1.

Job 6 (?)

Binary Choice

* Observation: In both cases, we found a smaller
Instance of the problem to consider!

Job 6 (?)
Job 2 (?)

Binary Choice

* Assume our list of n jobs are sorted by finish times.
* Forallj € [n],
* LetS5; be the optimal solution on the first j jobs.
 Let OPT(j) be the value of that solution.
* Letp(j) belargestisuchthati < jandlJobiis
computable with Job j.
* Letp(j) =0Iif nojobs exist.

Binary Choice

Binary Choice

 Now we can write

OPT(j) = max{(v; + OPT(p(j)),OPT(j — 1)}

Binary Choice
* Now we can write
OPT(j) = max{(v; + OPT(p(j)),OPT(j — 1)}

English: The optimum solution for the first j jobs either uses
Jobjoritdoes not. The maximum of these two choices is the
optimum.

Binary Choice

 Now we can write

We take Job J.

We consider the next job.

\

/

OPT(j) = max{(v; + OPT(p(j)),OPT(j — 1)}

English: The optimum solution for the first j jobs either uses
Jobjoritdoes not. The maximum of these two choices is the

optimum.

Binary Choice Algorithm

Brute-Force (L) :

Ssort L by job finish times.

Compute p[1]

for each 1 using binary search.

Return Compute-Opt (n)

Compute-Opt (7) :

If (3 == 0):

Return O

else:

Return Max (Compute-Opt (j-1), v[j] + Compute-Opt (p[j])}

Question: What is the runtime?

Brute-Force (L) :

Ssort L by job finish times.

Compute p[1]

for each 1 using binary search.

Return Compute-Opt (n)

Compute-Opt (7) :

If (3 == 0):

Return O

else:

Return Max (Compute-Opt (j-1), v[j] + Compute-Opt (p[j])}

Question: What is the runtime?

Brute-Force (L) :
Ssort L by job finish times.
- - : - O(nlog(n))
Compute pl[1] for each 1 using binary search.
Return Compute-Opt (n)

Compute-Opt (7) :
If (3 == 0):
Return 0O
else:
Return Max (Compute-Opt (7-1), v[j] + Compute-Opt(p[j]l)}

Answer: Could be exponential

Brute-Force (L) :

Ssort L by job finish times.

Compute p[1]

for each 1 using binary search.

Return Compute-Opt (n)

Compute-Opt (7) :

If (3 == 0):

Return O

else:

Return Max (Compute-Opt (j-1), v[j] + Compute-Opt (p[j])}

Recursion Tree

For each OPT(i) we draw an
arrow to the subproblems
we need to solve to solve it. i
It is possible that the tree

has linear depth, and each o
Internal node has two
children.

Notice that some problems
appear more than once!

orT(6)

O

orT(1) ort(1)

The tree of subproblems
grows very quickly.

orT(1)

Memoization

Notice that some problems
appear more than once!

orT(6)

* What if our algorithm never -

computed the answer to the
same subproblem more o (3)
than once?

Let’s keep track of our
answers using an array.

O

orT(1) ort(1)

The tree of subproblems
grows very quickly.

ort(1)

DYNAMIC ENTROPY

s IMPOSSIBLE. To USE THE WORD "YOU SHOULD CALL IT 'ENTROPY"..
'DYNAMIC' IN THE PEJORATIVE NO ONE KNOWS WHAT ENTROPY
SENSE ...THUS, I THOUGHT DYNAMIC REALLY 15 S0 IN A DEBATE. YOU
PROGRAMMING' LJAS A GOOD NAME." WILL ALWAYS HAVE THE ADVANTAGE.

DYWANMIC ENTROPY

SCUENCE. TIP: IF YOU HAVE A COoL CONCEPT YOU
NEED A NAME FOR, TRY “DYNAMIC ENTROPY.

https://xkcd.com/2318/

https://xkcd.com/2318

Remember Remember

Brute-Force (L) :
Sort L by job finish times.
Compute p[1] for each 1 using binary search.
Global M = [], M[O] = O
Return Compute-Opt (n)

M-Compute-0pt (7J) :
If J not 1n M:
M[J] = Max (M-Compute-Opt(j-1), v[J] + M-Compute-Opt (p[7]

Return M[7]

Memoization Runtime

Brute-Force (L) :
Sort L by job finish times.
Compute p[1] for each 1 using binary search.
Global M = [], M[O] = O
Return Compute-Opt (n)

M-Compute-0pt (7J) :
If J not 1n M:
M[J] = Max (M-Compute-Opt(j-1), v[J] + M-Compute-Opt (p[7]

Return M[7]

Memoization Runtime

* We will show that the runtime is O(nlog(n)).
* The preprocessing takes O(nlog(n)) time.
* The M-Compute-Opt(n) call takes O(n) time.

Memoization Runtime

* The M-Compute-Opt(n) call takes O(n) time.
* To bound the runtime, we will introduce a "progress measure”. Namely, we
will track how many entries in M are uninitialized.
* Eachtime we initialize an entry of M, we make two recursive calls which
takes constant time.

 Since M will only have at most O(n) entries, it follows that the runtime is at
most O(n) as desired.

Top-Down Dynamic Programming

Brute-Force (L) :
Sort L by job finish times.
Compute p[1] for each 1 using binary search.
Global M = [], M[O] = O
Return Compute-Opt (n)

M-Compute-0pt (7J) :
If J not 1n M:
M[J] = Max (M-Compute-Opt(j-1), v[J] + M-Compute-Opt (p[7]

Return M[7]

Top-Down Dynamic Programming

oPT(6)

oPT(3) orT(2) ort(1)

orT(3)

O

orT(1) ort(1)

The tree of subproblems
grows very quickly.

ort(1)

Next Time

* Recover Optimal Solutions

* Bottom-Up Dynamic Programming

* Process of coming up with Dynamic Programming
algorithm.

	Slide 1: CSE 331: Algorithms & Complexity
	Slide 2
	Slide 3: Schedule
	Slide 4: Course Updates
	Slide 5: Reading
	Slide 6: Weighted Interval Scheduling
	Slide 7: Weighted Interval Scheduling
	Slide 8: Weighted Interval Scheduling
	Slide 9: Unweighted Case
	Slide 10: Unweighted Case
	Slide 11: Weighted Case
	Slide 12: Weighted Case
	Slide 13: Weighted Case
	Slide 14: Divide & Conquer Approach
	Slide 15: Divide & Conquer Approach
	Slide 16: Divide & Conquer Approach
	Slide 17: Divide & Conquer Approach
	Slide 18: Divide & Conquer Approach
	Slide 19: Binary Choice
	Slide 20: Binary Choice
	Slide 21: Binary Choice
	Slide 22: Binary Choice
	Slide 23: Binary Choice
	Slide 24: Binary Choice
	Slide 25: Binary Choice
	Slide 26: Binary Choice
	Slide 27: Binary Choice
	Slide 28: Binary Choice
	Slide 29: Binary Choice
	Slide 30: Binary Choice
	Slide 31: Binary Choice Algorithm
	Slide 32: Question: What is the runtime?
	Slide 33: Question: What is the runtime?
	Slide 34: Answer: Could be exponential
	Slide 35: Recursion Tree
	Slide 36: Memoization
	Slide 37
	Slide 38: Remember Remember
	Slide 39: Memoization Runtime
	Slide 40: Memoization Runtime
	Slide 41: Memoization Runtime
	Slide 42: Top-Down Dynamic Programming
	Slide 43: Top-Down Dynamic Programming
	Slide 44: Next Time

