
CSE 331:
Algorithms & Complexity

Prof. Charlie Anne Carlson (She/Her)
Lecture 28

Monday Nov 7th, 2025

“Dynamic Programming”

https://xkcd.com/399/

https://xkcd.com/399

Schedule

1.Course Updates
2.Weighted Interval

Scheduling
3.Memoization
4.Dynamic

Programming

Course Updates
• HW 6 Out

• Autolab Up
• Due November 11th

• Group Project
• Code 3 Due November 24th

• Reflections 3 Due December 1st

• Check Piazza for Google Form
Review Link (before Friday)

• Next Quiz is December 1st

Reading

• You should have read:
• Started 6.1
• Started 6.2

• Before Next Class:
• Finish 6.1
• Finish 6.2

Weighted Interval Scheduling
• Input: A list of n jobs L

• Each job i has a start time 𝑠𝑖 and finish time 𝑓𝑖

• Two jobs are “compatible” if they don’t overlap
• Each job i as a weight v𝑖

• Goal: Find the max-weight subset of mutually compatible jobs.

Start End

Time:

Job 1 (1)

Job 2 (5)

Job 3 (1) Job 5 (1)

Job 4 (3)

Weighted Interval Scheduling
• Input: A list of n jobs L

• Each job i has a start time 𝑠𝑖 and finish time 𝑓𝑖

• Two jobs are “compatible” if they don’t overlap
• Each job i as a weight v𝑖

• Goal: Find the max-weight subset of mutually compatible jobs.

Start End

Time:

Job 1 (1)

Job 2 (1)

Job 3 (1) Job 5 (1)

Job 4 (1)

Job i (v𝑖)

Weighted Interval Scheduling
• Input: A list of n jobs L

• Each job i has a start time 𝑠𝑖 and finish time 𝑓𝑖

• Two jobs are “compatible” if they don’t overlap
• Each job i as a weight v

• Goal: Find the max-weight subset of mutually compatible jobs.

Start End

Time:

Job 1 (1)

Job 2 (1)

Job 3 (1) Job 5 (1)

Job 4 (1)

Unweighted Case
• Question: What algorithm do we use to find the maximum weight

subset when the weight of each job is 1?

Start End

Time:

Job 1 (1)

Job 2 (1)

Job 3 (1) Job 5 (1)

Job 4 (1)

Unweighted Case
• Question: What algorithm do we use to find the maximum weight

subset when the weight of each job is 1?
• Answer: We use a greedy algorithm where we scan from left to right

and always take the next job to finish.

Start End

Time:

Job 1 (1)

Job 2 (1)

Job 3 (1) Job 5 (1)

Job 4 (1)

Weighted Case
• Question: Does this greedy algorithm work for other weights?

Start End

Time:

Job 1 (?)

Job 2 (?)

Job 3 (?) Job 5 (?)

Job 4 (?)

Weighted Case
• Question: Does this greedy algorithm work for other weights?
• Answer: No, there could be a situation where the number of jobs

isn’t the thing to maximize.

Start End

Time:

Job 1 (1)

Job 2 (5)

Job 3 (1) Job 5 (1)

Job 4 (5)

Weighted Case
• Question: Does this greedy algorithm work for other weights?
• Answer: No, there could be a situation where the number of jobs

isn’t the thing to maximize.

Start End

Time:

Job 1 (1)

Job 2 (5)

Job 3 (1) Job 5 (1)

Job 4 (5)

Divide & Conquer Approach
• Question: How would divide and conquer work for this problem?

Start End

Time:

Job 1 (1)

Job 2 (5)

Job 3 (1) Job 5 (1)

Job 4 (5)

Divide & Conquer Approach
• Question: How would divide and conquer work for this problem?
• Answer: You might try to split the time in half or even put half of the

jobs in both halves.

Start End

Time:

Job 1 (1)

Job 2 (5)

Job 3 (1) Job 5 (1)

Job 4 (5)

Cut

Divide & Conquer Approach
• Question: How would divide and conquer work for this problem?
• Answer: You might try to split the time in half or even put half of the

jobs in both halves.
• However, some problems may not split as easily…

Start End

Time:

Job 1 (1)

Job 2 (5)

Job 3 (1) Job 5 (1)

Job 4 (5)

Cut

Job 6 (1)

Divide & Conquer Approach
• Question: How would divide and conquer work for this problem?
• Answer: You might try to split the time in half or even put half of the

jobs in both halves.
• However, some problems may not split as easily…

Start End

Time:

Job 1 (1)

Job 2 (5)

Job 3 (1) Job 5 (1)

Job 4 (5)

Cut

Job 6 (1)

Divide & Conquer Approach
• Question: Consider an arbitrary instance with optimal solution OPT.

What do we know about job 1?

End

Time:

Start End

Job 1 (?)

Job 2 (?)

Job 3 (?) Job 5 (?)

Job 4 (?)

Job 6 (?)

Binary Choice
• Question: Consider an arbitrary instance with optimal solution OPT.

What do we know about job 1?
• Answer: It is either in OPT or it is not.

End

Time:

Start End

Job 1 (?)

Job 2 (?)

Job 3 (?) Job 5 (?)

Job 4 (?)

Job 6 (?)

Binary Choice
• In a greedy algorithm we are assuming about if job 1 is in the

optimal solution.
• Our greedy rule doesn’t work anymore if we don’t know the

weight.
• Question: Why not try both options?

End

Time:

Start End

Job 1 (?)

Job 2 (?)

Job 3 (?) Job 5 (?)

Job 4 (?)

Job 6 (?)

Binary Choice

• Suppose I gave you the hint that Job 1 was in OPT.
• Question: What do you need to do to find the rest of

OPT?

End

Time:

Start End

Job 1 (?)

Job 2 (?)

Job 3 (?) Job 5 (?)

Job 4 (?)

Job 6 (?)

Binary Choice

• Suppose I gave you the hint that Job 1 was in OPT.
• Question: What do you need to do to find the rest of

OPT?
• Answer: Recurse on a job without Job 1 or Job 2

(since they don’t agree).

End

Time:

Start End

Job 3 (?) Job 5 (?)

Job 4 (?)

Job 6 (?)

Binary Choice

• Suppose I gave you the hint that Job 1 was in OPT.
• Question: What do you need to do to find the rest of

OPT?

End

Time:

Start End

Job 1 (?)

Job 2 (?)

Job 3 (?) Job 5 (?)

Job 4 (?)

Job 6 (?)

Binary Choice

• Suppose I gave you the hint that Job 1 was not in OPT.
• Question: What do you need to do to find the rest of

OPT?
• Answer: Recurse on a job without Job 1.

End

Time:

Start End

Job 3 (?) Job 5 (?)

Job 2 (?)

Job 3 (?) Job 5 (?)

Job 4 (?)

Job 6 (?)

Binary Choice

• Observation: In both cases, we found a smaller
instance of the problem to consider!

End

Time:

Start End

Job 3 (?) Job 5 (?)

Job 2 (?)

Job 3 (?) Job 5 (?)

Job 4 (?)

Job 6 (?)

Job 1 (?)

Binary Choice

• Assume our list of n jobs are sorted by finish times.
• For all j ∈ [n],
• Let 𝑆𝑗 be the optimal solution on the first j jobs.
• Let OPT(j) be the value of that solution.
• Let p(j) be largest i such that i < j and Job i is

computable with Job j.
• Let p(j) = 0 if no jobs exist.

End

Time:

Start End

Binary Choice
• p(1) = 0
• p(2) = 0
• p(3) = 2
• p(4) = 2
• p(5) = 3
• p(6) = 1

End

Time:

Start End

Job 3 (?) Job 5 (?)

Job 2 (?)

Job 3 (?) Job 5 (?)

Job 4 (?)

Job 6 (?)

Job 1 (?)

Binary Choice
• Now we can write

𝑂𝑃𝑇(𝑗) = 𝑚𝑎𝑥{(𝑣𝑗 + 𝑂𝑃𝑇(𝑝(𝑗)), 𝑂𝑃𝑇(𝑗 − 1)}

End

Time:

Start End

Binary Choice
• Now we can write

𝑂𝑃𝑇(𝑗) = 𝑚𝑎𝑥{(𝑣𝑗 + 𝑂𝑃𝑇(𝑝(𝑗)), 𝑂𝑃𝑇(𝑗 − 1)}

English: The optimum solution for the first j jobs either uses
Job j or it does not. The maximum of these two choices is the
optimum.

End

Time:

Start End

Binary Choice
• Now we can write

𝑂𝑃𝑇(𝑗) = 𝑚𝑎𝑥{(𝑣𝑗 + 𝑂𝑃𝑇(𝑝(𝑗)), 𝑂𝑃𝑇(𝑗 − 1)}

English: The optimum solution for the first j jobs either uses
Job j or it does not. The maximum of these two choices is the
optimum.

End

Time:

Start End

We take Job J. We consider the next job.

Binary Choice Algorithm
Brute-Force(L):

 Sort L by job finish times.

 Compute p[i] for each i using binary search.

 Return Compute-Opt(n)

Compute-Opt(j):

 If (j == 0):

 Return 0

 else:

 Return Max(Compute-Opt(j-1), v[j] + Compute-Opt(p[j])}

End

Time:

Start End

Question: What is the runtime?
Brute-Force(L):

 Sort L by job finish times.

 Compute p[i] for each i using binary search.

 Return Compute-Opt(n)

Compute-Opt(j):

 If (j == 0):

 Return 0

 else:

 Return Max(Compute-Opt(j-1), v[j] + Compute-Opt(p[j])}

End

Time:

Start End

Question: What is the runtime?
Brute-Force(L):

 Sort L by job finish times.

 Compute p[i] for each i using binary search.

 Return Compute-Opt(n)

Compute-Opt(j):

 If (j == 0):

 Return 0

 else:

 Return Max(Compute-Opt(j-1), v[j] + Compute-Opt(p[j])}

End

Time:

Start End

O(nlog(n))

Answer: Could be exponential
Brute-Force(L):

 Sort L by job finish times.

 Compute p[i] for each i using binary search.

 Return Compute-Opt(n)

Compute-Opt(j):

 If (j == 0):

 Return 0

 else:

 Return Max(Compute-Opt(j-1), v[j] + Compute-Opt(p[j])}

End

Time:

Start End

Recursion Tree
• For each OPT(i) we draw an

arrow to the subproblems
we need to solve to solve it.

• It is possible that the tree
has linear depth, and each
internal node has two
children.

• Notice that some problems
appear more than once!

Memoization
• Notice that some problems

appear more than once!
• What if our algorithm never

computed the answer to the
same subproblem more
than once?

• Let’s keep track of our
answers using an array.

https://xkcd.com/2318/

https://xkcd.com/2318

Remember Remember
Brute-Force(L):

 Sort L by job finish times.

 Compute p[i] for each i using binary search.

 Global M = [], M[0] = 0

 Return Compute-Opt(n)

M-Compute-Opt(j):

 If j not in M:

 M[j] = Max(M-Compute-Opt(j-1), v[j] + M-Compute-Opt(p[j])}

 Return M[j]

End

Time:

Start End

Memoization Runtime
Brute-Force(L):

 Sort L by job finish times.

 Compute p[i] for each i using binary search.

 Global M = [], M[0] = 0

 Return Compute-Opt(n)

M-Compute-Opt(j):

 If j not in M:

 M[j] = Max(M-Compute-Opt(j-1), v[j] + M-Compute-Opt(p[j])}

 Return M[j]

End

Time:

Start End

Memoization Runtime
• We will show that the runtime is O(nlog(n)).

• The preprocessing takes O(nlog(n)) time.
• The M-Compute-Opt(n) call takes O(n) time.

End

Time:

Start End

Memoization Runtime
• The M-Compute-Opt(n) call takes O(n) time.

• To bound the runtime, we will introduce a ”progress measure”. Namely, we
will track how many entries in M are uninitialized.

• Each time we initialize an entry of M, we make two recursive calls which
takes constant time.

• Since M will only have at most O(n) entries, it follows that the runtime is at
most O(n) as desired.

End

Time:

Start End

Top-Down Dynamic Programming
Brute-Force(L):

 Sort L by job finish times.

 Compute p[i] for each i using binary search.

 Global M = [], M[0] = 0

 Return Compute-Opt(n)

M-Compute-Opt(j):

 If j not in M:

 M[j] = Max(M-Compute-Opt(j-1), v[j] + M-Compute-Opt(p[j])}

 Return M[j]

End

Time:

Start End

Top-Down Dynamic Programming

Next Time
• Recover Optimal Solutions
• Bottom-Up Dynamic Programming
• Process of coming up with Dynamic Programming

algorithm.

	Slide 1: CSE 331: Algorithms & Complexity
	Slide 2
	Slide 3: Schedule
	Slide 4: Course Updates
	Slide 5: Reading
	Slide 6: Weighted Interval Scheduling
	Slide 7: Weighted Interval Scheduling
	Slide 8: Weighted Interval Scheduling
	Slide 9: Unweighted Case
	Slide 10: Unweighted Case
	Slide 11: Weighted Case
	Slide 12: Weighted Case
	Slide 13: Weighted Case
	Slide 14: Divide & Conquer Approach
	Slide 15: Divide & Conquer Approach
	Slide 16: Divide & Conquer Approach
	Slide 17: Divide & Conquer Approach
	Slide 18: Divide & Conquer Approach
	Slide 19: Binary Choice
	Slide 20: Binary Choice
	Slide 21: Binary Choice
	Slide 22: Binary Choice
	Slide 23: Binary Choice
	Slide 24: Binary Choice
	Slide 25: Binary Choice
	Slide 26: Binary Choice
	Slide 27: Binary Choice
	Slide 28: Binary Choice
	Slide 29: Binary Choice
	Slide 30: Binary Choice
	Slide 31: Binary Choice Algorithm
	Slide 32: Question: What is the runtime?
	Slide 33: Question: What is the runtime?
	Slide 34: Answer: Could be exponential
	Slide 35: Recursion Tree
	Slide 36: Memoization
	Slide 37
	Slide 38: Remember Remember
	Slide 39: Memoization Runtime
	Slide 40: Memoization Runtime
	Slide 41: Memoization Runtime
	Slide 42: Top-Down Dynamic Programming
	Slide 43: Top-Down Dynamic Programming
	Slide 44: Next Time

