
CSE 331:
Algorithms & Complexity

Prof. Charlie Anne Carlson (She/Her)
Lecture 29

Monday Nov 10th, 2025

“Top-Down DP”

https://xkcd.com/2318/

https://xkcd.com/2318

Schedule

1.Course Updates
2.Weighted Interval

Scheduling
3.Top-Down
4.Recovering Solution
5.Bottom-Up

Course Updates
• HW 6 Due Tomorrow
• HW 7 Out Tomorrow

• Due November 18th
• Group Project

• Code 3 Due November 24th

• Reflections 3 Due December 1st

• Next Quiz is December 1st

Reading

• You should have read:
• Finished 6.1
• Finished 6.2

• Before Next Class:
• Start 6.4

Weighted Interval Scheduling
• Input: A list of n jobs L

• Each job i has a start time 𝑠𝑖 and finish time 𝑓𝑖

• Two jobs are “compatible” if they don’t overlap
• Each job i as a weight v𝑖

• Goal: Find the max-weight subset of mutually compatible jobs.

Start End

Time:

Job 1 (1)

Job 2 (5)

Job 3 (1) Job 5 (1)

Job 4 (3)

Divide & Conquer Approach
• Question: Consider an arbitrary instance with optimal solution OPT.

What do we know about job 1?

End

Time:

Start End

Job 1 (?)

Job 2 (?)

Job 3 (?) Job 5 (?)

Job 4 (?)

Job 6 (?)

Binary Choice
• Question: Consider an arbitrary instance with optimal solution OPT.

What do we know about job 1?
• Answer: It is either in OPT or it is not.

End

Time:

Start End

Job 1 (?)

Job 2 (?)

Job 3 (?) Job 5 (?)

Job 4 (?)

Job 6 (?)

Binary Choice

• Assume our list of n jobs are sorted by finish times.
• For all j ∈ [n],
• Let 𝑆𝑗 be the optimal solution on the first j jobs.
• Let OPT(j) be the value of that solution.
• Let p(j) be largest i such that i < j and Job i is

computable with Job j.
• Let p(j) = 0 if no jobs exist.

End

Time:

Start End

Binary Choice
• Now we can write

𝑂𝑃𝑇(𝑗) = 𝑚𝑎𝑥{(𝑣𝑗 + 𝑂𝑃𝑇(𝑝(𝑗)), 𝑂𝑃𝑇(𝑗 − 1)}

End

Time:

Start End

Binary Choice
• Now we can write

𝑂𝑃𝑇(𝑗) = 𝑚𝑎𝑥{(𝑣𝑗 + 𝑂𝑃𝑇(𝑝(𝑗)), 𝑂𝑃𝑇(𝑗 − 1)}

English: The optimum solution for the first j jobs either uses
Job j or it does not. The maximum of these two choices is the
optimum.

End

Time:

Start End

Binary Choice
• Now we can write

𝑂𝑃𝑇(𝑗) = 𝑚𝑎𝑥{(𝑣𝑗 + 𝑂𝑃𝑇(𝑝(𝑗)), 𝑂𝑃𝑇(𝑗 − 1)}

English: The optimum solution for the first j jobs either uses
Job j or it does not. The maximum of these two choices is the
optimum.

End

Time:

Start End

We take Job J. We consider the next job.

Binary Choice Algorithm
Brute-Force(L):

 Sort L by job finish times.

 Compute p[i] for each i using binary search.

 Return Compute-Opt(n)

Compute-Opt(j):

 If (j == 0):

 Return 0

 else:

 Return Max(Compute-Opt(j-1), v[j] + Compute-Opt(p[j])}

End

Time:

Start End

Question: What is the runtime?
Brute-Force(L):

 Sort L by job finish times.

 Compute p[i] for each i using binary search.

 Return Compute-Opt(n)

Compute-Opt(j):

 If (j == 0):

 Return 0

 else:

 Return Max(Compute-Opt(j-1), v[j] + Compute-Opt(p[j])}

End

Time:

Start End

Question: What is the runtime?
Brute-Force(L):

 Sort L by job finish times.

 Compute p[i] for each i using binary search.

 Return Compute-Opt(n)

Compute-Opt(j):

 If (j == 0):

 Return 0

 else:

 Return Max(Compute-Opt(j-1), v[j] + Compute-Opt(p[j])}

End

Time:

Start End

O(nlog(n))

Answer: Could be exponential
Brute-Force(L):

 Sort L by job finish times.

 Compute p[i] for each i using binary search.

 Return Compute-Opt(n)

Compute-Opt(j):

 If (j == 0):

 Return 0

 else:

 Return Max(Compute-Opt(j-1), v[j] + Compute-Opt(p[j])}

End

Time:

Start End

Recursion Tree
• For each OPT(i) we draw an

arrow to the subproblems
we need to solve to solve it.

• It is possible that the tree
has linear depth, and each
internal node has two
children.

• Notice that some problems
appear more than once!

Memoization
• Notice that some problems

appear more than once!
• What if our algorithm never

computed the answer to the
same subproblem more
than once?

• Let’s keep track of our
answers using an array.

Memoization Runtime
Brute-Force(L):

 Sort L by job finish times.

 Compute p[i] for each i using binary search.

 Global M = [], M[0] = 0

 Return Compute-Opt(n)

M-Compute-Opt(j):

 If j not in M:

 M[j] = Max(M-Compute-Opt(j-1), v[j] + M-Compute-Opt(p[j])}

 Return M[j]

End

Time:

Start End

Memoization Runtime
• We will show that the runtime is O(nlog(n)).

• The preprocessing takes O(nlog(n)) time.
• The M-Compute-Opt(n) call takes O(n) time.

End

Time:

Start End

Memoization Runtime
• The M-Compute-Opt(n) call takes O(n) time.

• To bound the runtime, we will introduce a ”progress measure”. Namely, we
will track how many entries in M are uninitialized.

• Each time we initialize an entry of M, we make two recursive calls which
takes constant time.

• Since M will only have at most O(n) entries, it follows that the runtime is at
most O(n) as desired.

End

Time:

Start End

Top-Down Dynamic Programming
Brute-Force(L):

 Sort L by job finish times.

 Compute p[i] for each i using binary search.

 Global M = [], M[0] = 0

 Return Compute-Opt(n)

M-Compute-Opt(j):

 If j not in M:

 M[j] = Max(M-Compute-Opt(j-1), v[j] + M-Compute-Opt(p[j])}

 Return M[j]

End

Time:

Start End

Top-Down Dynamic Programming

Recovering Solution
Brute-Force(L):

 Sort L by job finish times.

 Compute p[i] for each i using binary search.

 Global M = [], M[0] = 0

 Return Compute-Opt(n)

M-Compute-Opt(j):

 If j not in M:

 M[j] = Max(M-Compute-Opt(j-1), v[j] + M-Compute-Opt(p[j])}

 Return M[j]

Question: How do we recover the solution?

Recovering Solution
Brute-Force(L):

 Sort L by job finish times.

 Compute p[i] for each i using binary search.

 Global M = [], M[0] = 0

 Compute-Opt(n)

 Return Find-Solution(n)

Find-Solution(j):

 If j == 0:

 return []

 Else if v[j] + M-Compute-Opt(p[j])} > M-Compute-Opt(j-1):

 return [j] ++ Find-Solution(p[j])

 Else:

 return Find-Solution(j-1)

Recovering Solution - O(n) Time
Brute-Force(L):

 Sort L by job finish times.

 Compute p[i] for each i using binary search.

 Global M = [], M[0] = 0

 Compute-Opt(n)

 Return Find-Solution(n)

Find-Solution(j):

 If j == 0:

 return []

 Else if v[j] + M-Compute-Opt(p[j])} > M-Compute-Opt(j-1):

 return [j] ++ Find-Solution(p[j])

 Else:

 return Find-Solution(j-1)

Bottom-Up
Brute-Force(L):

 Sort L by job finish times.

 Compute p[i] for each i using binary search.

 Global M = [], M[0] = 0

 Return Compute-Opt(n)

M-Compute-Opt(j):

 If j not in M:

 M[j] = Max(M-Compute-Opt(j-1), v[j] + M-Compute-Opt(p[j])}

 Return M[j]

Question: What can we say about M[1]?

Bottom-Up
Brute-Force(L):

 Sort L by job finish times.

 Compute p[i] for each i using binary search.

 Global M = [], M[0] = 0

 Return Compute-Opt(n)

M-Compute-Opt(j):

 If j not in M:

 M[j] = Max(M-Compute-Opt(j-1), v[j] + M-Compute-Opt(p[j])}

 Return M[j]

Answer: To compute M[1], we only need M[0].

Bottom-Up
Brute-Force(L):

 Sort L by job finish times.

 Compute p[i] for each i using binary search.

 Global M = [], M[0] = 0

 Return Compute-Opt(n)

M-Compute-Opt(j):

 If j not in M:

 M[j] = Max(M-Compute-Opt(j-1), v[j] + M-Compute-Opt(p[j])}

 Return M[j]

Question: What can we say about M[j]?

Bottom-Up
Brute-Force(L):

 Sort L by job finish times.

 Compute p[i] for each i using binary search.

 Global M = [], M[0] = 0

 Return Compute-Opt(n)

M-Compute-Opt(j):

 If j not in M:

 M[j] = Max(M-Compute-Opt(j-1), v[j] + M-Compute-Opt(p[j])}

 Return M[j]

Answer: To compute M[j], we only need M[i] for i < j.

Bottom-Up

Start End

Job 1 (1)

Job 2 (5)

Job 3 (1) Job 5 (1)

Job 4 (3)

M =
0 1 2 3 4 5

0

M-Compute-Opt(j):

 If j not in M:

 M[j] = Max(M-Compute-Opt(j-1), v[j] + M-Compute-Opt(p[j])}

 Return M[j]

Bottom-Up

Start End

Job 1 (1)

Job 2 (5)

Job 3 (1) Job 5 (1)

Job 4 (3)

M =
0 1 2 3 4 5

0

M-Compute-Opt(j):

 If j not in M:

 M[j] = Max(M-Compute-Opt(j-1), v[j] + M-Compute-Opt(p[j])}

 Return M[j]

Bottom-Up

Start End

Job 1 (1)

Job 2 (5)

Job 3 (1) Job 5 (1)

Job 4 (3)

M =
0 1 2 3 4 5

0

M-Compute-Opt(j):

 If j not in M:

 M[j] = Max(M-Compute-Opt(j-1), v[j] + M-Compute-Opt(p[j])}

 Return M[j]

1

Bottom-Up

Start End

Job 1 (1)

Job 2 (5)

Job 3 (1) Job 5 (1)

Job 4 (3)

M =
0 1 2 3 4 5

0

M-Compute-Opt(j):

 If j not in M:

 M[j] = Max(M-Compute-Opt(j-1), v[j] + M-Compute-Opt(p[j])}

 Return M[j]

1

Bottom-Up

Start End

Job 1 (1)

Job 2 (5)

Job 3 (1) Job 5 (1)

Job 4 (3)

M =
0 1 2 3 4 5

0

M-Compute-Opt(j):

 If j not in M:

 M[j] = Max(M-Compute-Opt(j-1), v[j] + M-Compute-Opt(p[j])}

 Return M[j]

1 5

Bottom-Up

Start End

Job 1 (1)

Job 2 (5)

Job 3 (1) Job 5 (1)

Job 4 (3)

M =
0 1 2 3 4 5

0

M-Compute-Opt(j):

 If j not in M:

 M[j] = Max(M-Compute-Opt(j-1), v[j] + M-Compute-Opt(p[j])}

 Return M[j]

1 5

Bottom-Up

Start End

Job 1 (1)

Job 2 (5)

Job 3 (1) Job 5 (1)

Job 4 (3)

M =
0 1 2 3 4 5

0

M-Compute-Opt(j):

 If j not in M:

 M[j] = Max(M-Compute-Opt(j-1), v[j] + M-Compute-Opt(p[j])}

 Return M[j]

1 5 6

Bottom-Up

Start End

Job 1 (1)

Job 2 (5)

Job 3 (1) Job 5 (1)

Job 4 (3)

M =
0 1 2 3 4 5

0

M-Compute-Opt(j):

 If j not in M:

 M[j] = Max(M-Compute-Opt(j-1), v[j] + M-Compute-Opt(p[j])}

 Return M[j]

1 5 6

Bottom-Up

Start End

Job 1 (1)

Job 2 (5)

Job 3 (1) Job 5 (1)

Job 4 (3)

M =
0 1 2 3 4 5

0

M-Compute-Opt(j):

 If j not in M:

 M[j] = Max(M-Compute-Opt(j-1), v[j] + M-Compute-Opt(p[j])}

 Return M[j]

1 5 6 8

Bottom-Up

Start End

Job 1 (1)

Job 2 (5)

Job 3 (1) Job 5 (1)

Job 4 (3)

M =
0 1 2 3 4 5

0

M-Compute-Opt(j):

 If j not in M:

 M[j] = Max(M-Compute-Opt(j-1), v[j] + M-Compute-Opt(p[j])}

 Return M[j]

1 5 6 8 8

Bottom-Up

M-Compute-Opt(j):

 If j not in M:

 M[j] = Max(M-Compute-Opt(j-1), v[j] + M-Compute-Opt(p[j])}

 Return M[j]

Instead of letting recursion decide the order, you compute them from the ”bottom”
cases and work your way up:

M-Compute-Opt-Bottom-Up(j):

 For i in [j]:

 M[i] = Max(M-Compute-Opt(i-1), v[i] + M-Compute-Opt(p[i])}

 Return M[j]

	Slide 1: CSE 331: Algorithms & Complexity
	Slide 2
	Slide 3: Schedule
	Slide 4: Course Updates
	Slide 5: Reading
	Slide 6: Weighted Interval Scheduling
	Slide 7: Divide & Conquer Approach
	Slide 8: Binary Choice
	Slide 9: Binary Choice
	Slide 10: Binary Choice
	Slide 11: Binary Choice
	Slide 12: Binary Choice
	Slide 13: Binary Choice Algorithm
	Slide 14: Question: What is the runtime?
	Slide 15: Question: What is the runtime?
	Slide 16: Answer: Could be exponential
	Slide 17: Recursion Tree
	Slide 18: Memoization
	Slide 19: Memoization Runtime
	Slide 20: Memoization Runtime
	Slide 21: Memoization Runtime
	Slide 22: Top-Down Dynamic Programming
	Slide 23: Top-Down Dynamic Programming
	Slide 24: Recovering Solution
	Slide 25: Recovering Solution
	Slide 26: Recovering Solution - O(n) Time
	Slide 27: Bottom-Up
	Slide 28: Bottom-Up
	Slide 29: Bottom-Up
	Slide 30: Bottom-Up
	Slide 31: Bottom-Up
	Slide 32: Bottom-Up
	Slide 33: Bottom-Up
	Slide 34: Bottom-Up
	Slide 35: Bottom-Up
	Slide 36: Bottom-Up
	Slide 37: Bottom-Up
	Slide 38: Bottom-Up
	Slide 39: Bottom-Up
	Slide 40: Bottom-Up
	Slide 41: Bottom-Up

