

# CSE 331: Algorithms & Complexity “Top-Down DP”

Prof. Charlie Anne Carlson (She/Her)

**Lecture 29**

Monday Nov 10th, 2025



**University at Buffalo®**

## DYNAMIC

"IT'S IMPOSSIBLE TO USE THE WORD 'DYNAMIC' IN THE PEJORATIVE SENSE... THUS, I THOUGHT 'DYNAMIC PROGRAMMING' WAS A GOOD NAME."

— RICHARD BELLMAN, EXPLAINING HOW HE PICKED A NAME FOR HIS MATH RESEARCH TO TRY TO PROTECT IT FROM CRITICISM (EYE OF THE HURRICANE, 1984)

## ENTROPY

"YOU SHOULD CALL IT 'ENTROPY'... NO ONE KNOWS WHAT ENTROPY REALLY IS, SO IN A DEBATE YOU WILL ALWAYS HAVE THE ADVANTAGE."

— JOHN VON NEUMANN, TO CLAUDE SHANNON, ON WHY HE SHOULD BORROW THE PHYSICS TERM IN INFORMATION THEORY (AS TOLD TO MYRON TRIBUS)

**DYNAMIC ENTROPY**

SCIENCE TIP: IF YOU HAVE A COOL CONCEPT YOU NEED A NAME FOR, TRY "DYNAMIC ENTROPY."

# Schedule

---

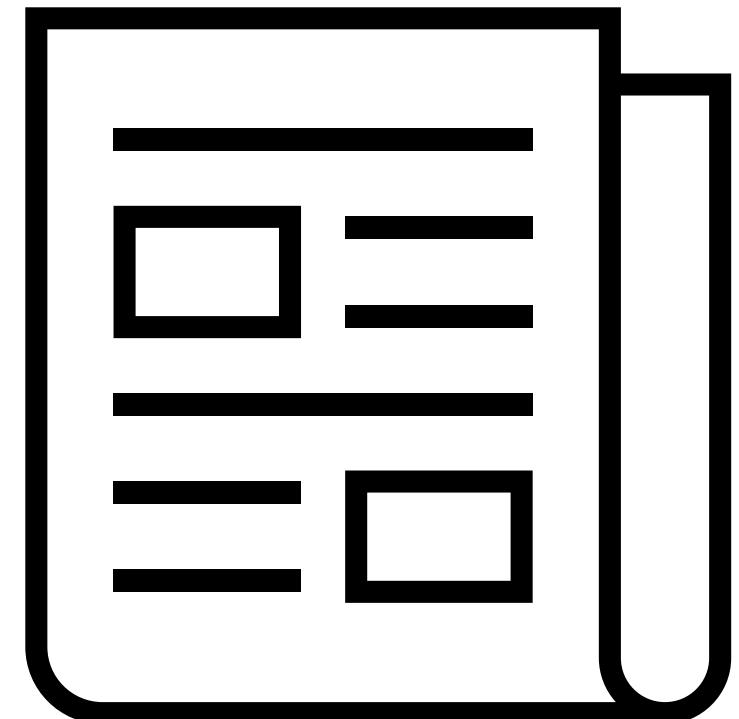
1. Course Updates
2. Weighted Interval Scheduling
3. Top-Down
4. Recovering Solution
5. Bottom-Up



# Course Updates

---

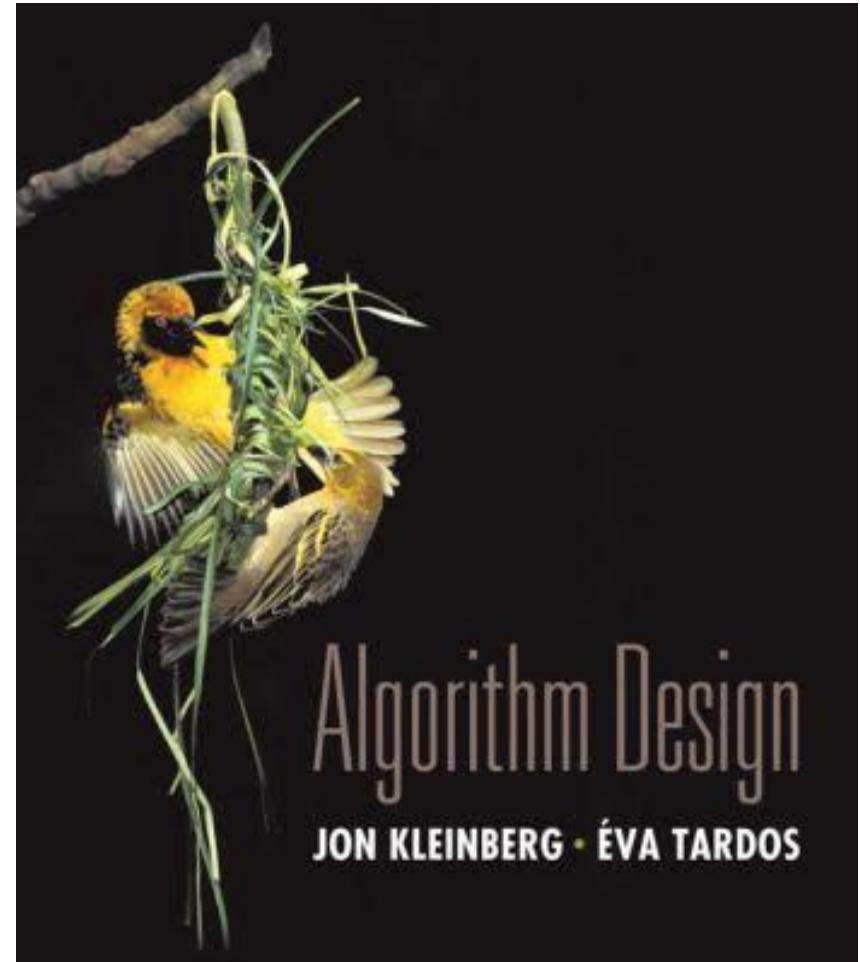
- HW 6 Due Tomorrow
- HW 7 Out Tomorrow
  - Due November 18<sup>th</sup>
- Group Project
  - Code 3 Due November 24<sup>th</sup>
  - Reflections 3 Due December 1<sup>st</sup>
- Next Quiz is December 1<sup>st</sup>



# Reading

---

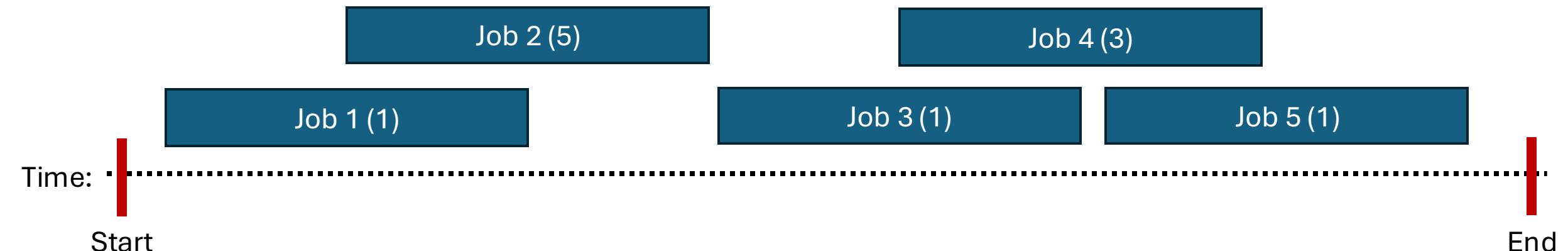
- You should have read:
  - Finished 6.1
  - Finished 6.2
- Before Next Class:
  - Start 6.4



# Weighted Interval Scheduling

---

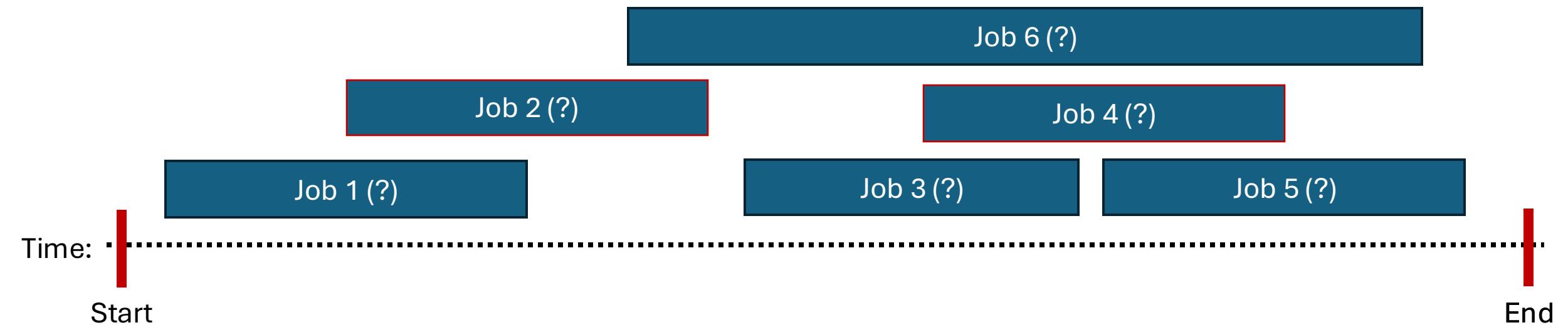
- **Input:** A list of  $n$  jobs  $L$ 
  - Each job  $i$  has a start time  $s_i$  and finish time  $f_i$
  - Two jobs are “compatible” if they don’t overlap
  - Each job  $i$  has a weight  $v_i$
- **Goal:** Find the max-weight subset of mutually compatible jobs.



# Divide & Conquer Approach

---

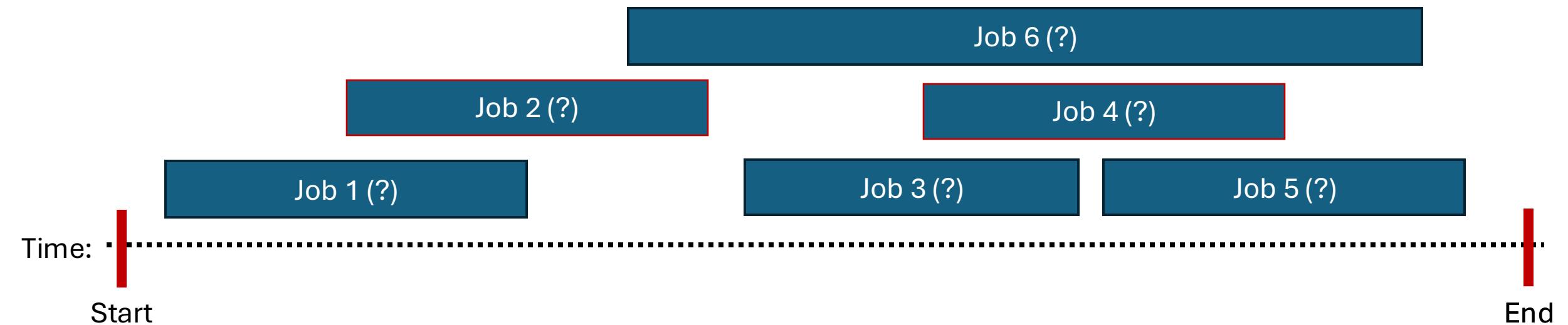
- **Question:** Consider an arbitrary instance with optimal solution OPT. What do we know about job 1?



# Binary Choice

---

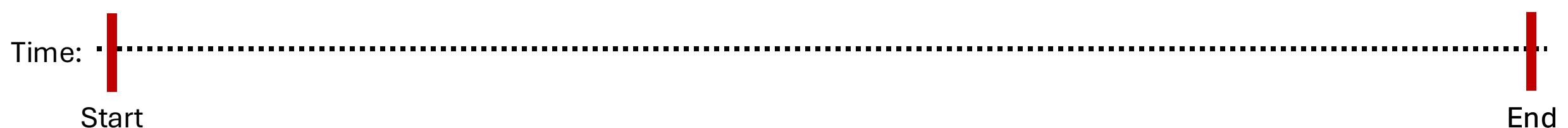
- **Question:** Consider an arbitrary instance with optimal solution OPT. What do we know about job 1?
- **Answer:** It is either in OPT or it is not.



# Binary Choice

---

- Assume our list of  $n$  jobs are sorted by finish times.
- For all  $j \in [n]$ ,
  - Let  $S_j$  be the optimal solution on the first  $j$  jobs.
  - Let  $\text{OPT}(j)$  be the value of that solution.
  - Let  $p(j)$  be largest  $i$  such that  $i < j$  and Job  $i$  is computable with Job  $j$ .
  - Let  $p(j) = 0$  if no jobs exist.

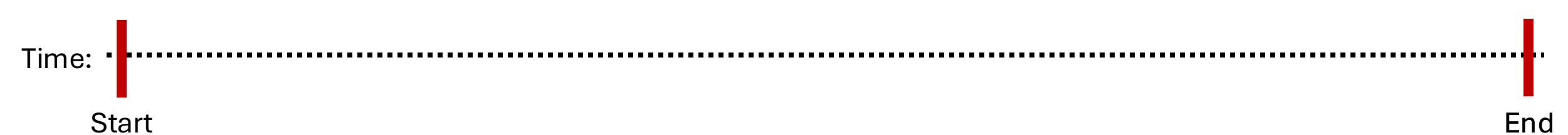


# Binary Choice

---

- Now we can write

$$OPT(j) = \max\{(\nu_j + OPT(p(j))), OPT(j - 1)\}$$



# Binary Choice

- Now we can write

$$OPT(j) = \max\{v_j + OPT(p(j)), OPT(j-1)\}$$

English: The optimum solution for the first  $j$  jobs either uses Job  $j$  or it does not. The maximum of these two choices is the optimum.

Time:

Start

End

# Binary Choice

---

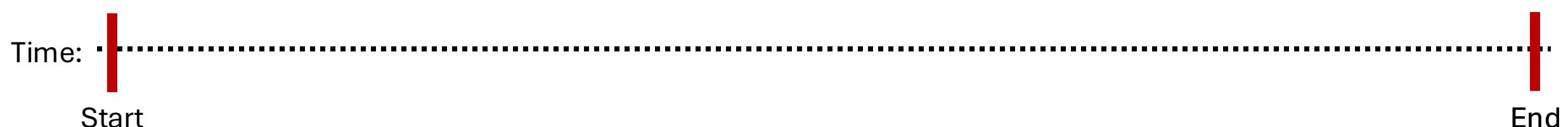
- Now we can write

We take Job J.

We consider the next job.

$$OPT(j) = \max\{v_j + OPT(p(j)), OPT(j - 1)\}$$

English: The optimum solution for the first  $j$  jobs either uses Job  $j$  or it does not. The maximum of these two choices is the optimum.



# Binary Choice Algorithm

---

Brute-Force( $L$ ) :

    Sort  $L$  by job finish times.

    Compute  $p[i]$  for each  $i$  using binary search.

    Return Compute-Opt( $n$ )

Compute-Opt( $j$ ) :

    If ( $j == 0$ ) :

        Return 0

    else:

        Return Max(Compute-Opt( $j-1$ ),  $v[j] + \text{Compute-Opt}(p[j])$  )

Time:



Start



End

# Question: What is the runtime?

---

Brute-Force( $L$ ) :

    Sort  $L$  by job finish times.

    Compute  $p[i]$  for each  $i$  using binary search.

    Return Compute-Opt( $n$ )

Compute-Opt( $j$ ) :

    If ( $j == 0$ ) :

        Return 0

    else:

        Return Max(Compute-Opt( $j-1$ ) ,  $v[j] + \text{Compute-Opt}(p[j])$  )

Time:



Start



End

# Question: What is the runtime?

---

Brute-Force( $L$ ) :

Sort  $L$  by job finish times.

Compute  $p[i]$  for each  $i$  using binary search.

Return Compute-Opt( $n$ )

$\boxed{O(n \log(n))}$

Compute-Opt( $j$ ) :

If ( $j == 0$ ) :

    Return 0

else:

    Return Max(Compute-Opt( $j-1$ ),  $v[j] + \text{Compute-Opt}(p[j])$ )

Time:



Start



End

# Answer: Could be exponential

---

Brute-Force( $L$ ) :

    Sort  $L$  by job finish times.

    Compute  $p[i]$  for each  $i$  using binary search.

    Return Compute-Opt( $n$ )

Compute-Opt( $j$ ) :

    If ( $j == 0$ ) :

        Return 0

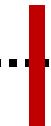
    else:

        Return Max(Compute-Opt( $j-1$ ),  $v[j] + \text{Compute-Opt}(p[j])$  )

Time:



Start

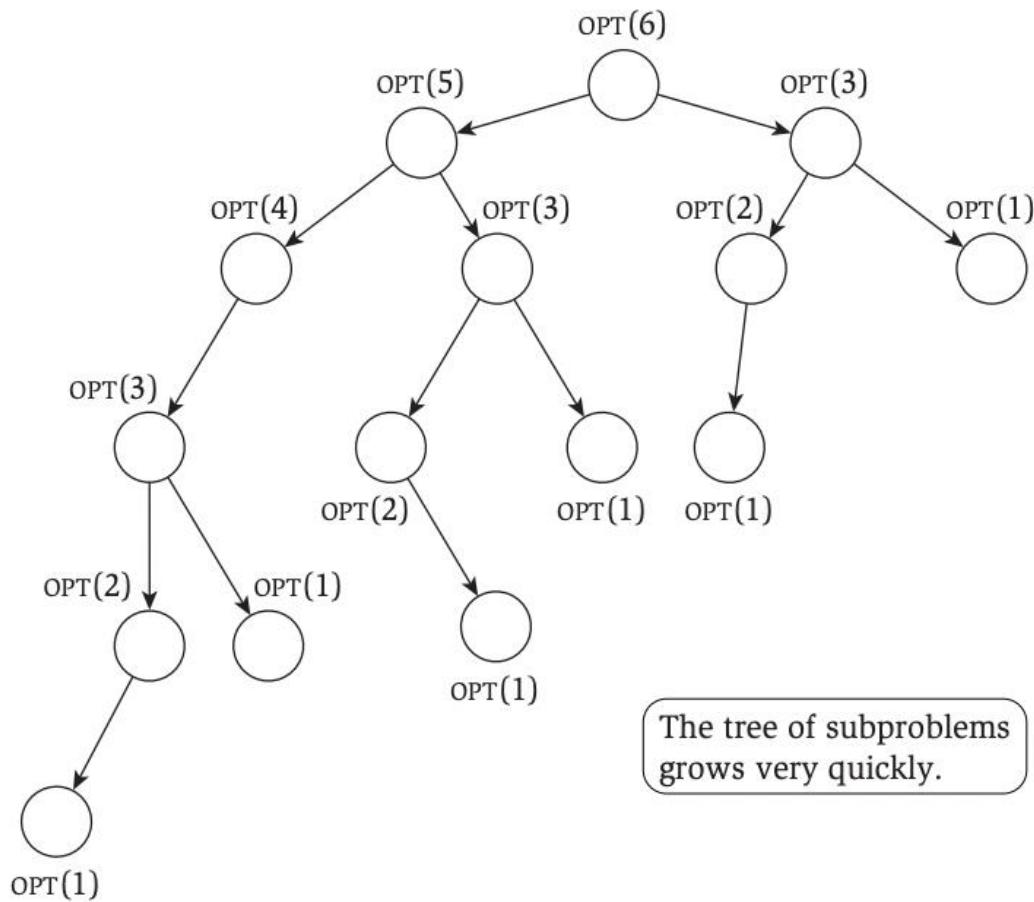


End

# Recursion Tree

---

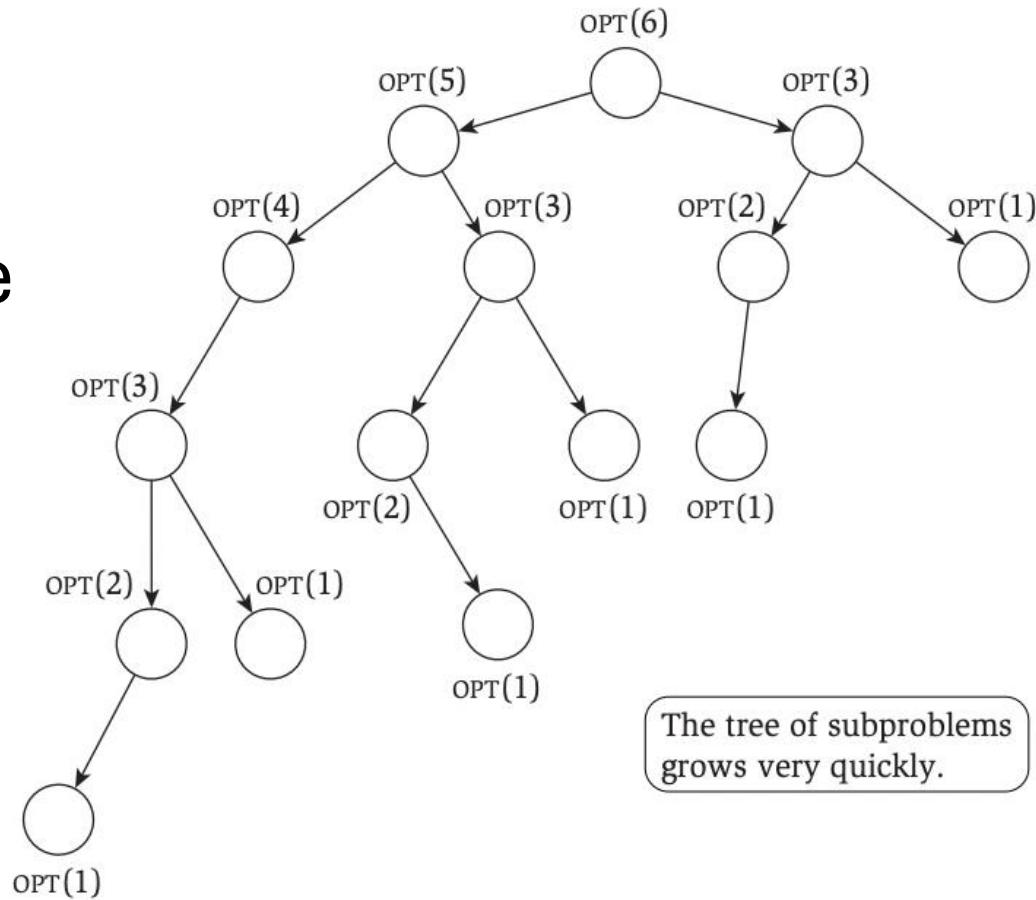
- For each  $\text{OPT}(i)$  we draw an arrow to the subproblems we need to solve to solve it.
- It is possible that the tree has linear depth, and each internal node has two children.
- Notice that some problems appear more than once!



# Memoization

---

- Notice that some problems appear more than once!
- What if our algorithm never computed the answer to the same subproblem more than once?
- Let's keep track of our answers using an array.



# Memoization Runtime

---

Brute-Force( $L$ ) :

Sort  $L$  by job finish times.

Compute  $p[i]$  for each  $i$  using binary search.

Global  $M = []$ ,  $M[0] = 0$

Return Compute-Opt( $n$ )

$M$ -Compute-Opt( $j$ ) :

If  $j$  not in  $M$ :

$M[j] = \text{Max}(\text{M-Compute-Opt}(j-1), v[j] + \text{M-Compute-Opt}(p[j]))$

Return  $M[j]$

Time:



Start

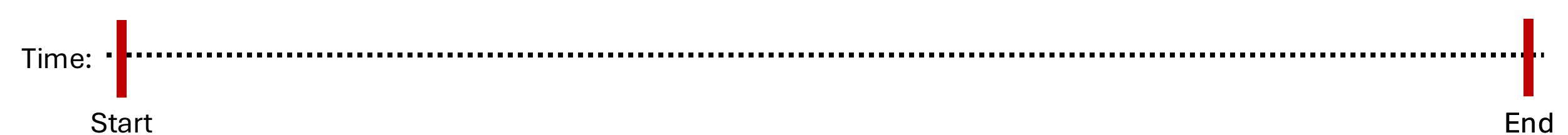


End

# Memoization Runtime

---

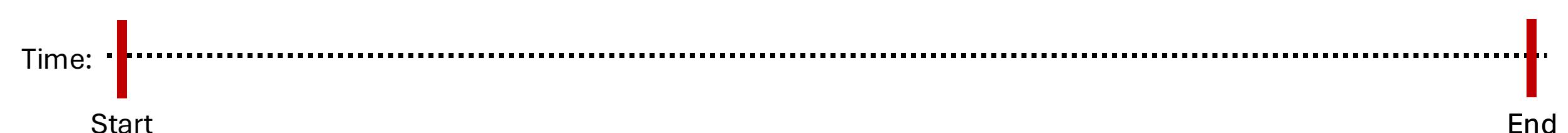
- We will show that the runtime is  $O(n \log(n))$ .
  - The preprocessing takes  $O(n \log(n))$  time.
  - The M-Compute-Opt( $n$ ) call takes  $O(n)$  time.



# Memoization Runtime

---

- The  $M\text{-Compute-Opt}(n)$  call takes  $O(n)$  time.
  - To bound the runtime, we will introduce a "progress measure". Namely, we will track how many entries in  $M$  are uninitialized.
  - Each time we initialize an entry of  $M$ , we make two recursive calls which takes constant time.
  - Since  $M$  will only have at most  $O(n)$  entries, it follows that the runtime is at most  $O(n)$  as desired.



# Top-Down Dynamic Programming

---

Brute-Force( $L$ ) :

Sort  $L$  by job finish times.

Compute  $p[i]$  for each  $i$  using binary search.

Global  $M = []$ ,  $M[0] = 0$

Return Compute-Opt( $n$ )

$M$ -Compute-Opt( $j$ ) :

If  $j$  not in  $M$ :

$M[j] = \text{Max}(\text{M-Compute-Opt}(j-1), v[j] + \text{M-Compute-Opt}(p[j]))$

Return  $M[j]$

Time:



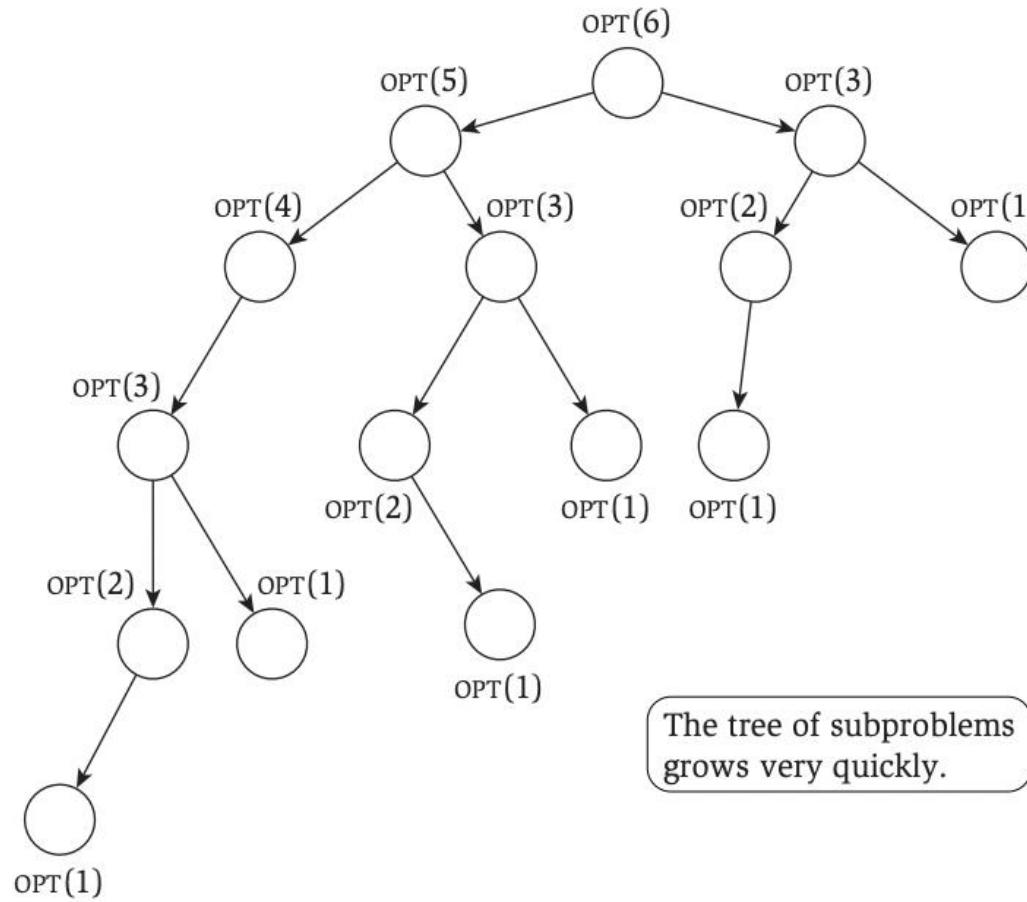
Start



End

# Top-Down Dynamic Programming

---



# Recovering Solution

---

Brute-Force( $L$ ) :

Sort  $L$  by job finish times.

Compute  $p[i]$  for each  $i$  using binary search.

Global  $M = []$ ,  $M[0] = 0$

Return Compute-Opt( $n$ )

$M$ -Compute-Opt( $j$ ) :

If  $j$  not in  $M$ :

$M[j] = \text{Max}(\text{M-Compute-Opt}(j-1), v[j] + \text{M-Compute-Opt}(p[j]))$

Return  $M[j]$

**Question:** How do we recover the solution?

# Recovering Solution

---

Brute-Force( $L$ ) :

Sort  $L$  by job finish times.

Compute  $p[i]$  for each  $i$  using binary search.

Global  $M = []$ ,  $M[0] = 0$

Compute-Opt( $n$ )

Return Find-Solution( $n$ )

Find-Solution( $j$ ) :

If  $j == 0$ :

    return []

Else if  $v[j] + M - \text{Compute-Opt}(p[j]) > M - \text{Compute-Opt}(j-1)$ :

    return [j] ++ Find-Solution(p[j])

Else:

    return Find-Solution( $j-1$ )

# Recovering Solution - $O(n)$ Time

---

Brute-Force( $L$ ) :

Sort  $L$  by job finish times.

Compute  $p[i]$  for each  $i$  using binary search.

Global  $M = []$ ,  $M[0] = 0$

Compute-Opt( $n$ )

Return Find-Solution( $n$ )

Find-Solution( $j$ ) :

If  $j == 0$ :

    return []

Else if  $v[j] + M - \text{Compute-Opt}(p[j]) > M - \text{Compute-Opt}(j-1)$ :

    return [j] ++ Find-Solution(p[j])

Else:

    return Find-Solution( $j-1$ )

# Bottom-Up

---

Brute-Force( $L$ ) :

Sort  $L$  by job finish times.

Compute  $p[i]$  for each  $i$  using binary search.

Global  $M = []$ ,  $M[0] = 0$

Return Compute-Opt( $n$ )

$M$ -Compute-Opt( $j$ ) :

If  $j$  not in  $M$ :

$M[j] = \text{Max}(\text{M-Compute-Opt}(j-1), v[j] + \text{M-Compute-Opt}(p[j]))$

Return  $M[j]$

**Question:** What can we say about  $M[1]$ ?

# Bottom-Up

---

Brute-Force( $L$ ) :

Sort  $L$  by job finish times.

Compute  $p[i]$  for each  $i$  using binary search.

Global  $M = []$ ,  $M[0] = 0$

Return Compute-Opt( $n$ )

$M$ -Compute-Opt( $j$ ) :

If  $j$  not in  $M$ :

$M[j] = \text{Max}(\text{M-Compute-Opt}(j-1), v[j] + \text{M-Compute-Opt}(p[j]))$

Return  $M[j]$

**Answer:** To compute  $M[1]$ , we only need  $M[0]$ .

# Bottom-Up

---

Brute-Force( $L$ ) :

Sort  $L$  by job finish times.

Compute  $p[i]$  for each  $i$  using binary search.

Global  $M = []$ ,  $M[0] = 0$

Return Compute-Opt( $n$ )

$M$ -Compute-Opt( $j$ ) :

If  $j$  not in  $M$ :

$M[j] = \text{Max}(\text{M-Compute-Opt}(j-1), v[j] + \text{M-Compute-Opt}(p[j]))$

Return  $M[j]$

**Question:** What can we say about  $M[j]$ ?

# Bottom-Up

---

Brute-Force( $L$ ) :

Sort  $L$  by job finish times.

Compute  $p[i]$  for each  $i$  using binary search.

Global  $M = []$ ,  $M[0] = 0$

Return Compute-Opt( $n$ )

$M$ -Compute-Opt( $j$ ) :

If  $j$  not in  $M$ :

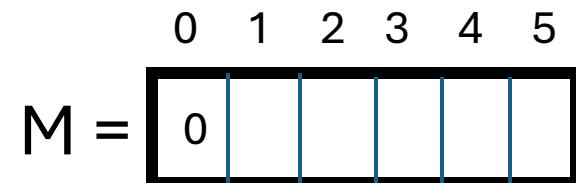
$M[j] = \text{Max}(\text{M-Compute-Opt}(j-1), v[j] + \text{M-Compute-Opt}(p[j]))$

Return  $M[j]$

**Answer:** To compute  $M[j]$ , we only need  $M[i]$  for  $i < j$ .

# Bottom-Up

---

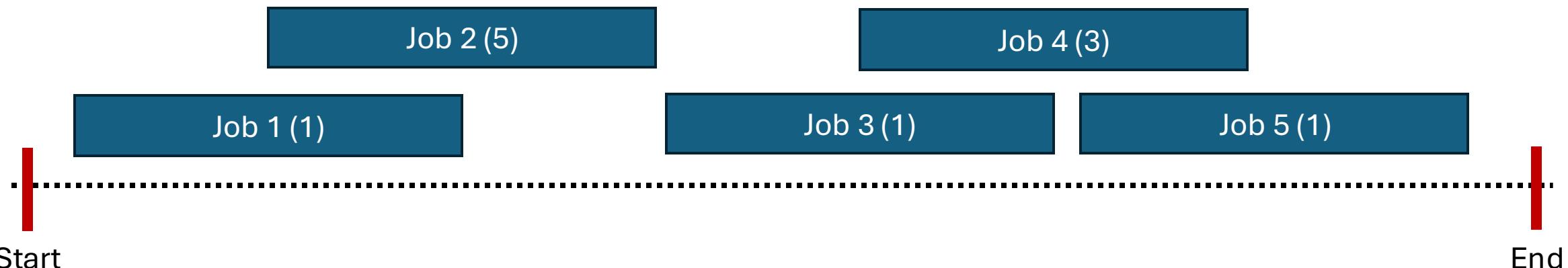


$M\text{-Compute-Opt}(j) :$

  If  $j$  not in  $M$ :

$M[j] = \text{Max}(\text{M-Compute-Opt}(j-1), v[j] + \text{M-Compute-Opt}(p[j]))$

  Return  $M[j]$



# Bottom-Up

---

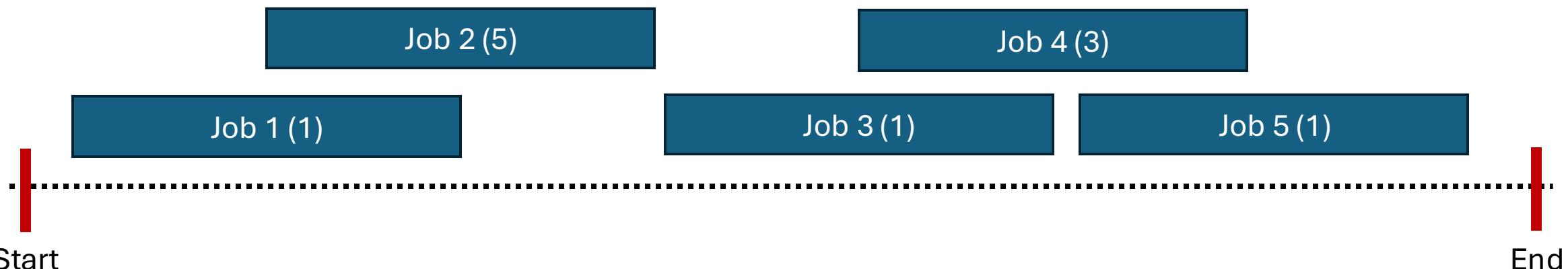


$M\text{-Compute-Opt}(j) :$

    If  $j$  not in  $M$ :

$M[j] = \text{Max}(\text{M-Compute-Opt}(j-1), v[j] + \text{M-Compute-Opt}(p[j]))$

    Return  $M[j]$



# Bottom-Up

---

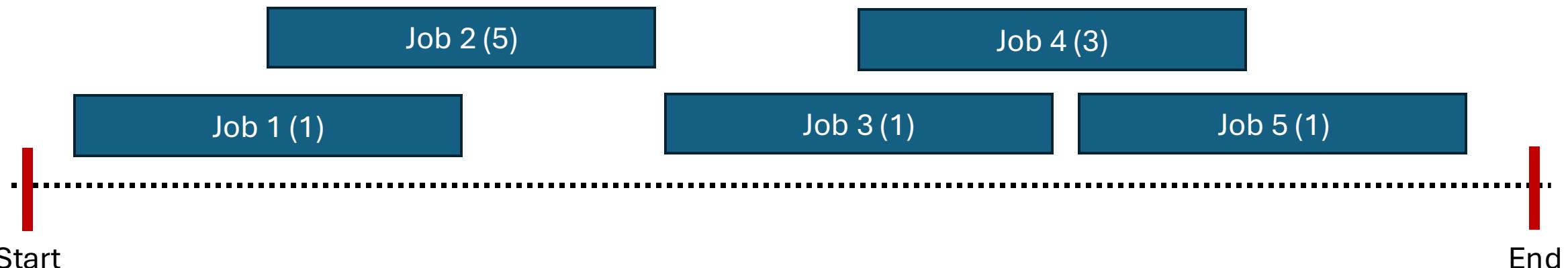
|   |   |   |   |   |   |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 0 | 1 |   |   |   |   |

M-Compute-Opt (j) :

If j not in M:

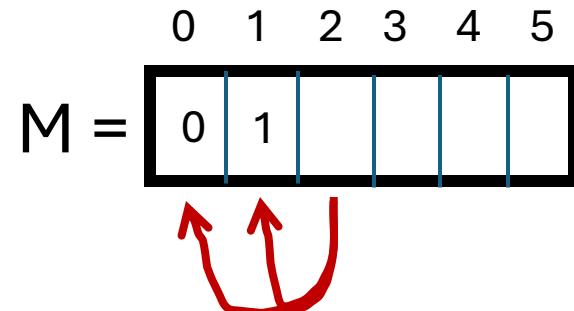
$M[j] = \text{Max}(\text{M-Compute-Opt}(j-1), v[j] + \text{M-Compute-Opt}(p[j]))$

Return M[j]



# Bottom-Up

---

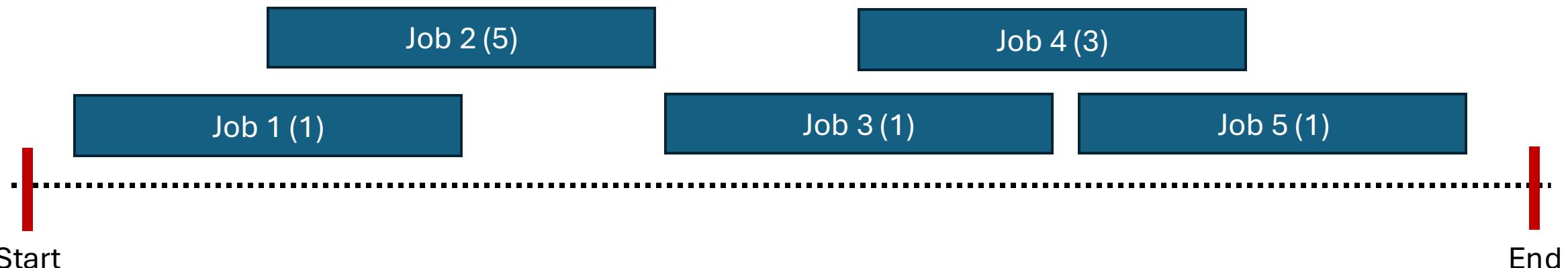


$M\text{-Compute-Opt}(j) :$

    If  $j$  not in  $M$ :

$M[j] = \text{Max}(\text{M-Compute-Opt}(j-1), v[j] + \text{M-Compute-Opt}(p[j]))$

    Return  $M[j]$



# Bottom-Up

---

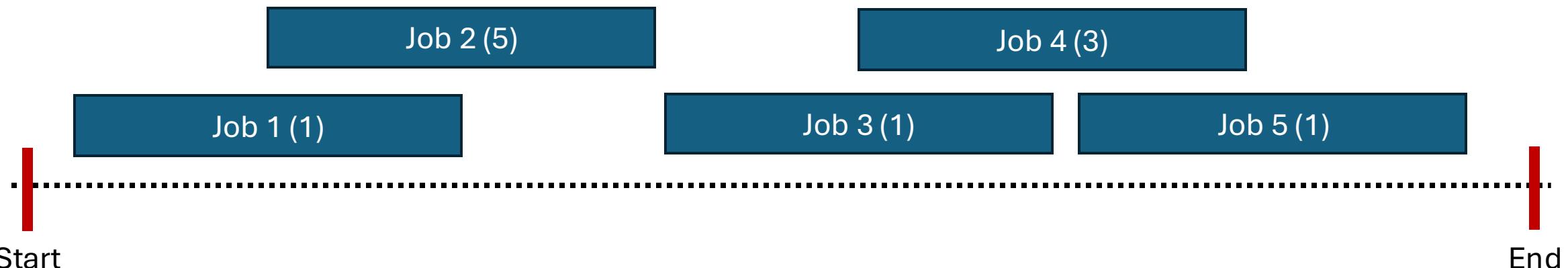
|   |   |   |   |   |   |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 0 | 1 | 5 |   |   |   |

M-Compute-Opt (j) :

If j not in M:

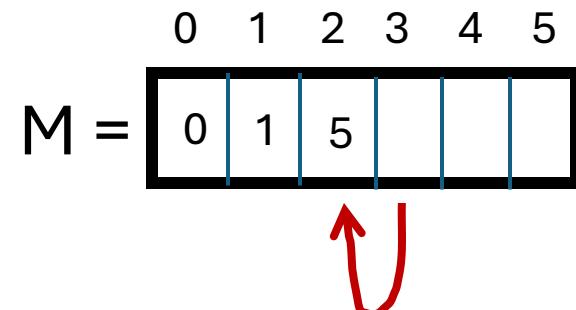
$M[j] = \text{Max}(\text{M-Compute-Opt}(j-1), v[j] + \text{M-Compute-Opt}(p[j]))$

Return M[j]



# Bottom-Up

---

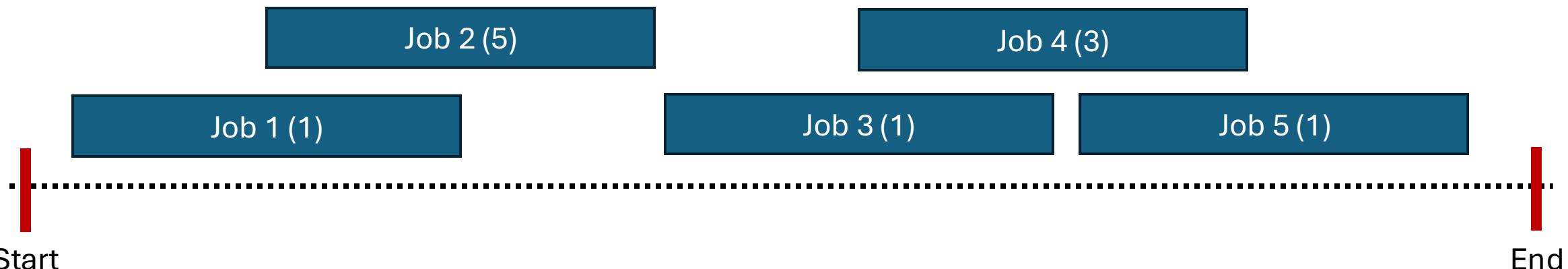


$M\text{-Compute-Opt}(j)$  :

  If  $j$  not in  $M$ :

$M[j] = \text{Max}(\text{M-Compute-Opt}(j-1), v[j] + \text{M-Compute-Opt}(p[j]))$

  Return  $M[j]$



# Bottom-Up

---

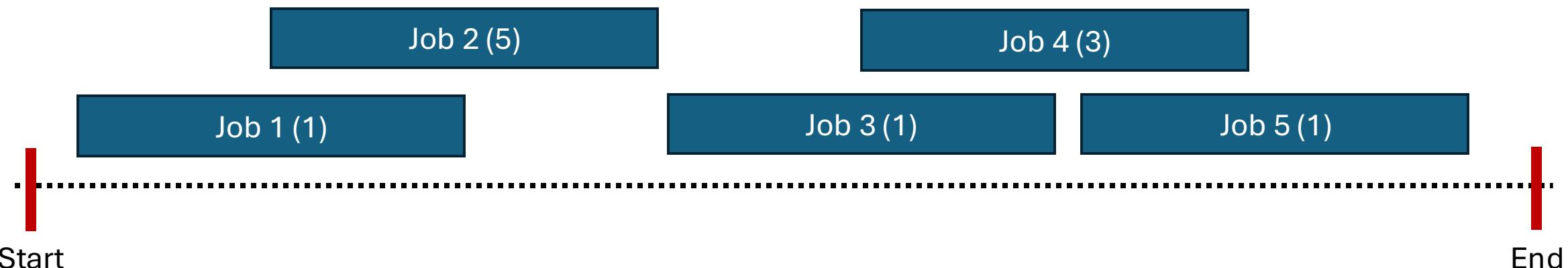
|   |   |   |   |   |   |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 0 | 1 | 5 | 6 |   |   |

M-Compute-Opt (j) :

If j not in M:

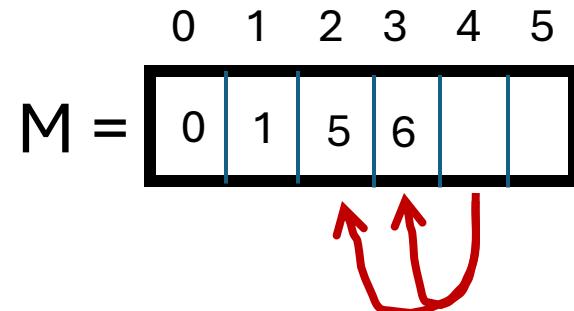
$M[j] = \text{Max}(\text{M-Compute-Opt}(j-1), v[j] + \text{M-Compute-Opt}(p[j]))$

Return  $M[j]$



# Bottom-Up

---

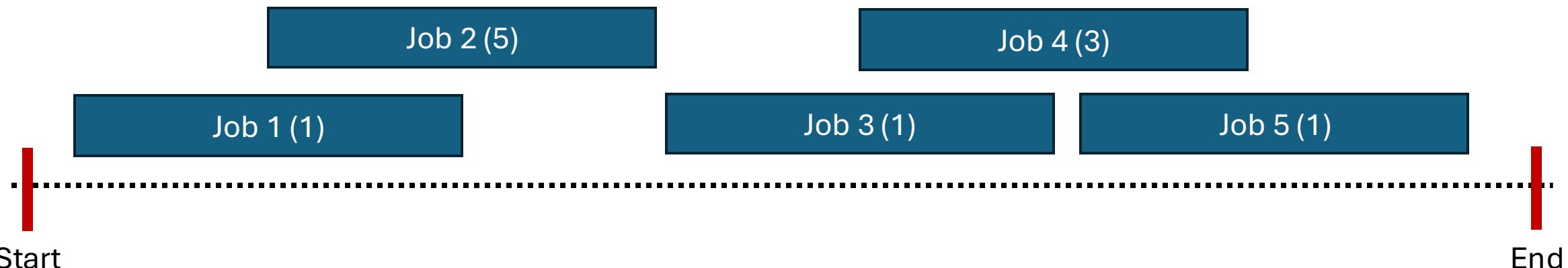


$M\text{-Compute-Opt}(j)$  :

  If  $j$  not in  $M$ :

$M[j] = \text{Max}(\text{M-Compute-Opt}(j-1), v[j] + \text{M-Compute-Opt}(p[j]))$

  Return  $M[j]$



# Bottom-Up

---

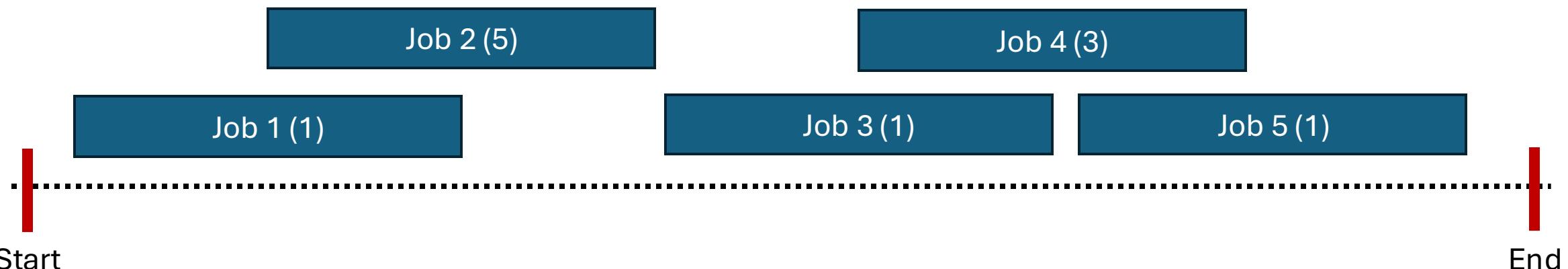
|   |   |   |   |   |   |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 0 | 1 | 5 | 6 | 8 |   |

M-Compute-Opt (j) :

If j not in M:

$M[j] = \text{Max}(\text{M-Compute-Opt}(j-1), v[j] + \text{M-Compute-Opt}(p[j]))$

Return M[j]



# Bottom-Up

---

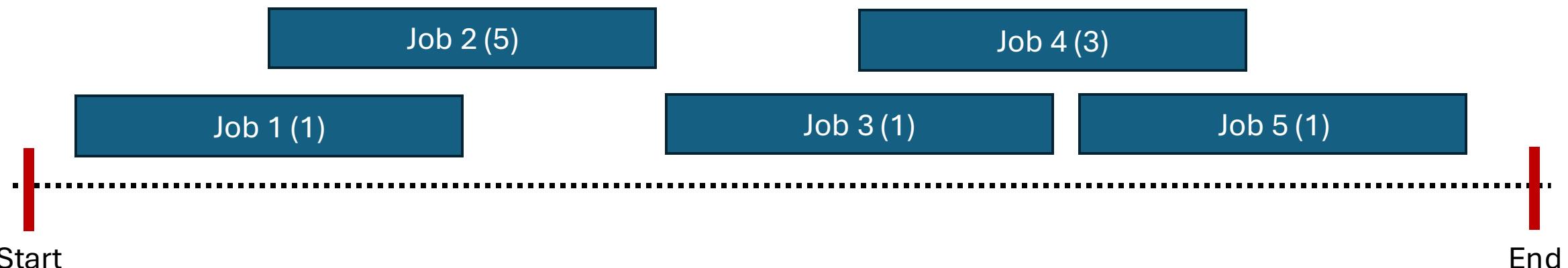
|   |   |   |   |   |   |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 0 | 1 | 5 | 6 | 8 | 8 |

M-Compute-Opt (j) :

If j not in M:

$M[j] = \text{Max}(\text{M-Compute-Opt}(j-1), v[j] + \text{M-Compute-Opt}(p[j]))$

Return M[j]



# Bottom-Up

---

M-Compute-Opt (j) :

If j not in M:

    M[j] = Max (M-Compute-Opt (j-1) , v[j] + M-Compute-Opt (p[j]) )

Return M[j]

Instead of letting recursion decide the order, you compute them from the "bottom" cases and work your way up:

M-Compute-Opt-Bottom-Up (j) :

For i in [j] :

    M[i] = Max (M-Compute-Opt (i-1) , v[i] + M-Compute-Opt (p[i]) )

Return M[j]