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Schedule

1.Course Updates
2.Weighted Interval 

Scheduling
3.Top-Down
4.Recovering Solution
5.Bottom-Up



Course Updates
• HW 6 Due Tomorrow 
• HW 7 Out Tomorrow

• Due November 18th 
• Group Project

• Code 3 Due November 24th

• Reflections 3 Due December 1st

• Next Quiz is December 1st



Reading

• You should have read:
• Finished 6.1
• Finished 6.2

• Before Next Class:
• Start 6.4



Weighted Interval Scheduling
• Input: A list of n jobs L

• Each job i has a start time 𝑠𝑖  and finish time 𝑓𝑖

• Two jobs are “compatible” if they don’t overlap
•  Each job i as a weight v𝑖

• Goal: Find the max-weight subset of mutually compatible jobs.

Start End

Time:

Job 1 (1)

Job 2 (5)

Job 3 (1) Job 5 (1)

Job 4 (3)



Divide & Conquer Approach 
• Question: Consider an arbitrary instance with optimal solution OPT. 

What do we know about job 1?
 

End

Time:

Start End

Job 1 (?)

Job 2 (?)

Job 3 (?) Job 5 (?)

Job 4 (?)

Job 6 (?)



Binary Choice
• Question: Consider an arbitrary instance with optimal solution OPT. 

What do we know about job 1?
• Answer: It is either in OPT or it is not.
 

End

Time:

Start End

Job 1 (?)

Job 2 (?)

Job 3 (?) Job 5 (?)

Job 4 (?)

Job 6 (?)



Binary Choice

• Assume our list of n jobs are sorted by finish times.
• For all j ∈ [n], 
• Let 𝑆𝑗  be the optimal solution on the first j jobs.
• Let OPT(j) be the value of that solution. 
• Let p(j) be largest i such that i <  j and Job i is 

computable with Job j. 
• Let p(j) = 0 if no jobs exist.

End

Time:

Start End



Binary Choice
• Now we can write

𝑂𝑃𝑇(𝑗)  =  𝑚𝑎𝑥{(𝑣𝑗 + 𝑂𝑃𝑇(𝑝(𝑗)), 𝑂𝑃𝑇(𝑗 − 1)}

 

End

Time:

Start End



Binary Choice
• Now we can write

𝑂𝑃𝑇(𝑗)  =  𝑚𝑎𝑥{(𝑣𝑗 + 𝑂𝑃𝑇(𝑝(𝑗)), 𝑂𝑃𝑇(𝑗 − 1)}

English: The optimum solution for the first j jobs either uses 
Job j or it does not. The maximum of these two choices is the 
optimum.
 

End

Time:

Start End



Binary Choice
• Now we can write

𝑂𝑃𝑇(𝑗)  =  𝑚𝑎𝑥{(𝑣𝑗 + 𝑂𝑃𝑇(𝑝(𝑗)), 𝑂𝑃𝑇(𝑗 − 1)}

English: The optimum solution for the first j jobs either uses 
Job j or it does not. The maximum of these two choices is the 
optimum.
 

End

Time:

Start End

We take Job J. We consider the next job.



Binary Choice Algorithm
Brute-Force(L):

 Sort L by job finish times.

 Compute p[i] for each i using binary search.

 Return Compute-Opt(n)

Compute-Opt(j):

 If (j == 0):

   Return 0

 else:

  Return Max(Compute-Opt(j-1), v[j] + Compute-Opt(p[j])}

End

Time:

Start End



Question: What is the runtime?
Brute-Force(L):

 Sort L by job finish times.

 Compute p[i] for each i using binary search.

 Return Compute-Opt(n)

Compute-Opt(j):

 If (j == 0):

   Return 0

 else:

  Return Max(Compute-Opt(j-1), v[j] + Compute-Opt(p[j])}

End

Time:

Start End



Question: What is the runtime?
Brute-Force(L):

 Sort L by job finish times.

 Compute p[i] for each i using binary search.

 Return Compute-Opt(n)

Compute-Opt(j):

 If (j == 0):

   Return 0

 else:

  Return Max(Compute-Opt(j-1), v[j] + Compute-Opt(p[j])}

End

Time:

Start End

O(nlog(n))



Answer: Could be exponential
Brute-Force(L):

 Sort L by job finish times.

 Compute p[i] for each i using binary search.

 Return Compute-Opt(n)

Compute-Opt(j):

 If (j == 0):

   Return 0

 else:

  Return Max(Compute-Opt(j-1), v[j] + Compute-Opt(p[j])}

End

Time:

Start End



Recursion Tree
• For each OPT(i) we draw an 

arrow to the subproblems 
we need to solve to solve it.

• It is possible that the tree 
has linear depth, and each 
internal node has two 
children.

• Notice that some problems 
appear more than once!



Memoization
• Notice that some problems 

appear more than once!
• What if our algorithm never 

computed the answer to the 
same subproblem more 
than once?

• Let’s keep track of our 
answers using an array.



Memoization Runtime
Brute-Force(L):

 Sort L by job finish times.

 Compute p[i] for each i using binary search.

 Global M = [], M[0] = 0

 Return Compute-Opt(n)

M-Compute-Opt(j):

 If j not in M:

  M[j] = Max(M-Compute-Opt(j-1), v[j] + M-Compute-Opt(p[j])}

 Return M[j]

End

Time:

Start End



Memoization Runtime
• We will show that the runtime is O(nlog(n)).

• The preprocessing takes O(nlog(n)) time.
• The M-Compute-Opt(n) call takes O(n) time.

End

Time:

Start End



Memoization Runtime
• The M-Compute-Opt(n) call takes O(n) time.

• To bound the runtime, we will introduce a ”progress measure”. Namely, we 
will track how many entries in M are uninitialized. 

• Each time we initialize an entry of M, we make two recursive calls which 
takes constant time. 

• Since M will only have at most O(n) entries, it follows that the runtime is at 
most O(n) as desired.

End

Time:

Start End



Top-Down Dynamic Programming
Brute-Force(L):

 Sort L by job finish times.

 Compute p[i] for each i using binary search.

 Global M = [], M[0] = 0

 Return Compute-Opt(n)

M-Compute-Opt(j):

 If j not in M:

  M[j] = Max(M-Compute-Opt(j-1), v[j] + M-Compute-Opt(p[j])}

 Return M[j]

End

Time:

Start End



Top-Down Dynamic Programming



Recovering Solution
Brute-Force(L):

 Sort L by job finish times.

 Compute p[i] for each i using binary search.

 Global M = [], M[0] = 0

 Return Compute-Opt(n)

M-Compute-Opt(j):

 If j not in M:

  M[j] = Max(M-Compute-Opt(j-1), v[j] + M-Compute-Opt(p[j])}

 Return M[j]

Question: How do we recover the solution?



Recovering Solution
Brute-Force(L):

 Sort L by job finish times.

 Compute p[i] for each i using binary search.

 Global M = [], M[0] = 0

 Compute-Opt(n)

 Return Find-Solution(n)

Find-Solution(j):

 If j == 0:

  return []

 Else if v[j] + M-Compute-Opt(p[j])} > M-Compute-Opt(j-1):

  return [j] ++ Find-Solution(p[j])

 Else:

  return Find-Solution(j-1)



Recovering Solution - O(n) Time
Brute-Force(L):

 Sort L by job finish times.

 Compute p[i] for each i using binary search.

 Global M = [], M[0] = 0

 Compute-Opt(n)

 Return Find-Solution(n)

Find-Solution(j):

 If j == 0:

  return []

 Else if v[j] + M-Compute-Opt(p[j])} > M-Compute-Opt(j-1):

  return [j] ++ Find-Solution(p[j])

 Else:

  return Find-Solution(j-1)



Bottom-Up
Brute-Force(L):

 Sort L by job finish times.

 Compute p[i] for each i using binary search.

 Global M = [], M[0] = 0

 Return Compute-Opt(n)

M-Compute-Opt(j):

 If j not in M:

  M[j] = Max(M-Compute-Opt(j-1), v[j] + M-Compute-Opt(p[j])}

 Return M[j]

Question: What can we say about M[1]?



Bottom-Up
Brute-Force(L):

 Sort L by job finish times.

 Compute p[i] for each i using binary search.

 Global M = [], M[0] = 0

 Return Compute-Opt(n)

M-Compute-Opt(j):

 If j not in M:

  M[j] = Max(M-Compute-Opt(j-1), v[j] + M-Compute-Opt(p[j])}

 Return M[j]

Answer: To compute M[1], we only need M[0].



Bottom-Up
Brute-Force(L):

 Sort L by job finish times.

 Compute p[i] for each i using binary search.

 Global M = [], M[0] = 0

 Return Compute-Opt(n)

M-Compute-Opt(j):

 If j not in M:

  M[j] = Max(M-Compute-Opt(j-1), v[j] + M-Compute-Opt(p[j])}

 Return M[j]

Question: What can we say about M[j]?



Bottom-Up
Brute-Force(L):

 Sort L by job finish times.

 Compute p[i] for each i using binary search.

 Global M = [], M[0] = 0

 Return Compute-Opt(n)

M-Compute-Opt(j):

 If j not in M:

  M[j] = Max(M-Compute-Opt(j-1), v[j] + M-Compute-Opt(p[j])}

 Return M[j]

Answer: To compute M[j], we only need M[i] for i < j.



Bottom-Up

Start End

Job 1 (1)

Job 2 (5)

Job 3 (1) Job 5 (1)

Job 4 (3)

M =
0     1     2    3     4     5

0

M-Compute-Opt(j):

 If j not in M:

  M[j] = Max(M-Compute-Opt(j-1), v[j] + M-Compute-Opt(p[j])}

 Return M[j]



Bottom-Up

Start End

Job 1 (1)

Job 2 (5)

Job 3 (1) Job 5 (1)

Job 4 (3)

M =
0     1     2    3     4     5

0

M-Compute-Opt(j):

 If j not in M:

  M[j] = Max(M-Compute-Opt(j-1), v[j] + M-Compute-Opt(p[j])}

 Return M[j]



Bottom-Up

Start End

Job 1 (1)

Job 2 (5)

Job 3 (1) Job 5 (1)

Job 4 (3)

M =
0     1     2    3     4     5

0

M-Compute-Opt(j):

 If j not in M:

  M[j] = Max(M-Compute-Opt(j-1), v[j] + M-Compute-Opt(p[j])}

 Return M[j]

1



Bottom-Up

Start End

Job 1 (1)

Job 2 (5)

Job 3 (1) Job 5 (1)

Job 4 (3)

M =
0     1     2    3     4     5

0

M-Compute-Opt(j):

 If j not in M:

  M[j] = Max(M-Compute-Opt(j-1), v[j] + M-Compute-Opt(p[j])}

 Return M[j]

1



Bottom-Up

Start End

Job 1 (1)

Job 2 (5)

Job 3 (1) Job 5 (1)

Job 4 (3)

M =
0     1     2    3     4     5

0

M-Compute-Opt(j):

 If j not in M:

  M[j] = Max(M-Compute-Opt(j-1), v[j] + M-Compute-Opt(p[j])}

 Return M[j]

1 5



Bottom-Up

Start End

Job 1 (1)

Job 2 (5)

Job 3 (1) Job 5 (1)

Job 4 (3)

M =
0     1     2    3     4     5

0

M-Compute-Opt(j):

 If j not in M:

  M[j] = Max(M-Compute-Opt(j-1), v[j] + M-Compute-Opt(p[j])}

 Return M[j]

1 5



Bottom-Up

Start End

Job 1 (1)

Job 2 (5)

Job 3 (1) Job 5 (1)

Job 4 (3)

M =
0     1     2    3     4     5

0

M-Compute-Opt(j):

 If j not in M:

  M[j] = Max(M-Compute-Opt(j-1), v[j] + M-Compute-Opt(p[j])}

 Return M[j]

1 5 6



Bottom-Up

Start End

Job 1 (1)

Job 2 (5)

Job 3 (1) Job 5 (1)

Job 4 (3)

M =
0     1     2    3     4     5

0

M-Compute-Opt(j):

 If j not in M:

  M[j] = Max(M-Compute-Opt(j-1), v[j] + M-Compute-Opt(p[j])}

 Return M[j]

1 5 6



Bottom-Up

Start End

Job 1 (1)

Job 2 (5)

Job 3 (1) Job 5 (1)

Job 4 (3)

M =
0     1     2    3     4     5

0

M-Compute-Opt(j):

 If j not in M:

  M[j] = Max(M-Compute-Opt(j-1), v[j] + M-Compute-Opt(p[j])}

 Return M[j]

1 5 6 8



Bottom-Up

Start End

Job 1 (1)

Job 2 (5)

Job 3 (1) Job 5 (1)

Job 4 (3)

M =
0     1     2    3     4     5

0

M-Compute-Opt(j):

 If j not in M:

  M[j] = Max(M-Compute-Opt(j-1), v[j] + M-Compute-Opt(p[j])}

 Return M[j]

1 5 6 8 8



Bottom-Up

M-Compute-Opt(j):

 If j not in M:

  M[j] = Max(M-Compute-Opt(j-1), v[j] + M-Compute-Opt(p[j])}

 Return M[j]

Instead of letting recursion decide the order, you compute them from the ”bottom” 
cases and work your way up: 

M-Compute-Opt-Bottom-Up(j):

 For i in [j]:

  M[i] = Max(M-Compute-Opt(i-1), v[i] + M-Compute-Opt(p[i])}

 Return M[j]
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