CSE 331:
Allg(o)r[ilt]hunnls & (C<o>lnnqp>ll<exiilty
“Top-Down DP”

Prof. Charlie Anne Carlson (She/Her)
Lecture 29
Monday Nov 10th, 2025

L]

G5

University at Buffalo




DYNAMIC ENTROPY

s IMPOSSIBLE. To USE THE WORD "YOU SHOULD CALL IT 'ENTROPY"..
'DYNAMIC' IN THE PEJORATIVE NO ONE KNOWS WHAT ENTROPY
SENSE ...THUS, I THOUGHT DYNAMIC  REALLY 15 S0 IN A DEBATE. YOU
PROGRAMMING' LJAS A GOOD NAME." WILL ALWAYS HAVE THE ADVANTAGE.

DYWANMIC ENTROPY

SCUENCE. TIP: IF YOU HAVE A COoL CONCEPT YOU
NEED A NAME FOR, TRY “DYNAMIC ENTROPY.

https://xkcd.com/2318/



https://xkcd.com/2318

Schedule

1.Course Updates

2.Weighted Interval
Scheduling

3.Top-Down
4.Recovering Solution
5.Bottom-Up




Course Updates

HW 6 Due Tomorrow
HW 7 Out Tomorrow
Due November 18"
Group Project
Code 3 Due November 24t
Reflections 3 Due December 15t
Next Quiz is December 15t



Reading

* You should have read:
* Finished 6.1
* Finished 6.2

» Before Next Class:
e Start6.4

JON KLEINBERG - EVA TARDOS




Weighted Interval Scheduling

* Input: AlistofnjobsL
 Eachjobihas astarttime s; and finish time f;
* Two jobs are “compatible” if they don’t overlap
* Eachjobiasaweightv;
* Goal: Find the max-weight subset of mutually compatible jobs.

Job 2 (5)




Divide & Conquer Approach

* Question: Consider an arbitrary instance with optimal solution OPT.

What do we know about job 17?

Job 6 (?)
Job 2 (?)




Binary Choice

* Question: Consider an arbitrary instance with optimal solution OPT.
What do we know about job 17?
* Answer: Itiseitherin OPT oritis not.




Binary Choice

* Assume our list of n jobs are sorted by finish times.
* Forallj € [n],
* LetS5; be the optimal solution on the first j jobs.
 Let OPT(j) be the value of that solution.
* Letp(j) belargestisuchthati < jandlJobiis
computable with Job j.
* Letp(j) =0Iif nojobs exist.



Binary Choice

 Now we can write

OPT(j) = max{(v; + OPT(p(j)),OPT(j — 1)}



Binary Choice
* Now we can write
OPT(j) = max{(v; + OPT(p(j)),OPT(j — 1)}

English: The optimum solution for the first j jobs either uses
Jobjoritdoes not. The maximum of these two choices is the
optimum.



Binary Choice

 Now we can write

We take Job J.

We consider the next job.

\

/

OPT(j) = max{(v; + OPT(p(j)),OPT(j — 1)}

English: The optimum solution for the first j jobs either uses
Jobjoritdoes not. The maximum of these two choices is the

optimum.



Binary Choice Algorithm

Brute-Force (L) :

Ssort L by job finish times.

Compute p[1]

for each 1 using binary search.

Return Compute-Opt (n)

Compute-Opt (7) :

If (3 == 0):

Return O

else:

Return Max (Compute-Opt (j-1), v[j] + Compute-Opt (p[j])}



Question: What is the runtime?

Brute-Force (L) :

Ssort L by job finish times.

Compute p[1]

for each 1 using binary search.

Return Compute-Opt (n)

Compute-Opt (7) :

If (3 == 0):

Return O

else:

Return Max (Compute-Opt (j-1), v[j] + Compute-Opt (p[j])}



Question: What is the runtime?

Brute-Force (L) :
Ssort L by job finish times.
- - : - O(nlog(n))
Compute pl[1] for each 1 using binary search.
Return Compute-Opt (n)

Compute-Opt (7) :
If (3 == 0):
Return 0O
else:
Return Max (Compute-Opt (7-1), v[j] + Compute-Opt(p[j]l)}



Answer: Could be exponential

Brute-Force (L) :

Ssort L by job finish times.

Compute p[1]

for each 1 using binary search.

Return Compute-Opt (n)

Compute-Opt (7) :

If (3 == 0):

Return O

else:

Return Max (Compute-Opt (j-1), v[j] + Compute-Opt (p[j])}



Recursion Tree

For each OPT(i) we draw an
arrow to the subproblems
we need to solve to solve it. i
It is possible that the tree

has linear depth, and each o
Internal node has two
children.

Notice that some problems
appear more than once!

orT(6)

O

orT(1) ort(1)

The tree of subproblems
grows very quickly.

orT(1)



Memoization

Notice that some problems
appear more than once!

orT(6)

* What if our algorithm never -

computed the answer to the
same subproblem more o (3)
than once?

Let’s keep track of our
answers using an array.

O

orT(1) ort(1)

The tree of subproblems
grows very quickly.

ort(1)



Memoization Runtime

Brute-Force (L) :
Sort L by job finish times.
Compute p[1] for each 1 using binary search.
Global M = [], M[O] = O
Return Compute-Opt (n)

M-Compute-0pt (7J) :
If J not 1n M:
M[J] = Max (M-Compute-Opt(j-1), v[J] + M-Compute-Opt (p[7]

Return M[7]



Memoization Runtime

* We will show that the runtime is O(nlog(n)).
* The preprocessing takes O(nlog(n)) time.
* The M-Compute-Opt(n) call takes O(n) time.



Memoization Runtime

* The M-Compute-Opt(n) call takes O(n) time.
* To bound the runtime, we will introduce a "progress measure”. Namely, we
will track how many entries in M are uninitialized.
* Eachtime we initialize an entry of M, we make two recursive calls which
takes constant time.

 Since M will only have at most O(n) entries, it follows that the runtime is at
most O(n) as desired.



Top-Down Dynamic Programming

Brute-Force (L) :
Sort L by job finish times.
Compute p[1] for each 1 using binary search.
Global M = [], M[O] = O
Return Compute-Opt (n)

M-Compute-0pt (7J) :
If J not 1n M:
M[J] = Max (M-Compute-Opt(j-1), v[J] + M-Compute-Opt (p[7]

Return M[7]



Top-Down Dynamic Programming

oPT(6)

oPT(3) orT(2) ort(1)

orT(3)

O

orT(1) ort(1)

The tree of subproblems
grows very quickly.

ort(1)



Recovering Solution

Brute-Force (L) :
Sort L by job finish times.
Compute p[1] for each 1 using binary search.
Global M = [], M[O] = O
Return Compute-Opt (n)

M-Compute-0pt (7J) :
If J not 1n M:
M[J] = Max (M-Compute-Opt(j-1), v[J] + M-Compute-Opt (p[7]

Return M[7]

Question: How do we recover the solution?



Recovering Solution

Brute-Force (L) :
Sort L by job finish times.
Compute p[1] for each 1 using binary search.
Global M = [], M[O] = O
Compute-0Opt (n)
Return Find-Solution (n)

Find-Solution (73) :
If 7 ==
return |[]
Else 1f v[j] + M-Compute-Opt(p[3j])} > M-Compute-Opt (j-1):
return [J] ++ Find-Solution(pl[]])
Else:
return Find-Solution(j-1)



Recovering Solution - O(n) Time

Brute-Force (L) :
Sort L by job finish times.
Compute p[1] for each 1 using binary search.
Global M = [], M[O] = O
Compute-0Opt (n)
Return Find-Solution (n)

Find-Solution (73) :
If 7 ==
return |[]
Else 1f v[j] + M-Compute-Opt(p[3j])} > M-Compute-Opt (j-1):
return [J] ++ Find-Solution(pl[]])
Else:
return Find-Solution(j-1)



Bottom-Up

Brute-Force (L) :
Sort L by job finish times.
Compute p[1] for each 1 using binary search.
Global M = [], M[O] = O
Return Compute-Opt (n)

M-Compute-0pt (7J) :
If J not 1n M:
M[J] = Max (M-Compute-Opt(j-1), v[J] + M-Compute-Opt (p[7]

Return M[7]

Question: What can we say about M[1]?



Bottom-Up

Brute-Force (L) :
Sort L by job finish times.
Compute p[1] for each 1 using binary search.
Global M = [], M[O] = O
Return Compute-Opt (n)

M-Compute-0pt (7J) :
If J not 1n M:
M[J] = Max (M-Compute-Opt(j-1), v[J] + M-Compute-Opt (p[7]

Return M[7]

Answer: To compute M[1], we only need M]O].



Bottom-Up

Brute-Force (L) :
Sort L by job finish times.
Compute p[1] for each 1 using binary search.
Global M = [], M[O] = O
Return Compute-Opt (n)

M-Compute-0pt (7J) :
If J not 1n M:
M[J] = Max (M-Compute-Opt(j-1), v[J] + M-Compute-Opt (p[7]

Return M[7]

Question: What can we say about M[j]?



Bottom-Up

Brute-Force (L) :
Sort L by job finish times.
Compute p[1] for each 1 using binary search.
Global M = [], M[O] = O
Return Compute-Opt (n)

M-Compute-0pt (7J) :
If J not 1n M:
M[J] = Max (M-Compute-Opt(j-1), v[J] + M-Compute-Opt (p[7]

Return M[7]

Answer: To compute MJj], we only need M[i] fori<j].



Bottom-Up

O 1 23 4 5
M-Compute-0Opt (7J) :

M=ol | |||
If J not in M:

M[J] = Max (M-Compute-Opt(j-1), vI[j] + M-Compute-Opt(pl[J])}
Return M[7]




Bottom-Up

2 3 4 5

M = Hlllll
M-Compute-0Opt (7J) : U

If J not in M:
M[J] = Max (M-Compute-Opt(j-1), vI[j] + M-Compute-Opt(pl[J])}
Return M[7]




Bottom-Up

O 1 23 4 5
M-Compute-0Opt (7J) :

M=lolt] |||
If J not in M:

M[J] = Max (M-Compute-Opt(j-1), vI[j] + M-Compute-Opt(pl[J])}
Return M[7]




Bottom-Up

0123 45
M=o[+] | | |

M-Compute-0Opt (7J) :
If J not in M:
M[J] = Max (M-Compute-Opt(j-1), vI[j] + M-Compute-Opt(pl[J])}
Return M[7]




Bottom-Up

O 1 23 4 5
M-Compute-0Opt (7J) :

M=lolt]s] | |
If J not in M:

M[J] = Max (M-Compute-Opt(j-1), vI[j] + M-Compute-Opt(pl[J])}
Return M[7]




Bottom-Up

0 2 3 4 5

M = IIIII

M-Compute-0Opt (7J) : 1{)
If J not in M:
M[J] = Max (M-Compute-Opt(j-1), vI[j] + M-Compute-Opt(pl[J])}

Return M[7]




Bottom-Up

O 1 23 4 5
M-Compute-0Opt (7J) :

M=]o|t]sls| |
If J not in M:

M[J] = Max (M-Compute-Opt(j-1), vI[j] + M-Compute-Opt(pl[J])}
Return M[7]




Bottom-Up

0 2 3 4 5

M = IIEII
M-Compute-0Opt (7J) : W

If J not in M:
M[J] = Max (M-Compute-Opt(j-1), vI[j] + M-Compute-Opt(pl[J])}
Return M[7]




Bottom-Up

O 1 23 4 5
M-Compute-0Opt (7J) :

M=]o|1]sls|s]
If J not in M:

M[J] = Max (M-Compute-Opt(j-1), vI[j] + M-Compute-Opt(pl[J])}
Return M[7]




Bottom-Up

O 1 23 4 5
M-Compute-0Opt (7J) :

M=]o|1]slss]s
If J not in M:

M[J] = Max (M-Compute-Opt(j-1), vI[j] + M-Compute-Opt(pl[J])}
Return M[7]




Bottom-Up

M-Compute-0Opt (7) :
If J not in M:
M[J] = Max (M-Compute-Opt(3-1), v[]] + M-Compute-Opt(pl[]J])}
Return M[]]

Instead of letting recursion decide the order, you compute them from the "bottom”
cases and work your way up:

M-Compute-Opt-Bottom-Up (7j) :
For 1 1n [73]:
M[i] = Max (M-Compute-Opt(i-1), v[i] + M-Compute-Opt(p[i])}
Return M[7]



	Slide 1: CSE 331:  Algorithms & Complexity
	Slide 2
	Slide 3: Schedule
	Slide 4: Course Updates
	Slide 5: Reading
	Slide 6: Weighted Interval Scheduling
	Slide 7:  Divide & Conquer Approach 
	Slide 8: Binary Choice
	Slide 9: Binary Choice
	Slide 10: Binary Choice
	Slide 11: Binary Choice
	Slide 12: Binary Choice
	Slide 13: Binary Choice Algorithm
	Slide 14: Question: What is the runtime?
	Slide 15: Question: What is the runtime?
	Slide 16: Answer: Could be exponential
	Slide 17: Recursion Tree
	Slide 18: Memoization
	Slide 19: Memoization Runtime
	Slide 20: Memoization Runtime
	Slide 21: Memoization Runtime
	Slide 22: Top-Down Dynamic Programming
	Slide 23: Top-Down Dynamic Programming
	Slide 24: Recovering Solution
	Slide 25: Recovering Solution
	Slide 26: Recovering Solution - O(n) Time
	Slide 27: Bottom-Up
	Slide 28: Bottom-Up
	Slide 29: Bottom-Up
	Slide 30: Bottom-Up
	Slide 31: Bottom-Up
	Slide 32: Bottom-Up
	Slide 33: Bottom-Up
	Slide 34: Bottom-Up
	Slide 35: Bottom-Up
	Slide 36: Bottom-Up
	Slide 37: Bottom-Up
	Slide 38: Bottom-Up
	Slide 39: Bottom-Up
	Slide 40: Bottom-Up
	Slide 41: Bottom-Up

