
CSE 331: 
Algorithms & Complexity

Prof. Charlie Anne Carlson (She/Her)
Lecture 30

Wednesday Nov 12th, 2025

“Dynamic Programming”



Schedule

1. Course Updates
2. WIS
3. Dynamic Programming

1. Optimal Substructure
2. Overlapping Subproblems
3. Subproblem Ordering

4. Subset Sum



Course Updates
• HW 7 Out

• Due November 18th 
• Group Project

• Code 3 Due November 24th

• Reflections 3 Due December 1st

• Next Quiz is December 1st



Reading

• You should have read:
• Finished 6.1
• Finished 6.2

• Before Next Class:
• Finish 6.4



Weighted Interval Scheduling
• Input: A list of n jobs L

• Each job i has a start time 𝑠𝑖  and finish time 𝑓𝑖

• Two jobs are “compatible” if they don’t overlap
•  Each job i as a weight v𝑖

• Goal: Find the max-weight subset of mutually compatible jobs.

Start End

Time:

Job 1 (1)

Job 2 (5)

Job 3 (1) Job 5 (1)

Job 4 (3)



DP for WIS
Brute-Force(L):

 Sort L by job finish times.

 Compute p[i] for each i using binary search.

 Global M = [], M[0] = 0

 Return Compute-Opt(n)

M-Compute-Opt-Top-Down(j):

 If j not in M:

  M[j] = Max(M-Compute-Opt(j-1), v[j] + M-Compute-Opt(p[j])}

 Return M[j]

M-Compute-Opt-Bottom-Up(j):

 For i in [j]:

  M[i] = Max(M-Compute-Opt(i-1), v[i] + M-Compute-Opt(p[i])}

 Return M[j]



Dynamic Programming

• Optimal Substructure
• The solution to the original problem 

can be easily computed from the 
solutions to the subproblems.

• Overlapping Subproblems
• At most polynomial subproblems 

to solve.
• Subproblem Ordering

• There exists a natural order to solve 
subproblems without conflict.

𝐹𝑖 = ቐ
0 i = 0
1 i = 1

𝐹𝑖−1 + 𝐹𝑖−2 i ≥ 2
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• Optimal Substructure
• The solution to the original problem 
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solutions to the subproblems.

• Overlapping Subproblems
• At most polynomial subproblems 

to solve.
• Subproblem Ordering
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Dynamic Programming – Fibonacci 

• Optimal Substructure
• To compute 𝐹𝑛 we can compute 𝐹i 

for all i ≤ n. 
• Overlapping Subproblems

• Observe that to compute 𝐹𝑛 and 
𝐹𝑛−1 you need to know 𝐹𝑛−2.

• There are at most n of them!
• Subproblem Ordering

• Observe that you only need to 
know 𝐹i for i ≤ j to compute 𝐹j. 

𝐹𝑖 = ቐ
0 i = 0
1 i = 1

𝐹𝑖−1 + 𝐹𝑖−2 i ≥ 2



Dynamic Programming – WIS 

• Optimal Substructure
• ?

• Overlapping Subproblems
• ?

• Subproblem Ordering
• ?



Dynamic Programming – WIS 

• Optimal Substructure
• Define Subproblems: 

• Let OPT(i) be the best job schedule 
using only first i jobs.

• Describe Using Subproblems:
• Given OPT(i) for all i < n, we can 

compute:
 OPT(n) = MAX(OPT(n-1), v[n]+ OPT(P[n]))



Dynamic Programming – WIS 

• Overlapping Subproblems
• In many instances, it is easy to see that you will need 

OPT(i) multiple times.
• You only ever need to consider i from 1 to n.
• E.g.: You need OPT(2) to compute OPT(3) and OPT(4) in 

the following example: 



Dynamic Programming – WIS 

• Subproblem Ordering
• If you know OPT(i) for all i <  j then you 

can compute OPT(j) using substructure 
from before.



Dynamic Programming – Tips 

• Describe subproblems in English:
• “the optimal solution considering only the first i jobs.”

• Make note of the format of subproblems:
• Each subproblem was of the same type, WIS. 



Dynamic Programming – Tips 

• Describe how solving all the subproblems gets you the 
solution:
• “Once we have computed OPT(i) for all i, the answer to 

the problem is OPT(i).”
• It is okay to do some preprocessing before you solve the 

problem.



Dynamic Programming – Tips 

• Make sure you consider the order of solving subproblems 
carefully.
• We will see in our next problem a case where you have 

more than one variable. 



Dynamic Programming – Tips 

• Don’t forget the base case!
• Often you need to initialize the array/matrix/tree/graph 

with some values or you won't be able to fill in the next 
case!



Dynamic Programming vs Divide & Conquer 

• Question: What happens if you have optimal substructure, 
but you don’t have a lot of overlapping subproblems? 



Dynamic Programming vs Divide & Conquer 

• Question: What happens if you have optimal substructure, 
but you don’t have a lot of overlapping subproblems?

• Answer:  
• If you have few subproblems, you might get a good 

algorithm that is divide & conquer, decrease & conquer, 
or even brute force. 
• E.g. Mergesort

• If you have many subproblems than you may not get an 
efficient algorithm.



Dynamic Programming Bottom-Up/Iterative

• Describe and justify the subproblems.
• Give a recurrence for the subproblems and specify 

where to find the final solution. 
• Determine the natural order to solve the subproblems.

• Decide on a data structure to hold the solutions
• E.g. We used an array for WIS

• Write the code to fill in the data structure based on the 
natural order you found. 



DP for WIS
Brute-Force(L):

 Sort L by job finish times.

 Compute p[i] for each i using binary search.

 Global M = [], M[0] = 0

 Return Compute-Opt-?(n)

M-Compute-Opt-Top-Down(j):

 If j not in M:

  M[j] = Max(M-Compute-Opt(j-1), v[j] + M-Compute-Opt(p[j])}

 Return M[j]

M-Compute-Opt-Bottom-Up(j):

 For i in [j]:

  M[i] = Max(M-Compute-Opt(i-1), v[i] + M-Compute-Opt(p[i])}

 Return M[j]



Dynamic Programming Choices

• Often the key to writing a dynamic programming algorithm 
is identifying a recurrence. 
• To find a recurrence, you often want to find a choice.

• E.g. “You either take the job i or you don’t.”
• Once you’ve found your choice, you can then describe a 

subproblem based on the outcome of all choices.
• E.g. “If you take it, you need to consider removing all 

conflicting jobs. If you don’t, you don’t need to consider it 
anymore.” 

• Sometimes the subproblem is natural and finding the 
recurrence is the hard part.



Weighted Interval Scheduling
• Input: A list of n jobs L

• Each job i has a start time 𝑠𝑖  and finish time 𝑓𝑖

• Two jobs are “compatible” if they don’t overlap
•  Each job i as a weight v𝑖

• Goal: Find the max-weight subset of mutually compatible jobs.

Start End

Time:

Job 1 (1)

Job 2 (5)

Job 3 (1) Job 5 (1)

Job 4 (3)



Subset Sum

• Input: A list of n items {1,…,n} and a bound W.
• Each item i has a weight w𝑖

• Goal: Find the max-weight subset S such that σ𝑖∈S 𝑤𝑖 ≤ W.



Subset Sum

• Input: A list of n items {1,…,n} and a bound W.
• Each item i has a non-negative weight w𝑖.

• Goal: Find the max-weight subset S such that σ𝑖∈S 𝑤𝑖 ≤ W.

• Input: A list of n tasks {1,…,n} you want to schedule on a server.
• You are allowed to use at most W cycles.
• Each item i has a weight w𝑖  that represents needed cycles.

• Goal: Find the subset S of tasks such that you don’t use more than 
your maximum number of cycles, but you get as much work done as 
possible, i.e., σ𝑖∈S 𝑤𝑖 ≤ W.



Subset Sum Notation & Observations

• Input: A list of n items {1,…,n} and a bound W.
• Each item i has a non-negative weight w𝑖.

• Goal: Find the max-weight subset S such that σ𝑖∈S 𝑤𝑖 ≤ W.

• For any set S ⊆ [n], let w(S) = σ𝑖∈S 𝑤𝑖.
• Note that w(∅) = 0.
• Also note if w([n])  ≤ W, then the answer is [n].
• Finally note if 𝑤𝑖 > 𝑊for all i, then answer is ∅.



Subset Sum Subproblems

• Input: A list of n items {1,…,n} and a bound W.
• Each item i has a non-negative weight w𝑖.

• Goal: Find the max-weight subset S such that σ𝑖∈S 𝑤𝑖 ≤ W.

Idea: Let OPT(i) be the optimal solution only 
considering the first i items.



Subset Sum Subproblems

• Input: A list of n items {1,…,n} and a bound W.
• Each item i has a non-negative weight w𝑖.

• Goal: Find the max-weight subset S such that σ𝑖∈S 𝑤𝑖 ≤ W.

Idea: Let OPT(i) be the optimal solution only 
considering the first i items.

Question: How can you solve the original problem if 
you find OPT(i) for i < n?



Subset Sum Example

Idea: Let OPT(i) be the optimal solution only considering the first i 
items.

Example: 
• Item values = [1,4,7,2,5,12,14]
• Bound = 10

Observations:
• You can’t decide if you want to take item with value 5 based on the 

optimal solution to [1,4,7,2] with bound 10. 
• The optimal there is 9 but it can be 5.

• If you don’t keep track of what you’ve used, you may overuse. 



Subset Sum Subproblems

• Input: A list of n items {1,…,n} and a bound W.
• Each item i has a non-negative weight w𝑖.

• Goal: Find the max-weight subset S such that σ𝑖∈S 𝑤𝑖 ≤ W.

Idea: Let OPT(i) be the optimal solution only 
considering the first i items.

Answer: It doesn’t seem possible as you might use too 
much weight.



Subset Sum Subproblems

• Input: A list of n items {1,…,n} and a bound W.
• Each item i has a non-negative weight w𝑖.

• Goal: Find the max-weight subset S such that σ𝑖∈S 𝑤𝑖 ≤ W.

Idea: Let OPT(W’) be the optimal with bound W’.

Question: How can you solve the original problem if 
you find OPT(W’) for W’ < W?



Subset Sum Example

Idea: Let OPT(W’) be the optimal with bound W’.

Example: 
• Item values = [4,7,2,5,12,14]
• Bound = 10

Observations:
• You can’t decide if you want to take item with value 5 based on the 

optimal solution to [4,7,2,5,12,14] with bound 5. 
• The optimal there is 5 but it shouldn’t be combined with 5 again.
• That is, if you aren’t keep track of the 



Subset Sum Subproblems

• Input: A list of n items {1,…,n} and a bound W.
• Each item i has a non-negative weight w𝑖.

• Goal: Find the max-weight subset S such that σ𝑖∈S 𝑤𝑖 ≤ W.

Idea: Let OPT(W’) be the optimal with bound W’.

Answer: It doesn’t seem possible as you might use the 
same item multiple times.



Subset Sum Subproblems

• Input: A list of n items {1,…,n} and a bound W.
• Each item i has a non-negative weight w𝑖.

• Goal: Find the max-weight subset S such that σ𝑖∈S 𝑤𝑖 ≤ W.

Idea: Let OPT(i, W’) be the optimal with only first i 
items and bound of W’. 

Now we can describe the “choice” of using an item or 
not using it.



Subset Sum Optimal Substructure

Idea: Let OPT(i, W’) be the optimal with only first i 
items and bound of W’. 

If i = 0 then
  OPT(i,W’) = 0
If 𝑊’ > 𝑤𝑖  then
 OPT(i,W’) = max{𝑤𝑖  + OPT(i-1,W’- 𝑤𝑖}, OPT(i-1,W’)}
Otherwise
  OPT(i,W’) = OPT(i-1,W’)



Subset Sum Problem Overlap

It is believable that there will be instances where we 
have a lot of problem overlap.

Example: 
• Item values = [4,7,2,5,2,12,14]
• Bound = 20

There are two different ways to eventually ask about 
OPT(4,6): Picking 14 or pick 12 and 2. 



Subset Sum Problem Count

There will be n choices for i and W choices for W’ 
(provided everything is an integer). 

Example: 
• Item values = [4,7,2,5,2,12,14]
• Bound = 20

You only need to consider (i,20), (i,19), …, (i,0) for each i.



Subset Sum Ordering Subproblems

Idea: Let OPT(i, W’) be the optimal with only first i 
items and bound of W’. 

If i = 0 then
  OPT(i,W’) = 0
If 𝑊’ > 𝑤𝑖  then
 OPT(i,W’) = max{𝑤𝑖  + OPT(i-1,W’- 𝑤𝑖}, OPT(i-1,W’)}
Otherwise
  OPT(i,W’) = OPT(i-1,W’)



Subset Sum Ordering Subproblems

0

0 W

n

i

W’

OPT(i,W’) = max{𝑤𝑖 + OPT(i-1,W’- 𝑤𝑖}, OPT(i-1,W’)}



Subset Sum Ordering Subproblems
We need to 
know for 
smaller W’ and 
smaller i.

0

0 W

n

i

W’W’-𝑤𝑖

i-1

OPT(i,W’) = max{𝑤𝑖 + OPT(i-1,W’- 𝑤𝑖}, OPT(i-1,W’)}



Subset Sum Ordering Subproblems
Question:
How do we fill?

0

0 W

n

i

W’W’-𝑤𝑖

i-1

OPT(i,W’) = max{𝑤𝑖 + OPT(i-1,W’- 𝑤𝑖}, OPT(i-1,W’)}



Subset Sum Ordering Subproblems
Answer:
Out for loop will 
be for i and 
inner for loop 
will be for W’.

0

0 W

n

i

W’W’-𝑤𝑖

i-1

OPT(i,W’) = max{𝑤𝑖 + OPT(i-1,W’- 𝑤𝑖}, OPT(i-1,W’)}

Fill first layer with 0.
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