
CSE 331:
Algorithms & Complexity

Prof. Charlie Anne Carlson (She/Her)
Lecture 30

Wednesday Nov 12th, 2025

“Dynamic Programming”

Schedule

1. Course Updates
2. WIS
3. Dynamic Programming

1. Optimal Substructure
2. Overlapping Subproblems
3. Subproblem Ordering

4. Subset Sum

Course Updates
• HW 7 Out

• Due November 18th
• Group Project

• Code 3 Due November 24th

• Reflections 3 Due December 1st

• Next Quiz is December 1st

Reading

• You should have read:
• Finished 6.1
• Finished 6.2

• Before Next Class:
• Finish 6.4

Weighted Interval Scheduling
• Input: A list of n jobs L

• Each job i has a start time 𝑠𝑖 and finish time 𝑓𝑖

• Two jobs are “compatible” if they don’t overlap
• Each job i as a weight v𝑖

• Goal: Find the max-weight subset of mutually compatible jobs.

Start End

Time:

Job 1 (1)

Job 2 (5)

Job 3 (1) Job 5 (1)

Job 4 (3)

DP for WIS
Brute-Force(L):

 Sort L by job finish times.

 Compute p[i] for each i using binary search.

 Global M = [], M[0] = 0

 Return Compute-Opt(n)

M-Compute-Opt-Top-Down(j):

 If j not in M:

 M[j] = Max(M-Compute-Opt(j-1), v[j] + M-Compute-Opt(p[j])}

 Return M[j]

M-Compute-Opt-Bottom-Up(j):

 For i in [j]:

 M[i] = Max(M-Compute-Opt(i-1), v[i] + M-Compute-Opt(p[i])}

 Return M[j]

Dynamic Programming

• Optimal Substructure
• The solution to the original problem

can be easily computed from the
solutions to the subproblems.

• Overlapping Subproblems
• At most polynomial subproblems

to solve.
• Subproblem Ordering

• There exists a natural order to solve
subproblems without conflict.

𝐹𝑖 = ቐ
0 i = 0
1 i = 1

𝐹𝑖−1 + 𝐹𝑖−2 i ≥ 2

Dynamic Programming

• Optimal Substructure
• The solution to the original problem

can be easily computed from the
solutions to the subproblems.

• Overlapping Subproblems
• At most polynomial subproblems

to solve.
• Subproblem Ordering

• There exists a natural order to solve
subproblems without conflict.

𝐹𝑖 = ቐ
0 i = 0
1 i = 1

𝐹𝑖−1 + 𝐹𝑖−2 i ≥ 2

Dynamic Programming

• Optimal Substructure
• The solution to the original problem

can be easily computed from the
solutions to the subproblems.

• Overlapping Subproblems
• At most polynomial subproblems

to solve.
• Subproblem Ordering

• There exists a natural order to solve
subproblems without conflict.

𝐹𝑖 = ቐ
0 i = 0
1 i = 1

𝐹𝑖−1 + 𝐹𝑖−2 i ≥ 2

Dynamic Programming – Fibonacci

• Optimal Substructure
• To compute 𝐹𝑛 we can compute 𝐹i

for all i ≤ n.
• Overlapping Subproblems

• Observe that to compute 𝐹𝑛 and
𝐹𝑛−1 you need to know 𝐹𝑛−2.

• There are at most n of them!
• Subproblem Ordering

• Observe that you only need to
know 𝐹i for i ≤ j to compute 𝐹j.

𝐹𝑖 = ቐ
0 i = 0
1 i = 1

𝐹𝑖−1 + 𝐹𝑖−2 i ≥ 2

Dynamic Programming – WIS

• Optimal Substructure
• ?

• Overlapping Subproblems
• ?

• Subproblem Ordering
• ?

Dynamic Programming – WIS

• Optimal Substructure
• Define Subproblems:

• Let OPT(i) be the best job schedule
using only first i jobs.

• Describe Using Subproblems:
• Given OPT(i) for all i < n, we can

compute:
 OPT(n) = MAX(OPT(n-1), v[n]+ OPT(P[n]))

Dynamic Programming – WIS

• Overlapping Subproblems
• In many instances, it is easy to see that you will need

OPT(i) multiple times.
• You only ever need to consider i from 1 to n.
• E.g.: You need OPT(2) to compute OPT(3) and OPT(4) in

the following example:

Dynamic Programming – WIS

• Subproblem Ordering
• If you know OPT(i) for all i < j then you

can compute OPT(j) using substructure
from before.

Dynamic Programming – Tips

• Describe subproblems in English:
• “the optimal solution considering only the first i jobs.”

• Make note of the format of subproblems:
• Each subproblem was of the same type, WIS.

Dynamic Programming – Tips

• Describe how solving all the subproblems gets you the
solution:
• “Once we have computed OPT(i) for all i, the answer to

the problem is OPT(i).”
• It is okay to do some preprocessing before you solve the

problem.

Dynamic Programming – Tips

• Make sure you consider the order of solving subproblems
carefully.
• We will see in our next problem a case where you have

more than one variable.

Dynamic Programming – Tips

• Don’t forget the base case!
• Often you need to initialize the array/matrix/tree/graph

with some values or you won't be able to fill in the next
case!

Dynamic Programming vs Divide & Conquer

• Question: What happens if you have optimal substructure,
but you don’t have a lot of overlapping subproblems?

Dynamic Programming vs Divide & Conquer

• Question: What happens if you have optimal substructure,
but you don’t have a lot of overlapping subproblems?

• Answer:
• If you have few subproblems, you might get a good

algorithm that is divide & conquer, decrease & conquer,
or even brute force.
• E.g. Mergesort

• If you have many subproblems than you may not get an
efficient algorithm.

Dynamic Programming Bottom-Up/Iterative

• Describe and justify the subproblems.
• Give a recurrence for the subproblems and specify

where to find the final solution.
• Determine the natural order to solve the subproblems.

• Decide on a data structure to hold the solutions
• E.g. We used an array for WIS

• Write the code to fill in the data structure based on the
natural order you found.

DP for WIS
Brute-Force(L):

 Sort L by job finish times.

 Compute p[i] for each i using binary search.

 Global M = [], M[0] = 0

 Return Compute-Opt-?(n)

M-Compute-Opt-Top-Down(j):

 If j not in M:

 M[j] = Max(M-Compute-Opt(j-1), v[j] + M-Compute-Opt(p[j])}

 Return M[j]

M-Compute-Opt-Bottom-Up(j):

 For i in [j]:

 M[i] = Max(M-Compute-Opt(i-1), v[i] + M-Compute-Opt(p[i])}

 Return M[j]

Dynamic Programming Choices

• Often the key to writing a dynamic programming algorithm
is identifying a recurrence.
• To find a recurrence, you often want to find a choice.

• E.g. “You either take the job i or you don’t.”
• Once you’ve found your choice, you can then describe a

subproblem based on the outcome of all choices.
• E.g. “If you take it, you need to consider removing all

conflicting jobs. If you don’t, you don’t need to consider it
anymore.”

• Sometimes the subproblem is natural and finding the
recurrence is the hard part.

Weighted Interval Scheduling
• Input: A list of n jobs L

• Each job i has a start time 𝑠𝑖 and finish time 𝑓𝑖

• Two jobs are “compatible” if they don’t overlap
• Each job i as a weight v𝑖

• Goal: Find the max-weight subset of mutually compatible jobs.

Start End

Time:

Job 1 (1)

Job 2 (5)

Job 3 (1) Job 5 (1)

Job 4 (3)

Subset Sum

• Input: A list of n items {1,…,n} and a bound W.
• Each item i has a weight w𝑖

• Goal: Find the max-weight subset S such that σ𝑖∈S 𝑤𝑖 ≤ W.

Subset Sum

• Input: A list of n items {1,…,n} and a bound W.
• Each item i has a non-negative weight w𝑖.

• Goal: Find the max-weight subset S such that σ𝑖∈S 𝑤𝑖 ≤ W.

• Input: A list of n tasks {1,…,n} you want to schedule on a server.
• You are allowed to use at most W cycles.
• Each item i has a weight w𝑖 that represents needed cycles.

• Goal: Find the subset S of tasks such that you don’t use more than
your maximum number of cycles, but you get as much work done as
possible, i.e., σ𝑖∈S 𝑤𝑖 ≤ W.

Subset Sum Notation & Observations

• Input: A list of n items {1,…,n} and a bound W.
• Each item i has a non-negative weight w𝑖.

• Goal: Find the max-weight subset S such that σ𝑖∈S 𝑤𝑖 ≤ W.

• For any set S ⊆ [n], let w(S) = σ𝑖∈S 𝑤𝑖.
• Note that w(∅) = 0.
• Also note if w([n]) ≤ W, then the answer is [n].
• Finally note if 𝑤𝑖 > 𝑊for all i, then answer is ∅.

Subset Sum Subproblems

• Input: A list of n items {1,…,n} and a bound W.
• Each item i has a non-negative weight w𝑖.

• Goal: Find the max-weight subset S such that σ𝑖∈S 𝑤𝑖 ≤ W.

Idea: Let OPT(i) be the optimal solution only
considering the first i items.

Subset Sum Subproblems

• Input: A list of n items {1,…,n} and a bound W.
• Each item i has a non-negative weight w𝑖.

• Goal: Find the max-weight subset S such that σ𝑖∈S 𝑤𝑖 ≤ W.

Idea: Let OPT(i) be the optimal solution only
considering the first i items.

Question: How can you solve the original problem if
you find OPT(i) for i < n?

Subset Sum Example

Idea: Let OPT(i) be the optimal solution only considering the first i
items.

Example:
• Item values = [1,4,7,2,5,12,14]
• Bound = 10

Observations:
• You can’t decide if you want to take item with value 5 based on the

optimal solution to [1,4,7,2] with bound 10.
• The optimal there is 9 but it can be 5.

• If you don’t keep track of what you’ve used, you may overuse.

Subset Sum Subproblems

• Input: A list of n items {1,…,n} and a bound W.
• Each item i has a non-negative weight w𝑖.

• Goal: Find the max-weight subset S such that σ𝑖∈S 𝑤𝑖 ≤ W.

Idea: Let OPT(i) be the optimal solution only
considering the first i items.

Answer: It doesn’t seem possible as you might use too
much weight.

Subset Sum Subproblems

• Input: A list of n items {1,…,n} and a bound W.
• Each item i has a non-negative weight w𝑖.

• Goal: Find the max-weight subset S such that σ𝑖∈S 𝑤𝑖 ≤ W.

Idea: Let OPT(W’) be the optimal with bound W’.

Question: How can you solve the original problem if
you find OPT(W’) for W’ < W?

Subset Sum Example

Idea: Let OPT(W’) be the optimal with bound W’.

Example:
• Item values = [4,7,2,5,12,14]
• Bound = 10

Observations:
• You can’t decide if you want to take item with value 5 based on the

optimal solution to [4,7,2,5,12,14] with bound 5.
• The optimal there is 5 but it shouldn’t be combined with 5 again.
• That is, if you aren’t keep track of the

Subset Sum Subproblems

• Input: A list of n items {1,…,n} and a bound W.
• Each item i has a non-negative weight w𝑖.

• Goal: Find the max-weight subset S such that σ𝑖∈S 𝑤𝑖 ≤ W.

Idea: Let OPT(W’) be the optimal with bound W’.

Answer: It doesn’t seem possible as you might use the
same item multiple times.

Subset Sum Subproblems

• Input: A list of n items {1,…,n} and a bound W.
• Each item i has a non-negative weight w𝑖.

• Goal: Find the max-weight subset S such that σ𝑖∈S 𝑤𝑖 ≤ W.

Idea: Let OPT(i, W’) be the optimal with only first i
items and bound of W’.

Now we can describe the “choice” of using an item or
not using it.

Subset Sum Optimal Substructure

Idea: Let OPT(i, W’) be the optimal with only first i
items and bound of W’.

If i = 0 then
 OPT(i,W’) = 0
If 𝑊’ > 𝑤𝑖 then
 OPT(i,W’) = max{𝑤𝑖 + OPT(i-1,W’- 𝑤𝑖}, OPT(i-1,W’)}
Otherwise
 OPT(i,W’) = OPT(i-1,W’)

Subset Sum Problem Overlap

It is believable that there will be instances where we
have a lot of problem overlap.

Example:
• Item values = [4,7,2,5,2,12,14]
• Bound = 20

There are two different ways to eventually ask about
OPT(4,6): Picking 14 or pick 12 and 2.

Subset Sum Problem Count

There will be n choices for i and W choices for W’
(provided everything is an integer).

Example:
• Item values = [4,7,2,5,2,12,14]
• Bound = 20

You only need to consider (i,20), (i,19), …, (i,0) for each i.

Subset Sum Ordering Subproblems

Idea: Let OPT(i, W’) be the optimal with only first i
items and bound of W’.

If i = 0 then
 OPT(i,W’) = 0
If 𝑊’ > 𝑤𝑖 then
 OPT(i,W’) = max{𝑤𝑖 + OPT(i-1,W’- 𝑤𝑖}, OPT(i-1,W’)}
Otherwise
 OPT(i,W’) = OPT(i-1,W’)

Subset Sum Ordering Subproblems

0

0 W

n

i

W’

OPT(i,W’) = max{𝑤𝑖 + OPT(i-1,W’- 𝑤𝑖}, OPT(i-1,W’)}

Subset Sum Ordering Subproblems
We need to
know for
smaller W’ and
smaller i.

0

0 W

n

i

W’W’-𝑤𝑖

i-1

OPT(i,W’) = max{𝑤𝑖 + OPT(i-1,W’- 𝑤𝑖}, OPT(i-1,W’)}

Subset Sum Ordering Subproblems
Question:
How do we fill?

0

0 W

n

i

W’W’-𝑤𝑖

i-1

OPT(i,W’) = max{𝑤𝑖 + OPT(i-1,W’- 𝑤𝑖}, OPT(i-1,W’)}

Subset Sum Ordering Subproblems
Answer:
Out for loop will
be for i and
inner for loop
will be for W’.

0

0 W

n

i

W’W’-𝑤𝑖

i-1

OPT(i,W’) = max{𝑤𝑖 + OPT(i-1,W’- 𝑤𝑖}, OPT(i-1,W’)}

Fill first layer with 0.

	Slide 1: CSE 331: Algorithms & Complexity
	Slide 2: Schedule
	Slide 3: Course Updates
	Slide 4: Reading
	Slide 5: Weighted Interval Scheduling
	Slide 6: DP for WIS
	Slide 7: Dynamic Programming
	Slide 8: Dynamic Programming
	Slide 9: Dynamic Programming
	Slide 10: Dynamic Programming – Fibonacci
	Slide 11: Dynamic Programming – WIS
	Slide 12: Dynamic Programming – WIS
	Slide 13: Dynamic Programming – WIS
	Slide 14: Dynamic Programming – WIS
	Slide 15: Dynamic Programming – Tips
	Slide 16: Dynamic Programming – Tips
	Slide 17: Dynamic Programming – Tips
	Slide 18: Dynamic Programming – Tips
	Slide 19: Dynamic Programming vs Divide & Conquer
	Slide 20: Dynamic Programming vs Divide & Conquer
	Slide 21: Dynamic Programming Bottom-Up/Iterative
	Slide 22: DP for WIS
	Slide 23: Dynamic Programming Choices
	Slide 24: Weighted Interval Scheduling
	Slide 25: Subset Sum
	Slide 26: Subset Sum
	Slide 27: Subset Sum Notation & Observations
	Slide 28: Subset Sum Subproblems
	Slide 29: Subset Sum Subproblems
	Slide 30: Subset Sum Example
	Slide 31: Subset Sum Subproblems
	Slide 32: Subset Sum Subproblems
	Slide 33: Subset Sum Example
	Slide 34: Subset Sum Subproblems
	Slide 35: Subset Sum Subproblems
	Slide 36: Subset Sum Optimal Substructure
	Slide 37: Subset Sum Problem Overlap
	Slide 38: Subset Sum Problem Count
	Slide 39: Subset Sum Ordering Subproblems
	Slide 40: Subset Sum Ordering Subproblems
	Slide 41: Subset Sum Ordering Subproblems
	Slide 42: Subset Sum Ordering Subproblems
	Slide 43: Subset Sum Ordering Subproblems

