CSE 331:
Allg@ﬂfﬁlﬂhﬂﬂﬂlg & (C<o>lnnqp>1l<exiilty

L]

“Dynamic Programming”

Prof. Charlie Anne Carlson (She/Her)
Lecture 30
Wednesday Nov 12th, 2025

G5

University at Buffalo

Schedule

1. Course Updates

2. WIS

3. Dynamic Programming
1. Optimal Substructure
2. Overlapping Subproblems
3. Subproblem Ordering

4. Subset Sum

Course Updates

e HW7Out
 Due November 18t
* Group Project
 Code 3 Due November 24t
 Reflections 3 Due December 15t
e Next Quizis December 15t

Reading

* You should have read:
* Finished 6.1
* Finished 6.2

» Before Next Class:
* Finish6.4

JON KLEINBERG - EVA TARDOS

Weighted Interval Scheduling

* Input: AlistofnjobsL
 Eachjobihas astarttime s; and finish time f;
* Two jobs are “compatible” if they don’t overlap
* Eachjobiasaweightv;
* Goal: Find the max-weight subset of mutually compatible jobs.

Job 2 (5)

DP for WIS

Brute-Force (L) :
Sort L by job finish times.
Compute p[1i] for each i1 using binary search.
Global M = [], M[O] =0
Return Compute-Opt (n)

M-Compute-Opt-Top-Down (]) :
If jJ not in M:
M[J] = Max (M-Compute-Opt (j-1), v[Jj] + M-Compute-Opt(p[j])}
Return M[7]

M-Compute-Opt-Bottom-Up (]) :
For 1 in []J]:
M[i] = Max (M-Compute-Opt(i-1), v[i] + M-Compute-Opt(p[i]) }
Return M[7]

Dynamic Programming

* Optimal Substructure
* The solution to the original problem
can be easily computed from the
solutions to the subproblems.

1i=20
i=1
i =2

Dynamic Programming

* Overlapping Subproblems
* At most polynomial subproblems
to solve.

Dynamic Programming

* Subproblem Ordering
* There exists a natural order to solve F; =«

subproblems without conflict.

kFi—l + Fi2

1i=20
i=1
i =2

Dynamic Programming — Fibonacci

* Optimal Substructure
* To compute F, we can compute F;

forall1 < n.
* QOverlapping Subproblems e

* QObserve that to compute F, and

F,,_{ you need to know F,, _,. e

* There are at most n of them!
* Subproblem Ordering
* Observe that you only need to F; =4

know F; fori < j to compute Fj.

(0
1
\Fl—l +Fl—2

1i=20
i=1
i =2

Dynamic Programming — WIS

* Optimal Substructure
¢ 7

* Overlapping Subproblems
¢ 7

* Subproblem Ordering
¢ ?

Dynamic Programming — WIS

* Optimal Substructure
* Define Subproblems:
* Let OPT(i) be the best job schedule
using only first i jobs.
* Describe Using Subproblems:
* Given OPT(i) for alli<n, we can
compute:
OPT(n) = MAX(OPT(n-1), v[n]+ OPT(P[n]))

L 4
’0
>
>
>
>
>
>
>
>
>
>
>
>
*
*
& &

-

Dynamic Programming — WIS

* Overlapping Subproblems
* |n manyinstances, itis easy to see that you will need
OPT(i) multiple times.
* You only ever need to considerifrom 1 ton.
* E.g.:You need OPT(2) to compute OPT(3) and OPT(4) in
the following example:

TR

Dynamic Programming — WIS

* Subproblem Ordering
* Ifyou know OPT(i) foralli < jthenyou
can compute OPT(j) using substructure
from before.

TiITIE! -I---.----------------.....................................I.

Start End

Dynamic Programming — Tips

* Describe subproblems in English:

* “the optimal solution considering only the first i jobs.”
* Make note of the format of subproblems:

* Each subproblem was of the same type, WIS.

TR

Dynamic Programming — Tips

* Describe how solving all the subproblems gets you the

solution:
* “Once we have computed OPT(i) for all i, the answer to
the problem is OPT(i).”
* |tis okayto do some preprocessing before you solve the
problem.

TR

Dynamic Programming — Tips

* Make sure you consider the order of solving subproblems
carefully.
* We will see in our next problem a case where you have
more than one variable.

TR

Dynamic Programming — Tips

* Don’tforget the base case!
 (Oftenyou need to initialize the array/matrix/tree/graph
with some values or you won't be able to fill in the next
case!

TR

Dynamic Programming vs Divide & Conquer

* Question: What happens if you have optimal substructure,
but you don’t have a lot of overlapping subproblems?

Dynamic Programming vs Divide & Conquer

* Question: What happens if you have optimal substructure,
but you don’t have a lot of overlapping subproblems?
* Answer:

* |f you have few subproblems, you might get a good
algorithm that is divide & conquer, decrease & conquer,
or even brute force.

* E.g.Mergesort

* |fyou have many subproblems than you may not get an

efficient algorithm.

Dynamic Programming Bottom-Up/lterative

* Describe and justify the subproblems.
* Give arecurrence for the subproblems and specify
where to find the final solution.
* Determine the natural order to solve the subproblems.
* Decide on a data structure to hold the solutions
* E.g.We used an array for WIS
* Write the code to fill in the data structure based on the
natural order you found.

DP for WIS

Brute-Force (L) :
Sort L by job finish times.
Compute p[1i] for each i1 using binary search.
Global M = [], M[O] =0
Return Compute-Opt-7? (n)

M-Compute-Opt-Top-Down (]) :
If jJ not in M:
M[J] = Max (M-Compute-Opt (j-1), v[Jj] + M-Compute-Opt(p[j])}
Return M[7]

M-Compute-Opt-Bottom-Up (]) :
For 1 in []J]:
M[i] = Max (M-Compute-Opt(i-1), v[i] + M-Compute-Opt(p[i]) }
Return M[7]

Dynamic Programming Choices

* Often the key to writing a dynamic programming algorithm

IS identifying a recurrence.
* Tofind arecurrence, you often want to find a choice.
* E.g.“You eithertake the job i oryou don’t.”
* Onceyou’ve found your choice, you can then describe a
subproblem based on the outcome of all choices.
* E.g.“If youtake it, you need to consider removing all
conflicting jobs. If you don’t, you don’t need to consider it
anymore.”

* Sometimes the subproblem is natural and finding the
recurrence is the hard part.

Weighted Interval Scheduling

* Input: AlistofnjobsL
 Eachjobihas astarttime s; and finish time f;
* Two jobs are “compatible” if they don’t overlap
* Eachjobiasaweightv;
* Goal: Find the max-weight subset of mutually compatible jobs.

Job 2 (5)

Subset Sum

* Input: Alistof nitems{1,...,n} and a bound W.
* Eachitem1has aweight w;
* Goal: Find the max-weight subset S such that };;ccw; < W.

Subset Sum

Input: A list of nitems {1,...,n} and a bound W.
* Eachitem1has a non-negative weight w;.
Goal: Find the max-weight subset S such that }};ccw; < W.

Input: A list of ntasks {1,...,n} you want to schedule on a server.

* You are allowed to use at most W cycles.

* Eachitem1has a weight w; that represents needed cycles.

Goal: Find the subset S of tasks such that you don’t use more than
your maximum number of cycles, but you get as much work done as
possible, i.e.,) icqw; < W.

Subset Sum Notation & Observations

* Input: Alistof nitems{1,...,n} and a bound W.
* Eachitem1has a non-negative weight w;.
* Goal: Find the max-weight subset S such that };;ccw; < W.

* ForanysetS C [n], letw(S) =);eqW;.
* Note thatw(@) = 0.
* Alsonoteif w(|n]) < W, thenthe answeris [n].
* Finally note if w; > Wfor alli, then answer is Q.

Subset Sum Subproblems

* Input: Alistof nitems{1,...,n} and a bound W.
* Eachitem1has a non-negative weight w;.
* Goal: Find the max-weight subset S such that };;ccw; < W.

Idea: Let OPT(i) be the optimal solution only
considering the first | items.

Subset Sum Subproblems

* Input: Alistof nitems{1,...,n} and a bound W.
* Eachitem1has a non-negative weight w;.
* Goal: Find the max-weight subset S such that };;ccw; < W.

Idea: Let OPT(i) be the optimal solution only
considering the first | items.

Question: How can you solve the original problem if
you find OPT(i) fori<n?

Subset Sum Example

Idea: Let OPT(i) be the optimal solution only considering the first |
items.

Example:
* ltemvalues=1[1,4,7,2,5,12,14]
* Bound=10

Observations:

* You can’t decide if you want to take item with value 5 based on the
optimal solution to [1,4,7,2] with bound 10.
* The optimalthereis 9 butit can be 5.

If you don’t keep track of what you’ve used, you may overuse.

Subset Sum Subproblems

* Input: Alistof nitems{1,...,n} and a bound W.
* Eachitem1has a non-negative weight w;.
* Goal: Find the max-weight subset S such that };;ccw; < W.

Idea: Let OPT(i) be the optimal solution only
considering the first | items.

Answer: [t doesn’t seem possible as you might use too
much weight.

Subset Sum Subproblems

* Input: Alistof nitems{1,...,n} and a bound W.
* Eachitem1has a non-negative weight w;.
* Goal: Find the max-weight subset S such that };;ccw; < W.

Idea: Let OPT(W’) be the optimal with bound W’.

Question: How can you solve the original problem if
you find OPT(W’) for W < W?

Subset Sum Example

Idea: Let OPT(W’) be the optimal with bound W'.

Example:
* ltemvalues=1[4,7,2,5,12,14]
* Bound=10

Observations:
* You can’t decide if you want to take item with value 5 based on the
optimal solution to [4,7,2,5,12,14] with bound 5.

* The optimalthere is 5 but it shouldn’t be combined with 5 again.
 Thatis, if you aren’t keep track of the

Subset Sum Subproblems

* Input: Alistof nitems{1,...,n} and a bound W.
* Eachitem1has a non-negative weight w;.
* Goal: Find the max-weight subset S such that };;ccw; < W.

Idea: Let OPT(W’) be the optimal with bound W’.

Answer: [t doesn’t seem possible as you might use the
same item multiple times.

Subset Sum Subproblems

* Input: Alistof nitems{1,...,n} and a bound W.
* Eachitem1has a non-negative weight w;.
* Goal: Find the max-weight subset S such that };;ccw; < W.

Idea: Let OPT(i, W’) be the optimal with only first i
Items and bound of W’.

Now we can describe the “choice” of using an item or
not using it.

Subset Sum Optimal Substructure

Idea: Let OPT(i, W’) be the optimal with only first i
Items and bound of W’.

If i = 0 then
OPT(i,W’)=0
If W' > w; then

OPT(i,W’) = max{w; + OPT(i-1,W’- w;}, OPT(i-1,W’)}
Otherwise
OPT(i,W’) = OPT(i-1,W’)

Subset Sum Problem Overlap

It iIs believable that there will be instances where we
have a lot of problem overlap.

Example:
ltem values =[4,7,2,5,2,12,14]
Bound =20

There are two different ways to eventually ask about
OPT(4,6): Picking 14 or pick 12 and 2.

Subset Sum Problem Count

There will be n choices fori and W choices for W’
(provided everything is an integer).

Example:
* ltemvalues=1[4,7,2,5,2,12,14]
e Bound=20

You only need to consider (i,20), (i,19), ..., (i,0) for each I.

Subset Sum Ordering Subproblems

Idea: Let OPT(i, W’) be the optimal with only first i
Items and bound of W’.

If i = 0 then
OPT(i,W’)=0
If W' > w; then

OPT(i,W’) = max{w; + OPT(i-1,W’- w;}, OPT(i-1,W’)}
Otherwise
OPT(i,W’) = OPT(i-1,W’)

Subset Sum Ordering Subproblems

0
0 W’ W
OPT(i,W’) = max{w; + OPT(i-1,W’- w;}, OPT(i-1,W’)}

Subset Sum Ordering Subproblems

We need to
know for
smaller W’ and
smalleri.

OPT(i,W’) = max{w; + OPT(i-1,W’- w;}, OPT(i-1,W’)}

Subset Sum Ordering Subproblems

Question:
How do we fill?

OPT(i,W’) = max{w; + OPT(i-1,W’- w;}, OPT(i-1,W’)}

Subset Sum Ordering Subproblems

Answer:

Out for loop will
be for i and
iInner for loop
will be for W,

Fill first layer with O.

OPT(i,W’) = max{w; + OPT(i-1,W’- w;}, OPT(i-1,W’)}

	Slide 1: CSE 331: Algorithms & Complexity
	Slide 2: Schedule
	Slide 3: Course Updates
	Slide 4: Reading
	Slide 5: Weighted Interval Scheduling
	Slide 6: DP for WIS
	Slide 7: Dynamic Programming
	Slide 8: Dynamic Programming
	Slide 9: Dynamic Programming
	Slide 10: Dynamic Programming – Fibonacci
	Slide 11: Dynamic Programming – WIS
	Slide 12: Dynamic Programming – WIS
	Slide 13: Dynamic Programming – WIS
	Slide 14: Dynamic Programming – WIS
	Slide 15: Dynamic Programming – Tips
	Slide 16: Dynamic Programming – Tips
	Slide 17: Dynamic Programming – Tips
	Slide 18: Dynamic Programming – Tips
	Slide 19: Dynamic Programming vs Divide & Conquer
	Slide 20: Dynamic Programming vs Divide & Conquer
	Slide 21: Dynamic Programming Bottom-Up/Iterative
	Slide 22: DP for WIS
	Slide 23: Dynamic Programming Choices
	Slide 24: Weighted Interval Scheduling
	Slide 25: Subset Sum
	Slide 26: Subset Sum
	Slide 27: Subset Sum Notation & Observations
	Slide 28: Subset Sum Subproblems
	Slide 29: Subset Sum Subproblems
	Slide 30: Subset Sum Example
	Slide 31: Subset Sum Subproblems
	Slide 32: Subset Sum Subproblems
	Slide 33: Subset Sum Example
	Slide 34: Subset Sum Subproblems
	Slide 35: Subset Sum Subproblems
	Slide 36: Subset Sum Optimal Substructure
	Slide 37: Subset Sum Problem Overlap
	Slide 38: Subset Sum Problem Count
	Slide 39: Subset Sum Ordering Subproblems
	Slide 40: Subset Sum Ordering Subproblems
	Slide 41: Subset Sum Ordering Subproblems
	Slide 42: Subset Sum Ordering Subproblems
	Slide 43: Subset Sum Ordering Subproblems

