

CSE 331: Algorithms & Complexity “Dynamic Programming”

Prof. Charlie Anne Carlson (She/Her)

Lecture 30

Wednesday Nov 12th, 2025

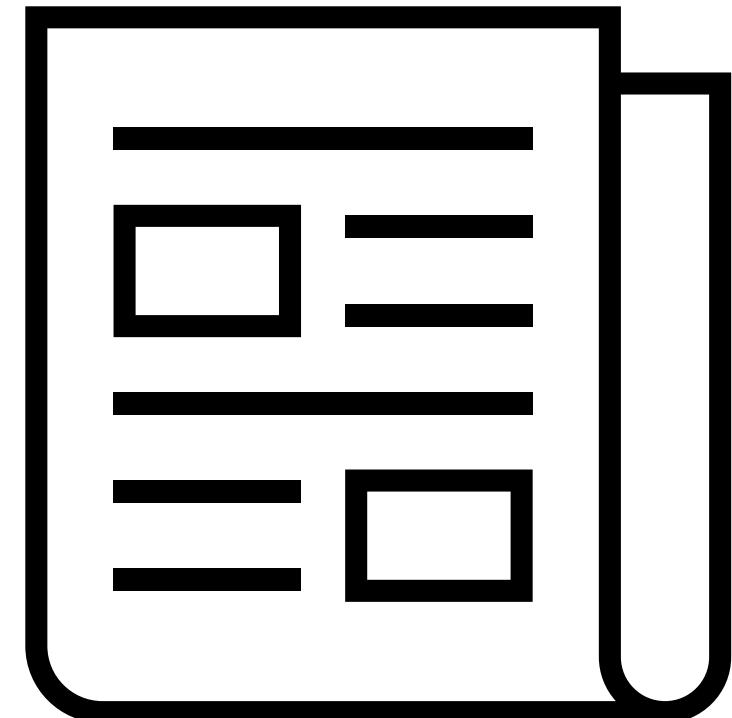
University at Buffalo®

Schedule

1. Course Updates
2. WIS
3. Dynamic Programming
 1. Optimal Substructure
 2. Overlapping Subproblems
 3. Subproblem Ordering
4. Subset Sum

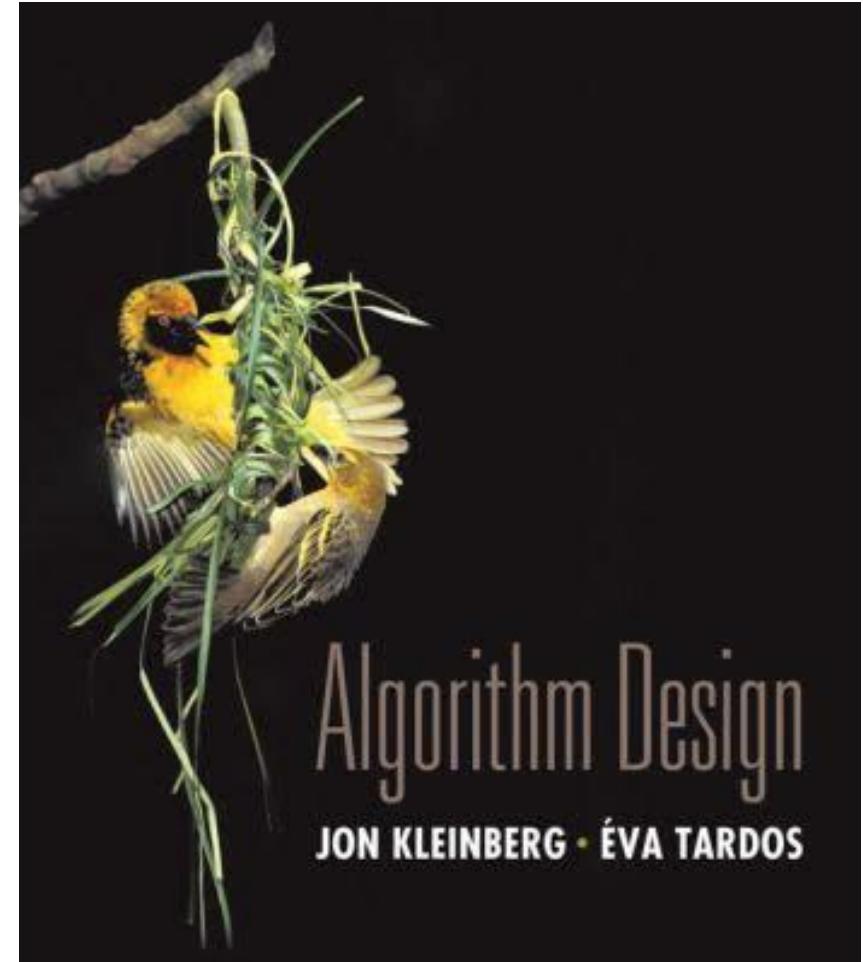
Course Updates

- HW 7 Out
 - Due November 18th
- Group Project
 - Code 3 Due November 24th
 - Reflections 3 Due December 1st
- Next Quiz is December 1st



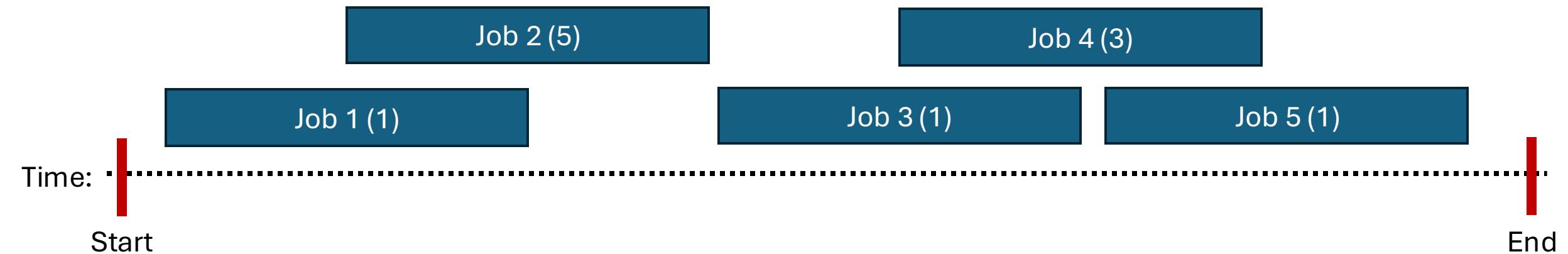
Reading

- You should have read:
 - Finished 6.1
 - Finished 6.2
- Before Next Class:
 - Finish 6.4



Weighted Interval Scheduling

- **Input:** A list of n jobs L
 - Each job i has a start time s_i and finish time f_i
 - Two jobs are “compatible” if they don’t overlap
 - Each job i has a weight v_i
- **Goal:** Find the max-weight subset of mutually compatible jobs.



DP for WIS

Brute-Force (L) :

Sort L by job finish times.

Compute $p[i]$ for each i using binary search.

Global M = [], M[0] = 0

Return Compute-Opt(n)

M-Compute-Opt-Top-Down (j) :

If j not in M:

$M[j] = \text{Max}(\text{M-Compute-Opt}(j-1), v[j] + \text{M-Compute-Opt}(p[j]))$

Return $M[j]$

M-Compute-Opt-Bottom-Up (j) :

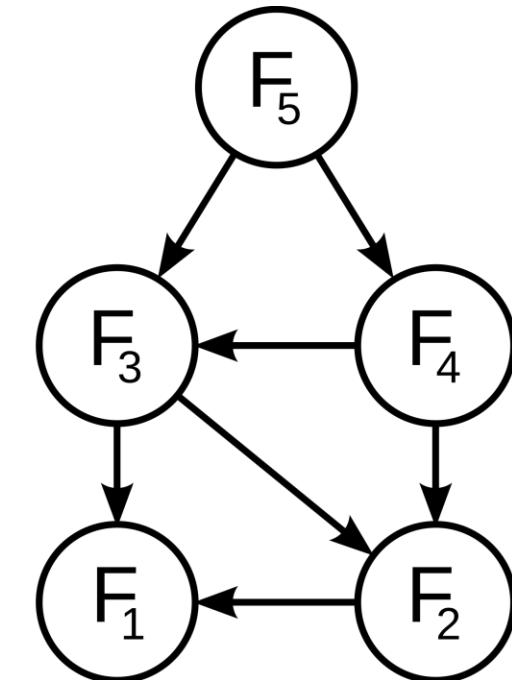
For i in $[j]$:

$M[i] = \text{Max}(\text{M-Compute-Opt}(i-1), v[i] + \text{M-Compute-Opt}(p[i]))$

Return $M[j]$

Dynamic Programming

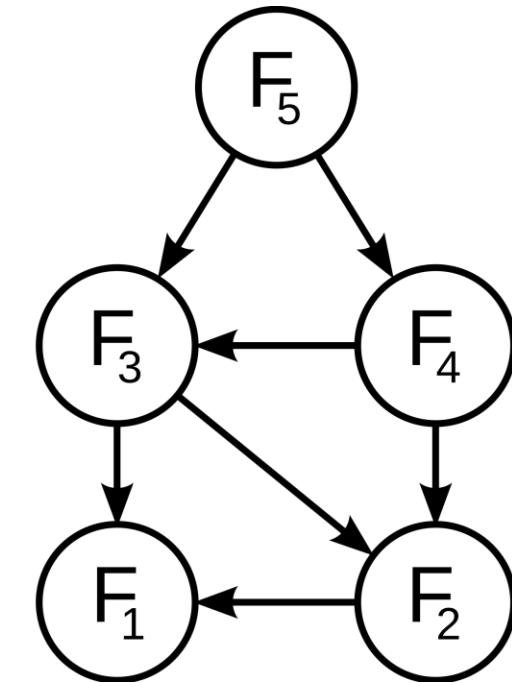
- Optimal Substructure
 - The solution to the original problem can be easily computed from the solutions to the subproblems.
- Overlapping Subproblems
 - At most polynomial subproblems to solve.
- Subproblem Ordering
 - There exists a natural order to solve subproblems without conflict.



$$F_i = \begin{cases} 0 & i = 0 \\ 1 & i = 1 \\ F_{i-1} + F_{i-2} & i \geq 2 \end{cases}$$

Dynamic Programming

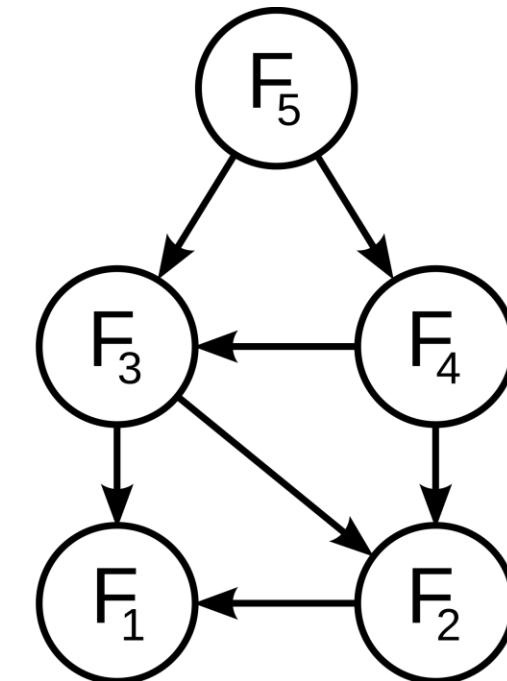
- Optimal Substructure
 - The solution to the original problem can be easily computed from the solutions to the subproblems.
- Overlapping Subproblems
 - At most polynomial subproblems to solve.
- Subproblem Ordering
 - There exists a natural order to solve subproblems without conflict.



$$F_i = \begin{cases} 0 & i = 0 \\ 1 & i = 1 \\ F_{i-1} + F_{i-2} & i \geq 2 \end{cases}$$

Dynamic Programming

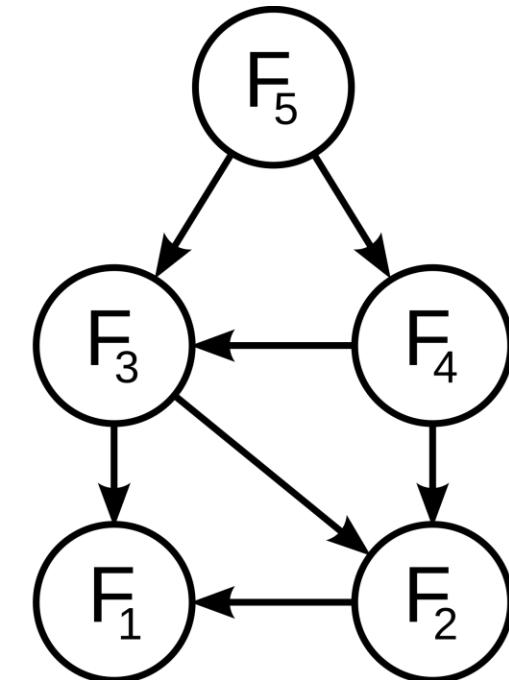
- Optimal Substructure
 - The solution to the original problem can be easily computed from the solutions to the subproblems.
- Overlapping Subproblems
 - At most polynomial subproblems to solve.
- Subproblem Ordering
 - There exists a natural order to solve subproblems without conflict.



$$F_i = \begin{cases} 0 & i = 0 \\ 1 & i = 1 \\ F_{i-1} + F_{i-2} & i \geq 2 \end{cases}$$

Dynamic Programming – Fibonacci

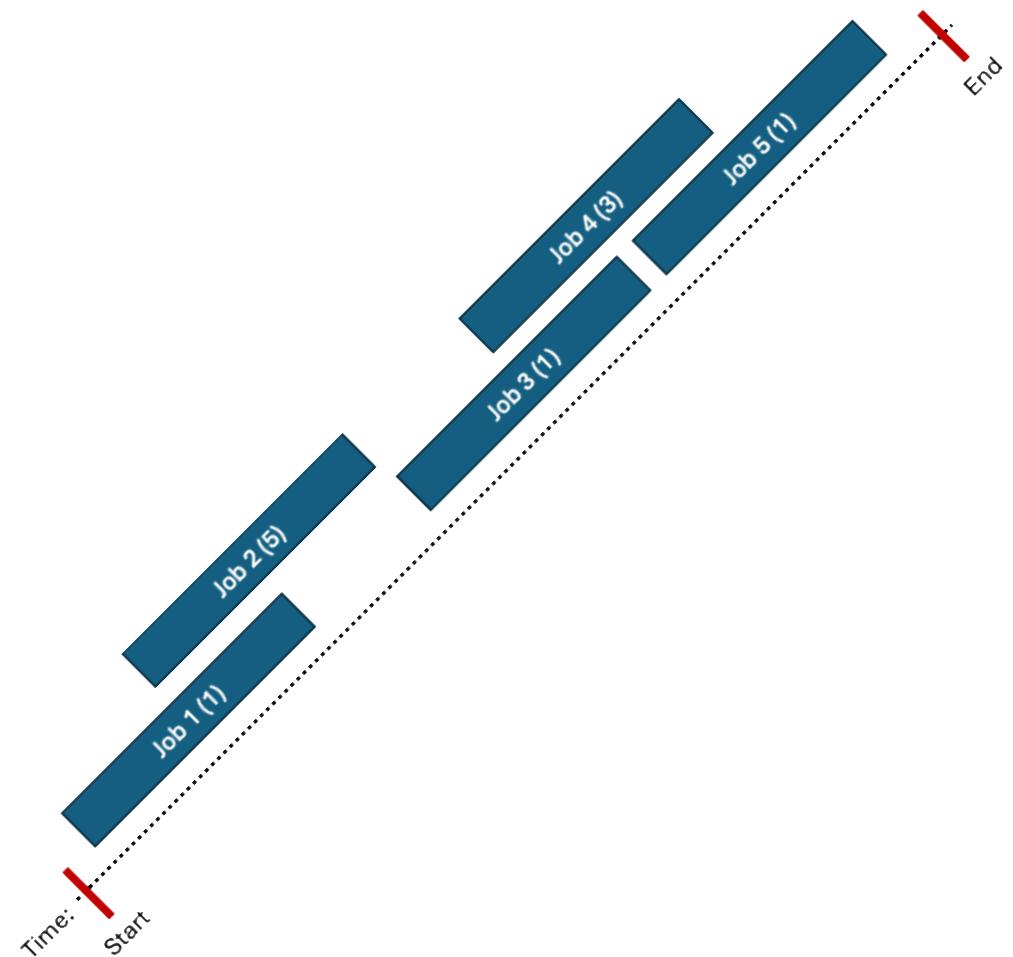
- Optimal Substructure
 - To compute F_n we can compute F_i for all $i \leq n$.
- Overlapping Subproblems
 - Observe that to compute F_n and F_{n-1} you need to know F_{n-2} .
 - There are at most n of them!
- Subproblem Ordering
 - Observe that you only need to know F_i for $i \leq j$ to compute F_j .



$$F_i = \begin{cases} 0 & i = 0 \\ 1 & i = 1 \\ F_{i-1} + F_{i-2} & i \geq 2 \end{cases}$$

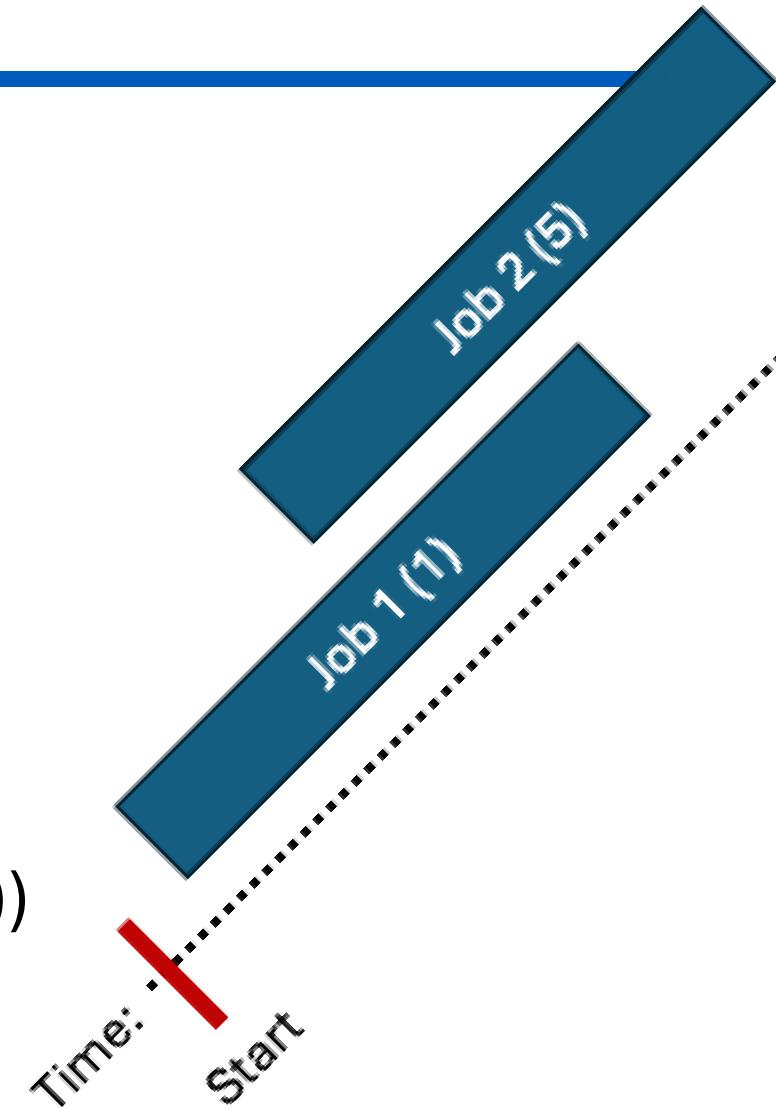
Dynamic Programming – WIS

- Optimal Substructure
 - ?
- Overlapping Subproblems
 - ?
- Subproblem Ordering
 - ?



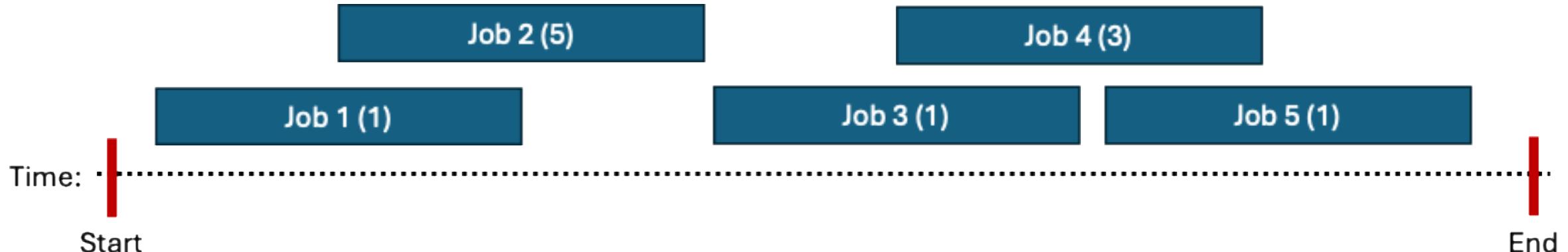
Dynamic Programming – WIS

- Optimal Substructure
 - Define Subproblems:
 - Let $OPT(i)$ be the best job schedule using only first i jobs.
 - Describe Using Subproblems:
 - Given $OPT(i)$ for all $i < n$, we can compute:
$$OPT(n) = \text{MAX}(OPT(n-1), v[n] + OPT(P[n]))$$



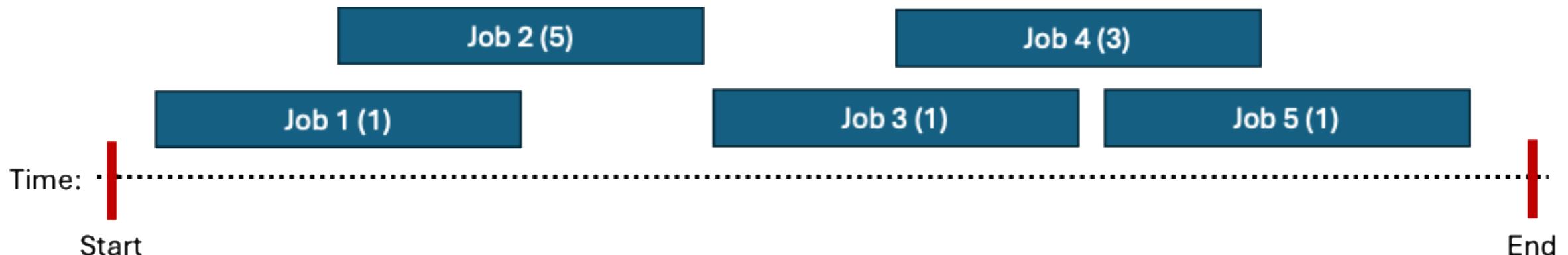
Dynamic Programming – WIS

- Overlapping Subproblems
 - In many instances, it is easy to see that you will need $OPT(i)$ multiple times.
 - You only ever need to consider i from 1 to n .
 - E.g.: You need $OPT(2)$ to compute $OPT(3)$ and $OPT(4)$ in the following example:



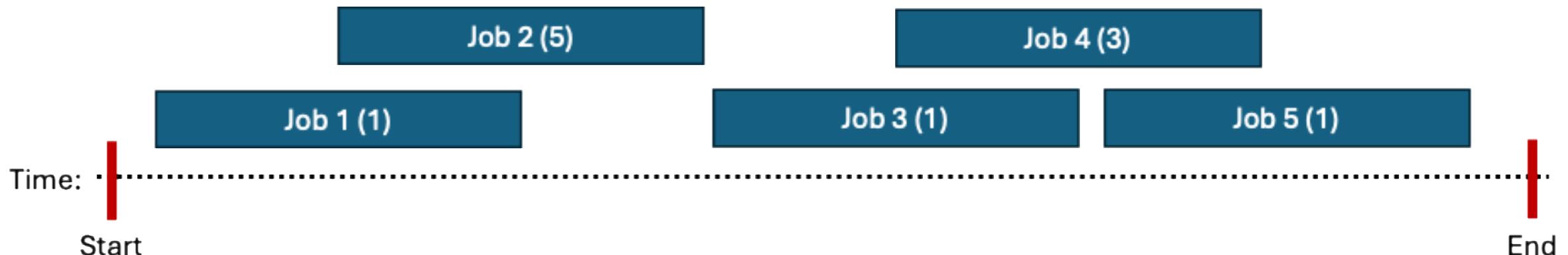
Dynamic Programming – WIS

- Subproblem Ordering
 - If you know $OPT(i)$ for all $i < j$ then you can compute $OPT(j)$ using substructure from before.



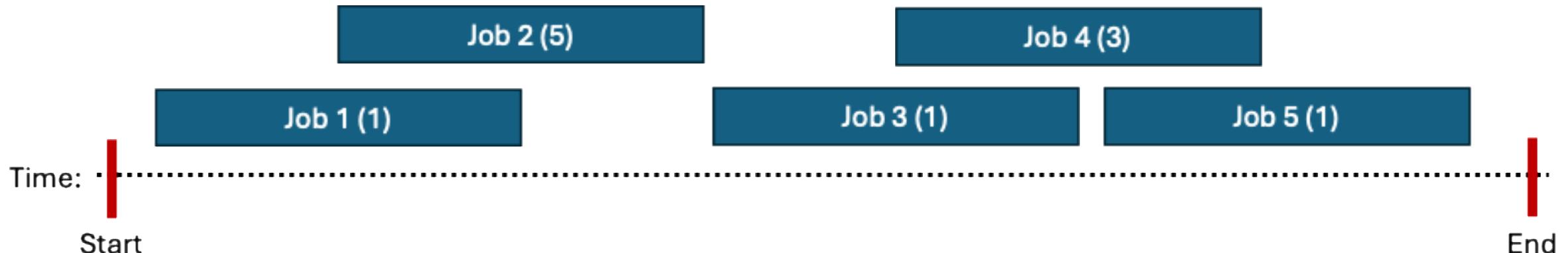
Dynamic Programming – Tips

- Describe subproblems in English:
 - “the optimal solution considering only the first i jobs.”
- Make note of the format of subproblems:
 - Each subproblem was of the same type, WIS.



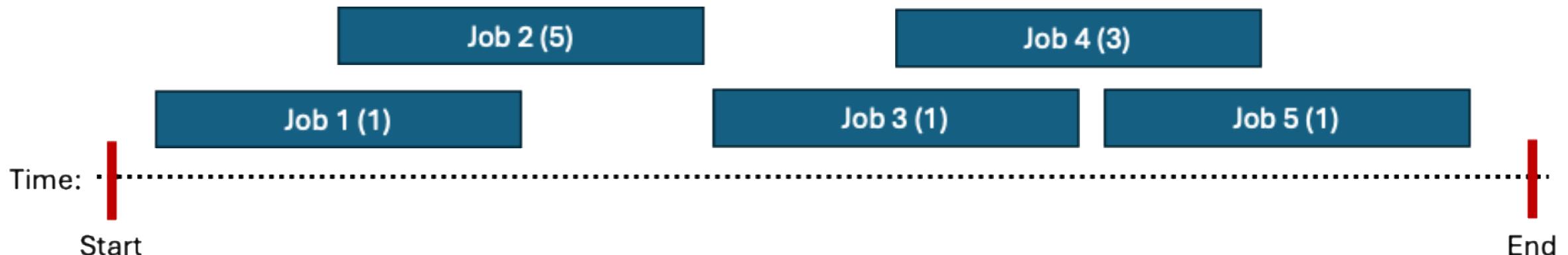
Dynamic Programming – Tips

- Describe how solving all the subproblems gets you the solution:
 - “Once we have computed $\text{OPT}(i)$ for all i , the answer to the problem is $\text{OPT}(i)$.”
 - It is okay to do some preprocessing before you solve the problem.



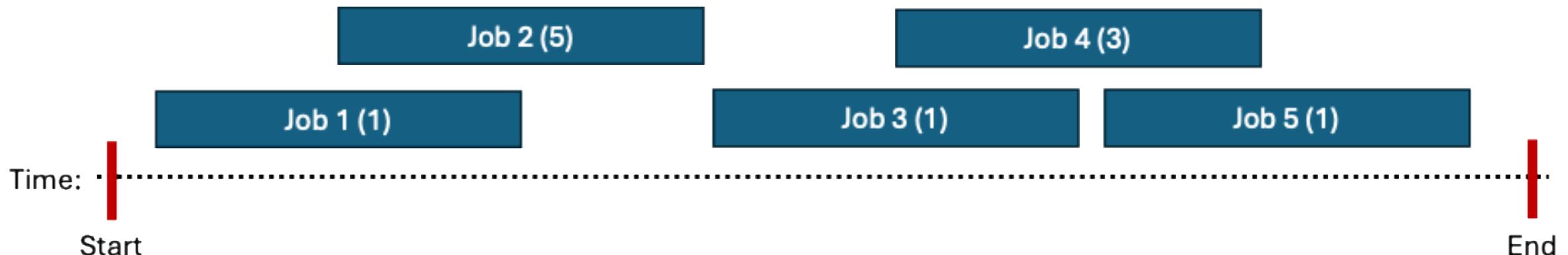
Dynamic Programming – Tips

- Make sure you consider the order of solving subproblems carefully.
 - We will see in our next problem a case where you have more than one variable.



Dynamic Programming – Tips

- Don't forget the base case!
 - Often you need to initialize the array/matrix/tree/graph with some values or you won't be able to fill in the next case!



Dynamic Programming vs Divide & Conquer

- **Question:** What happens if you have optimal substructure, but you don't have a lot of overlapping subproblems?

Dynamic Programming vs Divide & Conquer

- **Question:** What happens if you have optimal substructure, but you don't have a lot of overlapping subproblems?
- **Answer:**
 - If you have few subproblems, you might get a good algorithm that is divide & conquer, decrease & conquer, or even brute force.
 - E.g. Mergesort
 - If you have many subproblems than you may not get an efficient algorithm.

Dynamic Programming Bottom-Up/Iterative

- Describe and justify the subproblems.
 - Give a recurrence for the subproblems and specify where to find the final solution.
 - Determine the natural order to solve the subproblems.
- Decide on a data structure to hold the solutions
 - E.g. We used an array for WIS
- Write the code to fill in the data structure based on the natural order you found.

DP for WIS

Brute-Force (L) :

Sort L by job finish times.

Compute $p[i]$ for each i using binary search.

Global M = [], M[0] = 0

Return Compute-Opt-? (n)

M-Compute-Opt-Top-Down (j) :

If j not in M:

$M[j] = \text{Max}(\text{M-Compute-Opt}(j-1), v[j] + \text{M-Compute-Opt}(p[j]))$

Return $M[j]$

M-Compute-Opt-Bottom-Up (j) :

For i in $[j]$:

$M[i] = \text{Max}(\text{M-Compute-Opt}(i-1), v[i] + \text{M-Compute-Opt}(p[i]))$

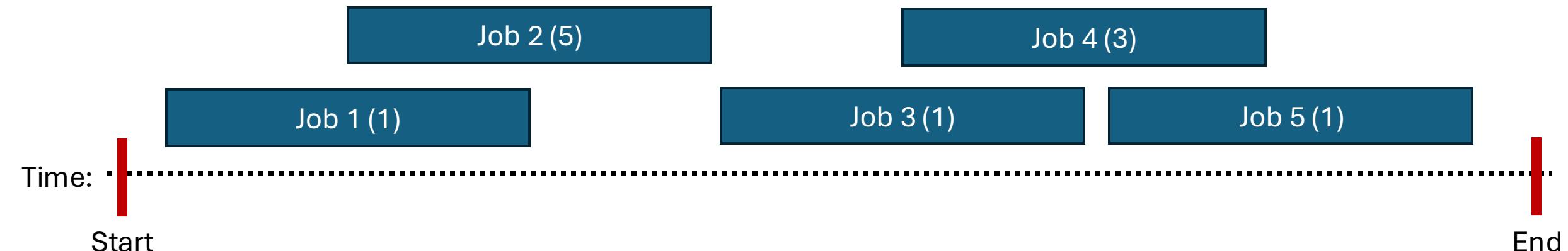
Return $M[j]$

Dynamic Programming Choices

- Often the key to writing a dynamic programming algorithm is identifying a recurrence.
 - To find a recurrence, you often want to find a choice.
 - E.g. “You either take the job i or you don’t.”
 - Once you’ve found your choice, you can then describe a subproblem based on the outcome of all choices.
 - E.g. “If you take it, you need to consider removing all conflicting jobs. If you don’t, you don’t need to consider it anymore.”
 - Sometimes the subproblem is natural and finding the recurrence is the hard part.

Weighted Interval Scheduling

- **Input:** A list of n jobs L
 - Each job i has a start time s_i and finish time f_i
 - Two jobs are “compatible” if they don’t overlap
 - Each job i has a weight v_i
- **Goal:** Find the max-weight subset of mutually compatible jobs.



Subset Sum

- **Input:** A list of n items $\{1, \dots, n\}$ and a bound W .
 - Each item i has a weight w_i
- **Goal:** Find the max-weight subset S such that $\sum_{i \in S} w_i \leq W$.

Subset Sum

- **Input:** A list of n items $\{1, \dots, n\}$ and a bound W .
 - Each item i has a non-negative weight w_i .
- **Goal:** Find the max-weight subset S such that $\sum_{i \in S} w_i \leq W$.

- **Input:** A list of n tasks $\{1, \dots, n\}$ you want to schedule on a server.
 - You are allowed to use at most W cycles.
 - Each item i has a weight w_i that represents needed cycles.
- **Goal:** Find the subset S of tasks such that you don't use more than your maximum number of cycles, but you get as much work done as possible, i.e., $\sum_{i \in S} w_i \leq W$.

Subset Sum Notation & Observations

- **Input:** A list of n items $\{1, \dots, n\}$ and a bound W .
 - Each item i has a non-negative weight w_i .
- **Goal:** Find the max-weight subset S such that $\sum_{i \in S} w_i \leq W$.
- For any set $S \subseteq [n]$, let $w(S) = \sum_{i \in S} w_i$.
 - Note that $w(\emptyset) = 0$.
 - Also note if $w([n]) \leq W$, then the answer is $[n]$.
 - Finally note if $w_i > W$ for all i , then answer is \emptyset .

Subset Sum Subproblems

- **Input:** A list of n items $\{1, \dots, n\}$ and a bound W .
 - Each item i has a non-negative weight w_i .
- **Goal:** Find the max-weight subset S such that $\sum_{i \in S} w_i \leq W$.

Idea: Let $\text{OPT}(i)$ be the optimal solution only considering the first i items.

Subset Sum Subproblems

- **Input:** A list of n items $\{1, \dots, n\}$ and a bound W .
 - Each item i has a non-negative weight w_i .
- **Goal:** Find the max-weight subset S such that $\sum_{i \in S} w_i \leq W$.

Idea: Let $\text{OPT}(i)$ be the optimal solution only considering the first i items.

Question: How can you solve the original problem if you find $\text{OPT}(i)$ for $i < n$?

Subset Sum Example

Idea: Let $\text{OPT}(i)$ be the optimal solution only considering the first i items.

Example:

- Item values = [1,4,7,2,5,12,14]
- Bound = 10

Observations:

- You can't decide if you want to take item with value 5 based on the optimal solution to [1,4,7,2] with bound 10.
 - The optimal there is 9 but it can be 5.
- If you don't keep track of what you've used, you may overuse.

Subset Sum Subproblems

- **Input:** A list of n items $\{1, \dots, n\}$ and a bound W .
 - Each item i has a non-negative weight w_i .
- **Goal:** Find the max-weight subset S such that $\sum_{i \in S} w_i \leq W$.

Idea: Let $\text{OPT}(i)$ be the optimal solution only considering the first i items.

Answer: It doesn't seem possible as you might use too much weight.

Subset Sum Subproblems

- **Input:** A list of n items $\{1, \dots, n\}$ and a bound W .
 - Each item i has a non-negative weight w_i .
- **Goal:** Find the max-weight subset S such that $\sum_{i \in S} w_i \leq W$.

Idea: Let $\text{OPT}(W')$ be the optimal with bound W' .

Question: How can you solve the original problem if you find $\text{OPT}(W')$ for $W' < W$?

Subset Sum Example

Idea: Let $\text{OPT}(W')$ be the optimal with bound W' .

Example:

- Item values = [4,7,2,5,12,14]
- Bound = 10

Observations:

- You can't decide if you want to take item with value 5 based on the optimal solution to [4,7,2,5,12,14] with bound 5.
 - The optimal there is 5 but it shouldn't be combined with 5 again.
 - That is, if you aren't keep track of the

Subset Sum Subproblems

- **Input:** A list of n items $\{1, \dots, n\}$ and a bound W .
 - Each item i has a non-negative weight w_i .
- **Goal:** Find the max-weight subset S such that $\sum_{i \in S} w_i \leq W$.

Idea: Let $\text{OPT}(W')$ be the optimal with bound W' .

Answer: It doesn't seem possible as you might use the same item multiple times.

Subset Sum Subproblems

- **Input:** A list of n items $\{1, \dots, n\}$ and a bound W .
 - Each item i has a non-negative weight w_i .
- **Goal:** Find the max-weight subset S such that $\sum_{i \in S} w_i \leq W$.

Idea: Let $\text{OPT}(i, W')$ be the optimal with only first i items and bound of W' .

Now we can describe the “choice” of using an item or not using it.

Subset Sum Optimal Substructure

Idea: Let $\text{OPT}(i, W')$ be the optimal with only first i items and bound of W' .

If $i = 0$ then

$$\text{OPT}(i, W') = 0$$

If $W' > w_i$ then

$$\text{OPT}(i, W') = \max\{w_i + \text{OPT}(i-1, W' - w_i), \text{OPT}(i-1, W')\}$$

Otherwise

$$\text{OPT}(i, W') = \text{OPT}(i-1, W')$$

Subset Sum Problem Overlap

It is believable that there will be instances where we have a lot of problem overlap.

Example:

- Item values = [4,7,2,5,2,12,14]
- Bound = 20

There are two different ways to eventually ask about $\text{OPT}(4,6)$: Picking 14 or pick 12 and 2.

Subset Sum Problem Count

There will be n choices for i and W choices for W' (provided everything is an integer).

Example:

- Item values = [4,7,2,5,2,12,14]
- Bound = 20

You only need to consider $(i, 20), (i, 19), \dots, (i, 0)$ for each i .

Subset Sum Ordering Subproblems

Idea: Let $\text{OPT}(i, W')$ be the optimal with only first i items and bound of W' .

If $i = 0$ then

$$\text{OPT}(i, W') = 0$$

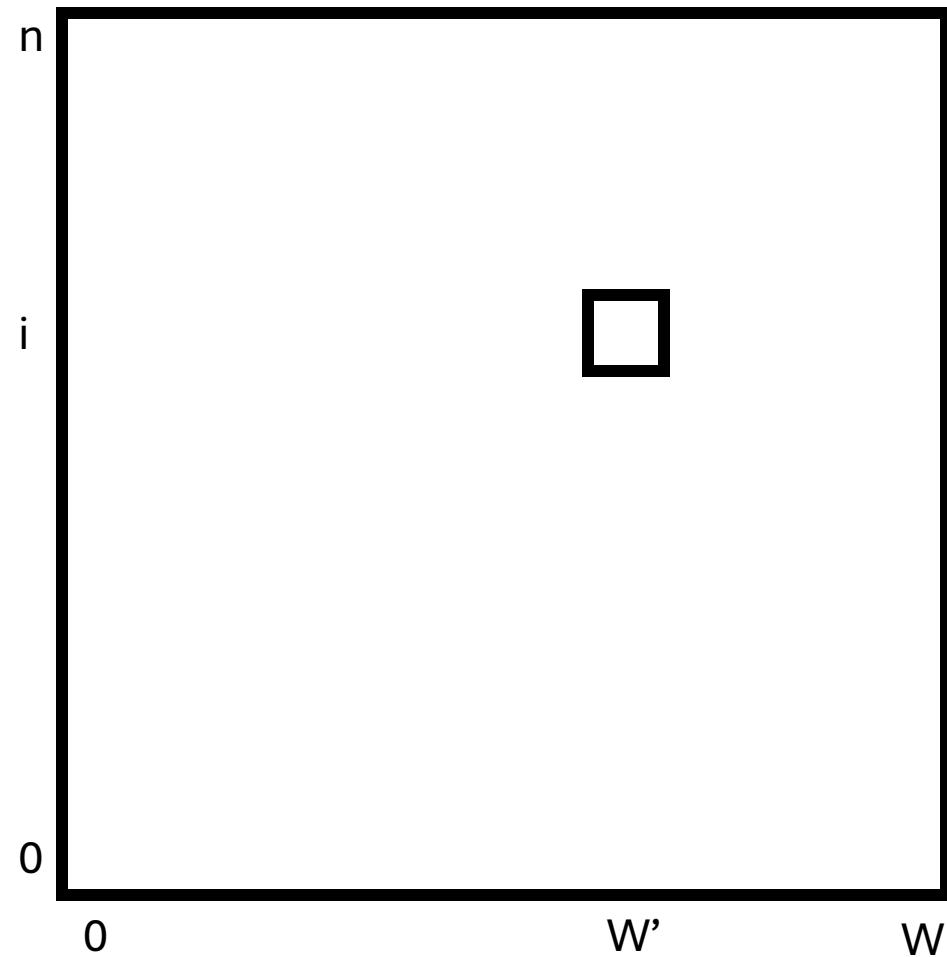
If $W' > w_i$ then

$$\text{OPT}(i, W') = \max\{w_i + \text{OPT}(i-1, W' - w_i), \text{OPT}(i-1, W')\}$$

Otherwise

$$\text{OPT}(i, W') = \text{OPT}(i-1, W')$$

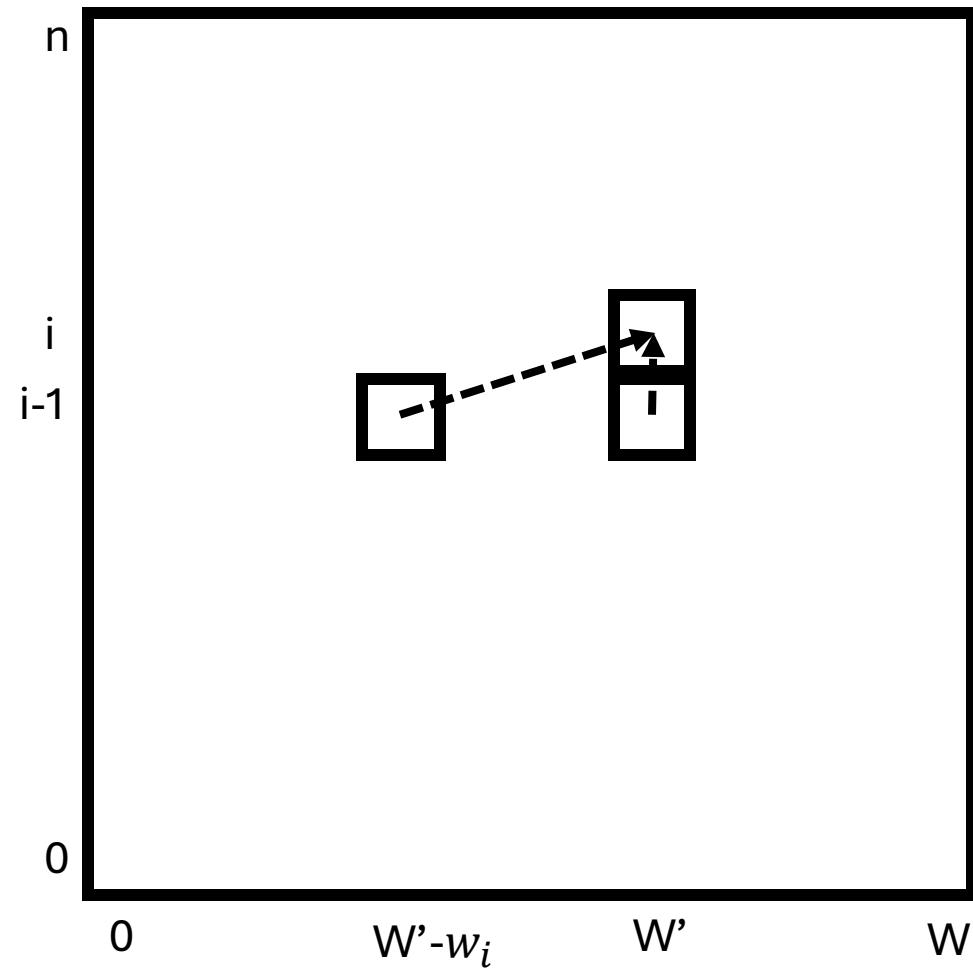
Subset Sum Ordering Subproblems



$$\text{OPT}(i, W') = \max\{w_i + \text{OPT}(i-1, W' - w_i), \text{OPT}(i-1, W')\}$$

Subset Sum Ordering Subproblems

We need to know for smaller W' and smaller i .

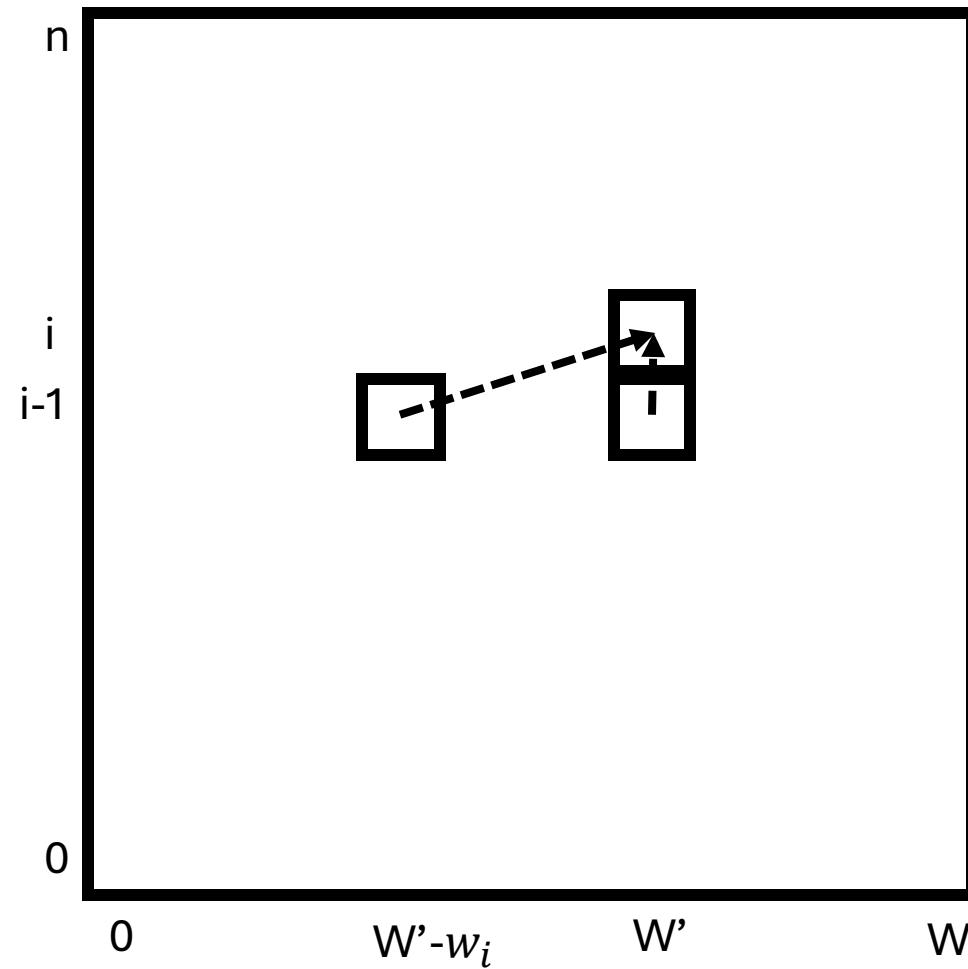


$$\text{OPT}(i, W') = \max\{w_i + \text{OPT}(i-1, W' - w_i), \text{OPT}(i-1, W')\}$$

Subset Sum Ordering Subproblems

Question:

How do we fill?

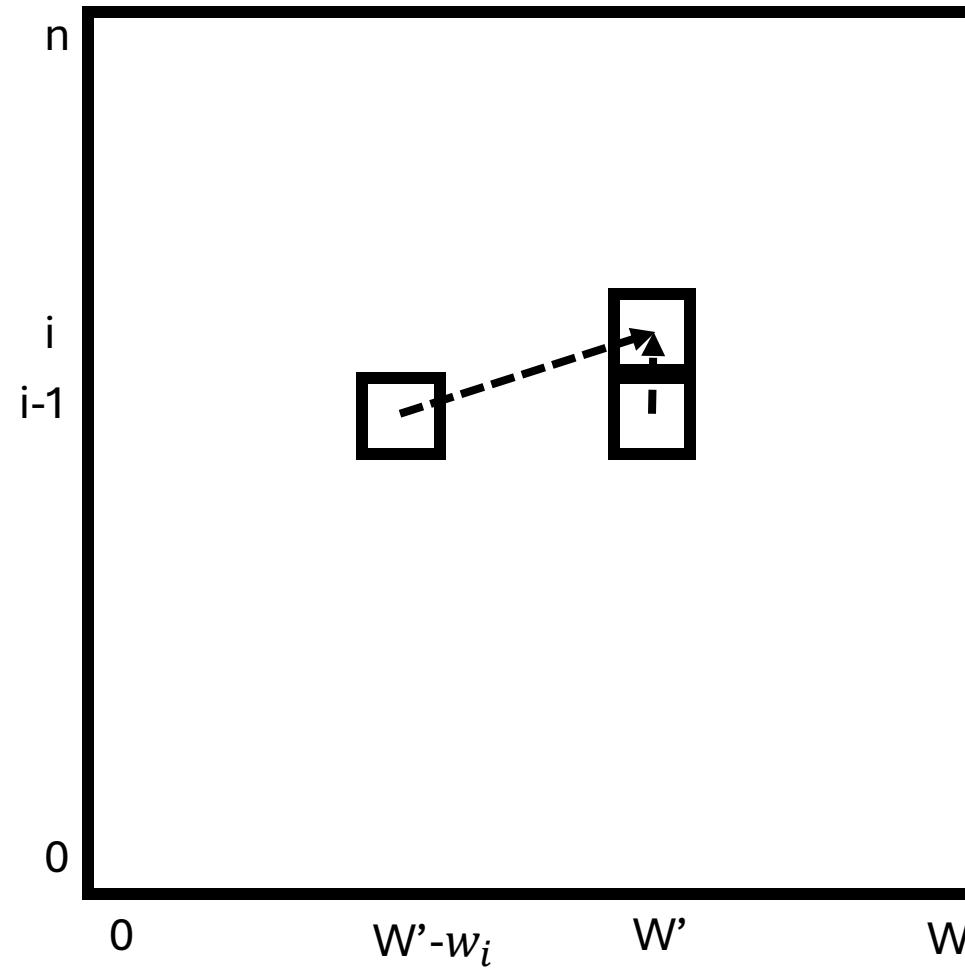


$$\text{OPT}(i, W') = \max\{w_i + \text{OPT}(i-1, W' - w_i), \text{OPT}(i-1, W')\}$$

Subset Sum Ordering Subproblems

Answer:

Outer for loop will
be for i and
inner for loop
will be for W' .



Fill first layer with 0.

$$\text{OPT}(i, W') = \max\{w_i + \text{OPT}(i-1, W' - w_i), \text{OPT}(i-1, W')\}$$