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Schedule

1. Course Updates

2. WIS

3. Dynamic Programming
1. Optimal Substructure
2. Overlapping Subproblems
3. Subproblem Ordering

4. Subset Sum




Course Updates

e HW7Out
 Due November 18t
* Group Project
 Code 3 Due November 24t
 Reflections 3 Due December 15t
e Next Quizis December 15t



Reading

* You should have read:
* Finished 6.1
* Finished 6.2

» Before Next Class:
* Finish6.4

JON KLEINBERG - EVA TARDOS




Weighted Interval Scheduling

* Input: AlistofnjobsL
 Eachjobihas astarttime s; and finish time f;
* Two jobs are “compatible” if they don’t overlap
* Eachjobiasaweightv;
* Goal: Find the max-weight subset of mutually compatible jobs.

Job 2 (5)




DP for WIS

Brute-Force (L) :
Sort L by job finish times.
Compute p[1i] for each i1 using binary search.
Global M = [], M[O] =0
Return Compute-Opt (n)

M-Compute-Opt-Top-Down (]) :
If jJ not in M:
M[J] = Max (M-Compute-Opt (j-1), v[Jj] + M-Compute-Opt(p[j])}
Return M[7]

M-Compute-Opt-Bottom-Up (]) :
For 1 in []J]:
M[i] = Max (M-Compute-Opt(i-1), v[i] + M-Compute-Opt(p[i]) }
Return M[7]



Dynamic Programming

* Optimal Substructure
* The solution to the original problem
can be easily computed from the
solutions to the subproblems.

1i=20
i=1
i =2



Dynamic Programming

* Overlapping Subproblems
* At most polynomial subproblems
to solve.




Dynamic Programming

* Subproblem Ordering
* There exists a natural order to solve F; =«

subproblems without conflict.

kFi—l + Fi2

1i=20
i=1
i =2



Dynamic Programming — Fibonacci

* Optimal Substructure
* To compute F, we can compute F;

forall1 < n.
* QOverlapping Subproblems e

* QObserve that to compute F, and

F,,_{ you need to know F,, _,. e

* There are at most n of them!
* Subproblem Ordering
* Observe that you only need to F; =4

know F; fori < j to compute Fj.
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1i=20
i=1
i =2



Dynamic Programming — WIS

* Optimal Substructure
¢ 7

* Overlapping Subproblems
¢ 7

* Subproblem Ordering
¢ ?




Dynamic Programming — WIS

* Optimal Substructure
* Define Subproblems:
* Let OPT(i) be the best job schedule
using only first i jobs.
* Describe Using Subproblems:
* Given OPT(i) for alli<n, we can
compute:
OPT(n) = MAX(OPT(n-1), v[n]+ OPT(P[n]))
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Dynamic Programming — WIS

* Overlapping Subproblems
* |n manyinstances, itis easy to see that you will need
OPT(i) multiple times.
* You only ever need to considerifrom 1 ton.
* E.g.:You need OPT(2) to compute OPT(3) and OPT(4) in
the following example:

TR




Dynamic Programming — WIS

* Subproblem Ordering
* Ifyou know OPT(i) foralli < jthenyou
can compute OPT(j) using substructure
from before.

TiITIE! -I-------------------------------------------------------------------------------------.----------------.....................................I.

Start End




Dynamic Programming — Tips

* Describe subproblems in English:

* “the optimal solution considering only the first i jobs.”
* Make note of the format of subproblems:

* Each subproblem was of the same type, WIS.

TR




Dynamic Programming — Tips

* Describe how solving all the subproblems gets you the

solution:
* “Once we have computed OPT(i) for all i, the answer to
the problem is OPT(i).”
* |tis okayto do some preprocessing before you solve the
problem.

TR




Dynamic Programming — Tips

* Make sure you consider the order of solving subproblems
carefully.
* We will see in our next problem a case where you have
more than one variable.

TR




Dynamic Programming — Tips

* Don’tforget the base case!
 (Oftenyou need to initialize the array/matrix/tree/graph
with some values or you won't be able to fill in the next
case!

TR




Dynamic Programming vs Divide & Conquer

* Question: What happens if you have optimal substructure,
but you don’t have a lot of overlapping subproblems?



Dynamic Programming vs Divide & Conquer

* Question: What happens if you have optimal substructure,
but you don’t have a lot of overlapping subproblems?
* Answer:

* |f you have few subproblems, you might get a good
algorithm that is divide & conquer, decrease & conquer,
or even brute force.

* E.g.Mergesort

* |fyou have many subproblems than you may not get an

efficient algorithm.



Dynamic Programming Bottom-Up/lterative

* Describe and justify the subproblems.
* Give arecurrence for the subproblems and specify
where to find the final solution.
* Determine the natural order to solve the subproblems.
* Decide on a data structure to hold the solutions
* E.g.We used an array for WIS
* Write the code to fill in the data structure based on the
natural order you found.



DP for WIS

Brute-Force (L) :
Sort L by job finish times.
Compute p[1i] for each i1 using binary search.
Global M = [], M[O] =0
Return Compute-Opt-7? (n)

M-Compute-Opt-Top-Down (]) :
If jJ not in M:
M[J] = Max (M-Compute-Opt (j-1), v[Jj] + M-Compute-Opt(p[j])}
Return M[7]

M-Compute-Opt-Bottom-Up (]) :
For 1 in []J]:
M[i] = Max (M-Compute-Opt(i-1), v[i] + M-Compute-Opt(p[i]) }
Return M[7]



Dynamic Programming Choices

* Often the key to writing a dynamic programming algorithm

IS identifying a recurrence.
* Tofind arecurrence, you often want to find a choice.
* E.g.“You eithertake the job i oryou don’t.”
* Onceyou’ve found your choice, you can then describe a
subproblem based on the outcome of all choices.
* E.g.“If youtake it, you need to consider removing all
conflicting jobs. If you don’t, you don’t need to consider it
anymore.”

* Sometimes the subproblem is natural and finding the
recurrence is the hard part.



Weighted Interval Scheduling

* Input: AlistofnjobsL
 Eachjobihas astarttime s; and finish time f;
* Two jobs are “compatible” if they don’t overlap
* Eachjobiasaweightv;
* Goal: Find the max-weight subset of mutually compatible jobs.

Job 2 (5)




Subset Sum

* Input: Alistof nitems{1,...,n} and a bound W.
* Eachitem1has aweight w;
* Goal: Find the max-weight subset S such that };;ccw; < W.



Subset Sum

Input: A list of nitems {1,...,n} and a bound W.
* Eachitem1has a non-negative weight w;.
Goal: Find the max-weight subset S such that }};ccw; < W.

Input: A list of ntasks {1,...,n} you want to schedule on a server.

* You are allowed to use at most W cycles.

* Eachitem1has a weight w; that represents needed cycles.

Goal: Find the subset S of tasks such that you don’t use more than
your maximum number of cycles, but you get as much work done as
possible, i.e., ) icqw; < W.



Subset Sum Notation & Observations

* Input: Alistof nitems{1,...,n} and a bound W.
* Eachitem1has a non-negative weight w;.
* Goal: Find the max-weight subset S such that };;ccw; < W.

* ForanysetS C [n], letw(S) = );eqW;.
* Note thatw(@) = 0.
* Alsonoteif w(|n]) < W, thenthe answeris [n].
* Finally note if w; > Wfor alli, then answer is Q.



Subset Sum Subproblems

* Input: Alistof nitems{1,...,n} and a bound W.
* Eachitem1has a non-negative weight w;.
* Goal: Find the max-weight subset S such that };;ccw; < W.

Idea: Let OPT(i) be the optimal solution only
considering the first | items.



Subset Sum Subproblems

* Input: Alistof nitems{1,...,n} and a bound W.
* Eachitem1has a non-negative weight w;.
* Goal: Find the max-weight subset S such that };;ccw; < W.

Idea: Let OPT(i) be the optimal solution only
considering the first | items.

Question: How can you solve the original problem if
you find OPT(i) fori<n?



Subset Sum Example

Idea: Let OPT(i) be the optimal solution only considering the first |
items.

Example:
* ltemvalues=1[1,4,7,2,5,12,14]
* Bound=10

Observations:

* You can’t decide if you want to take item with value 5 based on the
optimal solution to [1,4,7,2] with bound 10.
* The optimalthereis 9 butit can be 5.

If you don’t keep track of what you’ve used, you may overuse.



Subset Sum Subproblems

* Input: Alistof nitems{1,...,n} and a bound W.
* Eachitem1has a non-negative weight w;.
* Goal: Find the max-weight subset S such that };;ccw; < W.

Idea: Let OPT(i) be the optimal solution only
considering the first | items.

Answer: [t doesn’t seem possible as you might use too
much weight.



Subset Sum Subproblems

* Input: Alistof nitems{1,...,n} and a bound W.
* Eachitem1has a non-negative weight w;.
* Goal: Find the max-weight subset S such that };;ccw; < W.

Idea: Let OPT(W’) be the optimal with bound W’.

Question: How can you solve the original problem if
you find OPT(W’) for W < W?



Subset Sum Example

Idea: Let OPT(W’) be the optimal with bound W'.

Example:
* ltemvalues=1[4,7,2,5,12,14]
* Bound=10

Observations:
* You can’t decide if you want to take item with value 5 based on the
optimal solution to [4,7,2,5,12,14] with bound 5.

* The optimalthere is 5 but it shouldn’t be combined with 5 again.
 Thatis, if you aren’t keep track of the



Subset Sum Subproblems

* Input: Alistof nitems{1,...,n} and a bound W.
* Eachitem1has a non-negative weight w;.
* Goal: Find the max-weight subset S such that };;ccw; < W.

Idea: Let OPT(W’) be the optimal with bound W’.

Answer: [t doesn’t seem possible as you might use the
same item multiple times.



Subset Sum Subproblems

* Input: Alistof nitems{1,...,n} and a bound W.
* Eachitem1has a non-negative weight w;.
* Goal: Find the max-weight subset S such that };;ccw; < W.

Idea: Let OPT(i, W’) be the optimal with only first i
Items and bound of W’.

Now we can describe the “choice” of using an item or
not using it.



Subset Sum Optimal Substructure

Idea: Let OPT(i, W’) be the optimal with only first i
Items and bound of W’.

If i = 0 then
OPT(i,W’)=0
If W' > w; then

OPT(i,W’) = max{w; + OPT(i-1,W’- w;}, OPT(i-1,W’)}
Otherwise
OPT(i,W’) = OPT(i-1,W’)



Subset Sum Problem Overlap

It iIs believable that there will be instances where we
have a lot of problem overlap.

Example:
ltem values =[4,7,2,5,2,12,14]
Bound =20

There are two different ways to eventually ask about
OPT(4,6): Picking 14 or pick 12 and 2.



Subset Sum Problem Count

There will be n choices fori and W choices for W’
(provided everything is an integer).

Example:
* ltemvalues=1[4,7,2,5,2,12,14]
e Bound=20

You only need to consider (i,20), (i,19), ..., (i,0) for each I.



Subset Sum Ordering Subproblems

Idea: Let OPT(i, W’) be the optimal with only first i
Items and bound of W’.

If i = 0 then
OPT(i,W’)=0
If W' > w; then

OPT(i,W’) = max{w; + OPT(i-1,W’- w;}, OPT(i-1,W’)}
Otherwise
OPT(i,W’) = OPT(i-1,W’)



Subset Sum Ordering Subproblems

0
0 W’ W
OPT(i,W’) = max{w; + OPT(i-1,W’- w;}, OPT(i-1,W’)}



Subset Sum Ordering Subproblems

We need to
know for
smaller W’ and
smalleri.

OPT(i,W’) = max{w; + OPT(i-1,W’- w;}, OPT(i-1,W’)}



Subset Sum Ordering Subproblems

Question:
How do we fill?

OPT(i,W’) = max{w; + OPT(i-1,W’- w;}, OPT(i-1,W’)}



Subset Sum Ordering Subproblems

Answer:

Out for loop will
be for i and
iInner for loop
will be for W,

Fill first layer with O.

OPT(i,W’) = max{w; + OPT(i-1,W’- w;}, OPT(i-1,W’)}
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