
CSE 331:
Algorithms & Complexity

Prof. Charlie Anne Carlson (She/Her)
Lecture 32 & 33

Nov 17th & 19th, 2025

“Shortest Path… Again”

Schedule

1. Course Updates
2. Dynamic Programming
3. Subset Sum -> Knapsack
4. Shortest Path Problem
5. Bellman-Ford Algorithm

Course Updates
• HW 7 Out

• Due November 19th
• Group Project (Autolab Up)

• Groups Fixed
• Code 3 Due November 24th

• Reflections 3 Due December 1st

• Next Quiz is December 1st

Reading

• You should have read:
• Finished 6.1
• Finished 6.2
• Finished 6.4
• Finished 6.8

• Before Next Class:
• Start 8.1

Dynamic Programming

• Optimal Substructure
• The solution to the original problem

can be easily computed from the
solutions to the subproblems.

• Overlapping Subproblems
• At most polynomial subproblems

to solve.
• Subproblem Ordering

• There exists a natural order to solve
subproblems without conflict.

𝐹𝑖 = ቐ
0 i = 0
1 i = 1

𝐹𝑖−1 + 𝐹𝑖−2 i ≥ 2

Subset Sum & Subproblems

Let OPT(i, W’) be the optimal with only first i items and
bound of W’.

If i = 0 then
 OPT(i,W’) = 0
If 𝑊’ > 𝑤𝑖 then
 OPT(i,W’) = max{𝑤𝑖 + OPT(i-1,W’- 𝑤𝑖), OPT(i-1,W’)}
Otherwise
 OPT(i,W’) = OPT(i-1,W’)

Knapsack

• Input: A list of n items {1,…,n} and a
bound W.
• Each item i has a non-negative

weight w𝑖.
• Each item i has a non-negative

value 𝑣𝑖.
• Goal: Find the max-value subset S

such that σ𝑖∈S 𝑤𝑖 ≤ W.

Knapsack & Subproblems

Let OPT(i, W’) be the optimal with only first i items and
bound of W’. Then we can write:

If i = 0 then
 OPT(i,W’) = 0
If 𝑊’ > 𝑤𝑖 then
 OPT(i,W’) = max{𝒗𝒊 + OPT(i-1,W’- 𝑤𝑖), OPT(i-1,W’)}
Otherwise
 OPT(i,W’) = OPT(i-1,W’)

Shortest Path

• Input:
• A directed graph G = (V, E).
• A weight for each edge (i, j) ∈ E, 𝑐𝑖j.
• Source vertex s ∈ V.
• Destination vertex t ∈ V.

• Goal: Find a path from s to t with
minimum total cost:

cost 𝑃 = ෍

ij ∈P

𝑐𝑖j

Negative Cycles

• A negative cycle in 𝐺 is a cycle 𝐶 such that

cost C = ෍

ij ∈P

𝑐𝑖j < 0.

s t
2 1 1 4 7

-3-1

1

Negative Cycles

• A negative cycle in 𝐺 is a cycle 𝐶 such that

cost C = ෍

ij ∈P

𝑐𝑖j < 0.

s t
2 1 1 4 7

-3-1

1

Negative Cycles

• Observation: If a graph has a negative cycle, then there may be
no shortest path from 𝑠 to 𝑡.

s t
2 1 1 4 7

-3-1

1

Negative Cycles

• Claim: If a graph has a no negative cycle, then there exists a
shortest path from 𝑠 to 𝑡 is a simple path.
• Such a shortest path will use at most 𝑛 − 1 edges.

s t

2 1 1 4 7

-3-1

1

Negative Cycles

• Claim: If a graph has a no negative cycle, then the shortest path
from 𝑠 to 𝑡 is a simple path.

• Proof:
• Since every cycle has nonnegative cost, the shortest path P

from 𝑠 to 𝑡 with the fewest number of edges doesn’t repeat a
vertex v.

• If it did repeat a vertex, then we could remove the portion of P
between consecutive visits to v, resulting in a path of no
greater cost and strictly fewer edges.

Negative Cycles

• Claim: If a graph has a no negative cycle, then the shortest path
from 𝑠 to 𝑡 is a simple path.

• Proof:

s t
P

Negative Cycles

• Claim: If a graph has a no negative cycle, then the shortest path
from 𝑠 to 𝑡 is a simple path.

• Proof:

s t
P

Negative Cycles

• Claim: If a graph has a no negative cycle, then the shortest path
from 𝑠 to 𝑡 is a simple path.

• Proof:

s t
P

Shortest Path

• Input:
• A directed graph G = (V, E).
• A weight for each edge (i, j) ∈ E, 𝑐𝑖j.
• Source vertex s ∈ V.
• Destination vertex t ∈ V.
• No negative cycles!

• Goal: Find a path from s to t with
minimum total cost:

cost 𝑃 = ෍

ij ∈P

𝑐𝑖j

Shortest Path Subproblem

• Input:
• A directed graph G = (V, E).
• A weight for each edge (i, j) ∈ E, 𝑐𝑖j.
• Source vertex s ∈ V.
• Destination vertex t ∈ V.
• No negative cycles!

• Goal: Find a path from s to t with minimum total cost:

cost 𝑃 = ෍

ij ∈P

𝑐𝑖j

Shortest Path Subproblem

• Let 𝑂𝑃𝑇(𝑖, 𝑣) denotes the minimum cost of a 𝑣 to 𝑡 path using at
most i edges.

• Question: What is the answer the our overall problem?

• Question: What are the base/easy cases?

• Question: What is a nice way to write the answer as a function of
subproblems?

Shortest Path Subproblem

• Let 𝑂𝑃𝑇(𝑖, 𝑣) denotes the minimum cost of a 𝑣 to 𝑡 path using at
most i edges.

• Question: What is the answer to our overall problem?
• Answer: 𝑂𝑃𝑇(𝑛 − 1, 𝑠)

• Question: What are the base/easy cases?

• Question: What is a nice way to write the answer as a function of
subproblems?

Shortest Path Subproblem

• Let 𝑂𝑃𝑇(𝑖, 𝑣) denotes the minimum cost of a 𝑣 to 𝑡 path using at
most i edges.

• Question: What is the answer to our overall problem?
• Answer: 𝑂𝑃𝑇(𝑛 − 1, 𝑠)

• Question: What are the base/easy cases?
• Answer: 𝑂𝑃𝑇(0, u) = ∞ if 𝑢 ≠ t and 𝑂𝑃𝑇(0, t) = 0 otherwise.

• Question: What is a nice way to write the answer as a function of
subproblems?

Shortest Path Subproblem

• Let 𝑂𝑃𝑇(𝑖, 𝑣) denotes the minimum cost of a 𝑣 to 𝑡 path using at
most i edges.

• Question: What is the answer to our overall problem?
• Answer: 𝑂𝑃𝑇(𝑛 − 1, 𝑠)

• Question: What are the base/easy cases?
• Answer: 𝑂𝑃𝑇(0, u) = ∞ if 𝑢 ≠ t and 𝑂𝑃𝑇(0, t) = 0 otherwise.

• Question: What is a nice way to write the answer as a function of
subproblems?
• “Answer”: We should try to identify a choice as a way to break

the problem into smaller subproblems.

Shortest Path Subproblem

• Let 𝑂𝑃𝑇(𝑖, 𝑣) denotes the minimum cost of a 𝑣 to 𝑡 path using at
most i edges.

• Question: What is a nice way to write the answer as a function of
subproblems?
• “Answer”: We should try to identify a choice as a way to break

the problem into smaller subproblems.
• Question: What can we say about the shortest path from 𝑣 to 𝑡 if

𝑣 ≠ 𝑡?

Shortest Path Subproblem

• Let 𝑂𝑃𝑇(𝑖, 𝑣) denotes the minimum cost of a 𝑣 to 𝑡 path using at
most i edges.

• Question: What is a nice way to write the answer as a function of
subproblems?
• “Answer”: We should try to identify a choice as a way to break

the problem into smaller subproblems.
• Question: What can we say about the shortest path from 𝑣 to 𝑡

that uses at least one edge if 𝑣 ≠ 𝑡?
• Answer: There must be an edge from 𝑣 to another vertex w.

Shortest Path Subproblem

• Let 𝑂𝑃𝑇(𝑖, 𝑣) denotes the minimum cost of a 𝑣 to 𝑡 path using at
most i edges.

• Observation: There must be an edge from 𝑣 to another vertex w to
any shortest path using at least one edge from 𝑣 to 𝑡 if 𝑣 is not 𝑡.

v tw
2 1 1 4 7

Shortest Path Subproblem

• Let 𝑂𝑃𝑇(𝑖, 𝑣) denotes the minimum cost of a 𝑣 to 𝑡 path using at
most i edges.

• Question: Is the shortest path always length n-1?

v tw
2 1 1 4 7

Shortest Path Subproblem

• Let 𝑂𝑃𝑇(𝑖, 𝑣) denotes the minimum cost of a 𝑣 to 𝑡 path using at
most i edges.

• Question: Is the shortest path always length n-1?
• Answer: No, the path could be much shortest and not visit every

vertex.

v tw
2 1 1 4 7

Shortest Path Subproblem

• Let 𝑂𝑃𝑇(𝑖, 𝑣) denotes the minimum cost of a 𝑣 to 𝑡 path using at
most i edges.

• Observation: The shortest path from v to t that uses at most i edges
might be the shortest path from v to t that uses at most i-1 edges.

v tw
2 1 1 4 7

Shortest Path Subproblem

• Let 𝑂𝑃𝑇(𝑖, 𝑣) denotes the minimum cost of a 𝑣 to 𝑡 path using at
most i edges.

• Observation: There must be an edge from 𝑣 to another vertex w to
any shortest path using at least one edge from 𝑣 to 𝑡 if 𝑣 is not 𝑡.

• Observation: The shortest path from v to t that uses at most i edges
might be the shortest path from v to t that uses at most i-1 edges.

Shortest Path Recurrence

• Let 𝑂𝑃𝑇(𝑖, 𝑣) denotes the minimum cost of a 𝑣 to 𝑡 path using at
most i edges.

• Observation: There must be an edge from 𝑣 to another vertex w to
any shortest path using at least one edge from 𝑣 to 𝑡 if 𝑣 is not 𝑡.

• Observation: The shortest path from v to t that uses at most i edges
might be the shortest path from v to t that uses at most i-1 edges.

• If i > 0:
𝑂𝑃𝑇 𝑖, 𝑣 = 𝑚𝑖𝑛{𝑂𝑃𝑇 𝑖 − 1, 𝑣 , 𝑚𝑖𝑛w ∈V{𝑐𝑣w+𝑂𝑃𝑇 𝑖 − 1, 𝑤 }}

Shortest Path Ordering

• Let 𝑂𝑃𝑇(𝑖, 𝑣) denotes the minimum cost of a 𝑣 to 𝑡 path using at
most i edges.

• Then
 𝑂𝑃𝑇(0, u) = ∞ if 𝑢 ≠ t and 𝑂𝑃𝑇(0, t) = 0.
• Moreover, if i > 0, then

𝑂𝑃𝑇 𝑖, 𝑣 = 𝑚𝑖𝑛{𝑂𝑃𝑇 𝑖 − 1, 𝑣 , 𝑚𝑖𝑛w ∈V{𝑐𝑣w+𝑂𝑃𝑇 𝑖 − 1, 𝑤 }}

Shortest Path Ordering

• Let 𝑂𝑃𝑇(𝑖, 𝑣) denotes the minimum cost of a 𝑣 to 𝑡 path using at
most i edges.

• Then
 𝑂𝑃𝑇(0, u) = ∞ if 𝑢 ≠ t and 𝑂𝑃𝑇(0, t) = 0.
• Moreover, if i > 0, then

𝑂𝑃𝑇 𝑖, 𝑣 = 𝑚𝑖𝑛{𝑂𝑃𝑇 𝑖 − 1, 𝑣 , 𝑚𝑖𝑛w ∈V{𝑐𝑣w+𝑂𝑃𝑇 𝑖 − 1, 𝑤 }}

• Observation: To solve 𝑂𝑃𝑇 𝑖, 𝑣 we need to know 𝑂𝑃𝑇 𝑖 − 1, w for
“all” w.

Shortest Path Ordering

• Let 𝑂𝑃𝑇(𝑖, 𝑣) denotes the minimum cost of a 𝑣 to 𝑡 path using at
most i edges.

• Then
 𝑂𝑃𝑇(0, u) = ∞ if 𝑢 ≠ t and 𝑂𝑃𝑇(0, t) = 0.
• Moreover, if i > 0, then

𝑂𝑃𝑇 𝑖, 𝑣 = 𝑚𝑖𝑛{𝑂𝑃𝑇 𝑖 − 1, 𝑣 , 𝑚𝑖𝑛w ∈V{𝑐𝑣w+𝑂𝑃𝑇 𝑖 − 1, 𝑤 }}

• Observation: To solve 𝑂𝑃𝑇 𝑖, 𝑣 we need to know 𝑂𝑃𝑇 𝑖 − 1, w for
“all” w… and we don’t need to know anything about 𝑶𝑷𝑻 𝒋, 𝒘 for
𝒋 < 𝒊 − 𝟏 and any w.

Shortest Path Algorithm

Shortest-Path(G,s,t):

1. N = number of nodes in G

2. 2D Array M of length n x n

3. Set M[0,t] = ?

4. Set M[0,v] = ? for all v not t

5. For i = 1,...,n-1:

6. For v in V:

7. Compute M[i,v] using ?

8. Return ?

Shortest Path Algorithm

Shortest-Path(G,s,t):

1. N = number of nodes in G

2. 2D Array M of length n x n

3. Set M[0,t] = 0

4. M[0,v] = INF for all v not t

5. For i = 1,...,n-1:

6. For v in V:

7. Compute M[i,v] using recurrence

8. Return M[n-1,s]

Shortest Path Algorithm

Shortest-Path(G,s,t):

1. N = number of nodes in G

2. 2D Array M of length n x n

3. Set M[0,t] = 0

4. M[0,v] = INF for all v not t

5. For i = 1,...,n-1:

6. For v in V:

7. Compute M[i,v] using recurrence

8. Return M[n-1,s]

It is easy to see this algorithm has runtime at most O(n^3).

Shortest Path Algorithm

Shortest-Path(G,s,t):

1. N = number of nodes in G

2. 2D Array M of length n x n

3. Set M[0,t] = 0

4. M[0,v] = INF for all v not t

5. For i = 1,...,n-1:

6. For v in V:

7. Compute M[i,v] using recurrence

8. Return M[n-1,s]

It is easy to see this algorithm has runtime at most O(n^3).

Shortest Path Algorithm

Shortest-Path(G,s,t):

1. N = number of nodes in G

2. 2D Array M of length n x n

3. Set M[0,t] = 0

4. M[0,v] = INF for all v not t

5. For i = 1,...,n-1:

6. For v in V:

7. Compute M[i,v] using recurrence

8. Return M[n-1,s]

It isn’t too hard to see this algorithm has runtime at most O(nm) if we
only consider neighbors on line 6.

Getting the Shortest Path with M

Question: How do we find the shortest path of length at most I form s
to t given M?

Shortest-Path(G,s,t):

1. N = number of nodes in G

2. 2D Array M of length n x n

3. Set M[0,t] = 0

4. M[0,v] = INF for all v not t

5. For i = 1,...,n-1:

6. For v in V:

7. Compute M[i,v] using recurrence

8. Return M[n-1,s]

Getting the Shortest Path with M
Answer: It takes O(in) time to track back optimal choices.

Find-Shortest-Path(i,v,M):

1. If i == 0 (and v == t):

2. Return [t]

3. Else if M[i,v] == M[i-1,v]:

4. Return Find-Shortest-Path(i-1,v,M)

5. Else:

6. Find w such that M[i,v] == c[v,w] + M[i-1,w]

7. Return [w] ++ Find-Shortest-Path(i-1,w,M)

Shortest Path Better Space

• Let 𝑂𝑃𝑇(𝑖, 𝑣) denotes the minimum cost of a 𝑣 to 𝑡 path using at
most i edges.

• Then
 𝑂𝑃𝑇(0, u) = ∞ if 𝑢 ≠ t and 𝑂𝑃𝑇(0, t) = 0.
• Moreover, if i > 0, then

𝑂𝑃𝑇 𝑖, 𝑣 = 𝑚𝑖𝑛{𝑂𝑃𝑇 𝑖 − 1, 𝑣 , 𝑚𝑖𝑛w ∈V{𝑐𝑣w+𝑂𝑃𝑇 𝑖 − 1, 𝑤 }}

• Observation: To solve 𝑂𝑃𝑇 𝑖, 𝑣 we need to know 𝑂𝑃𝑇 𝑖 − 1, w for
“all” w… and we don’t need to know anything about 𝑶𝑷𝑻 𝒋, 𝒘 for
𝒋 < 𝒊 − 𝟏 and any w.

Shortest Path Better Space

Shortest-Path(G,s,t):

1. N = number of nodes in G

2. 2D Array M of length 2 x n

3. Set M[0,t] = 0

4. M[0,v] = INF for all v not t

5. For i = 1,...,n-1:

6. For v in V:

7. Compute M[1,v] using recurrence

8. M[0,v] = M[1,v] for all v.

9. Return M[0,s]

Shortest Path Better Space

Shortest-Path(G,s,t):

1. N = number of nodes in G

2. 2D Array M of length 2 x n

3. Set M[0,t] = 0

4. M[0,v] = INF for all v not t

5. For i = 1,...,n-1: <- Still doing this n-1 times

6. For v in V:

7. Compute M[1,v] using recurrence

8. M[0,v] = M[1,v] for all v.

9. Return M[0,s]

Bellman-Ford Algorithm
• Runs in time O(n(n+m)) time and uses at most O(n) space.
Shortest-Path(G,s,t):

1. N = number of nodes in G

2. 2D Array M of length 2 x n

3. Set M[0,t] = 0

4. M[0,v] = INF for all v not t

5. For i = 1,...,n-1: <- Still doing this n-1 times

6. For v in V:

7. Compute M[1,v] using recurrence

8. M[0,v] = M[1,v] for all v.

9. Return M[0,s]

	Slide 1: CSE 331: Algorithms & Complexity
	Slide 2: Schedule
	Slide 3: Course Updates
	Slide 4: Reading
	Slide 5: Dynamic Programming
	Slide 6: Subset Sum & Subproblems
	Slide 7: Knapsack
	Slide 8: Knapsack & Subproblems
	Slide 9: Shortest Path
	Slide 10: Negative Cycles
	Slide 11: Negative Cycles
	Slide 12: Negative Cycles
	Slide 13: Negative Cycles
	Slide 14: Negative Cycles
	Slide 15: Negative Cycles
	Slide 16: Negative Cycles
	Slide 17: Negative Cycles
	Slide 18: Shortest Path
	Slide 19: Shortest Path Subproblem
	Slide 20: Shortest Path Subproblem
	Slide 21: Shortest Path Subproblem
	Slide 22: Shortest Path Subproblem
	Slide 23: Shortest Path Subproblem
	Slide 24: Shortest Path Subproblem
	Slide 25: Shortest Path Subproblem
	Slide 26: Shortest Path Subproblem
	Slide 27: Shortest Path Subproblem
	Slide 28: Shortest Path Subproblem
	Slide 29: Shortest Path Subproblem
	Slide 30: Shortest Path Subproblem
	Slide 31: Shortest Path Recurrence
	Slide 32: Shortest Path Ordering
	Slide 33: Shortest Path Ordering
	Slide 34: Shortest Path Ordering
	Slide 35: Shortest Path Algorithm
	Slide 36: Shortest Path Algorithm
	Slide 37: Shortest Path Algorithm
	Slide 38: Shortest Path Algorithm
	Slide 39: Shortest Path Algorithm
	Slide 40: Getting the Shortest Path with M
	Slide 41: Getting the Shortest Path with M
	Slide 42: Shortest Path Better Space
	Slide 43: Shortest Path Better Space
	Slide 44: Shortest Path Better Space
	Slide 45: Bellman-Ford Algorithm

