
CSE 331: 
Algorithms & Complexity

Prof. Charlie Anne Carlson (She/Her)
Lecture 32 & 33

Nov 17th & 19th, 2025

“Shortest Path… Again”



Schedule

1. Course Updates
2. Dynamic Programming
3. Subset Sum -> Knapsack
4. Shortest Path Problem
5. Bellman-Ford Algorithm



Course Updates
• HW 7 Out

• Due November 19th 
• Group Project (Autolab Up)

• Groups Fixed
• Code 3 Due November 24th

• Reflections 3 Due December 1st

• Next Quiz is December 1st



Reading

• You should have read:
• Finished 6.1
• Finished 6.2
• Finished 6.4
• Finished 6.8

• Before Next Class:
• Start 8.1



Dynamic Programming

• Optimal Substructure
• The solution to the original problem 

can be easily computed from the 
solutions to the subproblems.

• Overlapping Subproblems
• At most polynomial subproblems 

to solve.
• Subproblem Ordering

• There exists a natural order to solve 
subproblems without conflict.

𝐹𝑖 = ቐ
0 i = 0
1 i = 1

𝐹𝑖−1 + 𝐹𝑖−2 i ≥ 2



Subset Sum & Subproblems

Let OPT(i, W’) be the optimal with only first i items and 
bound of W’. 

If i = 0 then
  OPT(i,W’) = 0
If 𝑊’ > 𝑤𝑖  then
 OPT(i,W’) = max{𝑤𝑖  + OPT(i-1,W’- 𝑤𝑖), OPT(i-1,W’)}
Otherwise
  OPT(i,W’) = OPT(i-1,W’)



Knapsack

• Input: A list of n items {1,…,n} and a 
bound W.
• Each item i has a non-negative 

weight w𝑖.
• Each item i has a non-negative 

value 𝑣𝑖.
• Goal: Find the max-value subset S 

such that σ𝑖∈S 𝑤𝑖 ≤ W.



Knapsack & Subproblems

Let OPT(i, W’) be the optimal with only first i items and 
bound of W’. Then we can write:

If i = 0 then
  OPT(i,W’) = 0
If 𝑊’ > 𝑤𝑖  then
 OPT(i,W’) = max{𝒗𝒊 + OPT(i-1,W’- 𝑤𝑖), OPT(i-1,W’)}
Otherwise
  OPT(i,W’) = OPT(i-1,W’)



Shortest Path

• Input: 
• A directed graph G =  (V, E).
• A weight for each edge (i, j)  ∈ E, 𝑐𝑖j.
• Source vertex s ∈ V.
• Destination vertex t ∈ V.

• Goal: Find a path from s to t with 
minimum total cost:

cost 𝑃 = ෍

ij ∈P

𝑐𝑖j



Negative Cycles

• A negative cycle in 𝐺 is a cycle 𝐶 such that

cost C = ෍

ij ∈P

𝑐𝑖j <  0.
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Negative Cycles

• A negative cycle in 𝐺 is a cycle 𝐶 such that

cost C = ෍

ij ∈P
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Negative Cycles

• Observation: If a graph has a negative cycle, then there may be 
no shortest path from 𝑠 to 𝑡.
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Negative Cycles

• Claim: If a graph has a no negative cycle, then there exists a 
shortest path from 𝑠 to 𝑡 is a simple path.
• Such a shortest path will use at most 𝑛 − 1 edges. 

  
s t
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Negative Cycles

• Claim: If a graph has a no negative cycle, then the shortest path 
from 𝑠 to 𝑡 is a simple path.

• Proof: 
• Since every cycle has nonnegative cost, the shortest path P 

from 𝑠 to 𝑡 with the fewest number of edges doesn’t repeat a 
vertex v. 

• If it did repeat a vertex, then we could remove the portion of P 
between consecutive visits to v, resulting in a path of no 
greater cost and strictly fewer edges. 

  



Negative Cycles

• Claim: If a graph has a no negative cycle, then the shortest path 
from 𝑠 to 𝑡 is a simple path.

• Proof: 
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Negative Cycles

• Claim: If a graph has a no negative cycle, then the shortest path 
from 𝑠 to 𝑡 is a simple path.

• Proof: 

  

s t
P



Shortest Path

• Input: 
• A directed graph G =  (V, E).
• A weight for each edge (i, j)  ∈ E, 𝑐𝑖j.
• Source vertex s ∈ V.
• Destination vertex t ∈ V.
• No negative cycles!

• Goal: Find a path from s to t with 
minimum total cost:

cost 𝑃 = ෍

ij ∈P

𝑐𝑖j



Shortest Path Subproblem

• Input: 
• A directed graph G =  (V, E).
• A weight for each edge (i, j)  ∈ E, 𝑐𝑖j.
• Source vertex s ∈ V.
• Destination vertex t ∈ V.
• No negative cycles!

• Goal: Find a path from s to t with minimum total cost:

cost 𝑃 = ෍

ij ∈P

𝑐𝑖j



Shortest Path Subproblem

• Let 𝑂𝑃𝑇(𝑖, 𝑣) denotes the minimum cost of a 𝑣 to 𝑡 path using at 
most i edges.

• Question: What is the answer the our overall problem?

• Question: What are the base/easy cases?

• Question: What is a nice way to write the answer as a function of 
subproblems?



Shortest Path Subproblem

• Let 𝑂𝑃𝑇(𝑖, 𝑣) denotes the minimum cost of a 𝑣 to 𝑡 path using at 
most i edges.

• Question: What is the answer to our overall problem?
• Answer: 𝑂𝑃𝑇(𝑛 − 1, 𝑠)

• Question: What are the base/easy cases?

• Question: What is a nice way to write the answer as a function of 
subproblems?



Shortest Path Subproblem

• Let 𝑂𝑃𝑇(𝑖, 𝑣) denotes the minimum cost of a 𝑣 to 𝑡 path using at 
most i edges.

• Question: What is the answer to our overall problem?
• Answer: 𝑂𝑃𝑇(𝑛 − 1, 𝑠)

• Question: What are the base/easy cases?
• Answer: 𝑂𝑃𝑇(0, u)  =  ∞ if 𝑢 ≠ t and 𝑂𝑃𝑇(0, t)  =  0 otherwise.  

• Question: What is a nice way to write the answer as a function of 
subproblems?



Shortest Path Subproblem

• Let 𝑂𝑃𝑇(𝑖, 𝑣) denotes the minimum cost of a 𝑣 to 𝑡 path using at 
most i edges.

• Question: What is the answer to our overall problem?
• Answer: 𝑂𝑃𝑇(𝑛 − 1, 𝑠)

• Question: What are the base/easy cases?
• Answer: 𝑂𝑃𝑇(0, u)  =  ∞ if 𝑢 ≠ t and 𝑂𝑃𝑇(0, t)  =  0 otherwise.  

• Question: What is a nice way to write the answer as a function of 
subproblems?
• “Answer”: We should try to identify a choice as a way to break 

the problem into smaller subproblems. 



Shortest Path Subproblem

• Let 𝑂𝑃𝑇(𝑖, 𝑣) denotes the minimum cost of a 𝑣 to 𝑡 path using at 
most i edges.

• Question: What is a nice way to write the answer as a function of 
subproblems?
• “Answer”: We should try to identify a choice as a way to break 

the problem into smaller subproblems. 
• Question: What can we say about the shortest path from 𝑣 to 𝑡 if 

𝑣 ≠ 𝑡?



Shortest Path Subproblem

• Let 𝑂𝑃𝑇(𝑖, 𝑣) denotes the minimum cost of a 𝑣 to 𝑡 path using at 
most i edges.

• Question: What is a nice way to write the answer as a function of 
subproblems?
• “Answer”: We should try to identify a choice as a way to break 

the problem into smaller subproblems. 
• Question: What can we say about the shortest path from 𝑣 to 𝑡 

that uses at least one edge if 𝑣 ≠ 𝑡?
• Answer: There must be an edge from 𝑣 to another vertex w.



Shortest Path Subproblem

• Let 𝑂𝑃𝑇(𝑖, 𝑣) denotes the minimum cost of a 𝑣 to 𝑡 path using at 
most i edges.

• Observation: There must be an edge from 𝑣 to another vertex w to 
any shortest path using at least one edge from 𝑣 to 𝑡 if 𝑣 is not 𝑡.

v tw
2 1 1 4 7



Shortest Path Subproblem

• Let 𝑂𝑃𝑇(𝑖, 𝑣) denotes the minimum cost of a 𝑣 to 𝑡 path using at 
most i edges.

• Question: Is the shortest path always length n-1?

v tw
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Shortest Path Subproblem

• Let 𝑂𝑃𝑇(𝑖, 𝑣) denotes the minimum cost of a 𝑣 to 𝑡 path using at 
most i edges.

• Question: Is the shortest path always length n-1?
• Answer: No, the path could be much shortest and not visit every 

vertex.

v tw
2 1 1 4 7



Shortest Path Subproblem

• Let 𝑂𝑃𝑇(𝑖, 𝑣) denotes the minimum cost of a 𝑣 to 𝑡 path using at 
most i edges.

• Observation: The shortest path from v to t that uses at most i edges 
might be the shortest path from v to t that uses at most i-1 edges.

v tw
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Shortest Path Subproblem

• Let 𝑂𝑃𝑇(𝑖, 𝑣) denotes the minimum cost of a 𝑣 to 𝑡 path using at 
most i edges.

• Observation: There must be an edge from 𝑣 to another vertex w to 
any shortest path using at least one edge from 𝑣 to 𝑡 if 𝑣 is not 𝑡.

• Observation: The shortest path from v to t that uses at most i edges 
might be the shortest path from v to t that uses at most i-1 edges.



Shortest Path Recurrence

• Let 𝑂𝑃𝑇(𝑖, 𝑣) denotes the minimum cost of a 𝑣 to 𝑡 path using at 
most i edges.

• Observation: There must be an edge from 𝑣 to another vertex w to 
any shortest path using at least one edge from 𝑣 to 𝑡 if 𝑣 is not 𝑡.

• Observation: The shortest path from v to t that uses at most i edges 
might be the shortest path from v to t that uses at most i-1 edges.

• If i > 0:
𝑂𝑃𝑇 𝑖, 𝑣 = 𝑚𝑖𝑛{𝑂𝑃𝑇 𝑖 − 1, 𝑣 , 𝑚𝑖𝑛w ∈V{𝑐𝑣w+𝑂𝑃𝑇 𝑖 − 1, 𝑤 }}



Shortest Path Ordering

• Let 𝑂𝑃𝑇(𝑖, 𝑣) denotes the minimum cost of a 𝑣 to 𝑡 path using at 
most i edges.

• Then
 𝑂𝑃𝑇(0, u)  =  ∞ if 𝑢 ≠ t and 𝑂𝑃𝑇(0, t)  =  0.  
• Moreover, if i > 0, then

𝑂𝑃𝑇 𝑖, 𝑣 = 𝑚𝑖𝑛{𝑂𝑃𝑇 𝑖 − 1, 𝑣 , 𝑚𝑖𝑛w ∈V{𝑐𝑣w+𝑂𝑃𝑇 𝑖 − 1, 𝑤 }}



Shortest Path Ordering

• Let 𝑂𝑃𝑇(𝑖, 𝑣) denotes the minimum cost of a 𝑣 to 𝑡 path using at 
most i edges.

• Then
 𝑂𝑃𝑇(0, u)  =  ∞ if 𝑢 ≠ t and 𝑂𝑃𝑇(0, t)  =  0.  
• Moreover, if i > 0, then

𝑂𝑃𝑇 𝑖, 𝑣 = 𝑚𝑖𝑛{𝑂𝑃𝑇 𝑖 − 1, 𝑣 , 𝑚𝑖𝑛w ∈V{𝑐𝑣w+𝑂𝑃𝑇 𝑖 − 1, 𝑤 }}

• Observation: To solve 𝑂𝑃𝑇 𝑖, 𝑣  we need to know 𝑂𝑃𝑇 𝑖 − 1, w  for 
“all” w. 



Shortest Path Ordering

• Let 𝑂𝑃𝑇(𝑖, 𝑣) denotes the minimum cost of a 𝑣 to 𝑡 path using at 
most i edges.

• Then
 𝑂𝑃𝑇(0, u)  =  ∞ if 𝑢 ≠ t and 𝑂𝑃𝑇(0, t)  =  0.  
• Moreover, if i > 0, then

𝑂𝑃𝑇 𝑖, 𝑣 = 𝑚𝑖𝑛{𝑂𝑃𝑇 𝑖 − 1, 𝑣 , 𝑚𝑖𝑛w ∈V{𝑐𝑣w+𝑂𝑃𝑇 𝑖 − 1, 𝑤 }}

• Observation: To solve 𝑂𝑃𝑇 𝑖, 𝑣  we need to know 𝑂𝑃𝑇 𝑖 − 1, w  for 
“all” w… and we don’t need to know anything about 𝑶𝑷𝑻 𝒋, 𝒘  for 
𝒋 <  𝒊 − 𝟏 and any w. 



Shortest Path Algorithm

Shortest-Path(G,s,t):

1. N = number of nodes in G

2. 2D Array M of length n x n

3. Set M[0,t] = ?

4. Set M[0,v] = ? for all v not t

5. For i = 1,...,n-1:

6.   For v in V:

7.     Compute M[i,v] using ?

8. Return ?



Shortest Path Algorithm

Shortest-Path(G,s,t):

1. N = number of nodes in G

2. 2D Array M of length n x n

3. Set M[0,t] = 0 

4. M[0,v] = INF for all v not t

5. For i = 1,...,n-1:

6.   For v in V:

7.     Compute M[i,v] using recurrence

8. Return M[n-1,s]



Shortest Path Algorithm

Shortest-Path(G,s,t):

1. N = number of nodes in G

2. 2D Array M of length n x n

3. Set M[0,t] = 0 

4. M[0,v] = INF for all v not t

5. For i = 1,...,n-1:

6.   For v in V:

7.     Compute M[i,v] using recurrence

8. Return M[n-1,s]

It is easy to see this algorithm has runtime at most O(n^3).



Shortest Path Algorithm

Shortest-Path(G,s,t):

1. N = number of nodes in G

2. 2D Array M of length n x n

3. Set M[0,t] = 0 

4. M[0,v] = INF for all v not t

5. For i = 1,...,n-1:

6.   For v in V:

7.     Compute M[i,v] using recurrence

8. Return M[n-1,s]

It is easy to see this algorithm has runtime at most O(n^3).



Shortest Path Algorithm

Shortest-Path(G,s,t):

1. N = number of nodes in G

2. 2D Array M of length n x n

3. Set M[0,t] = 0 

4. M[0,v] = INF for all v not t

5. For i = 1,...,n-1:

6.   For v in V:

7.     Compute M[i,v] using recurrence

8. Return M[n-1,s]

It isn’t too hard to see this algorithm has runtime at most O(nm) if we 
only consider neighbors on line 6.



Getting the Shortest Path with M

Question: How do we find the shortest path of length at most I form s 
to t given M?

Shortest-Path(G,s,t):

1. N = number of nodes in G

2. 2D Array M of length n x n

3. Set M[0,t] = 0 

4. M[0,v] = INF for all v not t

5. For i = 1,...,n-1:

6.   For v in V:

7.     Compute M[i,v] using recurrence

8. Return M[n-1,s]



Getting the Shortest Path with M
Answer: It takes O(in) time to track back optimal choices.

Find-Shortest-Path(i,v,M):

1. If i == 0 (and v == t):

2.   Return [t]

3. Else if M[i,v] == M[i-1,v]:

4.   Return Find-Shortest-Path(i-1,v,M)

5. Else:

6.   Find w such that M[i,v] == c[v,w] + M[i-1,w]

7.   Return [w] ++ Find-Shortest-Path(i-1,w,M)



Shortest Path Better Space

• Let 𝑂𝑃𝑇(𝑖, 𝑣) denotes the minimum cost of a 𝑣 to 𝑡 path using at 
most i edges.

• Then
 𝑂𝑃𝑇(0, u)  =  ∞ if 𝑢 ≠ t and 𝑂𝑃𝑇(0, t)  =  0.  
• Moreover, if i > 0, then

𝑂𝑃𝑇 𝑖, 𝑣 = 𝑚𝑖𝑛{𝑂𝑃𝑇 𝑖 − 1, 𝑣 , 𝑚𝑖𝑛w ∈V{𝑐𝑣w+𝑂𝑃𝑇 𝑖 − 1, 𝑤 }}

• Observation: To solve 𝑂𝑃𝑇 𝑖, 𝑣  we need to know 𝑂𝑃𝑇 𝑖 − 1, w  for 
“all” w… and we don’t need to know anything about 𝑶𝑷𝑻 𝒋, 𝒘  for 
𝒋 <  𝒊 − 𝟏 and any w. 



Shortest Path Better Space

Shortest-Path(G,s,t):

1. N = number of nodes in G

2. 2D Array M of length 2 x n

3. Set M[0,t] = 0 

4. M[0,v] = INF for all v not t

5. For i = 1,...,n-1:

6.   For v in V:

7.     Compute M[1,v] using recurrence 

8.   M[0,v] = M[1,v] for all v.

9. Return M[0,s]



Shortest Path Better Space

Shortest-Path(G,s,t):

1. N = number of nodes in G

2. 2D Array M of length 2 x n

3. Set M[0,t] = 0 

4. M[0,v] = INF for all v not t

5. For i = 1,...,n-1: <- Still doing this n-1 times

6.   For v in V:

7.     Compute M[1,v] using recurrence 

8.   M[0,v] = M[1,v] for all v.

9. Return M[0,s]



Bellman-Ford Algorithm
• Runs in time O(n(n+m)) time and uses at most O(n) space.
Shortest-Path(G,s,t):

1. N = number of nodes in G

2. 2D Array M of length 2 x n

3. Set M[0,t] = 0 

4. M[0,v] = INF for all v not t

5. For i = 1,...,n-1: <- Still doing this n-1 times

6.   For v in V:

7.     Compute M[1,v] using recurrence 

8.   M[0,v] = M[1,v] for all v.

9. Return M[0,s]
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