

CSE 331: Algorithms & Complexity “Shortest Path... Again”

Prof. Charlie Anne Carlson (She/Her)

Lecture 32 & 33

Nov 17th & 19th, 2025

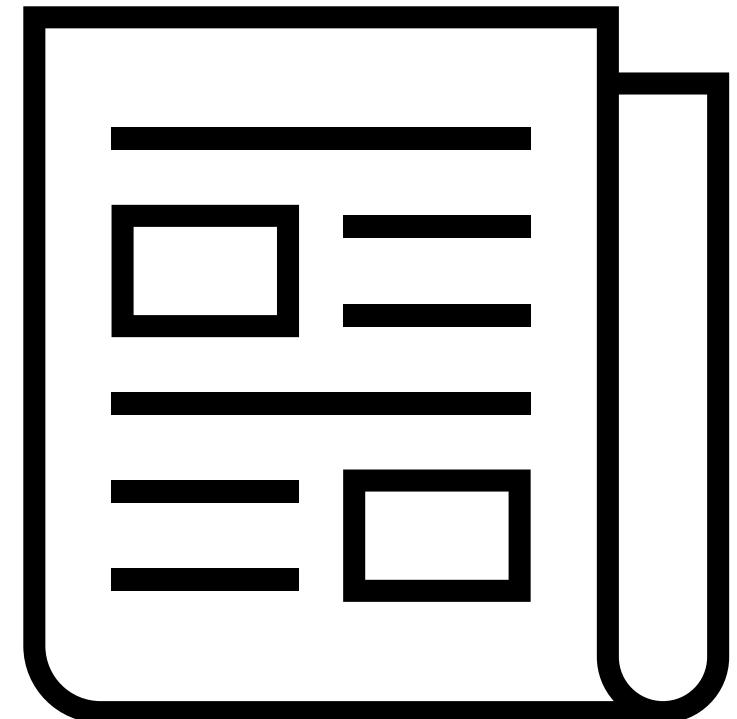
University at Buffalo®

Schedule

1. Course Updates
2. Dynamic Programming
3. Subset Sum -> Knapsack
4. Shortest Path Problem
5. Bellman-Ford Algorithm

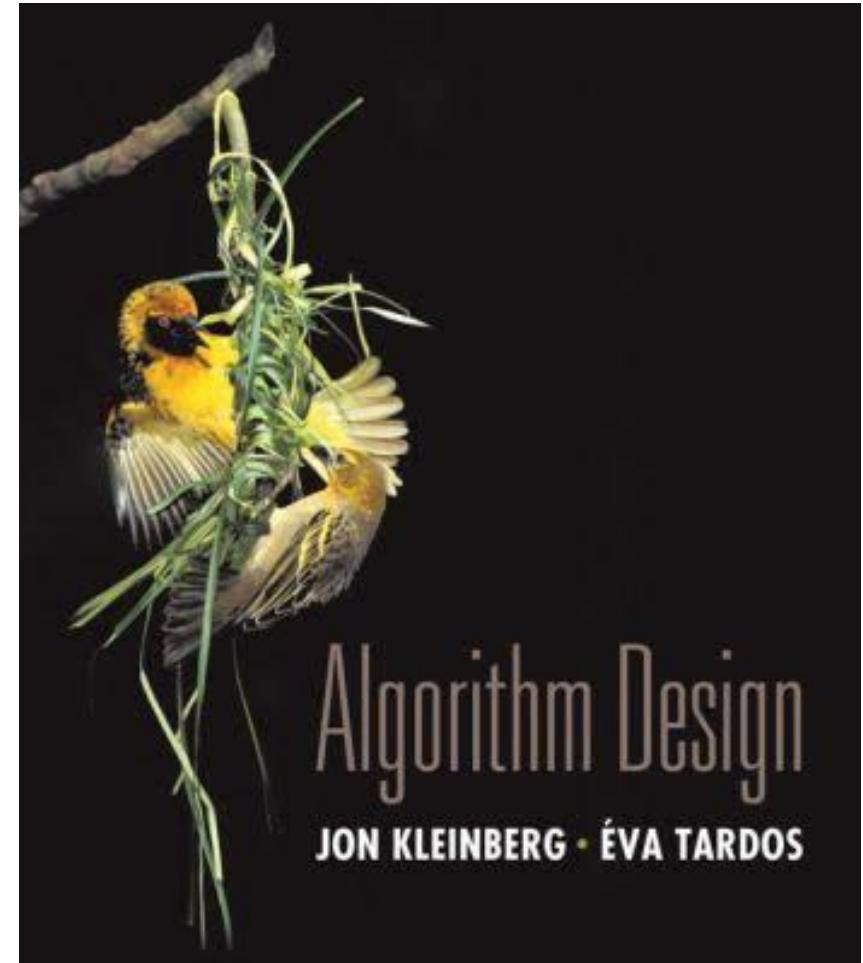
Course Updates

- HW 7 Out
 - Due November 19th
- Group Project (Autolab Up)
 - Groups Fixed
 - Code 3 Due November 24th
 - Reflections 3 Due December 1st
- Next Quiz is December 1st



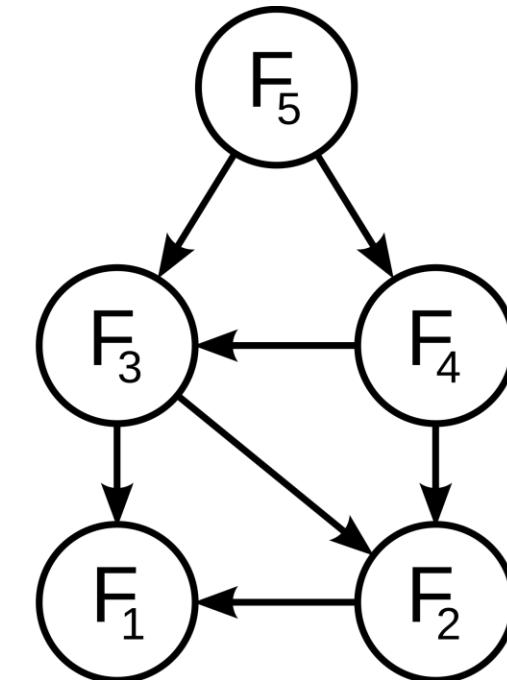
Reading

- You should have read:
 - Finished 6.1
 - Finished 6.2
 - Finished 6.4
 - Finished 6.8
- Before Next Class:
 - Start 8.1



Dynamic Programming

- Optimal Substructure
 - The solution to the original problem can be easily computed from the solutions to the subproblems.
- Overlapping Subproblems
 - At most polynomial subproblems to solve.
- Subproblem Ordering
 - There exists a natural order to solve subproblems without conflict.



$$F_i = \begin{cases} 0 & i = 0 \\ 1 & i = 1 \\ F_{i-1} + F_{i-2} & i \geq 2 \end{cases}$$

Subset Sum & Subproblems

Let $\text{OPT}(i, W')$ be the optimal with only first i items and bound of W' .

If $i = 0$ then

$$\text{OPT}(i, W') = 0$$

If $W' > w_i$ then

$$\text{OPT}(i, W') = \max\{w_i + \text{OPT}(i-1, W' - w_i), \text{OPT}(i-1, W')\}$$

Otherwise

$$\text{OPT}(i, W') = \text{OPT}(i-1, W')$$

Knapsack

- **Input:** A list of n items $\{1, \dots, n\}$ and a bound W .
 - Each item i has a non-negative weight w_i .
 - Each item i has a non-negative value v_i .
- **Goal:** Find the max-value subset S such that $\sum_{i \in S} w_i \leq W$.

Knapsack & Subproblems

Let $\text{OPT}(i, W')$ be the optimal with only first i items and bound of W' . Then we can write:

If $i = 0$ then

$$\text{OPT}(i, W') = 0$$

If $W' > w_i$ then

$$\text{OPT}(i, W') = \max\{v_i + \text{OPT}(i-1, W' - w_i), \text{OPT}(i-1, W')\}$$

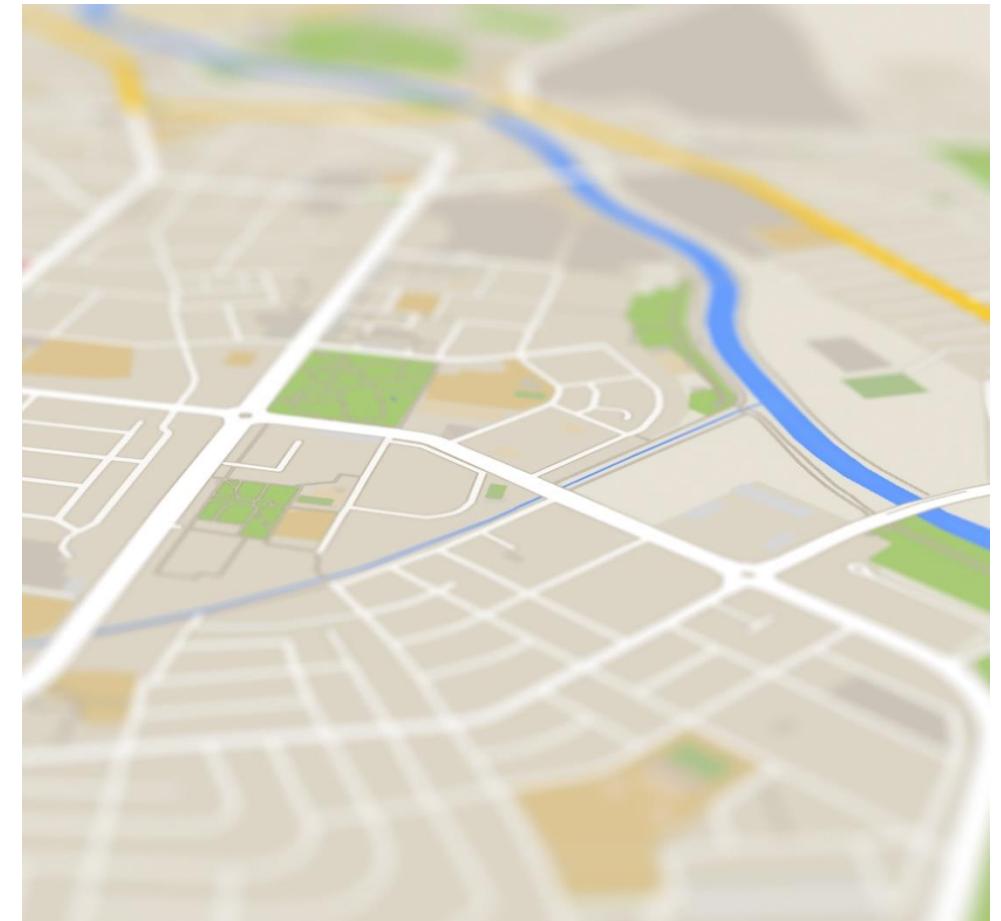
Otherwise

$$\text{OPT}(i, W') = \text{OPT}(i-1, W')$$

Shortest Path

- **Input:**
 - A directed graph $G = (V, E)$.
 - A weight for each edge $(i, j) \in E, c_{ij}$.
 - Source vertex $s \in V$.
 - Destination vertex $t \in V$.
- **Goal:** Find a path from s to t with minimum total cost:

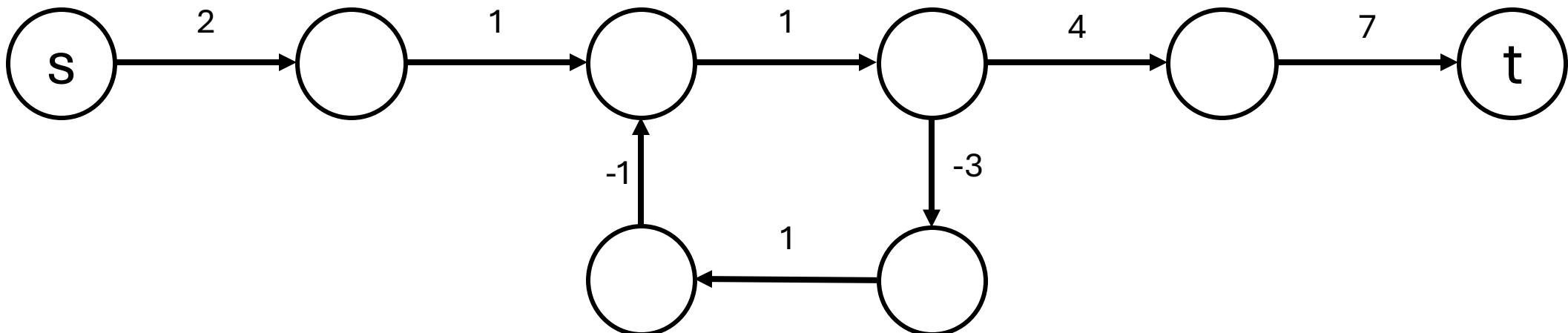
$$\text{cost}(P) = \sum_{ij \in P} c_{ij}$$



Negative Cycles

- A **negative cycle** in G is a cycle C such that

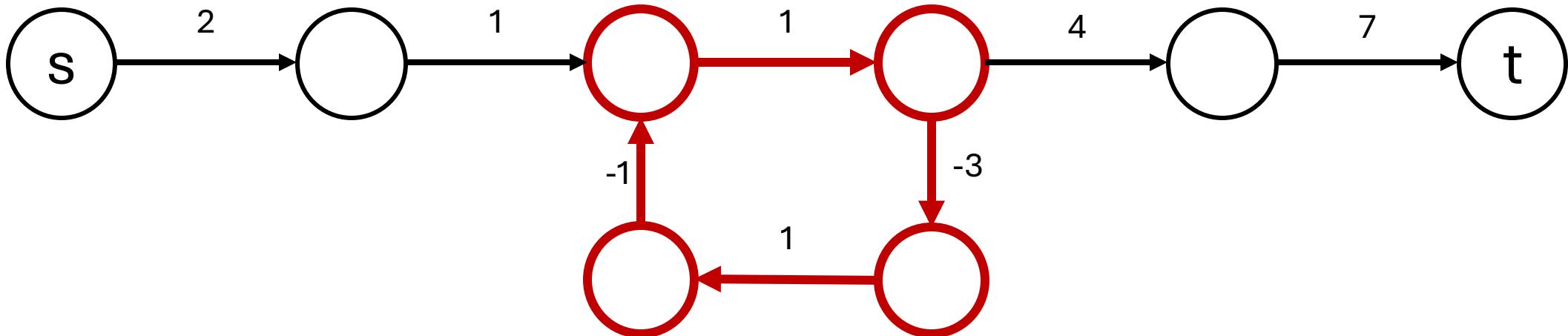
$$\text{cost}(C) = \sum_{ij \in P} c_{ij} < 0.$$



Negative Cycles

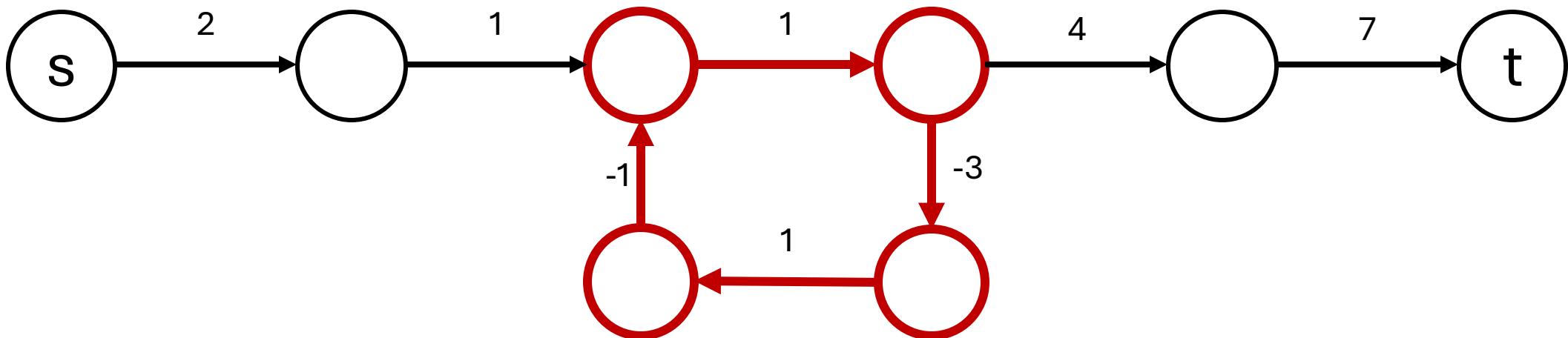
- A **negative cycle** in G is a cycle C such that

$$\text{cost}(C) = \sum_{ij \in P} c_{ij} < 0.$$



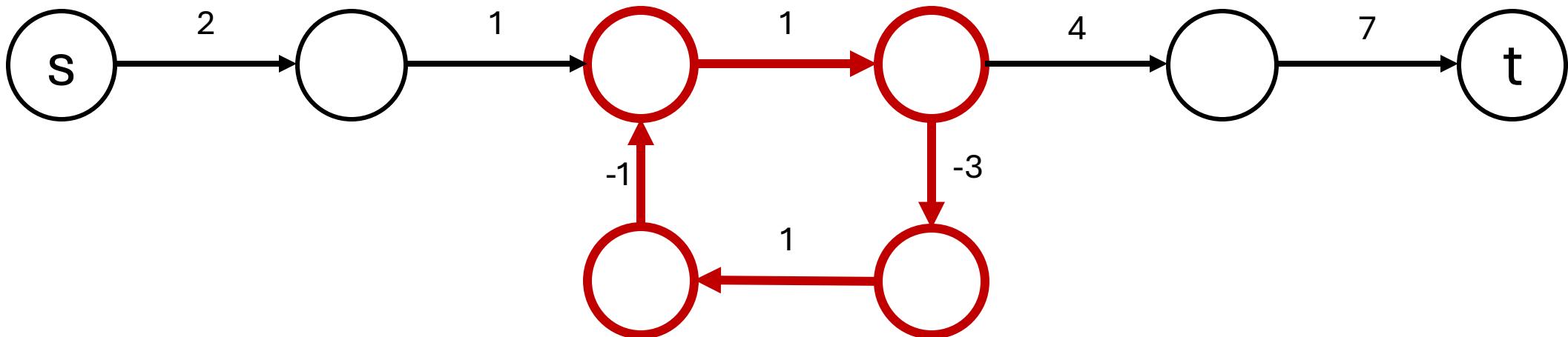
Negative Cycles

- **Observation:** If a graph has a negative cycle, then there may be no shortest path from s to t .



Negative Cycles

- **Claim:** If a graph has a no negative cycle, then there exists a shortest path from s to t is a simple path.
 - Such a shortest path will use at most $n - 1$ edges.

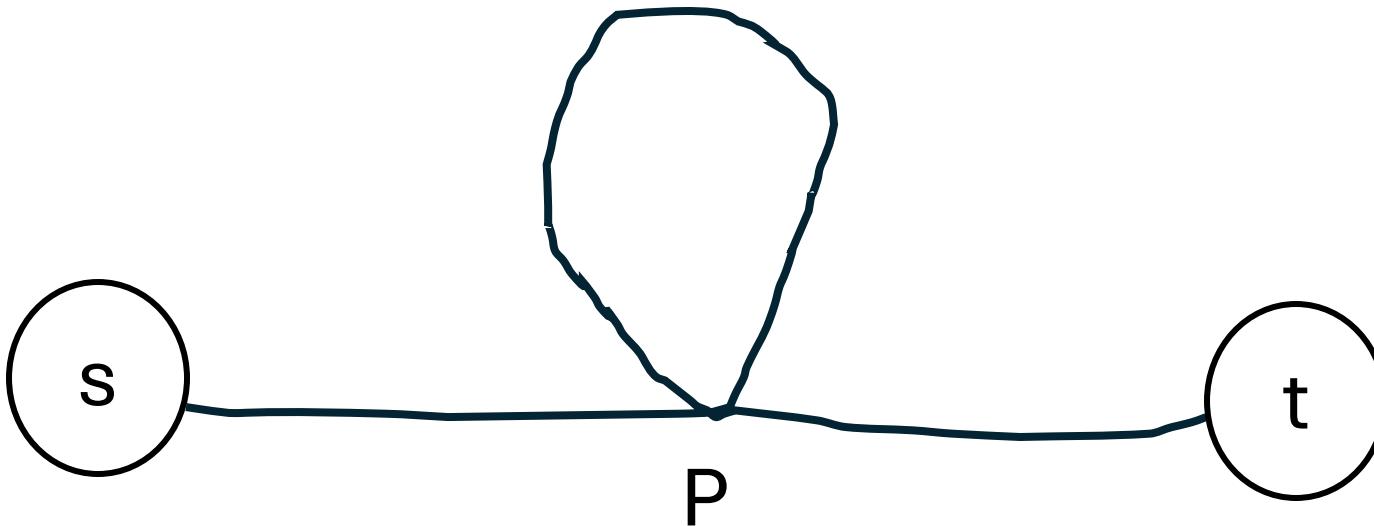


Negative Cycles

- **Claim:** If a graph has no negative cycle, then the shortest path from s to t is a simple path.
- **Proof:**
 - Since every cycle has nonnegative cost, the shortest path P from s to t with the fewest number of edges doesn't repeat a vertex v .
 - If it did repeat a vertex, then we could remove the portion of P between consecutive visits to v , resulting in a path of no greater cost and strictly fewer edges.

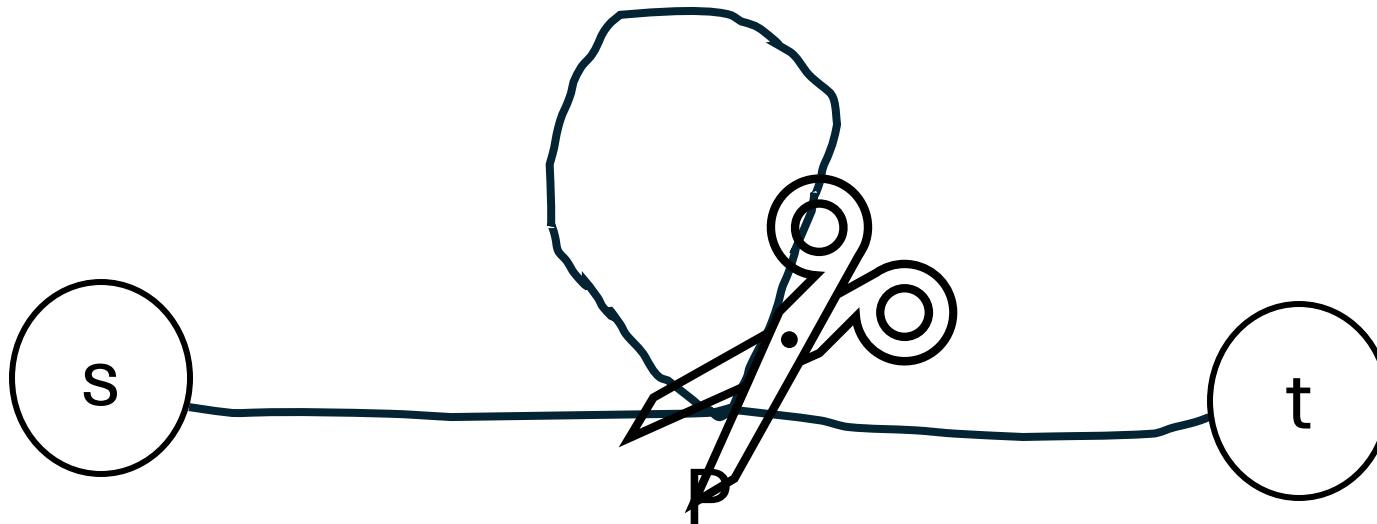
Negative Cycles

- **Claim:** If a graph has a no negative cycle, then the shortest path from s to t is a simple path.
- **Proof:**



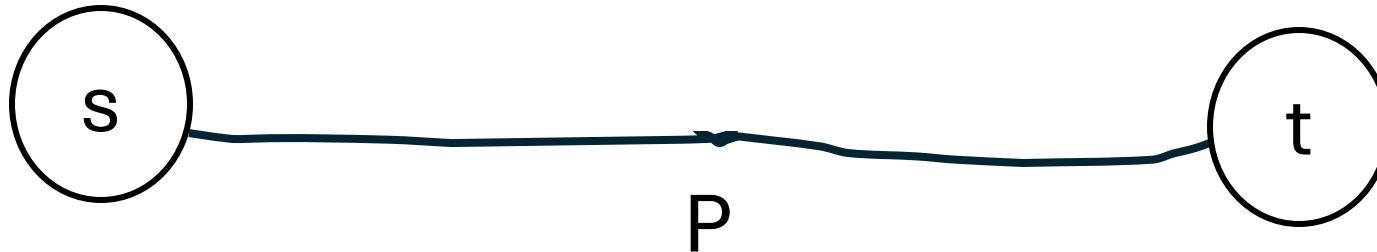
Negative Cycles

- **Claim:** If a graph has a no negative cycle, then the shortest path from s to t is a simple path.
- **Proof:**



Negative Cycles

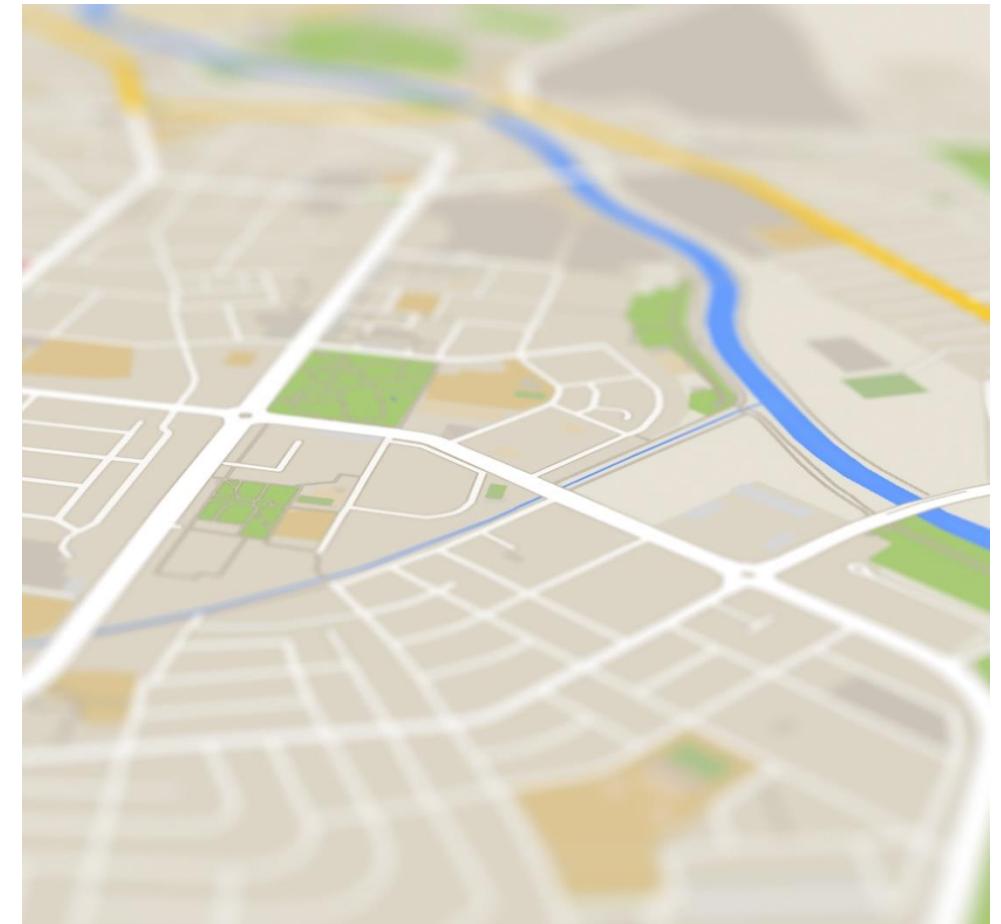
- **Claim:** If a graph has no negative cycle, then the shortest path from s to t is a simple path.
- **Proof:**



Shortest Path

- **Input:**
 - A directed graph $G = (V, E)$.
 - A weight for each edge $(i, j) \in E, c_{ij}$.
 - Source vertex $s \in V$.
 - Destination vertex $t \in V$.
 - **No negative cycles!**
- **Goal:** Find a path from s to t with minimum total cost:

$$\text{cost}(P) = \sum_{ij \in P} c_{ij}$$



Shortest Path Subproblem

- **Input:**
 - A directed graph $G = (V, E)$.
 - A weight for each edge $(i, j) \in E, c_{ij}$.
 - Source vertex $s \in V$.
 - Destination vertex $t \in V$.
 - **No negative cycles!**
- **Goal:** Find a path from s to t with minimum total cost:

$$\text{cost}(P) = \sum_{ij \in P} c_{ij}$$

Shortest Path Subproblem

- Let $OPT(i, v)$ denotes the minimum cost of a v to t path using at most i edges.
- **Question:** What is the answer the our overall problem?
- **Question:** What are the base/easy cases?
- **Question:** What is a nice way to write the answer as a function of subproblems?

Shortest Path Subproblem

- Let $OPT(i, v)$ denotes the minimum cost of a v to t path using at most i edges.
- **Question:** What is the answer to our overall problem?
 - **Answer:** $OPT(n - 1, s)$
- **Question:** What are the base/easy cases?
- **Question:** What is a nice way to write the answer as a function of subproblems?

Shortest Path Subproblem

- Let $OPT(i, v)$ denotes the minimum cost of a v to t path using at most i edges.
- **Question:** What is the answer to our overall problem?
 - **Answer:** $OPT(n - 1, s)$
- **Question:** What are the base/easy cases?
 - **Answer:** $OPT(0, u) = \infty$ if $u \neq t$ and $OPT(0, t) = 0$ otherwise.
- **Question:** What is a nice way to write the answer as a function of subproblems?

Shortest Path Subproblem

- Let $OPT(i, v)$ denotes the minimum cost of a v to t path using at most i edges.
- **Question:** What is the answer to our overall problem?
 - **Answer:** $OPT(n - 1, s)$
- **Question:** What are the base/easy cases?
 - **Answer:** $OPT(0, u) = \infty$ if $u \neq t$ and $OPT(0, t) = 0$ otherwise.
- **Question:** What is a nice way to write the answer as a function of subproblems?
 - **“Answer”:** We should try to identify a choice as a way to break the problem into smaller subproblems.

Shortest Path Subproblem

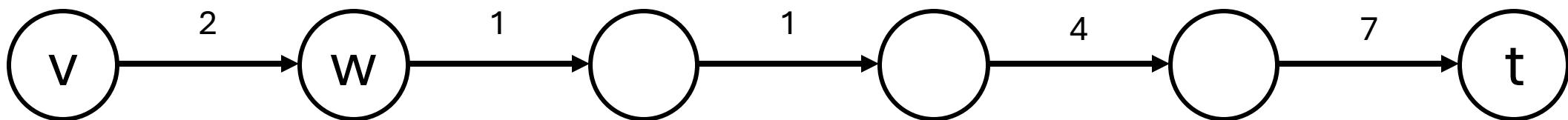
- Let $OPT(i, v)$ denotes the minimum cost of a v to t path using at most i edges.
- **Question:** What is a nice way to write the answer as a function of subproblems?
 - **“Answer”:** We should try to identify a choice as a way to break the problem into smaller subproblems.
 - **Question:** What can we say about the shortest path from v to t if $v \neq t$?

Shortest Path Subproblem

- Let $OPT(i, v)$ denotes the minimum cost of a v to t path using at most i edges.
- **Question:** What is a nice way to write the answer as a function of subproblems?
 - **“Answer”:** We should try to identify a choice as a way to break the problem into smaller subproblems.
 - **Question:** What can we say about the shortest path from v to t that uses at least one edge if $v \neq t$?
 - **Answer:** There must be an edge from v to another vertex w .

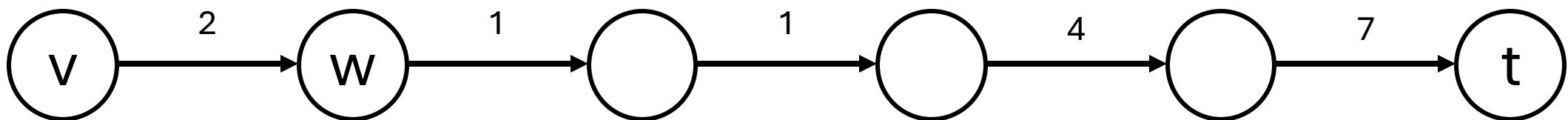
Shortest Path Subproblem

- Let $OPT(i, v)$ denotes the minimum cost of a v to t path using at most i edges.
- **Observation:** There must be an edge from v to another vertex w to any shortest path using at least one edge from v to t if v is not t .



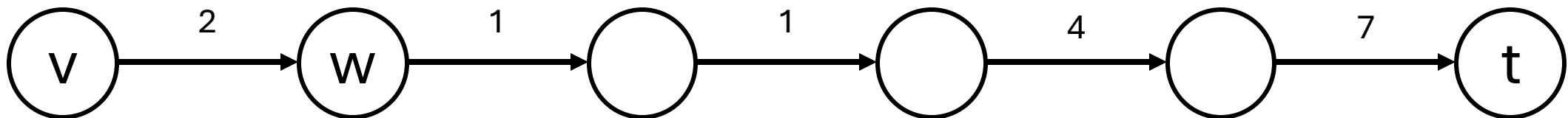
Shortest Path Subproblem

- Let $OPT(i, v)$ denotes the minimum cost of a v to t path using at most i edges.
- **Question:** Is the shortest path always length $n-1$?



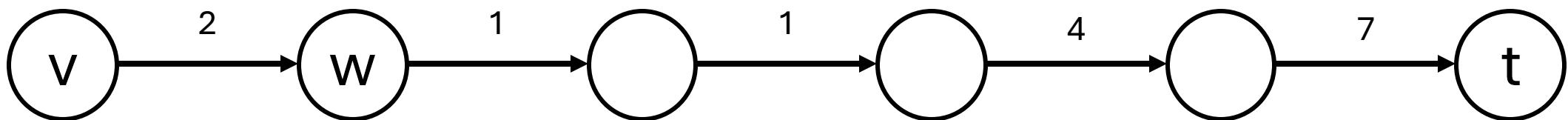
Shortest Path Subproblem

- Let $OPT(i, v)$ denotes the minimum cost of a v to t path using at most i edges.
- **Question:** Is the shortest path always length $n-1$?
 - **Answer:** No, the path could be much shortest and not visit every vertex.



Shortest Path Subproblem

- Let $OPT(i, v)$ denotes the minimum cost of a v to t path using at most i edges.
- **Observation:** The shortest path from v to t that uses at most i edges might be the shortest path from v to t that uses at most $i-1$ edges.



Shortest Path Subproblem

- Let $OPT(i, v)$ denotes the minimum cost of a v to t path using at most i edges.
- **Observation:** There must be an edge from v to another vertex w to any shortest path using at least one edge from v to t if v is not t .
- **Observation:** The shortest path from v to t that uses at most i edges might be the shortest path from v to t that uses at most $i-1$ edges.

Shortest Path Recurrence

- Let $OPT(i, v)$ denotes the minimum cost of a v to t path using at most i edges.
- **Observation:** There must be an edge from v to another vertex w to any shortest path using at least one edge from v to t if v is not t .
- **Observation:** The shortest path from v to t that uses at most i edges might be the shortest path from v to t that uses at most $i-1$ edges.
- If $i > 0$:

$$OPT(i, v) = \min\{OPT(i - 1, v), \min_{w \in V}\{c_{vw} + OPT(i - 1, w)\}\}$$

Shortest Path Ordering

- Let $OPT(i, v)$ denotes the minimum cost of a v to t path using at most i edges.
- Then
$$OPT(0, u) = \infty \text{ if } u \neq t \text{ and } OPT(0, t) = 0.$$
- Moreover, if $i > 0$, then
$$OPT(i, v) = \min\{OPT(i - 1, v), \min_{w \in V}\{c_{vw} + OPT(i - 1, w)\}\}$$

Shortest Path Ordering

- Let $OPT(i, v)$ denotes the minimum cost of a v to t path using at most i edges.
- Then
$$OPT(0, u) = \infty \text{ if } u \neq t \text{ and } OPT(0, t) = 0.$$
- Moreover, if $i > 0$, then
$$OPT(i, v) = \min\{OPT(i - 1, v), \min_{w \in V}\{c_{vw} + OPT(i - 1, w)\}\}$$
- **Observation:** To solve $OPT(i, v)$ we need to know $OPT(i - 1, w)$ for “all” w .

Shortest Path Ordering

- Let $OPT(i, v)$ denotes the minimum cost of a v to t path using at most i edges.
- Then
$$OPT(0, u) = \infty \text{ if } u \neq t \text{ and } OPT(0, t) = 0.$$
- Moreover, if $i > 0$, then
$$OPT(i, v) = \min\{OPT(i - 1, v), \min_{w \in V}\{c_{vw} + OPT(i - 1, w)\}\}$$
- **Observation:** To solve $OPT(i, v)$ we need to know $OPT(i - 1, w)$ for “all” w ... **and we don’t need to know anything about $OPT(j, w)$ for $j < i - 1$ and any w .**

Shortest Path Algorithm

Shortest-Path(G, s, t) :

1. $N = \text{number of nodes in } G$
2. 2D Array M of length $n \times n$
3. Set $M[0, t] = ?$
4. Set $M[0, v] = ?$ for all $v \neq t$
5. For $i = 1, \dots, n-1$:
6. For $v \in V$:
7. Compute $M[i, v]$ using ?
8. Return ?

Shortest Path Algorithm

Shortest-Path(G, s, t) :

1. N = number of nodes in G
2. 2D Array M of length $n \times n$
3. Set $M[0, t] = 0$
4. $M[0, v] = \mathbf{INF}$ for all v not t
5. For $i = 1, \dots, n-1$:
6. For v in V :
7. Compute $M[i, v]$ using **recurrence**
8. Return **$M[n-1, s]$**

Shortest Path Algorithm

Shortest-Path(G, s, t) :

1. N = number of nodes in G
2. 2D Array M of length $n \times n$
3. Set $M[0, t] = 0$
4. $M[0, v] = \mathbf{INF}$ for all v not t
5. For $i = 1, \dots, n-1$:
6. For v in V :
7. Compute $M[i, v]$ using **recurrence**
8. Return **$M[n-1, s]$**

It is easy to see this algorithm has runtime at most $O(n^3)$.

Shortest Path Algorithm

Shortest-Path(G, s, t) :

1. N = number of nodes in G
2. 2D Array M of length $n \times n$
3. Set $M[0, t] = 0$
4. $M[0, v] = \mathbf{INF}$ for all v not t
5. For $i = 1, \dots, n-1$:
6. For v in V :
7. Compute $M[i, v]$ using **recurrence**
8. Return **$M[n-1, s]$**

It is easy to see this algorithm has runtime at most $O(n^3)$.

Shortest Path Algorithm

Shortest-Path(G, s, t) :

1. N = number of nodes in G
2. 2D Array M of length $n \times n$
3. Set $M[0, t] = 0$
4. $M[0, v] = \mathbf{INF}$ for all v not t
5. For $i = 1, \dots, n-1$:
6. For v in V :
7. Compute $M[i, v]$ using **recurrence**
8. Return **$M[n-1, s]$**

It isn't too hard to see this algorithm has runtime at most $O(nm)$ if we only consider neighbors on line 6.

Getting the Shortest Path with M

Question: How do we find the shortest path of length at most l from s to t given M ?

Shortest-Path(G, s, t) :

1. N = number of nodes in G
2. 2D Array M of length $n \times n$
3. Set $M[0, t] = 0$
4. $M[0, v] = \mathbf{INF}$ for all v not t
5. For $i = 1, \dots, n-1$:
6. For v in V :
7. Compute $M[i, v]$ using **recurrence**
8. Return $M[n-1, s]$

Getting the Shortest Path with M

Answer: It takes $O(n)$ time to track back optimal choices.

Find-Shortest-Path(i, v, M) :

1. If $i == 0$ (and $v == t$) :
2. Return $[t]$
3. Else if $M[i, v] == M[i-1, v]$:
4. Return Find-Shortest-Path($i-1, v, M$)
5. Else:
6. Find w such that $M[i, v] == c[v, w] + M[i-1, w]$
7. Return $[w] ++$ Find-Shortest-Path($i-1, w, M$)

Shortest Path Better Space

- Let $OPT(i, v)$ denotes the minimum cost of a v to t path using at most i edges.
- Then
$$OPT(0, u) = \infty \text{ if } u \neq t \text{ and } OPT(0, t) = 0.$$
- Moreover, if $i > 0$, then
$$OPT(i, v) = \min\{OPT(i - 1, v), \min_{w \in V}\{c_{vw} + OPT(i - 1, w)\}\}$$

- **Observation:** To solve $OPT(i, v)$ we need to know $OPT(i - 1, w)$ for “all” w ... **and we don’t need to know anything about $OPT(j, w)$ for $j < i - 1$ and any w .**

Shortest Path Better Space

Shortest-Path(G, s, t) :

1. N = number of nodes in G
2. 2D Array M of length $2 \times n$
3. Set $M[0, t] = 0$
4. $M[0, v] = \text{INF}$ for all v not t
5. For $i = 1, \dots, n-1$:
6. For v in V :
7. Compute $M[1, v]$ using recurrence
8. $M[0, v] = M[1, v]$ for all v .
9. Return $M[0, s]$

Shortest Path Better Space

Shortest-Path(G, s, t) :

1. N = number of nodes in G
2. 2D Array M of length $2 \times n$
3. Set $M[0, t] = 0$
4. $M[0, v] = \text{INF}$ for all v not t
5. For $i = 1, \dots, n-1$: **<- Still doing this $n-1$ times**
6. For v in V :
7. Compute $M[1, v]$ using recurrence
8. $M[0, v] = M[1, v]$ for all v .
9. Return $M[0, s]$

Bellman-Ford Algorithm

- Runs in time $O(n(n+m))$ time and uses at most $O(n)$ space.

Shortest-Path (G, s, t) :

1. N = number of nodes in G
2. 2D Array M of length $2 \times n$
3. Set $M[0, t] = 0$
4. $M[0, v] = \text{INF}$ for all v not t
5. For $i = 1, \dots, n-1$: **<- Still doing this $n-1$ times**
6. For v in V :
7. Compute $M[1, v]$ using recurrence
8. $M[0, v] = M[1, v]$ for all v .
9. Return $M[0, s]$