L]

' CSE 331:

Algorithms & Complexity
“Shortest Path... Again”

Prof. Charlie Anne Carlson (She/Her)
Lecture 32 & 33

Nov 17t & 19th, 2025
University at Buffalo

Schedule

1. Course Updates

2. Dynamic Programming
3. Subset Sum -> Knapsack
4. Shortest Path Problem

5. Bellman-Ford Algorithm

Course Updates

e HW7Out
 Due November 19t
* Group Project (Autolab Up)
* Groups Fixed
 Code 3 Due November 24t
 Reflections 3 Due December 15t
e Next Quizis December 15t

Reading

* You should have read:
* Finished 6.1
* Finished 6.2
* Finished 6.4
* Finished 6.8
» Before Next Class:
e Start 8.1

JON KLEINBERG - EVA TARDOS

Dynamic Programming

* Optimal Substructure
* The solution to the original problem

can be easily computed from the e‘e

solutions to the subproblems.
* Overlapping Subproblems

* At most polynomial subproblems e
to solve.
* Subproblem Ordering (0
* There exists a natural order to solve F; =« 1

subproblems without conflict.

kFi—l +Fi

1i=20
i=1
i =2

Subset Sum & Subproblems

Let OPT(i, W’) be the optimal with only first i items and
bound of W’.

If i = 0 then
OPT(i,W’)=0
If W’ > w; then

OPT(i,W’) = max{w; + OPT(i-1,W’- w;), OPT(i-1,W’)}
Otherwise
OPT(i,W’) = OPT(i-1,W’)

Knapsack

* Input: Alistof nitems{1,...,n}and a
bound W.
* Eachitem1has anon-negative
weight w;.
* Eachitemi1has anon-negative

value v;.
e Goal: Find the max-value subset S

such that }};eqw; < W,

Knapsack & Subproblems

Let OPT(i, W’) be the optimal with only first i items and
bound of W’. Then we can write:

If i = 0 then
OPT(i,W’)=0
If W' > w; then

OPT(i,W’) = max{v; + OPT(i-1,W’- w;), OPT(i-1,W’)}
Otherwise
OPT(i,W’) = OPT(i-1,W’)

Shortest Path

* Input:
 Adirected graph G = (V,E).
* Aweight foreachedge (i,j) €E,c;.
e Source vertexs € V.
* Destinationvertext € V.

e Goal: Find a path from s to t with
minimum total cost:

cost(P) = z Cij

ij EP

Negative Cycles

* Anegative cycle in G is acycle C such that

cost(C) = Z cij < 0.

ij EP

QO%%O@

Negative Cycles

* Anegative cycle in G is acycle C such that

cost(C) = Z cij < 0.

ij EP

Negative Cycles

* Observation: If a graph has a negative cycle, then there may be
no shortest path from s to t.

Negative Cycles

« Claim: If agraph has a no negative cycle, then there exists a
shortest path from s to t is a simple path.
 Such ashortest path will use at mostn — 1 edges.

Negative Cycles

* Claim:If agraph has a no negative cycle, then the shortest path
from s to t is a simple path.
* Proof:

* Since every cycle has nonnegative cost, the shortest path P
from s to t with the fewest number of edges doesn’t repeat a
vertex v.

 Ifitdidrepeat avertex, then we could remove the portion of P
between consecutive visits to v, resulting in a path of no
greater cost and strictly fewer edges.

Negative Cycles

* Claim:If agraph has a no negative cycle, then the shortest path
from s to t is a simple path.
* Proof:

O

Negative Cycles

* Claim:If agraph has a no negative cycle, then the shortest path
from s to t is a simple path.
* Proof:

Negative Cycles

* Claim:If agraph has a no negative cycle, then the shortest path
from s to t is a simple path.
* Proof:

O— G

Shortest Path

* Input:
 Adirected graph G = (V,E).
* Aweight foreachedge (i,j) €E,c;.
e Source vertexs € V.
* Destinationvertext € V.
* No negative cycles!

e Goal: Find a path from s to t with
minimum total cost:

cost(P) = z Cij

ij EP

Shortest Path Subproblem

* Input:
 Adirected graph G = (V,E).
* Aweight foreachedge (i,j) €E,c;.
* Sourcevertexs € V.
* Destinationvertext € V.
* No negative cycles!
* Goal: Find a path from s to t with minimum total cost:

cost(P) = z Cij

ij EP

Shortest Path Subproblem

 Let OPT(i,v) denotes the minimum cost of a v to t path using at
most 1 edges.

* Question: What is the answer the our overall problem?
* Question: What are the base/easy cases?

* Question: Whatis a nice way to write the answer as a function of
subproblems?

Shortest Path Subproblem

 Let OPT(i,v) denotes the minimum cost of a v to t path using at
most 1 edges.

* Question: What is the answer to our overall problem?
* Answer:0PT(n—1,5s)
* Question: What are the base/easy cases?

* Question: Whatis a nice way to write the answer as a function of
subproblems?

Shortest Path Subproblem

Let OPT (i, v) denotes the minimum cost of a v to t path using at
most 1 edges.

Question: What is the answer to our overall problem?
* Answer:0PT(n—1,5s)

Question: What are the base/easy cases?

* Answer: OPT(0,u) = wifu #tand OPT(0,t) = 0 otherwise.
Question: What is a nice way to write the answer as a function of
subproblems?

Shortest Path Subproblem

Let OPT (i, v) denotes the minimum cost of a v to t path using at
most 1 edges.

Question: What is the answer to our overall problem?

* Answer:0PT(n—1,5s)

Question: What are the base/easy cases?

* Answer: OPT(0,u) = wifu #tand OPT(0,t) = 0 otherwise.

Question: What is a nice way to write the answer as a function of

subproblems?

« “Answer”: We should try to identify a choice as a way to break
the problem into smaller subproblems.

Shortest Path Subproblem

 Let OPT(i,v) denotes the minimum cost of a v to t path using at
most 1 edges.

* Question: Whatis a nice way to write the answer as a function of

subproblems?
« “Answer”: We should try to identify a choice as a way to break

the problem into smaller subproblems.
* Question: What can we say about the shortest path from v to t if

vV FEL?

Shortest Path Subproblem

 Let OPT(i,v) denotes the minimum cost of a v to t path using at
most 1 edges.

* Question: Whatis a nice way to write the answer as a function of
subproblems?
« “Answer”: We should try to identify a choice as a way to break
the problem into smaller subproblems.
* Question: What can we say about the shortest pathfromvtot
that uses atleast one edge if v # t?
* Answer: There must be an edge from v to another vertex w.

Shortest Path Subproblem

 Let OPT(i,v) denotes the minimum cost of a v to t path using at
most 1 edges.

* Observation: There must be an edge from v to another vertex w to
any shortest path using at least one edge fromvtotifvis nott.

O—w—O0—0O0—0—O

Shortest Path Subproblem

 Let OPT(i,v) denotes the minimum cost of a v to t path using at
most 1 edges.

* Question: Is the shortest path always length n-1?

O—w—O0—0O0—0—O

Shortest Path Subproblem

 Let OPT(i,v) denotes the minimum cost of a v to t path using at
most 1 edges.

* Question: Is the shortest path always length n-1?

* Answer: No, the path could be much shortest and not visit every
vertex.

O—w—O0—0O0—0—O

Shortest Path Subproblem

 Let OPT(i,v) denotes the minimum cost of a v to t path using at
most 1 edges.

* Observation: The shortest path from vto tthat uses at most i edges
might be the shortest path from v to t that uses at most i-1 edges.

O—w—O0—0O0—0—O

Shortest Path Subproblem

 Let OPT(i,v) denotes the minimum cost of a v to t path using at
most 1 edges.

* Observation: There must be an edge from v to another vertex w to
any shortest path using at least one edge fromvtotifvis nott.

* Observation: The shortest path from vto tthat uses at most i edges
might be the shortest path from v to t that uses at most i-1 edges.

Shortest Path Recurrence

 Let OPT(i,v) denotes the minimum cost of a v to t path using at
most 1 edges.

* Observation: There must be an edge from v to another vertex w to
any shortest path using at least one edge fromvtotifvis nott.

* Observation: The shortest path from vto tthat uses at most i edges
might be the shortest path from v to t that uses at most i-1 edges.

e |fi1>0:
OPT(i,v) = min{OPT(i — 1,v), min,, cy{c,w+OPT(i — 1,w)}}

Shortest Path Ordering

 Let OPT(i,v) denotes the minimum cost of a v to t path using at
most 1 edges.

* Then
OPT(0,u) = owifu # tand OPT(0,t) = 0.
e Moreover, ifi >0, then
OPT(i,v) = min{OPT(i — 1,v), miny, cy{C,w+OPT(i — 1,w)}}

Shortest Path Ordering

 Let OPT(i,v) denotes the minimum cost of a v to t path using at
most 1 edges.

* Then
OPT(0,u) = owifu # tand OPT(0,t) = 0.
e Moreover, ifi >0, then
OPT(i,v) = min{OPT(i — 1,v), miny, cy{C,w+OPT(i — 1,w)}}

 Observation: To solve OPT (i, v) we need to know OPT(i — 1,w) for
“all” w.

Shortest Path Ordering

 Let OPT(i,v) denotes the minimum cost of a v to t path using at
most 1 edges.

* Then
OPT(0,u) = owifu # tand OPT(0,t) = 0.
e Moreover, ifi >0, then
OPT(i,v) = min{OPT(i — 1,v), miny, cy{C,w+OPT(i — 1,w)}}

 Observation: To solve OPT (i, v) we need to know OPT(i — 1,w) for
“all” w... and we don’t need to know anything about OPT(j, w) for
j < i—1andanyw.

Shortest Path Algorithm

Shortest-Path (G, s, t) :

1. N = number of nodes 1in G

2. 2D Array M of length n x n

3. Set M[O,t] = 7

4., Set M[O,v] = ? for all v not t
5.For 1 =1,...,n-1:

o . For v 1n V:

7. Compute M[1,Vv] using ?

8. Return ?

Shortest Path Algorithm

Shortest-Path (G, s, t) :

1. N = number of nodes 1in G

2. 2D Array M of length n x n

3. Set M[O,t] =0

4. M[0,v] = INF for all v not t

5.For 1 =1,...,n-1:

o . For v 1n V:

7. Compute M[1,V] using recurrence
8. Return M[n-1, s]

Shortest Path Algorithm

Shortest-Path (G, s, t) :

1. N = number of nodes 1in G

2. 2D Array M of length n x n

3. Set M[O,t] =0

4. M[0,v] = INF for all v not t

5.For 1 =1,...,n-1:

o . For v 1n V:

7. Compute M[1,V] using recurrence
8. Return M[n-1, s]

Itis easy to see this algorithm has runtime at most O(n"3).

Shortest Path Algorithm

Shortest-Path (G, s, t) :

1. N = number of nodes 1in G

2. 2D Array M of length n x n

3. Set M[O,t] =0

4. M[0,v] = INF for all v not t

5.For 1 =1,...,n-1:

o . For v 1n V:

7. Compute M[1,V] using recurrence
8. Return M[n-1, s]

Itis easy to see this algorithm has runtime at most O(n"3).

Shortest Path Algorithm

Shortest-Path (G, s, t) :

1. N = number of nodes 1in G

2. 2D Array M of length n x n

3. Set M[O,t] =0

4. M[0,v] = INF for all v not t

5.For 1 =1,...,n-1:

o . For v 1n V:

7. Compute M[1,V] using recurrence
8. Return M[n-1, s]

ltisn’t too hard to see this algorithm has runtime at most O(nm) if we
only consider neighbors on line 6.

Getting the Shortest Path with M

Question: How do we find the shortest path of length at most | form s
tot given M?

Shortest-Path (G, s, t) :

1. N = number of nodes 1in G

2. 2D Array M of length n x n

3. S5et M[O,t] =0

4. M[O0,v] = INF for all v not t

5.For 1 =1,...,n-1:

0. For v 1n V:

7. Compute M[1,V] using recurrence
8. Return M[n-1, s]

Getting the Shortest Path with M

Answer: It takes O(in) time to track back optimal choices.

Find-Shortest-Path (1, v,M) :

1. If 1 == (and v == t) :

2. Return [t]

3.FElse 1f M[1,v] == M[1-1,Vv]:

4, Return Find-Shortest-Path(1-1,v,M)

5. Else:

©. Find w such that M[1i,v] == c[v,w] + M[1-1,w]
7. Return [w] ++ Find-Shortest-Path(1-1,w,M)

Shortest Path Better Space

 Let OPT(i,v) denotes the minimum cost of a v to t path using at
most 1 edges.

* Then
OPT(0,u) = owifu # tand OPT(0,t) = 0.
e Moreover, ifi >0, then
OPT(i,v) = min{OPT(i — 1,v), miny, cy{C,w+OPT(i — 1,w)}}

| + Observation: To solve OPT(i,v) we need to know OPT(i — 1,w) for
: “all” w... and we don’t need to know anything about OPT(j, w) for
: j < i—1andanyw.

|

Shortest Path Better Space

Shortest-Path (G, s, t) :
. N = number of nodes 1in G
. 2D Array M of length 2 x n
. Set M[O,t] =0
.M[0O,v] = INF for all v not t
.For 1 = 1,...,n-1:
For v 1n V:
Compute M[1l,v] using recurrence
M[O,v] = M[1l,v] for all v.
. Return M[O0, s]

O 00 J o O b W N

Shortest Path Better Space

Shortest-Path (G, s, t) :
. N = number of nodes 1in G
. 2D Array M of length 2 x n
. Set M[O,t] = O
. M[0,v] = INF for all v not t
.For 1 = 1,...,n-1: <- Still doing this n-1 times
For v 1n V:
Compute M[1l,v] using recurrence
M[O,v] = M[1l,v] for all wv.
. Return MO0, s]

O 00 J o O b W N

Bellman-Ford Algorithm

* Runsintime O(n(n+m)) time and uses at most O(n) space.

Shortest-Path (G, s, t) :
. N = number of nodes 1in G
. 2D Array M of length 2 x n
. Set M[O,t] = O
. M[0,v] = INF for all v not t
.For 1 = 1,...,n-1: <- Still doing this n-1 times
For v 1n V:
Compute M[1l,v] using recurrence
M[O,v] = M[1l,v] for all wv.
. Return MO0, s]

O 00 J o O b W N

	Slide 1: CSE 331: Algorithms & Complexity
	Slide 2: Schedule
	Slide 3: Course Updates
	Slide 4: Reading
	Slide 5: Dynamic Programming
	Slide 6: Subset Sum & Subproblems
	Slide 7: Knapsack
	Slide 8: Knapsack & Subproblems
	Slide 9: Shortest Path
	Slide 10: Negative Cycles
	Slide 11: Negative Cycles
	Slide 12: Negative Cycles
	Slide 13: Negative Cycles
	Slide 14: Negative Cycles
	Slide 15: Negative Cycles
	Slide 16: Negative Cycles
	Slide 17: Negative Cycles
	Slide 18: Shortest Path
	Slide 19: Shortest Path Subproblem
	Slide 20: Shortest Path Subproblem
	Slide 21: Shortest Path Subproblem
	Slide 22: Shortest Path Subproblem
	Slide 23: Shortest Path Subproblem
	Slide 24: Shortest Path Subproblem
	Slide 25: Shortest Path Subproblem
	Slide 26: Shortest Path Subproblem
	Slide 27: Shortest Path Subproblem
	Slide 28: Shortest Path Subproblem
	Slide 29: Shortest Path Subproblem
	Slide 30: Shortest Path Subproblem
	Slide 31: Shortest Path Recurrence
	Slide 32: Shortest Path Ordering
	Slide 33: Shortest Path Ordering
	Slide 34: Shortest Path Ordering
	Slide 35: Shortest Path Algorithm
	Slide 36: Shortest Path Algorithm
	Slide 37: Shortest Path Algorithm
	Slide 38: Shortest Path Algorithm
	Slide 39: Shortest Path Algorithm
	Slide 40: Getting the Shortest Path with M
	Slide 41: Getting the Shortest Path with M
	Slide 42: Shortest Path Better Space
	Slide 43: Shortest Path Better Space
	Slide 44: Shortest Path Better Space
	Slide 45: Bellman-Ford Algorithm

