
CSE 331: 
Algorithms & Complexity

Prof. Charlie Anne Carlson (She/Her)
Lecture 35 – 37

November 24th 2025, Dec 1st 2025, and Dec 3rd 2025

“NP-Completeness”



Schedule

1. Course Updates
2. Recap
3. Hardness
4. Reductions
5. P vs NP
6. Completeness
7. NP-Complete Problems



Course Updates
• HW 8 Out

• Due December 2nd

• Group Project (Autolab Up)
• Groups Fixed
• Reflections 3 Due December 3rd

• Quiz is Today
• Final on December 10th



Reading

• You should have read:
• Finished 8.1
• Finished 8.2
• Finished 8.3
• Finished 8.4

• Before Next Class:
• Finish 8.7



Schedule

• Monday Nov. 24th : P vs NP 
• Wednesday Nov. 26th : No Class
• Friday Nov. 28th : No Class
• Monday Dec. 1st : NP-Completeness
• Wednesday Dec. 3rd : Satisfiability 
• Friday Dec. 5th : Warpup
• Monday Dec. 8th : “Review”



Deadlines
• Monday Dec. 1st : 

• Quiz 2 (in class)
• Tuesday Dec. 2nd :

• HW 8
• Problem 3 -> December 4th

• Tuesday Dec. 3rd :
• Project Reflection Problem 3

• Friday Dec. 7th : 
• Project Code Problem 4 & 5 (updated)

• Tuesday Dec. 9th :
• Project Reflection Problem 4 & 5
• Project Survey

• Wednesday Dec. 10th :
• Final Exam



Goals:
• End of Week: 

• HW 7 Graded 
• HW 8 Solutions 
• Quiz 2 Solutions

• Before Next Week:
• Project Reflection Problem 1 Graded

• Before End of Next Week:
• HW 8 Graded 
• Quiz 2 Graded
• Reflection Graded

• Before End of Following Week
• Exam Graded 
• Final Grades Posted

https://xkcd.com/336/

https://xkcd.com/336


Final

• If you need to miss the final, let me know ASAP because I 
am scheduling a time for people with valid excuses now.

• It will be 2 hours and 30 minutes
• One part but both kinds of questions
• Covers entire class

• You will get two review sheets!
• Bring ID and expected to be assigned a seat



Decision vs Optimization Problem

• We have seen a lot of optimization 
problems in this class that ask for 
things like shortest, longest, or 
maximum weight objects. 
• An optimization problem asks 

to find the “best” object in a 
set. 

• We haven’t talked about decision 
problems as much which ask if 
there exist an object with specific 
property. 



Decision vs Optimization Problem

• Shortest Path Optimization Problem: 
• What is the shortest path 

between s and t?
• Shortest Path Decision Problem:

• Given a weight W, does there 
exist a path of length at most W 
between s and t?

• Question: If you can solve one, can 
you solve the other?
• Answer: Yes, check if shortest 

path is shortest or do a search.



Witness or Certificate

• We can witness or certify the 
answer to a decision problem by 
demonstrating the object provided 
one can check that it has the correct 
property efficiently.
• Path of length at most W.
• Path of length at least W.
• Schedule with at least k jobs.
• Points that are at most δ away 

from each other. 



P and NP

• P: Decision problems for 
which there exist a 
polynomial time algorithm 
that solves it.

• NP: Decision problems for 
which there is always a 
polynomial time verifiable 
certificate for the solution.    



P vs NP 

• Both P and NP are sets of 
problems (languages). 

• We know that P is a subset of 
NP. 

• We don’t know if P = NP and if 
you solve this, you get money, 
fame, and respect!



P vs NP 

• Question: What might it help to 
know a problem is ”hard”?
• Answer: We don’t want to 

waste time trying to solve 
problems that we know are 
very hard to solve. 

https://xkcd.com/1425/

https://xkcd.com/1425


Reductions Example

• You are given a network of computers to manage.
• You are given a list of computers along with a list of 

which computer are directly connected to each.
• Each connection has a cost for sending data over it.

• Each computer has a unique archive of information.
• Your boss wants you to figure out a way to find the 

cheapest way to send information from one computer to 
another upon request.



Reductions

• You are given a network of computers to manage.
• You are given a list of computers along with a list of 

which computer are directly connected to each.
• Each connection has a cost for sending data over it. 

• Each computer has a unique archive of information.
• Your boss wants you to figure out a way to find the 

cheapest way to send information from one computer to 
another upon request.



Reductions

• You can easily map this to a graph problem.
• Each computer is a node in a graph where each direct 

connection is an edge. 
• The cost of sending data across connection is a weight 

for the edge. 
• Then finding the cheapest way to route data is just the 

shortest path problem.
• I know an algorithm for shortest path in this case!



Reductions



Reasons to use Reduction I

• You want to show something is easy/possible:
• You have a real-world problem, and you want to reduce 

it to a simple graph problem you know how to solve. 
• You have a new graph problem that seems harder but 

isn’t.
• You may also want to show how to use already existing 

algorithms for none graph problems.



Reasons to use Reduction II

• You want to show something is hard/impossible:
• Reductions give you a formal way to show that a 

problem may not be possible to solve. 
• We may not have a proof that a problem is actually 

hard, but we do know that people have been trying for a 
long time to solve it with no success.  
• If you have a new problem, you don’t want to have to 

fail to solve it for years to justify not being able to 
solve it. Instead, you reduce. 



Oracles

• Consider a problem X
• E.g. Shortest path, longest 

path, stable matching, 
coloring, sorting, etc.

• Note that X has some input 
and desired output
• E.g. Graph + Weights => 

Shortest Path
• An oracle is a black box that 

can solve X on any input.



Reduction

• Consider problem Y that we 
assume can be solved in poly 
time. 

• Question: How can we use 
this assumption about Y to 
show that another problem is 
easy?



Reduction

• Problem X polynomial-time (cook) 
reduces to problem Y if arbitrary 
instances of problem X can be 
solved using:
• Polynomial number of 

computational steps, plus
• Polynomial number of calls to an 

oracle that solves problem Y. 



Reduction

• Problem X polynomial-time (cook) reduces to problem Y if 
arbitrary instances of problem X can be solved using:
• Polynomial number of computational steps, plus
• Polynomial number of calls to an oracle that solves 

problem Y. 

Instance I of X Solution S of X
Reduction ReductionOracle for Y

Algorithm for X



Reduction

• We want both parts of the reduction to run in polynomial 
time.
• First part converts instance I of X to an instance J of Y.
• Second part converts solution T of Y to a solution S of X.

Instance I of X Solution S of X
Reduction ReductionOracle for Y

Algorithm for X



Reduction (𝑋 ≤𝑝 𝑌)

• If we can prove that both parts of the reduction run in 
polynomial time, then if there is a polynomial time 
algorithm for Y there is a polynomial time algorithm for X.

• “Problem X is at most as hard as Y with respect to poly-
time.”

Instance I of X Solution S of X
Reduction ReductionOracle for Y

Algorithm for X



Reduction (𝑋 ≤𝑝 𝑌)

• If we know there is no efficient algorithm for X, then it 
follows that there can’t be an efficient algorithm for Y.

• “Problem X is at most as hard as Y with respect to poly-
time.”

Instance I of X Solution S of X
Reduction ReductionOracle for Y

Algorithm for X



Independent Set

• Fix a graph G = (V, E).
• A set S ⊆ V is independent if no 

two nodes in S are joined by an 
edge in 𝐸. 

Independent Set Problem:
• Input: A graph G and integer k.
• Output: If there exist an 

independent set of size at 
least k in G.
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• Fix a graph G = (V, E).
• A set S ⊆ V is independent if no 

two nodes in S are joined by an 
edge in 𝐸. 

Independent Set Problem:
• Input: A graph G and integer k.
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least k in G.

In Independent Set



Vertex Cover

• Fix a graph G = (V, E).
• A set S ⊆ V is a vertex cover if for 

every edge e ∈ E, at least one 
endpoint is in 𝑆.

Vertex Cover Problem:
• Input: A graph G and integer k.
• Output: If there exist a vertex 

cover size at most k in G.



Vertex Cover

• Fix a graph G = (V, E).
• A set S ⊆ V is independent if no 

two nodes in S are joined by an 
edge in 𝐸. 

Independent Set Problem:
• Input: A graph G and integer k.
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least k in G.
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Vertex Cover

• Fix a graph G = (V, E).
• A set S ⊆ V is independent if no 

two nodes in S are joined by an 
edge in 𝐸. 

Independent Set Problem:
• Input: A graph G and integer k.
• Output: If there exist an 

independent set of size at 
least k in G.

In Vertex Cover



Independent Set vs Vertex Cover

In Vertex Cover

In Independent Set



Independent Set vs Vertex Cover

Claim: Let G =  (V, E) be a graph. 
Then S ⊆ V is an independent set 
if and only if its complement V ∖ S 
is a vertex cover.

In Vertex Cover

In Independent Set



Proof Part (=>)

Claim: Let G =  (V, E) be a graph. Then S ⊆ V is an 
independent set if and only if its complement V ∖ S is a vertex 
cover.

Proof (= >):
• Consider an independent set S and an edge e ∈ E. Since S 

is an independent set, it must be the case that one 
endpoint of e is not in it and thus at least one endpoint of e 
is in V ∖ S. 



Proof Part (=>)

Claim: Let G =  (V, E) be a graph. Then S ⊆ V is an 
independent set if and only if its complement V ∖ S is a vertex 
cover.

Proof (< =):
• Consider a set S such that V ∖ S is a vertex cover and an 

edge e ∈ E. If both endpoints of e where in S, then V ∖ S 
would not be a vertex cover (contradiction).  Hence, S must 
be an independent set.



Independent Set to Vertex Cover

Claim: Independent Set ≤𝑝 Vertex Cover.



Independent Set to Vertex Cover

Claim: Independent Set ≤𝑝 Vertex Cover.

Proof: Suppose we have a black box that solves vertex cover 
problem efficiently. Then we can decide whether G has an 
independent set of size at least k by asking the black box if G 
has a vertex cover of size at most n-k. 

Note that this reduction is trivial as we are using the same G 
and we can compute n-k in O(1) time. 



Reduction (Ind Set ≤𝑝 Vertex Cover)

• If we know there is no efficient algorithm for Independent 
Set, then it follows that there can’t be an efficient algorithm 
for Vertex Cover.

Instance I of VC Solution S of VC
Reduction Reduction

Algorithm for 
IS

Algorithm for VC



Independent Set from Vertex Cover

Claim: Vertex Cover ≤𝑝 Independent Set.



Independent Set from Vertex Cover

Claim: Vertex Cover ≤𝑝 Independent Set.

Proof: Suppose we have a black box that solves independent 
set problem efficiently. Then we can decide whether G has a 
vertex cover of size at most k by asking the black box if G has 
an independent set of size at least n-k. 



Reduction (Vertex Cover ≤𝑝 Ind. Set)

• If we know there is no efficient algorithm for Vertex Cover, 
then it follows that there can’t be an efficient algorithm for 
Independent Set.

Instance I of IS Solution S of IS
Reduction Reduction

Algorithm for 
VC

Algorithm for IS



Independent Set & Vertex Cover

Claim: Independent Set ≤𝑝 Vertex Cover.

Claim: Vertex Cover ≤𝑝 Independent Set.

Observation: The above claims tell us that up to our notion of 
efficiency, these two problems are equally “hard”. That is, if 
you can solve one, you can solve the other. 



NP-hard & NP-complete
Definition: We say that a problem X is NP-hard if for every 
problem Y in NP, there is a polynomial-time reduction from Y 
to X (Y ≤𝑝 X).

Definition: We say that a problem X is NP-complete if it is in 
NP and if it is NP-hard. 

Observation: NP-Complete problems represent the 
”hardest” problems in NP. 



Boolean Formula 

• Suppose you have a set X of n Boolean variables 
𝑥1, 𝑥2, … , 𝑥𝑛 that can each take value 0 or 1. 

• A “term” over X is the variable 𝑥𝑖  or its negation 𝑥𝑖.
• A “clause” is a simple disjunction of distinct terms

𝑡1 ∨ 𝑡2 ∨ 𝑡3 ∨ ⋯ ∨ 𝑡ℓ

      where each term 𝑡𝑖 ∈ {𝑥1, 𝑥2, … , 𝑥𝑛, 𝑥1, 𝑥2, … , 𝑥𝑛}.

E.g.
𝑥1 ∨ 𝑥4 ∨ 𝑥5

•  



Boolean Formula 

• We say that a an “assignment” of values to the variables in 
X satisfy a clause if it cause it to evaluate to TRUE.

• An assignment satisfies a collection of clauses 
𝐶1, 𝐶2, … , 𝐶𝑚 if and only if it causes the conjunction 

𝐶1 ∧ 𝐶2 ∧ ⋯ ∧ 𝐶𝑚

     to evaluate to TRUE. 

E.g.
𝑥1 ∨ 𝑥2 ∨ 𝑥3 ∧ 𝑥1 ∨ 𝑥4 ∨ 𝑥5

•  



SAT Problems

• SAT:
• Input: A set of clauses 𝐶1, 𝐶2, … , 𝐶𝑚 over a set of 

variables 𝑥1, 𝑥2, … , 𝑥𝑛. 
• Output: If there exist an assignment to the variables 

such that each clause is satisfied. 
• 3-SAT:

• Input: A set of clauses 𝐶1, 𝐶2, … , 𝐶𝑚 each of size 3 over a 
set of variables 𝑥1, 𝑥2, … , 𝑥𝑛. 

• Output: If there exist an assignment to the variables 
such that each clause is satisfied. 



Circuit: 
• A circuit is a labeled directed acyclic graph K such that

• All sources (no incoming edges) are labeled with 0, 1, or 
a variable. <-inputs 

• All other nodes are labeled with AND, OR, or NOT.
• Each AND and OR node has two incoming edges
• Each NOT node has one incoming edge

• There is a single sink (no outgoing edges). <- output



Circuit SAT 

∧ 

∧ ¬ 

∧ ∨ ∨ 

1 0 x y z 
X ∧ (Y ∨ Z)

Output −>
Circuit Sat Problem (SAT):
• Input: A circuit K
• Output: If there exist an 

assignment to the variables 
that makes that satisfies 
the circuit.



Circuit SAT 

Claim: Circuit Satisfiability is NP-complete.

• Not hard to show NP-hard.
• To show NP-Complete, you have to reduce from an arbitrary 

NP-hard problem.
• We wont talk about proof in this class, but the idea is 

that you can represent any verification algorithm as a 
circuit! 



NP-complete

Observation: If Y is an NP-
complete problem, and X is a 
problem in NP with the 
property that Y ≤𝑝 X, then X is 
NP-complete. 

Behnam Esfahbod, CC BY-SA 3.0 <https://creativecommons.org/licenses/by-
sa/3.0>, via Wikimedia Commons



NP-complete Problems

• (Circuit) SAT
• 3-SAT
• Independent Set
• Vertex Cover
• Set Cover

Behnam Esfahbod, CC BY-SA 3.0 <https://creativecommons.org/licenses/by-
sa/3.0>, via Wikimedia Commons


	Slide 1: CSE 331:  Algorithms & Complexity
	Slide 2: Schedule
	Slide 3: Course Updates
	Slide 4: Reading
	Slide 5: Schedule
	Slide 6: Deadlines
	Slide 7: Goals:
	Slide 8: Final
	Slide 9: Decision vs Optimization Problem
	Slide 10: Decision vs Optimization Problem
	Slide 11: Witness or Certificate
	Slide 12: P and NP
	Slide 13: P vs NP 
	Slide 14: P vs NP 
	Slide 15: Reductions Example
	Slide 16: Reductions
	Slide 17: Reductions
	Slide 18: Reductions
	Slide 19: Reasons to use Reduction I
	Slide 20: Reasons to use Reduction II
	Slide 21: Oracles
	Slide 22: Reduction
	Slide 23: Reduction
	Slide 24: Reduction
	Slide 25: Reduction
	Slide 26: Reduction (cap X less than or equal to sub p , cap Y )
	Slide 27: Reduction (cap X less than or equal to sub p , cap Y )
	Slide 28: Independent Set
	Slide 29: Independent Set
	Slide 30: Independent Set
	Slide 31: Vertex Cover
	Slide 32: Vertex Cover
	Slide 33: Vertex Cover
	Slide 34: Independent Set vs Vertex Cover
	Slide 35: Independent Set vs Vertex Cover
	Slide 36: Proof Part (=>)
	Slide 37: Proof Part (=>)
	Slide 38: Independent Set to Vertex Cover
	Slide 39: Independent Set to Vertex Cover
	Slide 40: Reduction (Ind Set less than or equal to sub p , Vertex , Cover)
	Slide 41: Independent Set from Vertex Cover
	Slide 42: Independent Set from Vertex Cover
	Slide 43: Reduction (Vertex Cover less than or equal to sub p , Ind. , Set)
	Slide 44: Independent Set & Vertex Cover
	Slide 45: NP-hard & NP-complete
	Slide 46: Boolean Formula 
	Slide 47: Boolean Formula 
	Slide 48: SAT Problems
	Slide 49: Circuit: 
	Slide 50: Circuit SAT 
	Slide 51: Circuit SAT 
	Slide 52: NP-complete
	Slide 53: NP-complete Problems

