CSE 331:
A]lg(o)]r[ilt]hunnls & (C<o>lnnqp>ll<exiilty

L]

“NP-Completeness”

Prof. Charlie Anne Carlson (She/Her)
Lecture 35 - 37
November 24t 2025, Dec 15t 2025, and Dec 3™ 2025

G5

University at Buffalo

Schedule

. Course Updates
. Recap
. Hardness

. Pvs NP

1
2
3
4. Reductions
5
6. Completeness
7

. NP-Complete Problems

Course Updates

HW 8 Out
Due December 2"
Group Project (Autolab Up)
Groups Fixed
Reflections 3 Due December 3"
Quiz is Today
Final on December 10t

Reading

* You should have read:
* Finished 8.1
* Finished 8.2
* Finished 8.3
* Finished 8.4
» Before Next Class:
* Finish 8.7

JON KLEINBERG - EVA TARDOS

Schedule

e Monday Dec. 1St NP-Completeness
 Wednesday Dec. 39 : Satisfiability

* Friday Dec. 5" : Warpup

 Monday Dec. 8" : “Review”

Deadlines

* Monday Dec. 15t
* Quiz2(inclass)

 TuesdayDec. 2":

« HWS

* Problem 3->December 4t"

 TuesdayDec. 3:

* Project Reflection Problem 3
 Friday Dec. 7t :

* Project Code Problem 4 &5 (updated)
* TuesdayDec. 9"

* Project Reflection Problem 4 & 5

* Project Survey
« \WednesdayDec. 10t

* Final Exam

Goals:

* Endof Week:
 HW 7 Graded
 HW 8 Solutions
e Quiz 2 Solutions
» Before Next Week:
* Project Reflection Problem 1 Graded
 Before End of Next Week:
 HW 8 Graded
e Quiz 2 Graded
 Reflection Graded
* Before End of Following Week
e Exam Graded
 Final Grades Posted

IF YOU DONTTURN IN
AT LEAST ONE HOMEWDRIK
ASSIGNMENT, YOU LL
FAIL THIS (LASS. YEAH. BUTIF I CAN FAIL
THIS CLASS, THE GRADES
\ ON MY REFDRT CARD WILL
BE INALPHARETICAL CRDER.!

/

il

https://xkcd.com/336/

https://xkcd.com/336

Final

* |fyou need to miss the final, let me know ASAP because |
am scheduling a time for people with valid excuses now.
* [twill be 2 hours and 30 minutes
* One part but both kinds of questions
* Covers entire class
* You will get two review sheets!
* Bring ID and expected to be assighed a seat

Decision vs Optimization Problem

* We have seen a lot of optimization
problems in this class that ask for
things like shortest, longest, or
maximum weight objects.

* An optimization problem asks
to find the “best” objectin a
set.

* We haven’ttalked about decision
problems as much which ask if
there exist an object with specific

property.

Decision vs Optimization Problem

* Shortest Path Optimization Problem:
* Whatis the shortest path
between s and t?
 Shortest Path Decision Problem:

* Given aweightW, does there e "
exist a path of length at most W "
between s andt? i .y

* Question: If you can solve one, can ‘l
you solve the other? ’

* Answer: Yes, check if shortest
path is shortest or do a search.

Withess or Certificate

* We can witnhess or certify the
answer to a decision problem by
demonstrating the object provided
one can check that it has the correct
property efficiently.

* Path of length at most W.

* Path of length at least W.

* Schedule with at least k jobs.

 Points that are at most 6 away
from each other.

P and NP

 P: Decision problems for
which there exist a
polynomial time algorithm
that solves it.

* NP: Decision problems for
which there is always a
polynomial time verifiable
certificate for the solution.

P vs NP

e Both P and NP are sets of
problems (languages). Q
* We know that P is a subset of
NP. i
* We don’tknow if P=NP and if

you solve this, you get money, A?‘
fame, and respect! Q

P vs NP

Question: What might it help to

know a problem is "hard”?

* Answer: We don’t want to
waste time trying to solve
problems that we know are
very hard to solve.

WHEN A USER TAKES A PHOTO,
THE APP SHOULD CHECK WHETHER
THEY'RE IN A NATIONAL PARK ...

SURE, EASY GIS LOOKUR
GIMME A FEW HllRﬁ.

. AND CHECK UHETHER
'I'H'E PHOTD 15 OF A BIRD.

ILLNEEDHRESEHRCH

i

INCS, IT CAN BE HARD TO EXPLAIN

THE DIFFERENCE BETWEEN THE EASY
AND THE VIRTUALLY IMPOSSIBLE.

https://xkcd.com/1425/

https://xkcd.com/1425

Reductions Example

* You are given a network of computers to manage.

* You are given a list of computers along with a list of
which computer are directly connected to each.

* Each connection has a cost for sending data over it.

* Each computer has a unique archive of information.

* Your boss wants you to figure out a way to find the
cheapest way to send information from one computer to
another upon request.

S " IT'S A GRAPH PROBLEM!

|
{
-'._ >-'--
il
.‘J

.
TKNOW.THIS!

Reductions

* You can easily map this to a graph problem.
* Each computeris anodein a graph where each direct
connectionis an edge.

* The cost of sending data across connection is a weight
for the edge.

* Thenfinding the cheapest way to route data is just the
shortest path problem.
* | know an algorithm for shortest path in this case!

Reductions

Reduction

Reduction are to algorithms what using libraries are to programming. You might not have seen reduction formally
before but it is an important tool that you will need in CSE 331.

Background

This is a trick that you might not have seen explicitly before. However, this is one trick that you have used many times: it is one of the pillars of computer science. In a nutshell,

reduction is a process where you change the problem you want to solve to a problem that you already know how to solve and then use the known solution. Let us begin with a
concrete non-proof examples.

Example of a Reduction

We begin with an elephant joke (£. There are many variants of this joke. The following one is adapted from this one (£

. How do you stop a rampaging blue elephant?
. You shoot it with a blue-elephant tranquilizer gun.

. How do you stop a rampaging red elephant?
. You hold the red elephant's trunk till it turns blue. Then apply Answer 1.

. How do you stop a rampaging elephant?
. Make sure you run faster than the elephant long enough so that it turns red. Then Apply Answer 2.

Reasons to use Reduction |

* You want to show something is easy/possible:

You have a real-world problem, and you want to reduce
It to a simple graph problem you know how to solve.
You have a new graph problem that seems harder but
Isn’t.

You may also want to show how to use already existing
algorithms for none graph problems.

Reasons to use Reduction |

* Youwantto show something is hard/impossible:

* Reductions give you a formal way to show that a
problem may not be possible to solve.

* We may not have a proof that a problem is actually
hard, but we do know that people have been trying for a
long time to solve it with no success.

* |fyou have a new problem, you don’t want to have to
fail to solve it for years to justify not being able to
solve it. Instead, you reduce.

Oracles

* Consider aproblem X
* E.g.Shortest path, longest
path, stable matching,
coloring, sorting, etc.
* Note that X has some input
and desired output
« E.g.Graph+ Weights =>
Shortest Path
* Anoracleis ablack box that
can solve X on any input.

Reduction

* Consider problem Y that we
assume can be solved in poly
time.

* Question: How can we use
this assumption about Y to
show that another problem is
easy”?

Reduction

* Problem X polynomial-time (cook)
reduces to problem Y if arbitrary
Instances of problem X can be
solved using:

* Polynomial number of
computational steps, plus

* Polynomial number of calls to an
oracle that solves problem Y.

Reduction

* Problem X polynomial-time (cook) reduces to problem Y if
arbitrary instances of problem X can be solved using:
* Polynomial number of computational steps, plus
* Polynomial number of calls to an oracle that solves

oroblemY.
Instance |l of X : : Solution S of X
—_— — — >

Algorithm for X

Reduction

* We want both parts of the reduction to run in polynomial
time.

* First part converts instance | of Xto an instance J of Y.
e Second part converts solution T of Y to a solution S of X.

Instance |l of X : Solution S of X

Algorithm for X

Reduction (X <, ¥)

* |fwe can prove that both parts of the reduction run in
polynomial time, then if there is a polynomial time
algorithm for Y there is a polynomial time algorithm for X.

* “Problem Xis at most as hard as Y with respect to poly-

time.”
Instance |l of X : : Solution S of X

Algorithm for X

Reduction (X <, ¥)

* |fwe know there is no efficient algorithm for X, then it
follows that there can’t be an efficient algorithm for Y.
* “Problem Xis at most as hard as Y with respect to poly-

time.”
Instance |l of X : : Solution S of X
—_— — — >

Algorithm for X

Independent Set

 Fixagraph G = (V,E).
e AsetS € Visindependentifno
two nodesin S are joined by an

edgein E.

Independent Set Problem:

* |Input: Agraph G and integer k.

 OQutput: If there exist an
Independent set of size at
least k in G.

’~
V In Independent Set

Independent Set ..

 Fixagraph G = (V,E).
e AsetS € Visindependentifno \ Pr
two nodesin S are joined by an

edgein E.
(_

Independent Set Problem:
 Input: A graph G and integer k. @)
 OQutput: If there exist an

Independent set of size at

leastkinG. \v

\
!
)

Independent Set

 Fixagraph G = (V,E).
e AsetS € Visindependentifno
two nodesin S are joined by an

edgein E.

Independent Set Problem:

* |Input: Agraph G and integer k.

 OQutput: If there exist an
Independent set of size at

least k in G.

’~
\) In Independent Set

Vertex Cover

 Fixagraph G = (V,E).

* AsetS C Visavertex cover if for
every edge e € E, at leastone
endpointisin S.

Vertex Cover Problem:

* Input: Agraph G and integer k.

 Output: If there exist a vertex
cover size at mostk in G.

’~
Y In Vertex Cover

Vertex Cover .

 Fixagraph G = (V,E).
e AsetS € Visindependentifno
two nodesin S are joined by an

edgein E.

Independent Set Problem:

* |Input: Agraph G and integer k.

 OQutput: If there exist an
Independent set of size at
least k in G.

Vertex Cover

’~
Y In Vertex Cover

\

Fixa graph G = (V,E).
AsetS € Visindependentifno
two nodesin S are joined by an

edgein E.

Independent Set Problem:

Input: A graph G and integer k.
Output: If there exist an
Independent set of size at
least k in G.

Independent Set vs Vertex Cover

O In Independent Set
'N

\) In Vertex Cover

Independent Set vs Vertex Cover

Claim: LetG = (V,E) be a graph.

ThenS € Vis anindependent set ‘
if and only if its complement V \ S
IS a vertex cover. L -

@

O In Independent Set
’~

\) In Vertex Cover

Proof Part (=>)

Claim: LetG = (V,E) beagraph.ThenS € Vis an
independent set if and only if its complement V \ Sis a vertex
cover.

Proof (= >):
* Consider anindependent setS and anedge e € E. Since S
Is an independent set, it must be the case that one

endpoint of eis not in it and thus at least one endpoint of e
isinV \ S.

Proof Part (=>)

Claim: LetG = (V,E) beagraph.ThenS € Vis an
independent set if and only if its complement V \ Sis a vertex
cover.

Proof (< =):

 ConsiderasetSsuchthatV \ Sis avertex cover and an
edge e € E. If both endpoints of e where in §,thenV \ S
would not be a vertex cover (contradiction). Hence, S must
be an independent set.

Independent Set to Vertex Cover

Claim: Independent Set <,, Vertex Cover.

Independent Set to Vertex Cover

Claim: Independent Set <, Vertex Cover.

Proof: Suppose we have a black box that solves vertex cover
problem efficiently. Then we can decide whether G has an
independent set of size at least k by asking the black box if G
has a vertex cover of size at most n-k.

Note that this reduction is trivial as we are using the same G
and we can compute n-k in O(1) time.

Reduction (Ind Set <,, Vertex Cover)

* |f we know there is no efficient algorithm for Independent
Set, then it follows that there can’t be an efficient algorithm
for Vertex Cover.

Instance | of VC : : Solution S of VC

Algorithm for VC

Independent Set from Vertex Cover

Claim: Vertex Cover <, Independent Set.

Independent Set from Vertex Cover

Claim: Vertex Cover <, Independent Set.

Proof: Suppose we have a black box that solves independent
set problem efficiently. Then we can decide whether G has a

vertex cover of size at most k by asking the black box if G has

an independent set of size at least n-k.

Reduction (Vertex Cover <, Ind. Set)

* |f we know there is no efficient algorithm for Vertex Cover,
then it follows that there can’t be an efficient algorithm for
Independent Set.

Instance | of IS :

Algorithm for IS

Solution S of IS

Independent Set & Vertex Cover

Claim: Independent Set <,, Vertex Cover.
Claim: Vertex Cover <, Independent Set.

Observation: The above claims tell us that up to our notion of
efficiency, these two problems are equally “hard”. That is, if
you can solve one, you can solve the other.

NP-hard & NP-complete

Definition: We say that a problem X is NP-hard if for every
problem Y in NP, there is a polynomial-time reduction fromY
to X(Y <, X).

Definition: We say that a problem Xis NP-complete if itis in
NP and if it is NP-hard.

Observation: NP-Complete problems represent the
“hardest” problems in NP.

Boolean Formula

* Suppose you have a set X of n Boolean variables
X1, X2, ..., X, that can each take value 0 or 1.
 A“term” over Xis the variable x; or its negation x;.
* A“clause”is a simple disjunction of distinct terms
tyVt, VigV Vi,
where eachterm t; € {xq, x5, ..., X5y, X1, X3, eer), X }-

E.g.
(X1 Vx4 VXs5)

Boolean Formula

* We say that a an “assignment” of values to the variables in
X satisfy a clause if it cause it to evaluate to TRUE.
* An assignment satisfies a collection of clauses
Cy, G5, ..., C,, ifand only if it causes the conjunction
CiNCy A NANCyy
to evaluate to TRUE.

E.g.
(x; VX, Vxz) AN(xqVx,Vxe)

SAT Problems

 SAT:
* Input: Asetofclauses (4, (s, ..., Cy,, Over a set of
variables x4, xo, ..., x,,.
* Output: If there exist an assignment to the variables
such that each clause is satisfied.
« 3-SAT:
* Input: Asetofclauses (4, (s, ..., C,,, each of size 3 over a
set of variables x{, x5, ..., X,,.
 Output: If there exist an assignment to the variables
such that each clause is satisfied.

Circuit:

* Acircuitis alabeled directed acyclic graph K such that
* Allsources (noincoming edges) are labeled with 0, 1, or
a variable. <-inputs
* Allother nodes are labeled with AND, OR, or NOT.
* Each AND and OR node has two incoming edges
* Each NOT node has one incoming edge
* Thereis asingle sink (no outgoing edges). <- output

Circuit SAT

Circuit Sat Problem (SAT):

* Input: Acircuit K

Output: If there exist an
assignment to the variables
that makes that satisfies
the circulit.

Output —>

Circuit SAT

Claim: Circuit Satisfiability is NP-complete.

* Not hard to show NP-hard.
* Toshow NP-Complete, you have to reduce from an arbitrary
NP-hard problem.
* We wont talk about proof in this class, but the idea is
that you can represent any verification algorithm as a
circuit!

NP-complete

Observation: If Y is an NP-
complete problem, and Xis a
problem in NP with the
property that Y <, X, then Xis
NP-complete.

NP-hard

NP-hard

NP-complete

NP

P = NP
= NP-complete

Complexity

Behnam Esfahbod, CC BY-SA 3.0 <https://creativecommons.org/licenses/by-
sa/3.0>, via Wikimedia Commons

NP-complete Problems

* (Circuit) SAT

o 3-SAT

* |ndependent Set
* Vertex Cover
 Set Cover

NP-hard

NP-hard

NP-complete

NP

P=NP

= NP-complete

Complexity

Behnam Esfahbod, CC BY-SA 3.0 <https://creativecommons.org/licenses/by-
sa/3.0>, via Wikimedia Commons

	Slide 1: CSE 331: Algorithms & Complexity
	Slide 2: Schedule
	Slide 3: Course Updates
	Slide 4: Reading
	Slide 5: Schedule
	Slide 6: Deadlines
	Slide 7: Goals:
	Slide 8: Final
	Slide 9: Decision vs Optimization Problem
	Slide 10: Decision vs Optimization Problem
	Slide 11: Witness or Certificate
	Slide 12: P and NP
	Slide 13: P vs NP
	Slide 14: P vs NP
	Slide 15: Reductions Example
	Slide 16: Reductions
	Slide 17: Reductions
	Slide 18: Reductions
	Slide 19: Reasons to use Reduction I
	Slide 20: Reasons to use Reduction II
	Slide 21: Oracles
	Slide 22: Reduction
	Slide 23: Reduction
	Slide 24: Reduction
	Slide 25: Reduction
	Slide 26: Reduction (cap X less than or equal to sub p , cap Y)
	Slide 27: Reduction (cap X less than or equal to sub p , cap Y)
	Slide 28: Independent Set
	Slide 29: Independent Set
	Slide 30: Independent Set
	Slide 31: Vertex Cover
	Slide 32: Vertex Cover
	Slide 33: Vertex Cover
	Slide 34: Independent Set vs Vertex Cover
	Slide 35: Independent Set vs Vertex Cover
	Slide 36: Proof Part (=>)
	Slide 37: Proof Part (=>)
	Slide 38: Independent Set to Vertex Cover
	Slide 39: Independent Set to Vertex Cover
	Slide 40: Reduction (Ind Set less than or equal to sub p , Vertex , Cover)
	Slide 41: Independent Set from Vertex Cover
	Slide 42: Independent Set from Vertex Cover
	Slide 43: Reduction (Vertex Cover less than or equal to sub p , Ind. , Set)
	Slide 44: Independent Set & Vertex Cover
	Slide 45: NP-hard & NP-complete
	Slide 46: Boolean Formula
	Slide 47: Boolean Formula
	Slide 48: SAT Problems
	Slide 49: Circuit:
	Slide 50: Circuit SAT
	Slide 51: Circuit SAT
	Slide 52: NP-complete
	Slide 53: NP-complete Problems

