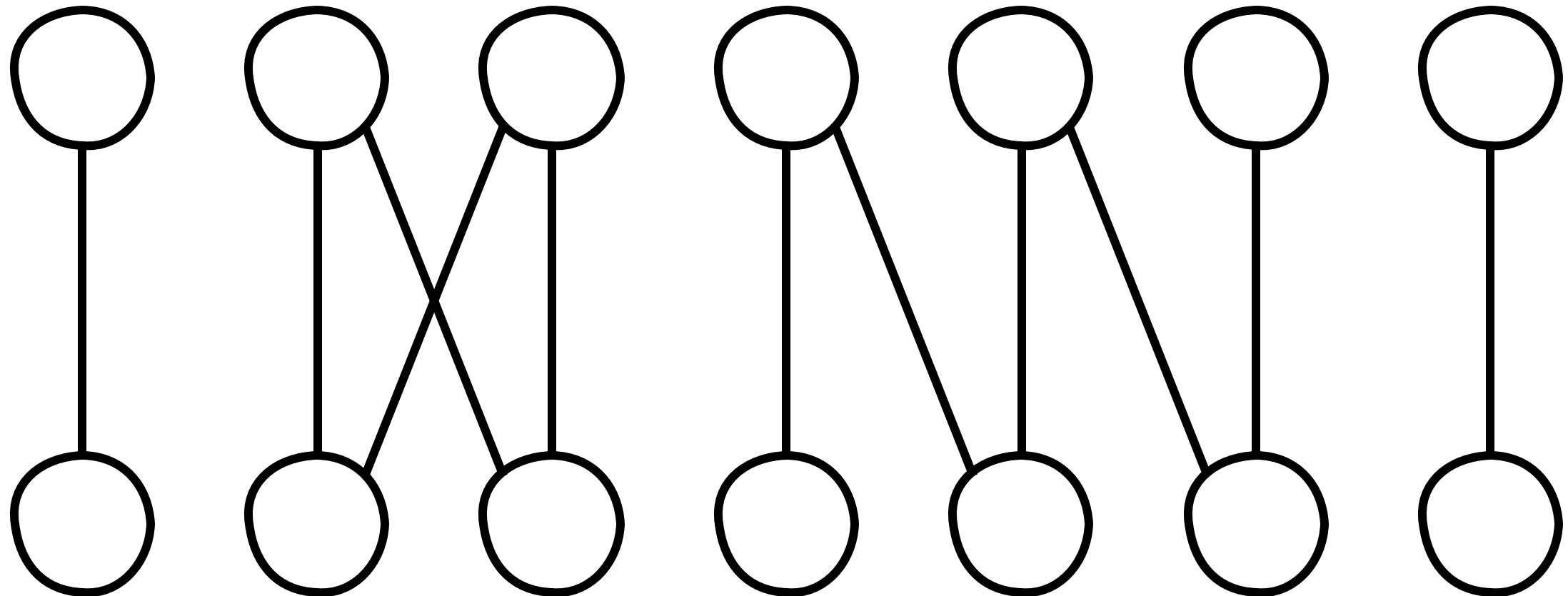
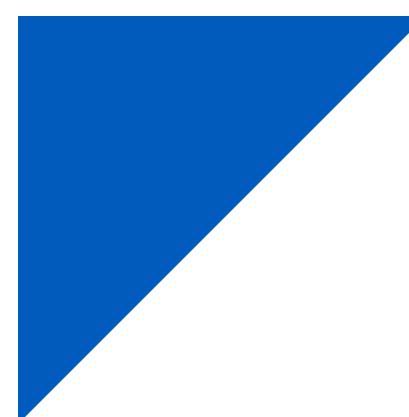
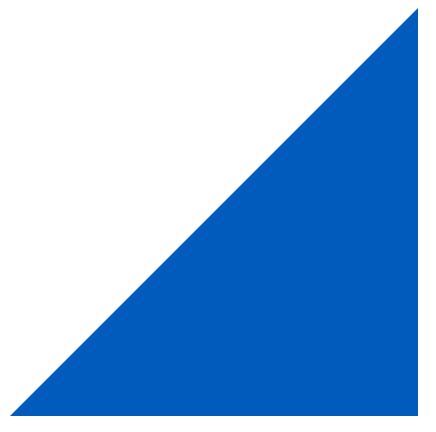


Q: How many perfect matchings in this graph?





CSE 331: Algorithms & Complexity “Gale-Shapley III”

Prof. Charlie Anne Carlson (She/Her)

Lecture 6

Wednesday September 9th, 2025

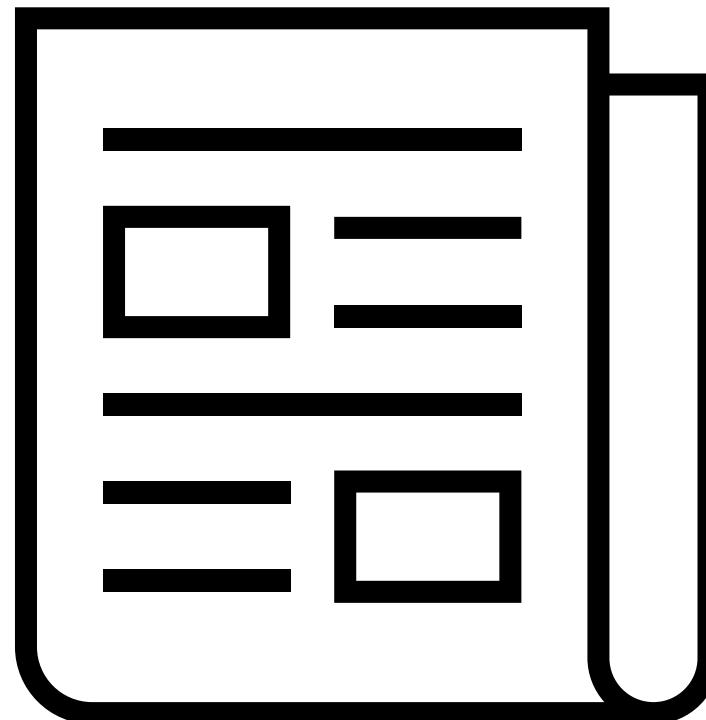
University at Buffalo®

Schedule

1. Course Updates
2. Recap
3. Even More Gale-Shapely

Course Updates

- Complete Syllabus Quiz
- HW 1 Posted
 - Autolab Tomorrow
- HW 0 Being Graded
- Website Moved
- Project Signup before 19th



Gale-Shapley Algorithm

GALE-SHAPLEY (*preference lists for hospitals and students*)

INITIALIZE M to empty matching.

WHILE (some hospital h is unmatched and hasn't proposed to every student)

$s \leftarrow$ first student on h 's list to whom h has not yet proposed.

IF (s is unmatched)

 Add $h-s$ to matching M .

ELSE IF (s prefers h to current partner h')

 Replace $h'-s$ with $h-s$ in matching M .

ELSE

s rejects h .

RETURN stable matching M .

Claim Time!

Claim: The algorithm always outputs a stable matching.

WHILE (some hospital h is unmatched and hasn't proposed to every student)

$s \leftarrow$ first student on h 's list to whom h has not yet proposed.

IF (s is unmatched)

Add $h-s$ to matching M .

ELSE IF (s prefers h to current partner h')

Replace $h'-s$ with $h-s$ in matching M .

ELSE

s rejects h .

Proof Idea Time!

Claim: The algorithm always outputs a stable matching.

Proof (Ideas):

1. Show that every unmatched pair is not unstable.
2. **Show that the existence of an unstable pair would be a contradiction.**

Proof Time!

Proof: We proceed with a proof by contradiction.

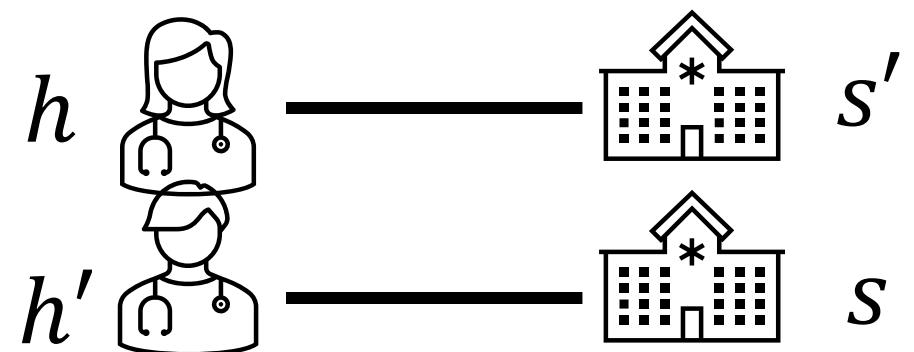
- Suppose to the contrary that the matching M returned was unstable. Then there must exist an unstable pair (h, s) .
 - Since we know that matching returned is perfect, we know there exists hospital h' and student s' such that $(h, s') \in M$ and $(h', s) \in M$.



Proof Time!

Proof: ...

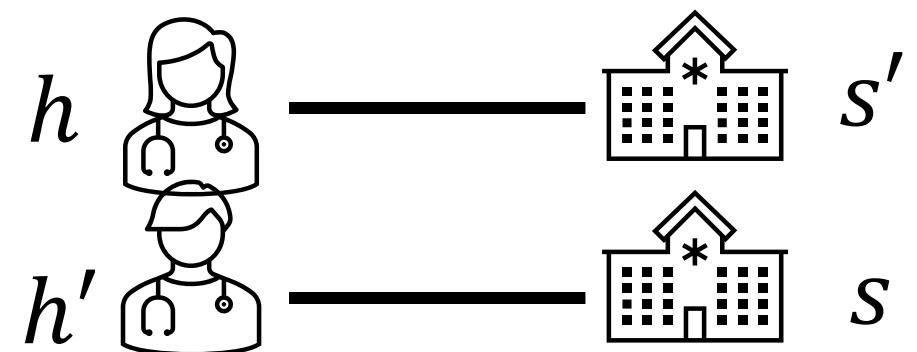
- Suppose h did propose to s at some point in the algorithm.
 - Then s must have at some point rejected h and thus, must prefer h' to h . (Not Unstable)



Proof Time!

Proof: ...

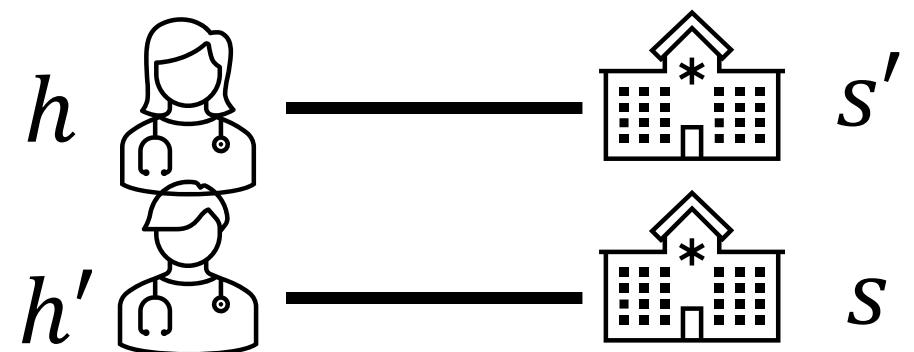
- Suppose h did not propose to s at some point in the algorithm.
 - Then h must have proposed to s' first and thus, must prefer s' to s . (Not Unstable)



Proof Time!

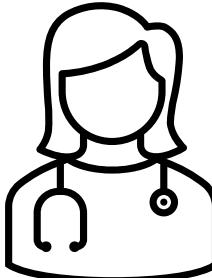
Proof: ...

- In all cases we have concluded that if there is an unstable pair then the pair is can't be unstable. This is a contradiction and thus there can be no unstable pairs.



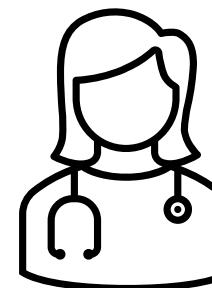
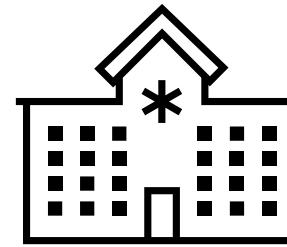
Q: Is there just one Stable Matching?

Dr. One
 $A > B > C$

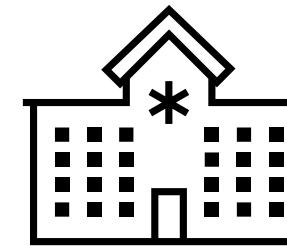


Dr. Two
 $B > A > C$

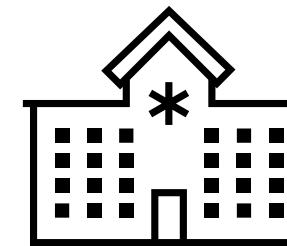
Dr. Three
 $A > B > C$



Hospital A
 $2 > 1 > 3$

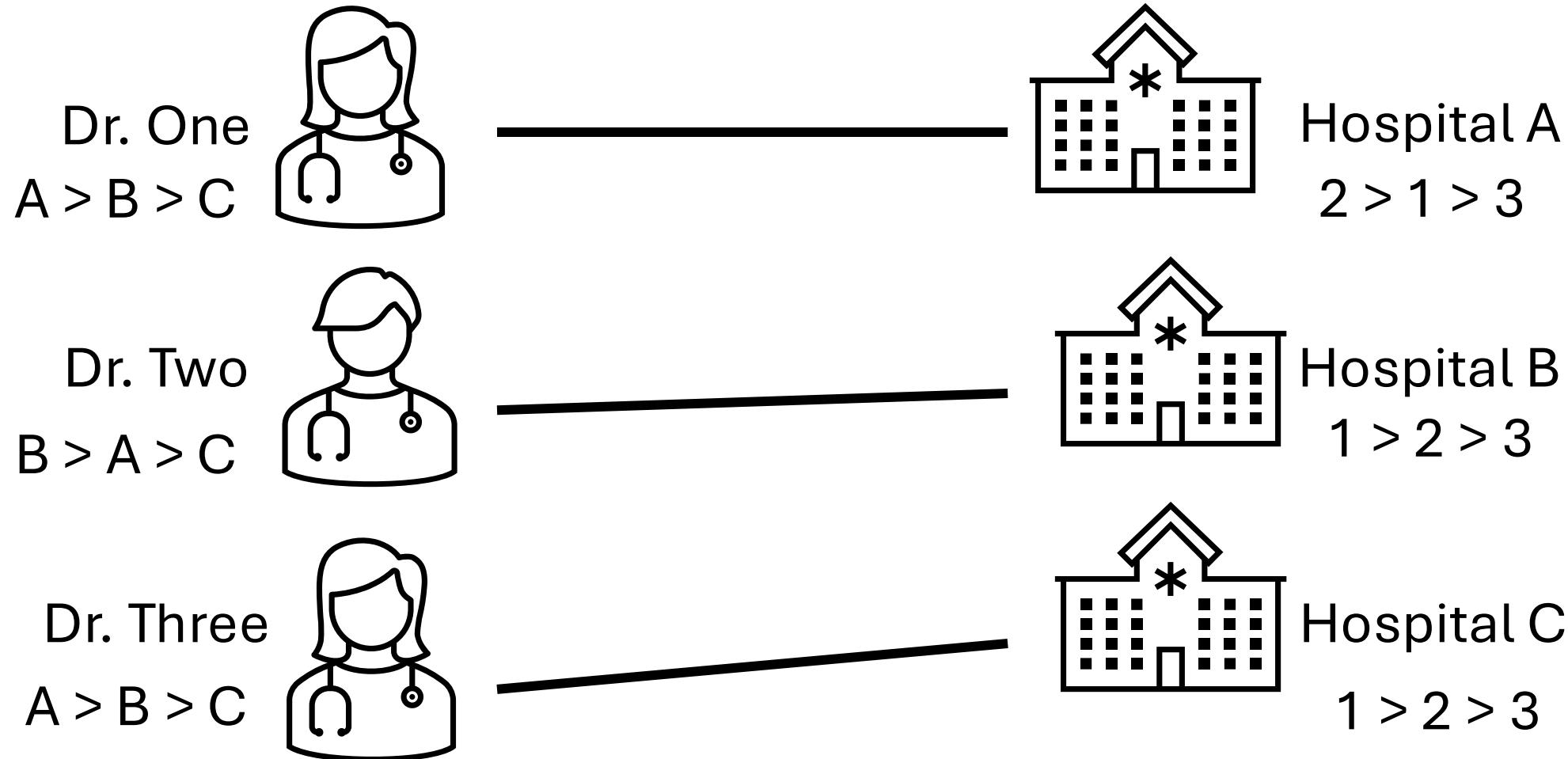


Hospital B
 $1 > 2 > 3$

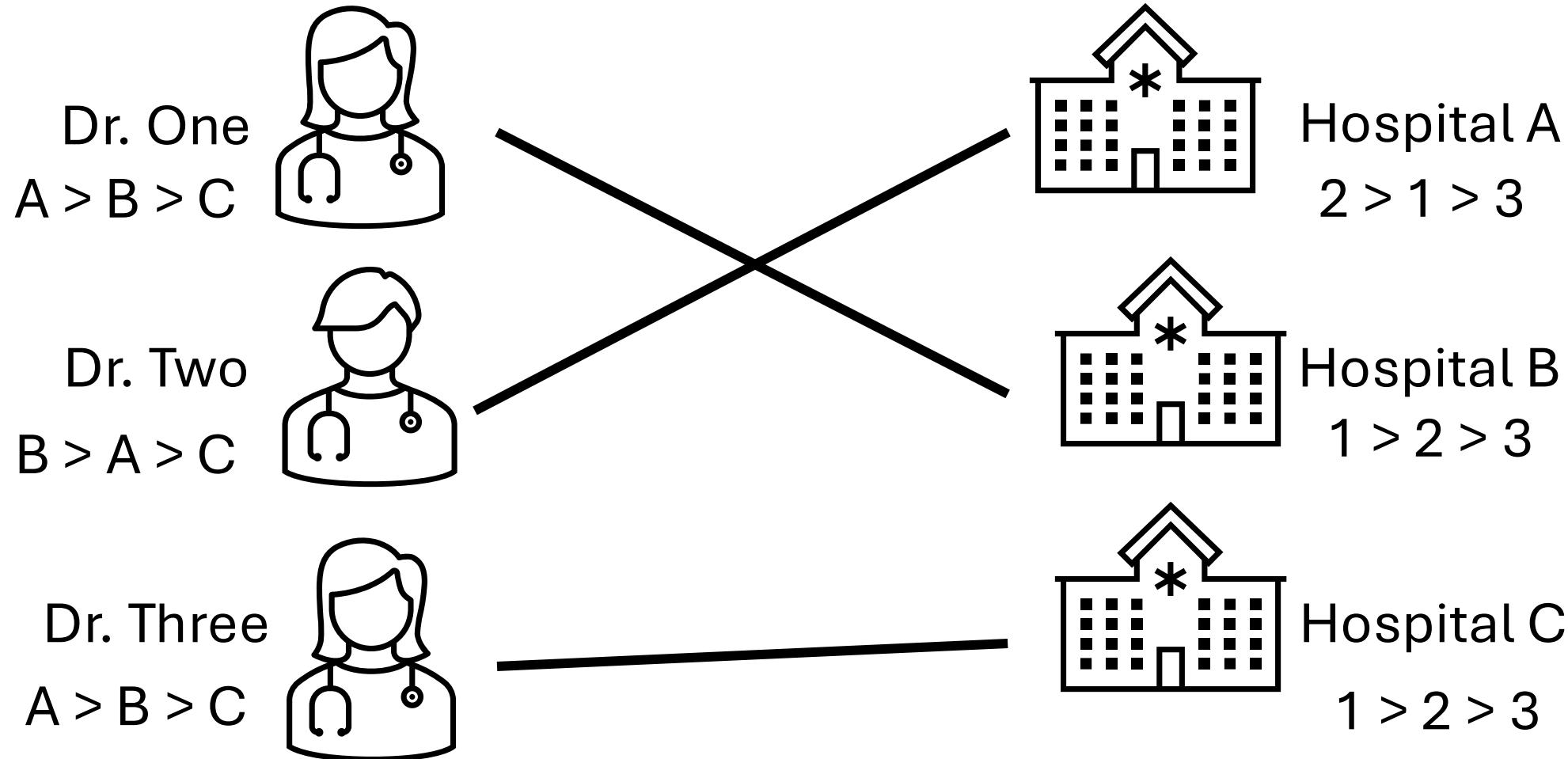


Hospital C
 $1 > 2 > 3$

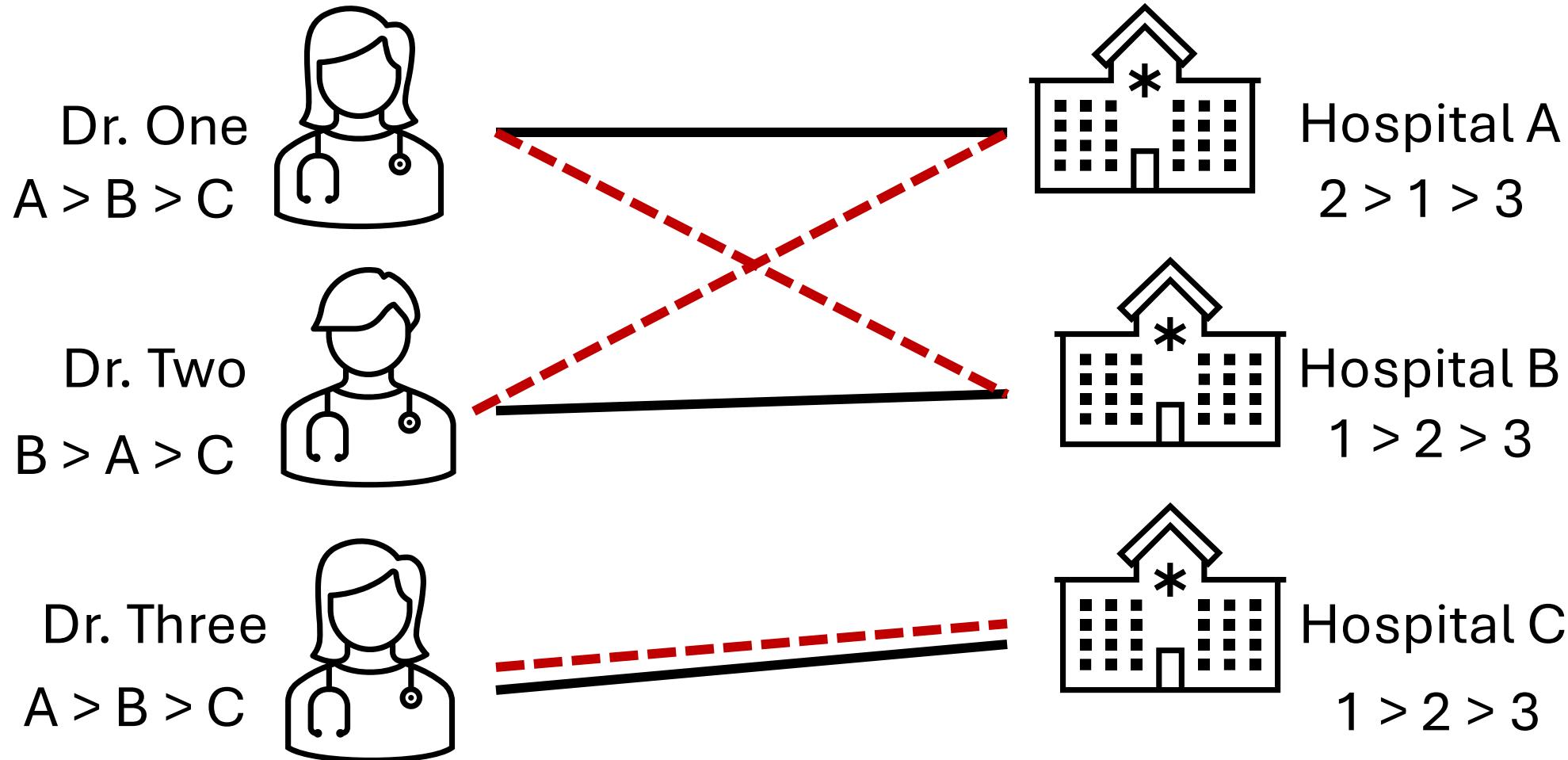
Matching I



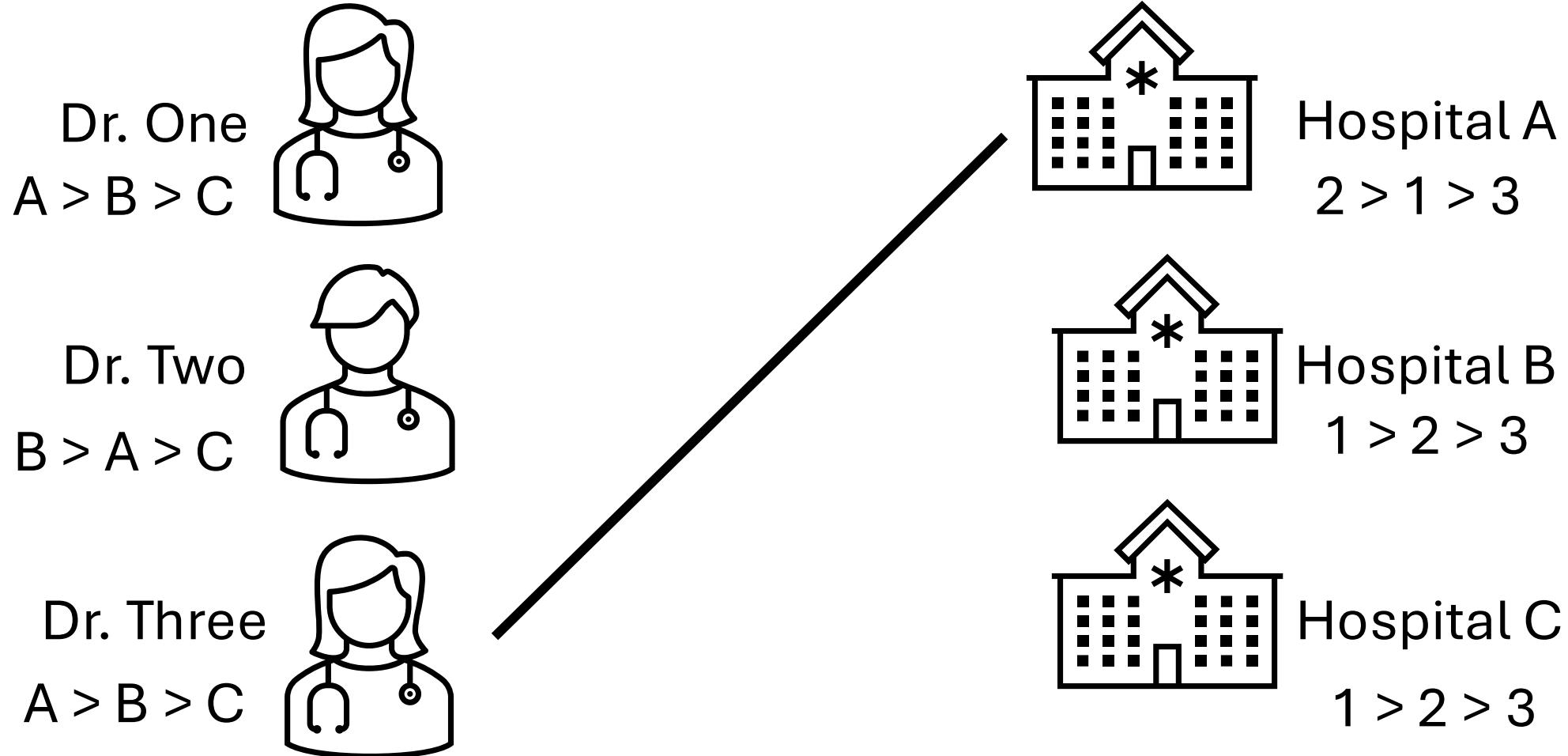
Matching II



Matching I vs Matching II



Q: Is there a Stable Matching with this edge?



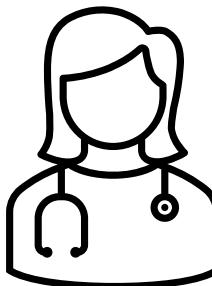
Valid Partners

Def: We say student s is a *valid partner* of hospital h if there exists a stable matching in which s and h are matched.

Q: What would be a student's *best valid partner*?

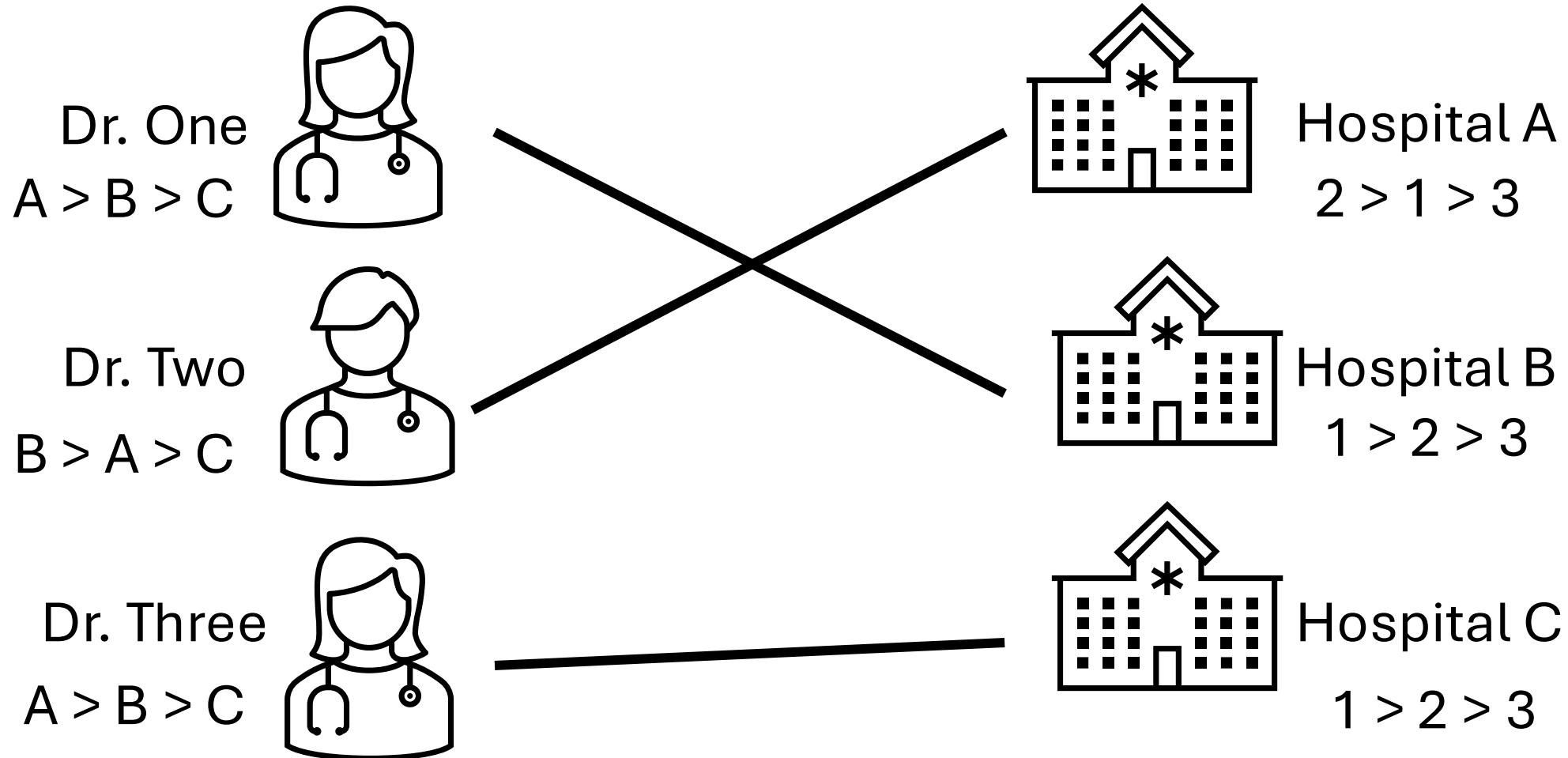
E.g.:

Dr. Three
 $A > B > C$



Hospital C
 $1 > 2 > 3$

Q: Who is Dr. Two's best valid partner?



Valid Partners

Def: The *student optimal assignment* is the one in which all students are matched with their best valid partner. The *hospital optimal assignment* is the one in which all hospitals are matched with their best valid partner.

Q: Are these optimal assignments stable matchings?

Q: Can we find them?

Claim Time!

Claim: The algorithm always outputs the hospital-optimal assignment.

WHILE (some hospital h is unmatched and hasn't proposed to every student)

$s \leftarrow$ first student on h 's list to whom h has not yet proposed.

IF (s is unmatched)

Add $h-s$ to matching M .

ELSE IF (s prefers h to current partner h')

Replace $h'-s$ with $h-s$ in matching M .

ELSE

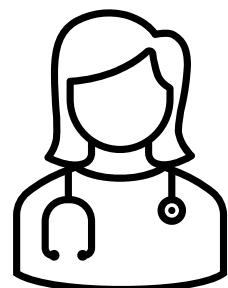
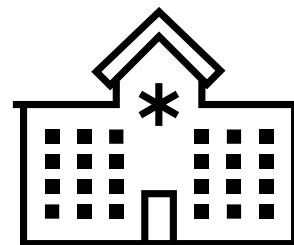
s rejects h .

Proof Idea Time!

Claim: The algorithm always outputs a stable matching.

Proof:

- Suppose to the contrary that the output is not hospital optimal. We will show that....



Proof Idea Time!

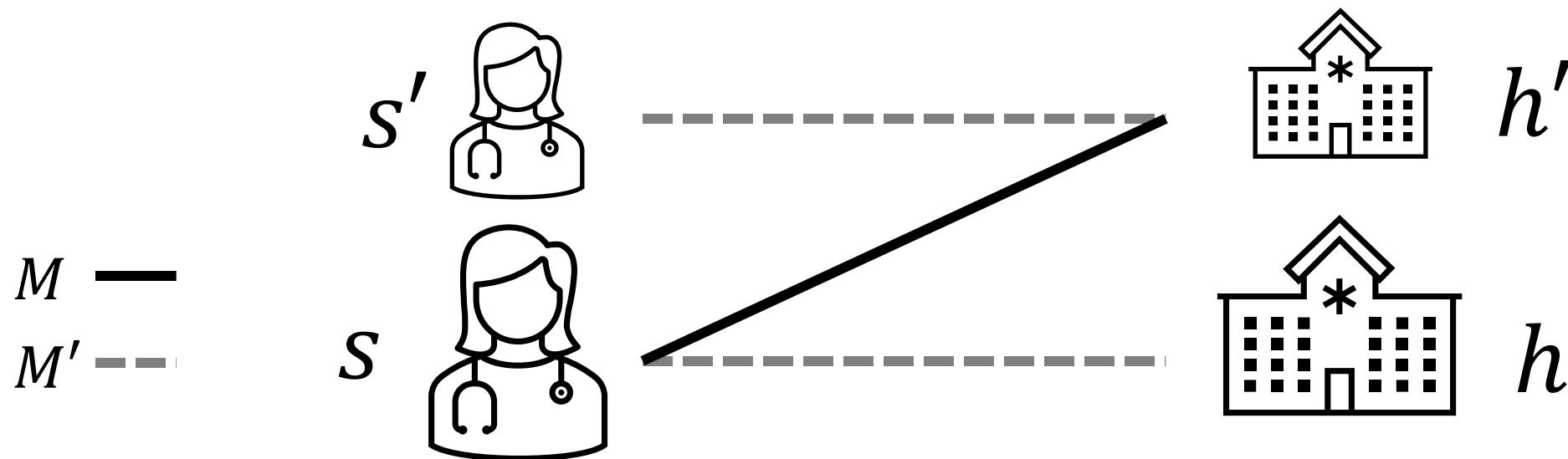
Proof:

- Suppose to the contrary that the output M is not hospital optimal.
- Then let h be the **first hospital** to be rejected by a valid partner s .
- Let M' be the stable matching with s and h paired together.

Proof Idea Time!

Proof: ...

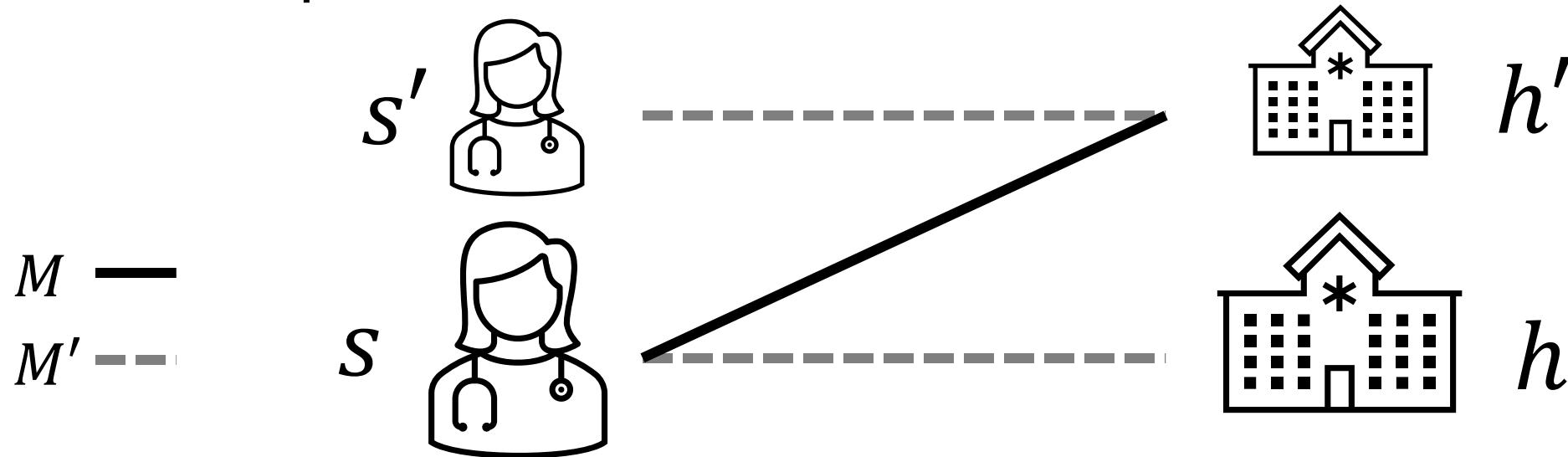
- Let h' be the hospital paired with s in the output of the algorithm. Let s' be the student paired with h' in M .



Proof Idea Time!

Proof: ...

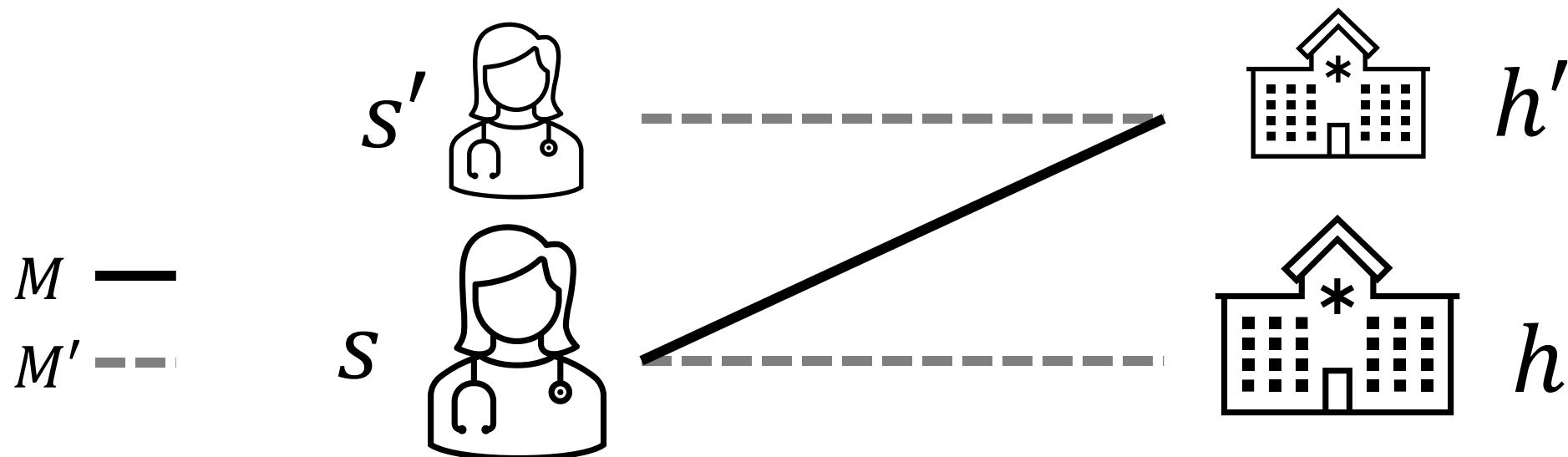
- Since h was rejected by s , it means that s prefers h' over h
- Since h was the **first** rejected, h' did not get rejected and must prefer s to s'



Proof Idea Time!

Proof: ...

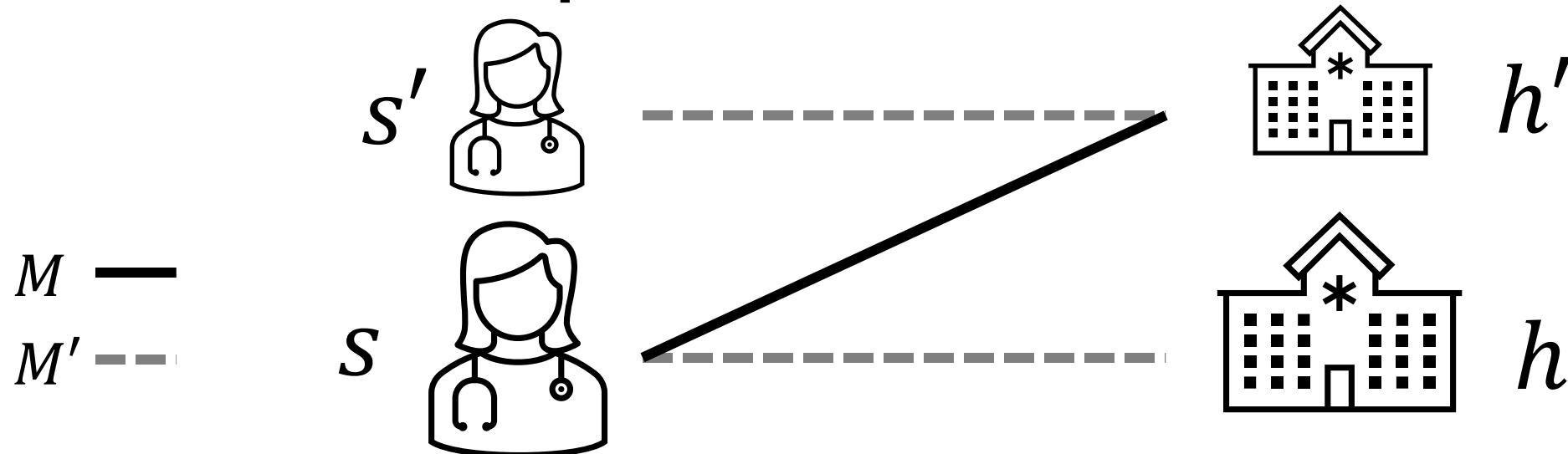
- Since h was rejected by s , it means that s prefers h' over h



Proof Idea Time!

Proof: ...

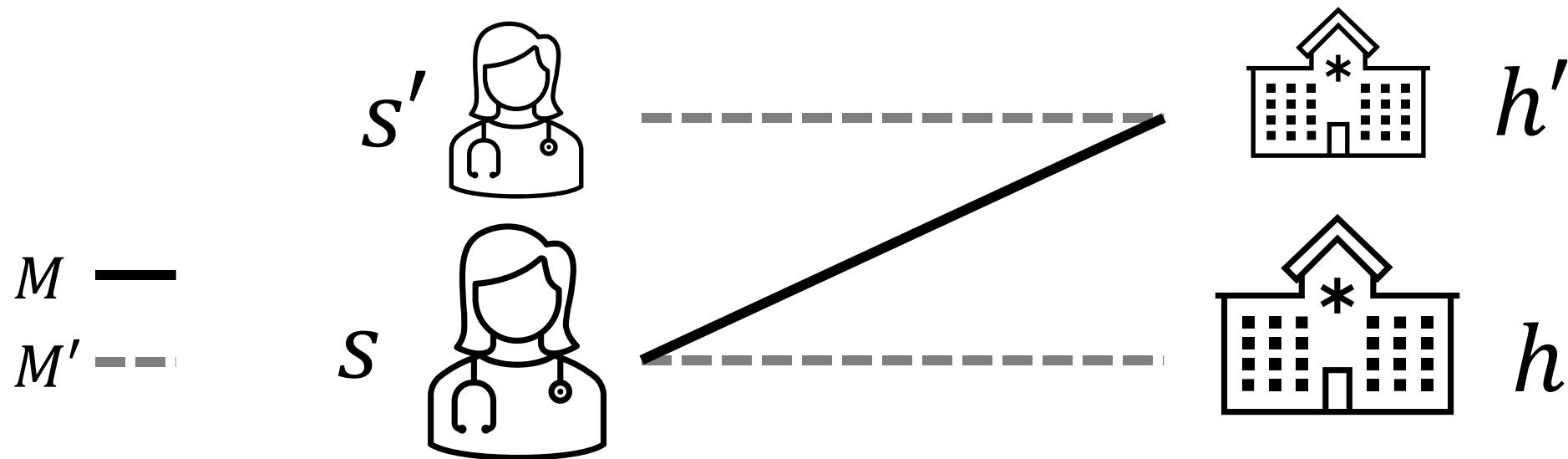
- Since h was rejected by s , it means that s **prefers h' over h**
- Since h was the first rejected, h' did not get rejected and thus, **h' must prefer s to s'**



Proof Idea Time!

Proof: ...

- If s prefers h' over h and h' must prefer s to s' then (h', s) is an unstable pair in M' . This is a contradiction!



Claim Time!

Claim: The algorithm always outputs the *student-pessimal* assignment.

WHILE (some hospital h is unmatched and hasn't proposed to every student)

$s \leftarrow$ first student on h 's list to whom h has not yet proposed.

IF (s is unmatched)

Add $h-s$ to matching M .

ELSE IF (s prefers h to current partner h')

Replace $h'-s$ with $h-s$ in matching M .

ELSE

s rejects h .

Claim Time!

Each student gets their worst valid partner.

Claim: The algorithm always outputs the *student-pessimal* assignment.

WHILE (some hospital h is unmatched and hasn't proposed to every student)

$s \leftarrow$ first student on h 's list to whom h has not yet proposed.

IF (s is unmatched)

Add $h-s$ to matching M .

ELSE IF (s prefers h to current partner h')

Replace $h'-s$ with $h-s$ in matching M .

ELSE

s rejects h .

Proof Idea Time!

Claim: The algorithm always outputs a stable matching.

Proof:

- Suppose to the contrary that the output M is not **student-pessimal**.
 - Then there exists student s that is not matched with their worst valid partner h in M .

Proof Idea Time!

Claim: The algorithm always outputs a stable matching.

Proof:

- Suppose to the contrary that the output M is not **student-pessimal**.
 - Then there exists student s that is not matched with their worst valid partner h in M .
 - Let M' be a stable matching such that s and h are matched.

Proof Idea Time!

Proof:

- Suppose to the contrary that the output M is not **student-pessimal**.
 - Then there exists student s that is not matched with their worst valid partner h in M .
 - Let M' be a stable matching such that s and h are matched.
 - Let h' be the hospital s is matched to in M .

Proof Idea Time!

Proof:

- Suppose to the contrary that the output M is not **student-pessimal**.
 - Then there exists student s that is not matched with their worst valid partner h in M .
 - Let M' be a stable matching such that s and h are matched.
- Let h' be the hospital s is matched to in M .
 - Then s prefers h' to h .

Proof Idea Time!

Proof:

- Let h' be the hospital s is matched to in M .
 - Then s prefers h' to h otherwise h would not be worst valid pair as assumed.
- Let s' be the hospital h is matched to in M .

Proof Idea Time!

Proof:

- Let h' be the hospital s is matched to in M .
 - Then s prefers h' to h otherwise h would not be worst valid pair as assumed.
- Let s' be the hospital h is matched to in M .
 - Since M is hospital-optimal, h prefers s to s' .

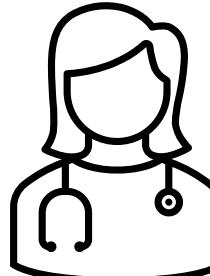
Proof Idea Time!

Proof:

- Let h' be the hospital s is matched to in M .
 - Then s prefers h' to h otherwise h would not be worst valid pair as assumed.
- Let s' be the hospital h is matched to in M .
 - Since M is hospital-optimal, h prefers s to s' .
- Thus, (h, s) is an unstable pair in M . **<- Contradiction!**

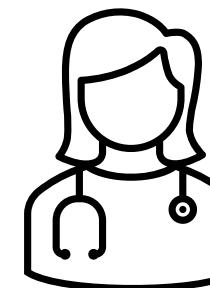
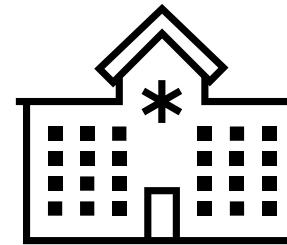
Q: Does it Help to Lie?

Dr. One
 $C > A > B$

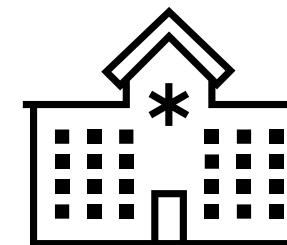


Dr. Two
 $A > C > B$

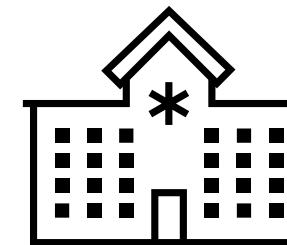
Dr. Three
 $A > B > C$



Hospital A
 $1 > 2 > 3$

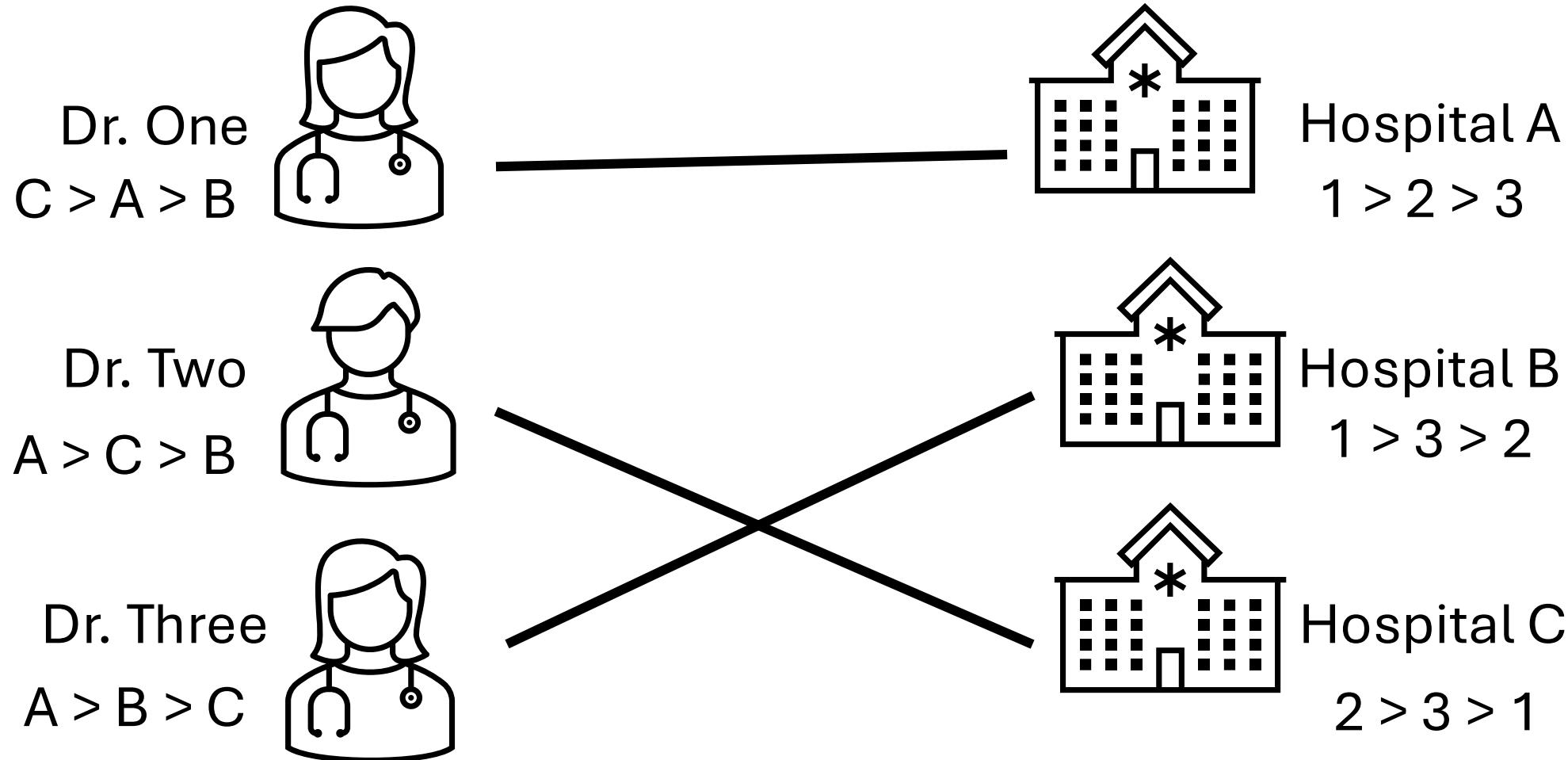


Hospital B
 $1 > 3 > 2$



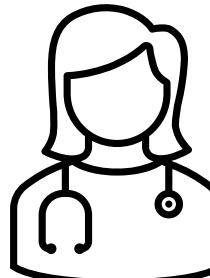
Hospital C
 $2 > 3 > 1$

Q: Does it Help to Lie?



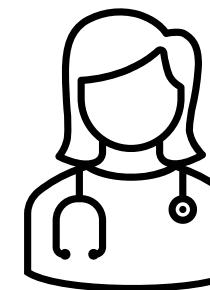
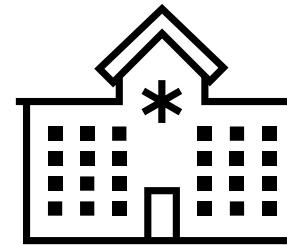
Q: Does it Help to Lie?

Dr. One
 $C > "B > A"$

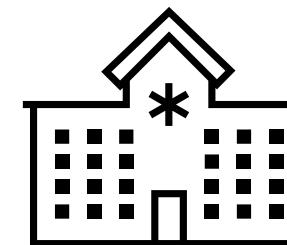


Dr. Two
 $A > C > B$

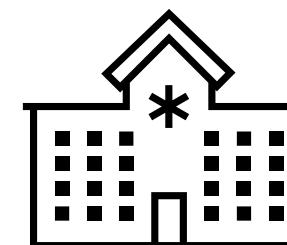
Dr. Three
 $A > B > C$



Hospital A
 $1 > 2 > 3$



Hospital B
 $1 > 3 > 2$



Hospital C
 $2 > 3 > 1$

Q: Does it Help to Lie?

