Let Σ be a finite alphabet. Define
$$\text{PAL} = \{ w \in \Sigma^* \mid w^R = w \}.$$

Define L recursively by
a. basis clause: \(\lambda \in L \) and for each \(a \in \Sigma \), \(a \in L \).
b. induction clause: If \(a \in \Sigma \) and \(w \in L \), then \(awa \in L \).
c. extremal clause.

Theorem. \(L = \text{PAL} \).

Lemma. \(L \subseteq \text{PAL} \).

Proof. The proof is by induction corresponding to the recursive definition of L.

First some notation, define $P(w)$ on $w^R = w$.

We need to prove: \(\forall w \in L, P(w) \).

Basis step. Trivially, $P(\lambda)$ and $P(a)$, for each \(a \in \Sigma \).

Induction step. Assume as induction hypothesis that $P(w)$, and prove that $P(awa)$.

Namely,
\[(awa)^R = a^R w^Ra^R = awa.\]
Lemma 2. \(\text{PAL} \subseteq L \).

Proof. The proof is by complete induction on the length of strings in \(L \).

Basis Step. Let \(n = 0 \). \(\lambda \) is the only string of length 0. By the basis clause of the definition of \(L \), \(\lambda \in L \).

Let \(n = 1 \). The only words of length 1 are letters \(a \in \Sigma \); by definition, for all \(a \in \Sigma \), \(a \in L \).

So, for all words \(z \) of length 0 or 1,
\[z \in \text{PAL} \Rightarrow z \in L. \]

Induction Step. Let \(n \geq 2 \). Assume as induction hypothesis
\[\forall w \ (|w| < n \text{ and } w \in \text{PAL} \Rightarrow w \in L). \]

Let \(|z| = n \) and \(z \in \text{PAL} \). We will show that \(z \in L \). Since \(z \in \text{PAL} \), the first and last letters of \(z \) are identical. So for some letter \(a \in \Sigma \) and some word \(w \),
\[z = awa. \]

Since \(z^R = z \),
\[a = (awa)^R = a^R w^R a^R = awa. \]

From \(awa = awa^R \), we conclude that \(w = w^R \).

Thus \(w \in \text{PAL} \). Since \(|w| < n \), the induction hypothesis yields \(w \in L \). Thus, \(z = awa \), where \(w \in L \). So by the induction clause of the definition of \(L \), \(z \in L \).

Thus, \(\text{PAL} \subseteq L \).
Day 4, Fall 2008
Chapter 1.1 Finite Automata

extremely memory limited machine - cannot store its own history.

machine is made from a finite set of objects

time is a discrete number of steps, at each step machine receives an input signal (stimuli). What machine does at time \(t \) (response) depends on its input and current state.

example parity machine

Any number of even ones will cause no net change of state.
This machine has a feeble memory, in that it can distinguish two classes of history - even no. of 1's vs. odd no. of 1's.
Let's add one more feature to the parity machine:

\[\text{State diagram.} \]

Each node is a state.

The start state (labeled \(q_0 \)) has an arrow pointing to it. There must be a unique start state.

Final states are drawn with a double circle.

Number of edges from each node = number of symbols in \(\Sigma \).

The machine either accepts or rejects. It accepts a word if beginning in the start state, the machine is in a final state when it reaches the end of the word. (Greater formality to follow.)
The language recognized by M is

$$L(M) = \{ w \mid M \text{ accepts } w \}.$$

The parity machine recognizes

$$\{ w \in \{0,1\}^* \mid w \text{ has an odd number of ones} \}.$$ Note: $\lambda \notin L(\text{parity machine})$

Note: Change parity machine as follows:

```
\begin{tikzpicture}
    \node[state] (q0) at (0,0) {$q_0$};
    \node[state] (q1) at (1,0) {$q_1$};
    \node[state] (q2) at (2,0) {$q_2$};
    \node[state] (q3) at (3,0) {$q_3$};
    \node[state] (q4) at (4,0) {$q_4$};
    \draw[->] (q0) edge (q1);
    \draw[->] (q1) edge (q2);
    \draw[->] (q2) edge (q3);
    \draw[->] (q3) edge (q4);
    \draw[->] (q4) edge (q0);
\end{tikzpicture}
```

This recognizes

$$\{ w \in \{0,1\}^* \mid w \text{ has an even number of ones} \}.$$ This machine accepts λ.
A finite automaton is a 5-tuple \(M = (Q, \Sigma, \delta, q_0, F) \), where

- \(Q \) is a finite set of states,
- \(\Sigma \) is a finite alphabet
- \(\delta : Q \times \Sigma \rightarrow Q \) is the transition function,
- \(q_0 \in Q \) is the start state
- \(F \subseteq Q \) is the set of accept or final states.

Parity machine:

- \(Q = \{ q_0, q_1 \} \)
- \(\Sigma = \{ 0, 1 \} \)

\(\delta \) given by transition table:

\[
\begin{array}{c|cc}
\delta & 0 & 1 \\
\hline
q_0 & q_0 & q_1 \\
q_1 & q_1 & q_0 \\
\end{array}
\]

- \(F = \{ q_1 \} \)
Define \(M \) accepts \(w = a_1 \ldots a_n \) if there is a sequence of states \(r_0, \ldots, r_n \) in \(Q \) such that

1. \(r_0 = q_0 \)
2. \(\delta(r_i, a_{i+1}) = r_{i+1} \) for \(i = 0, \ldots, n-1 \), and
3. \(r_n \in F \).

Example:
\[
\delta(q_0, 1) = q_1
\]
\[
\delta(q_1, 0) = q_1
\]
\[
\delta(q_1, 1) = q_0
\]
\[
\delta(q_0, 1) = q_1 \in F
\]

So, parity machine accepts 1011. The sequence of states is \(q_0, q_1, q_1, q_0, q_1 \).
Some operations on languages:

union \(L_1 \cup L_2 \)

intersection \(L_1 \cap L_2 \)

complement \(\Sigma = \Sigma^* - L \)

concatenation
\[
L_1 L_2 = \{ xy \mid x \in L_1 \text{ and } y \in L_2 \}
\]

powers:
\[
L^0 = \{ \lambda \}
L^1 = L
L^{n+1} = L^n L, \quad n \geq 1.
\]

(give example with \(\lambda \) in \(L \))

(For Kleene closure)
\[
L^* = \bigcup_{i=0}^{\infty} L^i
= \{ w_1 \ldots w_k \mid k \geq 0, \ w_i \in L, \text{each } i = 1, \ldots, k \}.
\]

Note: \(\lambda \in L^* \), for all \(L \).
\[
L^+ = \bigcup_{i=1}^{\infty} L^i.
\]
\[\Sigma^* = \text{set of all words} \]

\[\phi^* = \{ \lambda \} \]

Theorem. \[S^{**} = S^* \]

Proof. \[S^* \subseteq S^{**}, \text{ because for any language } L, L \subseteq L^* \]

Now show \[S^{**} \subseteq S^* \]. Let \(w \in S^{**} \).

\(w \) is a concatenation of words in \(S^* \);

\(w = w_1 \cdots w_n \), each \(w_i \in S^* \). Each \(w_i \) is a concatenation of words in \(S \). So,

\(w \) is a concatenation of a concatenation of words in \(S \). So, \(w \) is a concatenation of words in \(S \). So, \(w \in L^* \).

(End Insert)
Study the examples pp 37-40 and the section "Designing Finite Automata."

Work through the examples!

Next, I want to give you a highly structured way to describe certain languages. (See §1.3.)

Let Σ be a finite alphabet.

We define regular expressions (§1.26).

Each regular expression describes a language over Σ.

\[\Sigma^* \subseteq \{ \lambda, \phi, (,), \cup, \cdot, * \} \]

Definition.

Basis. α is a regular expression, for each $\alpha \in \Sigma$.

* is a regular expression.

\(\phi \) is a regular expression.

Inductive clause. If r_1 and r_2 are regular expressions, then so are

\(r_1 \cup r_2 \)

\((r_1) \)

\((r_1)^* \). \)
Examples: \(\Sigma = \{a, b\} \)
- \(a \cdot b \)
- \(a + b \)
- \((a \cdot b) \cdot (a \cdot b) \)
- \(a \cdot (b \cdot a) \)
- \((a \cdot b)^* \)
- \(a(b^*) \)

Precedence rules for removal of parenthesis increases readability:

(Bad in the order \(* , \cdot , \cup \))
- \(* \) has higher precedence than concatenation or union, and \(\cdot \) has higher precedence than union, \((((01)^*) \cup 0) \)
becomes
(01)^* \cup 0

But \(((01)^*) \cup 0 \)
becomes
01^* \cup 0
Each regular expression α over Σ denotes a language $L(\alpha)$ as follows:

$L(\varnothing) = \varnothing$, empty language
$L(\lambda) = \{ \lambda \}$

For $a \in \Sigma$, $L(a) = \{ a \}$

If α_1 and α_2 are regular expressions,

$L(\alpha_1 \cup \alpha_2) = L(\alpha_1) \cup L(\alpha_2)$
$L(\alpha_1 \alpha_2) = L(\alpha_1) L(\alpha_2)$
$L(\alpha_1)^* = L(\alpha_1)^*$

Eg. Let $\alpha = ((a U b)(a U b))^*$.

$L(\alpha)$ contains: λ, aa, ab, $aaaa$, $L(\alpha)$ does not contain abb

$L(\alpha)$ = set of words of even length.
Now we will use regular expressions to give examples of finite automata and to describe the languages they recognize.

\[(a \cup b)(a \cup b)^*\]

= all words over \(\{a, b\}\) of length \(\geq 1\).

If the start state is also a final state, the FA accepts \(\lambda\).

\[(a \cup b)^*\]

= \(\{a, b\}^*\)