
CSE443
Compilers
Dr. Carl Alphonce

alphonce@buffalo.edu
343 Davis Hall

Announcements

Teams should be formed

Starting Friday, sit with your
teammates

Attendance sheets will be by team

Team meetings will start next week

Phases of
a

compiler

Figure 1.6,
page 5 of text

Lexical
structure

Phases of
a

compiler

Figure 1.6,
page 5 of text

Lexical
structure

C
op

yr
ig

ht
 C

ar
l A

lp
ho

nc
e

20
22

𝓛(G) is the set of all strings
derivable from G starting with
the start symbol; i.e. it denotes
the language of G.

languages & grammars

C
op

yr
ig

ht
 C

ar
l A

lp
ho

nc
e

20
22

Given a grammar G the
language it generates, 𝓛(G), is
unique.

Given a language L there are
many grammars H such that
𝓛(H) = L.

languages & grammars

C
op

yr
ig

ht
 C

ar
l A

lp
ho

nc
e

20
22

Given a grammar G the
language it generates, 𝓛(G), is
unique.

Given a language L there are
many grammars H such that
𝓛(H) = L.

languages & grammars
Think about what this means for us: there is no

single "correct" grammar for a language.

In fact, grammars for users vs. tool writers vs.
compiler writers can all be different.

C
op

yr
ig

ht
 C

ar
l A

lp
ho

nc
e

20
22

Lexical Analysis

Lexical structure described by
regular grammar

Deterministic finite state machine
performs analysis

C
op

yr
ig

ht
 C

ar
l A

lp
ho

nc
e

20
22

How is a regular
language defined?
Recall that a language is a set of
strings. This set can be finite or
infinite.

The possible regular languages over
a given alphabet are defined
inductively - construction given on
next two slides.

C
op

yr
ig

ht
 C

ar
l A

lp
ho

nc
e

20
22

LANGUAGE operations

base cases

{ 𝜀 } is a regular language

∀ a ∈ ∑, { a } is a regular language

𝜀 is the empty string

C
op

yr
ig

ht
 C

ar
l A

lp
ho

nc
e

20
22

Li is L concatenated with itself i times:
L0 = {𝜀}, by definition
L1 = L
L2 = LL
L3 = LLL, etc.
L* is the union of all these sets!

LANGUAGE operations

If L and M are regular, so are:

L ∪ M = { s | s ∈ L or s ∈ M } union

LM = { st | s ∈ L and t ∈ M } concatenation

L* = ∪i=0,∞ Li Kleene closure

No other languages are regular

C
op

yr
ig

ht
 C

ar
l A

lp
ho

nc
e

20
22

Example of L*

Suppose L is {a, bb}
L0 = {𝜀}, by definition
L1 = L = {a, bb}
L2 = LL = {aa, abb, bba, bbbb}
L3 = LLL = { aaa, aabb, abba, abbbb,
 bbaa, bbabb, bbbba, bbbbbb}
L4 =
…and so so…
L* = ∪i=0,∞ Li = {𝜀, a, bb, aa, abb, bba, bbbb, aaa,

aabb, abba, abbbb, bbaa, bbbba, bbaa, bbabb,
bbbba, bbbbbb, abbbb, bbabb, … }

C
op

yr
ig

ht
 C

ar
l A

lp
ho

nc
e

20
22

Some regular languages over ∑ = {0,1}

The base cases yield these regular languages:

{𝜀}, {0}, {1}

The inductive cases yield many more. Some are:

{0, 1}, {01}, {10}, {01, 10}, {0, 01}, {1, 01}, {0,
10}, {1, 10}, {0, 1, 01}, {0, 1, 10}, {0, 01, 10},
{1, 01, 10}, {00}, {000}, {0000}, {11}, {111},
{1111}, and many many more.

Can you demonstrate how each of these is
regular?

C
op

yr
ig

ht
 C

ar
l A

lp
ho

nc
e

20
22

Why use grammars?
Recall that a language is a possibly infinite set of
strings.

A grammar gives us a way to describe, using finite
means, an infinite set.

Regular expressions are equivalent to regular
grammars in expressive power: both regular grammars
and regular expressions describe regular languages.

If X is a regular expression, 𝓛(X) denotes the set of
strings recognized by X.

C
op

yr
ig

ht
 C

ar
l A

lp
ho

nc
e

20
22

Inductive definition of
REGular EXpressions (regex)

over a given alphabet ∑

𝜀 is a regex
𝓛(𝜀) = {𝜀}

For each a ∈ ∑, a is a regex
𝓛(a) = {a}

C
op

yr
ig

ht
 C

ar
l A

lp
ho

nc
e

20
22

Regular expressions (regex)
Inductive definition

Assume r and s are regexes.

r|s is a regex denoting 𝓛(r)∪𝓛(s)
rs is a regex denoting 𝓛(r)𝓛(s)
r* is a regex denoting (𝓛(r))*
(r) is a regex denoting 𝓛(r)

Precedence: Kleene closure > concatenation > union
Associativity: all left-associative (minimize use of
parentheses: (r|s)|t = r|s|t)

C
op

yr
ig

ht
 C

ar
l A

lp
ho

nc
e

20
22

Algebraic laws

Assume r and s are regexes.

Commutativity r|s = s|r
Associativity r|(s|t) = (r|s)|t and r(st) = (rs)t
Disributivity r(s|t) = rs|rt and (s|t)r = sr|tr
Identity 𝜀r = r𝜀 = r
Idempotency r** = r*

We can describe a
regular language

using a
regular expression

Why do we care?
We will be using a tool called FLEX to construct
a lexical analyzer (a lexer) for the programming
language we're constructing a compiler for.

If we give FLEX a regular expression describing
the lexical structure of our language, FLEX will
produce a C program which acts as our lexer.

The next step for us to understand (at a high
level) how FLEX converts a regex to a C
program.

A regular expression can be implemented
using a finite state machine.

Finite state machines can be deterministic or
non-deterministic:

DFA
deterministic finite automaton

NFA
non-deterministic finite automaton

Process of building
lexical analyzer

language

1) spell out the language

Process of building
lexical analyzer

language regex

2) formulate a regular expression

Process of building
lexical analyzer

language regex NFA

3) build an NFA

Process of building
lexical analyzer

DFA

4) transform NFA to DFA

language regex NFA

Process of building
lexical analyzer

DFA

5) transform DFA to a minimal DFA

DFAlanguage regex NFA

Process of building
lexical analyzer

DFA

character
stream

token
stream

lexical analyzer

5) The minimal DFA is
our lexical analyzer

DFAlanguage regex NFA

FLEX generates a C program which implements the minimized DFA

Step 1:
Construct NFA from regex

regex NFA

Nondeterministic
Finite Automata (NFA)

A finite set of states S

An alphabet ∑, 𝜀 ∉ ∑

𝛅 ⊆ S X (∑ ∪ {𝜀}) X 𝒫(S) (transition function)

s0 ∈ S (a single start state)

F ⊆ S (a set of final or accepting states)

Deterministic Finite
Automata (DFA)

A finite set of states S

An alphabet ∑, 𝜀 ∉ ∑

𝛅 ⊆ S X ∑ X S (transition function)

s0 ∈ S (a single start state)

F ⊆ S (a set of final or accepting states)

NFA vs DFA
transition function

𝛅 ⊆ S X (∑ ∪ {𝜀}) X 𝒫(S)

𝛅 ⊆ S X ∑ X S

no 𝜀-transitions no multiple transitions

0

A state is a circle with its
state number written

inside.

0

Initial state has an
arrow from nowhere
pointing in. State 0 is
often the initial state.

1

A final (accepting) state is
drawn with a double

circle.

… or a ∈ ∑.

0 1
𝜀

0 1
a

for each a ∈ ∑

Arrows are labeled
with 𝜀 …

Regex -> NFA

0 1
𝜀

0 1
a

N(s)

N(t)

0 1

for each a ∈ ∑ S | t

𝜀

𝜀 𝜀

𝜀

Regex -> NFA

N(s)

N(s)

1N(t)

1

𝜀

𝜀 𝜀

𝜀

0

0

St

S*

Simple example

static

Simple example

static

0 1 2 3 4 5 6
s t a t i c

Simple example

static
struct

0 1 2 3 4 5 6
s t a t i c

7 8 9 10 11 12 13
s t r u c ti F

𝜀

𝜀𝜀

𝜀

