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Announcements

Teams should be formed 

Starting Friday, sit with your 
teammates 

Attendance sheets will be by team 

Team meetings will start next week



Phases of 
a 

compiler

Figure 1.6, 
page 5 of text

Lexical 
structure
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𝓛(G) is the set of all strings 
derivable from G starting with 
the start symbol; i.e. it denotes 
the language of G.

languages & grammars
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Given a grammar G the 
language it generates, 𝓛(G), is 
unique. 

Given a language L there are 
many grammars H such that 
𝓛(H) = L.

languages & grammars
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Given a grammar G the 
language it generates, 𝓛(G), is 
unique. 

Given a language L there are 
many grammars H such that 
𝓛(H) = L.

languages & grammars
Think about what this means for us: there is no 

single "correct" grammar for a language. 

In fact, grammars for users vs. tool writers vs. 
compiler writers can all be different.
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Lexical Analysis

Lexical structure described by 
regular grammar 

Deterministic finite state machine 
performs analysis
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How is a regular 
language defined?
Recall that a language is a set of 
strings.  This set can be finite or 
infinite. 

The possible regular languages over 
a given alphabet are defined 
inductively - construction given on 
next two slides.
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LANGUAGE operations 

base cases

{ 𝜀 } is a regular language 

∀ a ∈ ∑, { a } is a regular language 

𝜀 is the empty string
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Li is L concatenated with itself i times: 
L0 = {𝜀}, by definition 
L1 = L 
L2 = LL 
L3 = LLL, etc. 
L* is the union of all these sets!

LANGUAGE operations 

If L and M are regular, so are:

L ∪ M = { s | s ∈ L or s ∈ M }  union 

LM = { st | s ∈ L and t ∈ M }  concatenation 

L* = ∪i=0,∞ Li  Kleene closure 

No other languages are regular 
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Example of L*

Suppose L is {a, bb} 
L0 = {𝜀}, by definition 
L1 = L = {a, bb} 
L2 = LL = {aa, abb, bba, bbbb} 
L3 = LLL = { aaa,  aabb,  abba, abbbb,  
              bbaa, bbabb, bbbba, bbbbbb} 
L4 =  
…and so so… 
L* = ∪i=0,∞ Li = {𝜀, a, bb, aa, abb, bba, bbbb, aaa, 

aabb, abba, abbbb, bbaa, bbbba, bbaa, bbabb, 
bbbba, bbbbbb, abbbb, bbabb, … }
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Some regular languages over ∑ = {0,1}

The base cases yield these regular languages: 

{𝜀}, {0}, {1} 

The inductive cases yield many more.  Some are: 

{0, 1}, {01}, {10}, {01, 10}, {0, 01}, {1, 01}, {0, 
10}, {1, 10}, {0, 1, 01}, {0, 1, 10}, {0, 01, 10}, 
{1, 01, 10}, {00}, {000}, {0000}, {11}, {111}, 
{1111}, and many many more. 

Can you demonstrate how each of these is 
regular?
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Why use grammars?
Recall that a language is a possibly infinite set of 
strings. 

A grammar gives us a way to describe, using finite 
means, an infinite set. 

Regular expressions are equivalent to regular 
grammars in expressive power: both regular grammars 
and regular expressions describe regular languages. 

If X is a regular expression, 𝓛(X) denotes the set of 
strings recognized by X.
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Inductive definition of 
REGular EXpressions (regex) 

over a given alphabet ∑ 

𝜀 is a regex 
𝓛(𝜀) = {𝜀} 

For each a ∈ ∑, a is a regex 
𝓛(a) = {a} 
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Regular expressions (regex) 
Inductive definition

Assume r and s are regexes. 

r|s is a regex denoting 𝓛(r)∪𝓛(s) 
rs is a regex denoting 𝓛(r)𝓛(s) 
r* is a regex denoting (𝓛(r))* 
(r) is a regex denoting 𝓛(r)  

Precedence: Kleene closure > concatenation > union 
Associativity: all left-associative (minimize use of 
parentheses: (r|s)|t = r|s|t ) 
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Algebraic laws

Assume r and s are regexes. 

Commutativity  r|s = s|r 
Associativity      r|(s|t) = (r|s)|t and r(st) = (rs)t 
Disributivity      r(s|t) = rs|rt and (s|t)r = sr|tr 
Identity                𝜀r = r𝜀 = r 
Idempotency       r** = r* 



We can describe a  
regular language  

using a  
regular expression



Why do we care?
We will be using a tool called FLEX to construct 
a lexical analyzer (a lexer) for the programming 
language we're constructing a compiler for. 

If we give FLEX a regular expression describing 
the lexical structure of our language, FLEX will 
produce a C program which acts as our lexer. 

The next step for us to understand (at a high 
level) how FLEX converts a regex to a C 
program.



A regular expression can be implemented 
using a finite state machine. 

Finite state machines can be deterministic or  
non-deterministic: 

DFA 
deterministic finite automaton  

NFA 
non-deterministic finite automaton 



Process of building 
lexical analyzer

language

1) spell out the language



Process of building 
lexical analyzer

language regex

2) formulate a regular expression



Process of building 
lexical analyzer

language regex NFA

3) build an NFA



Process of building 
lexical analyzer

DFA

4) transform NFA to DFA

language regex NFA



Process of building 
lexical analyzer

DFA

5) transform DFA to a minimal DFA

DFAlanguage regex NFA



Process of building 
lexical analyzer

DFA

character 
stream

token 
stream

lexical analyzer

5) The minimal DFA is 
our lexical analyzer

DFAlanguage regex NFA

FLEX generates a C program which implements the minimized DFA



Step 1: 
Construct NFA from regex

regex NFA



Nondeterministic 
Finite Automata (NFA)

A finite set of states S 

An alphabet ∑, 𝜀 ∉ ∑ 

𝛅 ⊆ S X (∑ ∪ {𝜀}) X 𝒫(S) (transition function) 

s0 ∈ S  (a single start state) 

F ⊆ S  (a set of final or accepting states)



Deterministic Finite 
Automata (DFA)

A finite set of states S 

An alphabet ∑, 𝜀 ∉ ∑ 

𝛅 ⊆ S X ∑ X S (transition function) 

s0 ∈ S  (a single start state) 

F ⊆ S  (a set of final or accepting states)



NFA vs DFA 
transition function

𝛅 ⊆ S X (∑ ∪ {𝜀}) X 𝒫(S) 

𝛅 ⊆ S X  ∑        X  S

no 𝜀-transitions no multiple transitions



0

A state is a circle with its 
state number written 

inside.



0

Initial state has an 
arrow from nowhere 
pointing in. State 0 is 
often the initial state.



1

A final (accepting) state is 
drawn with a double 

circle.



… or a ∈ ∑.

0 1
𝜀

0 1
a

for each a ∈ ∑

Arrows are labeled 
with 𝜀 …



Regex -> NFA

0 1
𝜀

0 1
a

N(s)

N(t)

0 1

for each a ∈ ∑ S | t

𝜀

𝜀 𝜀

𝜀



Regex -> NFA

N(s)

N(s)

1N(t)

1

𝜀

𝜀 𝜀

𝜀

0

0

St

S*



Simple example 

static 



Simple example 

static 

0 1 2 3 4 5 6
s t a t i c



Simple example 

static 
struct

0 1 2 3 4 5 6
s t a t i c

7 8 9 10 11 12 13
s t r u c ti F

𝜀

𝜀𝜀

𝜀


