CSE4-4-3
Com p tlers
Dr. Carl Ai.pkom':@.

alphonce@buffalo.edu
343 Davis Hall

Announcements

Teams should be formed

Starting r‘:riciaj, sit with your
Feammates

s Abtendance sheebs will be bv Feavm

- Team meetings will start next weelk

. character stream
Lextcal ¥
l Lexical Analyzer 1

skructkure

|
token stream

Phases of
Q v
@0 m F E;i,@_r Syntax Analyzer

[
syntax tree

Y

Semantic Analyzer

1
syntax tree

Y

Symbol Table Intermediate Code Generator

|
intermediate representation

Machine-Independent
Code Optimizer

|
intermediate representation

Code Generator
Loyt ' rget-machine cod
PLQM’.T'Q 1@&; ta get. ma(v: e code

PO\SQ 5 an %Qx& Machine-Dependent

Code Optimizer

|
target-machine code

Y

. character stream
Lextcal ¥
l Lexical Analyzer 1

skructkure

|
token stream

Phases of
Q v
@0 m F E;i,@_r Syntax Analyzer

[
syntax tree

Y

Semantic Analyzer

1
syntax tree

Y

Symbol Table Intermediate Code Generator

|
intermediate representation

Machine-Independent
Code Optimizer

|
intermediate representation

Code Generator
Loyt ' rget-machine cod
PLQM’.T'Q 1@&; ta get. ma(v: e code

PO\SQ 5 an %Qx& Machine-Dependent

Code Optimizer

|
target-machine code

Y

lanquaqes & grammars

L(G) is the set of all strings

derivable from & starting with
the start Sjmbat; Le. ik denotes
the Llanquage of G

lanquaqes & grammars

Given a grammar & Fhe
lanquage it generates, £L(&), is
umiqu@..

Given a language L there are
many grammars H such that
L(H) = L.

Lav\gu&ges $ gram MMATS

VAT frj)

, grammars for users

.

CoOm ’}&&mf writters cain .\gt De o@, ,'

Given a language L there are
manv rammars H such Ehak

L(H) =

2022

Copyright Carl Alphonce

Lexical Amatjsi;s

o Lexical structure described by
reqular grammar

o Deterministic finite state machine
performs analysis

grammars (generators) and automata

languages (acceptors)

fecursively -
enumerable language

context- linear—bounde ntactic
sensitive language __automaton [@uTTa4TRRS

- regular finite-state

structure
the traditional Chomsky hierarchy

SOURCE: MEPs://oPehi.hLm.V\ik.gcv/dekailzdresuu.rkr)?i.mgz?MC3367694_rsf:b2°120103—32$req=4—

AUTHORS: Fikch WT, Friederici AD - Philos. Trans. R. Soc. Lond., B, Biol. Sci. (2012)

LICENSE: khEF://craativacommous.org/Licehses/bv/3.0/

ST HAR A

Copyright Carl Alphonce 2022

How L8 o regutar
Llanguage ci@f ined?

o Recall that a Lanquaqe is a set of
strings. This set can be finite or
infinite.

o The possible regular languages over
a given alphabet are defined
inductively - construction given on
next two slides.

LANCGUAGE operaﬁoms

base cases

o | €1 is a reqular language

o Vvaci {atisareqular language

€ is the amy&j string

Copyright Carl Alphonce 2022

D

LANGUAGE operations
If L and M are reqular, so are:

LuM={s]|seblLorse M} unon

LM =14 st]seland b e M| concarenation
L* = Uizoco Lt KLEENE CLOSURE
No other langquages are reqular

Li is L concatenated with ikself i times:
Lo = {el, b:j definition

Ll = E

L2 = L1

L2 = LLL, ete,

L* is the union of all these sets!

Copyright Carl Alphonce 2022

Example of L

Suppose L is {a, bb}

Lo = {éef, bj definition

L = L = {a, bb}

L2 = LL = {aa, abb, bba, bbbb}

L3 = LLL = { aaa, aabb, abba, abbbb,
bbaa, bbabb, bbbba, bbbbbbt

s

.and so so...

L= Ue,.-.-.:o,m Lt = {s, a, bb, aa, abb, bba, bbbb, aaa,

aabb, abba, abbbb, bbaa, bbbba, bbaa, bbabb,
bbbba, bbbbbb, abbbb, bbabb, ...

Some reqular lanquages over } = {o,11

The base cases yield these regular Languages:
e, {0}, 118

The induckive cases 3&&1& nmainy more. Some are:

{o, 1, {014, {104, {01, 10}, {0, o1}, {1, 01}, {0,
10}, {1, 104, {0, 1, 014, {0, 1, 10}, {0, o1, 10},
{1, 01, 10}, {00}, {000}, {oooat, {11§, {111},
{1111}, and Many many more.

Can you demonstrate how each of these is
reqular?

Why use grammars?

o Recall that a Language is a Possibi{j infinite set of
skrings.

@ A grammar gives us a way to describe, wusing finite
meains, an infinite set.

o Regular expressions are equivalent to reqular
grammars th expressive power: both regular grammars
and regular expressions describe regular languages.

o If X is a regular expression, £(X) denotes the set of
skrings recognized bv X.

2022

Copyright Carl Alphonce

Inductive definition of
REGular EXpressions (regex)
over a given atpko\beﬁ)3

e LS A regex

£(e) = {et

For each a € 2, a is a regex

£(a) = {&%

Regular expressions (regex)
Inductive definition

Assume r alnd s are reqgexes.

rls is a regex denoting L{rHul(s)
rs s a reqgex denoting £(r)£(s)
r* s a regex denoting (L(r))*
(r) is a regex denoting £L(r)

‘Pre&@.d\@v\&e: KLEENE CLOSURE > CONCATENATION > UNION
Associativity: all left-associative (minimize use of
parentheses: (r|s)lt = rlsft)

Copyright Carl Alphonce 2022

Algebraic laws

Assume r and s are reqgexes.

COMMUTATIVITY rls = slr

Associativity - vl(s]E) = (rls)|t and r(sk) = (rs)t
DisriBUTIVITY r(sl%) — \‘SIT‘% and (Sl&)f = srl%r

IDENTITY EY &= TEem Y

IDEMPOTENCY T** = 71*

We can describe a
reqular lanquage
usuing a
reqular expression

ij Ao we care?

o We will be using a tool called FLEX to construct
a lexical analyzer (a lexer) for the programming
language we're constructing a compiler for.

o If we give FLEX a reqular expression describing
the lexical structure of our lanquage, FLEX will
produce a C program which acts as our lexer.

o The next step for us to understand (ot a high
level) how FLEX converts a regex to a C
program.

A regular expression can be implemented
using a finite state machine.

Finike skabte machines can be deterministic or
non~deberminiskic:

DFA
deterministic finite automaton

NFA
non-deterministic finite automaton

Process of building
lexical amatva@m

1) spell out the language

Process of building
lexical amatvz.@.r

2) formulate a regular expression

Process of building
lexical amatvz.@.r

3) build an NFA

Process of building
lexical amatjz.@.r

4) transform NFA to DFA

Process of building
lexical amatjz@.r

§) transform DFA ko a minimal DFA

Process of building
lexical av\aljz.@.r

5Y) The minimal DFA is
our lextcal amai.jzer

 character |

lexical analyzer| |

FLEX generates a C program which implements the minimized DFA

Sﬁ@.p

4.
Consbruct NFA from regex

Nowndeberminiskic
Finike Automata (NFA)

A finite set of stakes S

 An alphabet 3, ¢ ¢ ¥
5 ¢ S X (Zuiel) X 2(8) (bransition function)
so € § (a single start state)

F S (a set of final or accepting states)

Deberministic Finite
Auktomatba (DFA)

A finite set of states S

 An alphabet ¥, ¢ ¢ ¥

5 c S X I XS (bransikion function)

so € § (a single start state)

F S (a set of final or accepting states)

-

IN

IN

NFEA vs DFA

transition function

S X{(X u {eb

SiKL

i 2(S)

no e-transiktions

®

Ve mu&ipie. Eransikions

for each a € ¥

for each a € ¥ S |E

Simpi& @.xam[pte

static

Simgte exampte

static

SLMFL@. exampte

static
struct

