CSE4-4-3
Com p tlers
Dr. Carl Ai.pkom':@.

alphonce@buffalo.edu
343 Davis Hall

Announcements

Team info submitted!

Starting %odaj, stk with your
teammates,

s Abtendance sheebs will be bv Feam.

- Team meetings will start next weel,

. character stream
Lextcal ¥
l Lexical Analyzer 1

skructkure

|
token stream

Phases of
Q v
@0 m F E;i,@_r Syntax Analyzer

[
syntax tree

Y

Semantic Analyzer

1
syntax tree

Y

Symbol Table Intermediate Code Generator

|
intermediate representation

Machine-Independent
Code Optimizer

|
intermediate representation

Code Generator
Loyt ' rget-machine cod
PLQM’.T'Q 1@&; ta get. ma(v: e code

PO\SQ 5 an %Qx& Machine-Dependent

Code Optimizer

|
target-machine code

Y

Process of building
lexical av\aljz.@.r

5Y) The minimal DFA is
our lextcal amai.jzer

 character |

lexical analyzer| |

FLEX generates a C program which implements the minimized DFA

(a|b)*abb

first we conskruct an NFA

from this regular expression

(a]b)*abb

Opara&mms

o e—closure(t) is the set of states reachable
from state b using only s-transitions.

o e—closure(T) is the set of states reachable
from any state bt € T using 0&\1,3 &=
transitions.

o move(T,a) is the set of stakes reachable
from any state t € T following a
transition on symbol a € .

NFA -> DFA algorithm

(set of states construction - page 183 of text)

o INPUT: Ak NFA N = (S, 3, 8, so, F)
o BUTPUT: ADFA D = (S, I, &, 5o, F") such that £(D)=£(N)
o ALGORITHM:
Compute so' = e-closure(so), an unmarked set of states
Set §' = { So' %
while there is an unmarked T € §
mark T
for each symbol a € X
lek U = e-closure(move(T,a))
4 U e¢9, add unmarked U ko §
add Ekransition: §(T,a) = U
' s the subset of §' all of whose members conkain a
state i F,

NFA -> DFA algorithm

(set of states construction - page 183 of text)
So' = { A =1{0,12,4,71 }

Pick an uhmarked set from So, A, mark ik, and v x € ¥ let U = s-closure(move(A x)),
U U e, add unmarked U to §' and add transition: §'(Ax) = U

S'={ AV, B =112,3467%1, C = {1,2,4,56,7}}

§'(Aa) = B

§(AD) = C

Pick an unmarked set from Si', B, mark ik, and v x € ¥ lek U = e—closure(move(B,x)),
U e, add unmarked U to §' and add transition: 8B x) = U

S'={ AV ,BY,C,D=1124,56,791}

§'(B,a) = B

5'(®,b) = D

Pick an unmarked set from S, C, mark ik, and v x € ¥ lekt U = s-closure(move(C x)),
U U e9, add unmarked U ko §' and add kransition: §(Cx) = U
S'={A”,BY,C”, D}
(Ca) = B
feby=c

NFA -> DFA algorithm

(set of states construction - page 183 of text)

Pick an unmarked set from S3', D, mark ik, and v x € ¥ let U = e-closure{move(D,x)),
U U e, add uamarked U to §' and add transition: §(dx) = U

So' =1 AV ,BY ,Cv , D, E =1{12,4,56,710} 1

(Do) = B

s(pb) = £

Pick an uhmarked set from Su', £, mark ik, and v a € ¥ let U = s-closure(move(E,a)),
U U e9, add unmarked U to §' and add transition: §'(E,0) = U

S = { AV ,BY ,Cv , D, EY]

§(E,0) = B

SED) = C

Since there are no unmarked sets in Ss' the algorithm has reached a fixed point.
STOP.
F' is the subset of §' all of whose members contain a state in F: (£}

The original NFA

&

The resulting DFA

DFA = ({A; B G D E}; {O‘; b}; A, &, {E}>; where

§'(A,a) = B
§(AD) = C
§'(B,a) = B
§(®B,b) = D
(C,a) = B
b)Y = €
§(D,a) = B
s(pb) = £
S(E,0) =B
S(E,D) = C

5 %e[p 2
DFA mwbimization

DFA => minimal DFA algorithm

o INPUT: AW DFA D = (S, 5, 6, 50, F)
o OQUTPUT: A DFA D' = (5, I, &, 5o, F') such that
o S is as small as Foss&bi.e, and
o £(D)=£(D
o ALGORITHM:
l. ket w = { F, S-F }
2. Let " = 7. For every group G of T
partition G into subgroups such that two states s and t are in the same
subgroup Ut for all input ssjmbmi.s a, stakes s and t have kransitions on
a to states in the same group of «
Replace G in 1 by the set of all subgrops formed
3. f m'=r let "=m, otherwise set m=r' and repeat 2.
4. Choose one state in each group of " as a representative for that group.
a) The start state of D' is the representative of the group containing the
start state of D
b) The accepting states of D' are the representatives of those groups that
contain an accepting state of D
c) Adjust transitions from representotives to representatives.

OKIGINAL DFA
32(5,2,50,5,5':)

S =1{A, B, C, D £}

So =
§ = {(A a)->B, (Ab)->C,

(B;O‘}"?B; (B;b>"ﬂ};
(C;Q>“?B; (C;b)“?cf
(‘Bia‘)":’B; (U;b>“7’5;
(E;O*>“7B; (Et;b>“7cg

ﬁ:{ﬁ}

Finding the minimal set
0{: distinct sets of states

M. =1 F, 5-F } = { {E}; {A;B;C;B} }

Pick a nown-singleton set X = {AB,C, D! from TTls and

check behavior of states on all transitions on
symbols tn ¥ (are they to states in X or ko other
groups in the partition?)

(A}O‘>“?B} (B;&}”?B; (C,&>“?B, (B,&)“?B
(A;bD“?C’; (B;b)“ﬂﬁ; (C,bD“?C, (ﬁ,b)“?g

D behaves differently, so put it in its own partition.

Finding the minimal set
0{: distinct sets of states

T, = { (€} 1Ay B, CIADE

Pick a non-singleton set X = {AB,Ct from Tl and

check behavior of states on all transitions on
symbols tn ¥ (are they to states in X or ko other
groups in the partition?)

(A,0)->R, (B,a)->8, (Ca)->B
(A;b>“7’cf (.B;b}"?‘b; (C;b>“7'(:

B behaves differently, so put it in its own partition.

Finding the minimal set
0{: distinct sets of states

. = { {1, {A, ¢}, {81, {D} }

Pick a nown-singleton set X = {A,C} from IT; and check

behavior of states on all ktransitions own 53mb0Ls in X (are they
to states in X or to other groups i the gar&i&mm?)

(A,a)->B, (C,a)->B
(A;b}"?c; (C;b>'"7’c

A and C bobth Etransiktion outside the group on svmbat a, to the
same group (the one containing B). Therefore A and C are
indistinguishable in their behaviors, so do not split this group.

Finding the minimal set
of distinct sets of stakes

In: = { {E}; {A; Cgf {B}; {‘D} } = JU

We have reached a fixed point! STOP

Pick a re prese ntative
from each group

nFSINAL = { {E}; {A; C.}, {B}; {‘E} }

MINIMAL DFA
D = (§) %, s, &, F)

S =1{B, C, D, £} -» the represemﬁa&ves

¥ = {a, bt => ho change

s'o = C -» the representative of the group that
contained D's starting state, A

5 = (on next slide)

F = {E} -> the representatives of all the

groups that contained any of D's final states
(which, in this case, was just {E‘"})

The new Eransition
ﬂfuv\c&ov\ &'

o For each stake s € §', consider its
transiktions i D, o each a € 2,

U 8(s,a) = b then 8(s,0) = 1, where r

is the representative of the group
containing t.

S { (B,0)->B, (B,b)->D,
(C;OJ""?B; (C;b>"7(:;
(D,a)->B, (D,b)->E,
(E£,0)->8, (£,b)->C }

Mininal DFA for (a]b)<abb

DEA for (&lb)*abb

Phases of
Qa

aompiiﬁ.\“

Flgure 1.6
page § of bext

Svm&aﬁ:&if:

skructkure

Symbol Table

character stream

Y

Lexical Analyzer

token étream

Y

Syntax Analyzer

[
syntax tree

'

Semantic Analyzer

1
syntax tree

Y

Intermediate Code Generator

|
intermediate representation

Machine-Independent
Code Optimizer

|
intermediate representation

Code Generator

|
target-machine code

Y

Machine-Dependent
Code Optimizer

|
target-machine code

Y

C4++11 COBOL 2002

N

Fortran 2003, 2008 C99,C11 C+98

T \

Fortran 90, 95 Visual Basic (1991) C89, C90 : Delphi (1995)

‘ A Y

C++ (1983) Ada (1983) Modula-3 COBOL-85

' \ I

Fortran 77 Ratfor (1976) Modula-2 (1978)

\ / C (1972) Smalltalk (1972) Pascal (1970)
Fortran IV (1966) BASIC (1964) BCPL (1966) Simula 67 Algol 68
CPL (1963) Simula (1962)/

Algol 60 PL/1 (1964)

P o

Fortran I1 (1958) Algol (1958) COBOL (1960)

N ‘

Fortran (1955)

T

Speedcoding (1953) FLOW-MATIC (1955)

https://commons.wikimedia.org/wiki/File:Algol&Fortran_family-by-Borkowski.svg

Rear Admiral ¢rrace Murray Hoppm‘
(1906 - 1992)

In 1952, Hopper completed her first compiler (for Sperry-Rand computer), known as the A-o
System. |...]

After the A-0, Grace Hopper and her group produced versions A-1 and A-2, improvements over
the older version. The A-2 compiler was the first compiler to be used extensively, paving the way
to the development of programming languages.

]

Hopper also originated the idea that computer programs could be written in English. She viewed
letters as simply another kind of symbol that the computer could recognize and convert into
machine code. Hopper's compiler later evolved to FLOW-MATIC compiler, which will be the base

for the extremely important language—COBOL.

https://history-computer.com/ModernComputer/Software/FirstCompiler.html

https://history-computer.com/ModernComputer/Software/FirstCompiler.html
https://commons.wikimedia.org/wiki/File:Commodore_Grace_M._Hopper,_USN_(covered).jpg
https://commons.wikimedia.org/wiki/File:Grace_Murray_Hopper,_in_her_office_in_Washington_DC,_1978,_%C2%A9Lynn_Gilbert.jpg
https://commons.wikimedia.org/wiki/File:Grace_Hopper_and_UNIVAC.jpg

Cownkext Free Grrammars

CFG G =(NT, 7,95

N is a set of non-terminals

T is o seb of terminals (= tokens from Lexical analyzer)

T n N = O (ie a symbol is cither a kerminal or a non-terminal, ot both)

? is a set of productions/grammar rules
PCcNx(NuTH

R e P is written as X = o, where X e Nand a e (N u T)*

S e N is the skart svmbc}i

Derivakions

> "derives i ohe s&e.[a (frc:-m)"

If A-B e P, and a, vy € (N U T) then aAy =¢ aPy

=c* "derives in many steps (from)"
I{ aelNUTH, m21and a1 2¢ a: =2¢ a3z =¢ A4
then a1 =2¢* am

=a* s the reﬂex&ve and Eransitive closure c:% =

e éG (Xm

Lanquages

&)zl wlweT and § s w

L is a CF lanquage if it is (&) for a
Cr &,

Gl and G2 are equivalent iff
£{G)=c(¢3R).

E. X O Pie

L =1{ 0,1, 0o, 11, coo, 111, cooo, 1111, ...

G = ({o,11, {5, Zerolist, Onelisti,
{S => Zerolist | Onelist,
Zerolist => © | © Zerolist,
Onelist -> 1 | 1 Ownelist i,

S)

Derivations from &

Derivation of © © © © Derivation of 1 1 1

S =» Zerolist S => Onelist
=» 0 Zerolist =» 1 Ownelist
=> 0 0 Zerolist => 1 1 Onelist
=» O 0 O Zerolist => 1 13

=> O O G

