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Announcements

Team info submitted! 

Starting today, sit with your 
teammates. 

Attendance sheets will be by team. 

Team meetings will start next week.
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Figure 1.6, 
page 5 of text
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Process of building 
lexical analyzer
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character 
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token 
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5) The minimal DFA is 
our lexical analyzer

DFAlanguage regex NFA

FLEX generates a C program which implements the minimized DFA



step 2

DFANFA



(a|b)*abb

first we construct an NFA 

from this regular expression
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Operations
ℇ-closure(t) is the set of states reachable 
from state t using only ℇ-transitions. 

ℇ-closure(T) is the set of states reachable 
from any state t ∈ T using only ℇ-
transitions. 

move(T,a) is the set of states reachable 
from any state t ∈ T following a 
transition on symbol a ∈ ∑.



NFA -> DFA algorithm 
(set of states construction - page 153 of text)

INPUT: An NFA N = (S, ∑, 𝛅, s0, F) 
OUTPUT: A DFA D = (S', ∑, 𝛅', s0', F') such that ℒ(D)=ℒ(N) 
ALGORITHM: 
Compute s0' = ℇ-closure(s0), an unmarked set of states 
Set S' = { s0' } 
while there is an unmarked T ∈ S' 

mark T 
for each symbol a ∈ ∑ 

let U = ℇ-closure(move(T,a)) 
if U ∉ S', add unmarked U to S' 
add transition: 𝛅'(T,a) = U 

F' is the subset of S' all of whose members contain a 
state in F.



NFA -> DFA algorithm 
(set of states construction - page 153 of text)

S0' = { A = {0,1,2,4,7} } 

Pick an unmarked set from S0', A, mark it, and ∀ x ∈ ∑ let U = ℇ-closure(move(A,x)),  
if U ∉ S', add unmarked U to S' and add transition: 𝛅'(A,x) = U 

S1' = { A✔︎ , B = {1,2,3,4,6,7,8} , C = {1,2,4,5,6,7}} 
𝛅'(A,a) = B 

𝛅'(A,b) = C 

Pick an unmarked set from S1', B, mark it, and ∀ x ∈ ∑ let U = ℇ-closure(move(B,x)), 
if U ∉ S', add unmarked U to S' and add transition: 𝛅'(B,x) = U 

S2' = { A✔︎ , B✔︎ , C , D = {1,2,4,5,6,7,9}} 
𝛅'(B,a) = B 

𝛅'(B,b) = D 

Pick an unmarked set from S2', C, mark it, and ∀ x ∈ ∑ let U = ℇ-closure(move(C,x)), 
if U ∉ S', add unmarked U to S' and add transition: 𝛅'(C,x) = U 

S3' = { A✔︎ , B✔︎ , C✔︎ , D } 
𝛅'(C,a) = B 

𝛅'(C,b) = C



NFA -> DFA algorithm 
(set of states construction - page 153 of text)

Pick an unmarked set from S3', D, mark it, and ∀ x ∈ ∑ let U = ℇ-closure(move(D,x)), 
if U ∉ S', add unmarked U to S' and add transition: 𝛅'(D,x) = U 

S4' = { A✔︎ , B✔︎ , C✔︎ , D✔︎ , E = {1,2,4,5,6,7,10}  } 
𝛅'(D,a) = B 

𝛅'(D,b) = E 

Pick an unmarked set from S4', E, mark it, and ∀ a ∈ ∑ let U = ℇ-closure(move(E,a)), 
if U ∉ S', add unmarked U to S' and add transition: 𝛅'(E,a) = U 

S5' = { A✔︎ , B✔︎ , C✔︎ , D✔︎ , E✔︎ } 
𝛅'(E,a) = B 

𝛅'(E,b) = C 

Since there are no unmarked sets in S5' the algorithm has reached a fixed point.  
STOP. 
F' is the subset of S' all of whose members contain a state in F: {E}
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The original NFA



The resulting DFA

DFA = ( {A, B, C, D, E}, {a, b}, A, 𝛅', {E}), where 

𝛅'(A,a) = B 
𝛅'(A,b) = C 
𝛅'(B,a) = B 
𝛅'(B,b) = D 
𝛅'(C,a) = B 
𝛅'(C,b) = C 
𝛅'(D,a) = B 
𝛅'(D,b) = E 
𝛅'(E,a) = B 
𝛅'(E,b) = C
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DFADFA

step 3 
DFA minimization



DFA -> minimal DFA algorithm

INPUT: An DFA D = (S, ∑, 𝛅, s0, F) 
OUTPUT: A DFA D' = (S', ∑, 𝛅', s0', F') such that 

S' is as small as possible, and 
ℒ(D)=ℒ(D') 

ALGORITHM: 
1. Let π = { F, S-F } 
2. Let π' = π.  For every group G of π: 

partition G into subgroups such that two states s and t are in the same 
subgroup iff for all input symbols a, states s and t have transitions on 
a to states in the same group of π 
Replace G in π' by the set of all subgrops formed 

3. if π'=π let π"=π, otherwise set π=π' and repeat 2. 
4. Choose one state in each group of π" as a representative for that group. 
a) The start state of D' is the representative of the group containing the 
start state of D 
b) The accepting states of D' are the representatives of those groups that 
contain an accepting state of D 
c) Adjust transitions from representatives to representatives.



ORIGINAL DFA 
D = ( S, ∑, s0, 𝛅, F)

S = {A, B, C, D, E} 
∑ = {a, b} 
s0 = A 
𝛅 = {(A,a)->B, (A,b)->C, 
(B,a)->B, (B,b)->D, 
(C,a)->B, (C,b)->C, 
(D,a)->B, (D,b)->E, 
(E,a)->B, (E,b)->C} 
F = {E}



Finding the minimal set 
of distinct sets of states
𝞹0 = { F, S-F } = { {E}, {A,B,C,D} } 

Pick a non-singleton set X = {A,B,C,D} from 𝞹0 and 

check behavior of states on all transitions on 
symbols in ∑ (are they to states in X or to other 
groups in the partition?) 

(A,a)->B, (B,a)->B, (C,a)->B, (D,a)->B 
(A,b)->C, (B,b)->D, (C,b)->C, (D,b)->E 

D behaves differently, so put it in its own partition.



Finding the minimal set 
of distinct sets of states
𝞹1 = { {E}, {A, B, C}, {D} } 

Pick a non-singleton set X = {A,B,C} from 𝞹1 and 

check behavior of states on all transitions on 
symbols in ∑ (are they to states in X or to other 
groups in the partition?) 

(A,a)->B, (B,a)->B, (C,a)->B 
(A,b)->C, (B,b)->D, (C,b)->C 

B behaves differently, so put it in its own partition.



Finding the minimal set 
of distinct sets of states
𝞹2 = { {E}, {A, C}, {B}, {D} } 

Pick a non-singleton set X = {A,C} from 𝞹2 and check 

behavior of states on all transitions on symbols in ∑ (are they 
to states in X or to other groups in the partition?) 

(A,a)->B, (C,a)->B 
(A,b)->C, (C,b)->C 

A and C both transition outside the group on symbol a, to the 
same group (the one containing B).  Therefore A and C are 
indistinguishable in their behaviors, so do not split this group.



Finding the minimal set 
of distinct sets of states

𝞹3 = { {E}, {A, C}, {B}, {D} } = 𝞹2 

We have reached a fixed point! STOP



Pick a representative 
from each group

𝞹FINAL = { {E}, {A, C}, {B}, {D} } 



MINIMAL DFA 
D' = ( S', ∑, s'0, 𝛅', F')

S' = {B, C, D, E} -> the representatives 
∑ = {a, b} -> no change 
s'0 = C -> the representative of the group that 
contained D's starting state, A 
𝛅 = (on next slide) 
F = {E} -> the representatives of all the 
groups that contained any of D's final states 
(which, in this case, was just {E})



The new transition 
function 𝛅' 

For each state s ∈ S', consider its 
transitions in D, on each a ∈ ∑. 

if 𝛅(s,a) = t, then 𝛅'(s,a) = r, where r 
is the representative of the group 
containing t.



𝛅 = { (B,a)->B, (B,b)->D, 
      (C,a)->B, (C,b)->C, 
      (D,a)->B, (D,b)->E, 
      (E,a)->B, (E,b)->C } 
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http://www.softwarepreservation.org/projects/FORTRAN/paper/p4-backus.pdf

http://www.bitsavers.org/pdf/univac/flow-matic/U1518_FLOW-MATIC_Programming_System_1958.pdf

https://commons.wikimedia.org/wiki/File:Algol&Fortran_family-by-Borkowski.svg


Rear Admiral Grace Murray Hopper 
(1906 - 1992)

In 1952, Hopper completed her first compiler (for Sperry-Rand computer), known as the A-0 
System. […] 

After the A-0, Grace Hopper and her group produced versions A-1 and A-2, improvements over 
the older version. The A-2 compiler was the first compiler to be used extensively, paving the way 
to the development of programming languages. 

[…] 

Hopper also originated the idea that computer programs could be written in English. She viewed 
letters as simply another kind of symbol that the computer could recognize and convert into 
machine code. Hopper's compiler later evolved to FLOW-MATIC compiler, which will be the base 
for the extremely important language—COBOL. 

https://history-computer.com/ModernComputer/Software/FirstCompiler.html

https://history-computer.com/ModernComputer/Software/FirstCompiler.html
https://commons.wikimedia.org/wiki/File:Commodore_Grace_M._Hopper,_USN_(covered).jpg
https://commons.wikimedia.org/wiki/File:Grace_Murray_Hopper,_in_her_office_in_Washington_DC,_1978,_%C2%A9Lynn_Gilbert.jpg
https://commons.wikimedia.org/wiki/File:Grace_Hopper_and_UNIVAC.jpg


Context Free Grammars
CFG G = (N, T, P , S) 

N is a set of non-terminals 

T is a set of terminals ( = tokens from lexical analyzer) 

T ∩ N = ∅ (i.e. a symbol is either a terminal or a non-terminal, not both) 

P is a set of productions/grammar rules 

P ⊆ N × (N ∪ T)* 

R ∈ P is written as X → α, where X ∈ N and α ∈ (N ∪ T)* 

S ∈ N is the start symbol



Derivations
⇒G "derives in one step (from G)" 

If A→β ∈ P, and α, γ ∈ (N ∪ T)* then αAγ ⇒G αβγ 

⇒G* "derives in many steps (from G)" 

If αi ∈ (N ∪ T)*, m ≥ 1 and α1 ⇒G α2 ⇒G α3 ⇒G α4  … ⇒G αm 

 then α1 ⇒G* αm 

⇒G* is the reflexive and transitive closure of ⇒G



Languages

ℒ(G) = { w | w ∈ T* and S ⇒G* w } 

L is a CF language if it is ℒ(G) for a 
CFG G. 

G1 and G2 are equivalent iff 
ℒ(G1)=ℒ(G2).



Example
L = { 0, 1, 00, 11, 000, 111, 0000, 1111, … } 

G = ( {0,1}, {S, ZeroList, OneList}, 
{S -> ZeroList | OneList, 
ZeroList -> 0 | 0 ZeroList, 
OneList -> 1 | 1 OneList }, 
S )



Derivations from G
Derivation of 0 0 0 0 
S => ZeroList  
  => 0 ZeroList 
  => 0 0 ZeroList 
  => 0 0 0 ZeroList 
  => 0 0 0 0 

Derivation of 1 1 1  
S => OneList  
  => 1 OneList 
  => 1 1 OneList 
  => 1 1 1  


