
CSE443
Compilers
Dr. Carl Alphonce

alphonce@buffalo.edu
343 Davis Hall

Announcements

Team info submitted!

Starting today, sit with your
teammates.

Attendance sheets will be by team.

Team meetings will start next week.

Phases of
a

compiler

Figure 1.6,
page 5 of text

Lexical
structure

Process of building
lexical analyzer

DFA

character
stream

token
stream

lexical analyzer

5) The minimal DFA is
our lexical analyzer

DFAlanguage regex NFA

FLEX generates a C program which implements the minimized DFA

step 2

DFANFA

(a|b)*abb

first we construct an NFA

from this regular expression

(a|b)*abb
a

(a|b)*abb
a

b

(a|b)*abb

ℇ

ℇ ℇ

ℇ

a

b

(a|b)*abb

ℇ

ℇ ℇ

ℇ

a

b

ℇ

ℇ ℇ

ℇ

(a|b)*abb

ℇ

ℇ ℇ

ℇ

a

b

a

ℇ

ℇ ℇ

ℇ

(a|b)*abb

ℇ

ℇ ℇ

ℇ

a

b

a

ℇ

ℇ ℇ

ℇ b

(a|b)*abb

ℇ

ℇ ℇ

ℇ

a

b

a

ℇ

ℇ ℇ

ℇ b b

(a|b)*abb

ℇ

ℇ ℇ

ℇ

a

b

a

ℇ

ℇ ℇ

ℇ b b
1

2 3

0

4 5

6 7 8 9 10

Operations
ℇ-closure(t) is the set of states reachable
from state t using only ℇ-transitions.

ℇ-closure(T) is the set of states reachable
from any state t ∈ T using only ℇ-
transitions.

move(T,a) is the set of states reachable
from any state t ∈ T following a
transition on symbol a ∈ ∑.

NFA -> DFA algorithm
(set of states construction - page 153 of text)

INPUT: An NFA N = (S, ∑, 𝛅, s0, F)
OUTPUT: A DFA D = (S', ∑, 𝛅', s0', F') such that ℒ(D)=ℒ(N)
ALGORITHM:
Compute s0' = ℇ-closure(s0), an unmarked set of states
Set S' = { s0' }
while there is an unmarked T ∈ S'

mark T
for each symbol a ∈ ∑

let U = ℇ-closure(move(T,a))
if U ∉ S', add unmarked U to S'
add transition: 𝛅'(T,a) = U

F' is the subset of S' all of whose members contain a
state in F.

NFA -> DFA algorithm
(set of states construction - page 153 of text)

S0' = { A = {0,1,2,4,7} }

Pick an unmarked set from S0', A, mark it, and ∀ x ∈ ∑ let U = ℇ-closure(move(A,x)),
if U ∉ S', add unmarked U to S' and add transition: 𝛅'(A,x) = U

S1' = { A✔︎ , B = {1,2,3,4,6,7,8} , C = {1,2,4,5,6,7}}
𝛅'(A,a) = B

𝛅'(A,b) = C

Pick an unmarked set from S1', B, mark it, and ∀ x ∈ ∑ let U = ℇ-closure(move(B,x)),
if U ∉ S', add unmarked U to S' and add transition: 𝛅'(B,x) = U

S2' = { A✔︎ , B✔︎ , C , D = {1,2,4,5,6,7,9}}
𝛅'(B,a) = B

𝛅'(B,b) = D

Pick an unmarked set from S2', C, mark it, and ∀ x ∈ ∑ let U = ℇ-closure(move(C,x)),
if U ∉ S', add unmarked U to S' and add transition: 𝛅'(C,x) = U

S3' = { A✔︎ , B✔︎ , C✔︎ , D }
𝛅'(C,a) = B

𝛅'(C,b) = C

NFA -> DFA algorithm
(set of states construction - page 153 of text)

Pick an unmarked set from S3', D, mark it, and ∀ x ∈ ∑ let U = ℇ-closure(move(D,x)),
if U ∉ S', add unmarked U to S' and add transition: 𝛅'(D,x) = U

S4' = { A✔︎ , B✔︎ , C✔︎ , D✔︎ , E = {1,2,4,5,6,7,10} }
𝛅'(D,a) = B

𝛅'(D,b) = E

Pick an unmarked set from S4', E, mark it, and ∀ a ∈ ∑ let U = ℇ-closure(move(E,a)),
if U ∉ S', add unmarked U to S' and add transition: 𝛅'(E,a) = U

S5' = { A✔︎ , B✔︎ , C✔︎ , D✔︎ , E✔︎ }
𝛅'(E,a) = B

𝛅'(E,b) = C

Since there are no unmarked sets in S5' the algorithm has reached a fixed point.
STOP.
F' is the subset of S' all of whose members contain a state in F: {E}

ℇ

ℇ ℇ

ℇ

a

b

a

ℇ

ℇ ℇ

ℇ b b
1

2 3

0

4 5

6 7 8 9 10

The original NFA

The resulting DFA

DFA = ({A, B, C, D, E}, {a, b}, A, 𝛅', {E}), where

𝛅'(A,a) = B
𝛅'(A,b) = C
𝛅'(B,a) = B
𝛅'(B,b) = D
𝛅'(C,a) = B
𝛅'(C,b) = C
𝛅'(D,a) = B
𝛅'(D,b) = E
𝛅'(E,a) = B
𝛅'(E,b) = C

a
bB

C

A D E

ab

b

a

b
a

a

b

DFADFA

step 3
DFA minimization

DFA -> minimal DFA algorithm

INPUT: An DFA D = (S, ∑, 𝛅, s0, F)
OUTPUT: A DFA D' = (S', ∑, 𝛅', s0', F') such that

S' is as small as possible, and
ℒ(D)=ℒ(D')

ALGORITHM:
1. Let π = { F, S-F }
2. Let π' = π. For every group G of π:

partition G into subgroups such that two states s and t are in the same
subgroup iff for all input symbols a, states s and t have transitions on
a to states in the same group of π
Replace G in π' by the set of all subgrops formed

3. if π'=π let π"=π, otherwise set π=π' and repeat 2.
4. Choose one state in each group of π" as a representative for that group.
a) The start state of D' is the representative of the group containing the
start state of D
b) The accepting states of D' are the representatives of those groups that
contain an accepting state of D
c) Adjust transitions from representatives to representatives.

ORIGINAL DFA
D = (S, ∑, s0, 𝛅, F)

S = {A, B, C, D, E}
∑ = {a, b}
s0 = A
𝛅 = {(A,a)->B, (A,b)->C,
(B,a)->B, (B,b)->D,
(C,a)->B, (C,b)->C,
(D,a)->B, (D,b)->E,
(E,a)->B, (E,b)->C}
F = {E}

Finding the minimal set
of distinct sets of states
𝞹0 = { F, S-F } = { {E}, {A,B,C,D} }

Pick a non-singleton set X = {A,B,C,D} from 𝞹0 and

check behavior of states on all transitions on
symbols in ∑ (are they to states in X or to other
groups in the partition?)

(A,a)->B, (B,a)->B, (C,a)->B, (D,a)->B
(A,b)->C, (B,b)->D, (C,b)->C, (D,b)->E

D behaves differently, so put it in its own partition.

Finding the minimal set
of distinct sets of states
𝞹1 = { {E}, {A, B, C}, {D} }

Pick a non-singleton set X = {A,B,C} from 𝞹1 and

check behavior of states on all transitions on
symbols in ∑ (are they to states in X or to other
groups in the partition?)

(A,a)->B, (B,a)->B, (C,a)->B
(A,b)->C, (B,b)->D, (C,b)->C

B behaves differently, so put it in its own partition.

Finding the minimal set
of distinct sets of states
𝞹2 = { {E}, {A, C}, {B}, {D} }

Pick a non-singleton set X = {A,C} from 𝞹2 and check

behavior of states on all transitions on symbols in ∑ (are they
to states in X or to other groups in the partition?)

(A,a)->B, (C,a)->B
(A,b)->C, (C,b)->C

A and C both transition outside the group on symbol a, to the
same group (the one containing B). Therefore A and C are
indistinguishable in their behaviors, so do not split this group.

Finding the minimal set
of distinct sets of states

𝞹3 = { {E}, {A, C}, {B}, {D} } = 𝞹2

We have reached a fixed point! STOP

Pick a representative
from each group

𝞹FINAL = { {E}, {A, C}, {B}, {D} }

MINIMAL DFA
D' = (S', ∑, s'0, 𝛅', F')

S' = {B, C, D, E} -> the representatives
∑ = {a, b} -> no change
s'0 = C -> the representative of the group that
contained D's starting state, A
𝛅 = (on next slide)
F = {E} -> the representatives of all the
groups that contained any of D's final states
(which, in this case, was just {E})

The new transition
function 𝛅'

For each state s ∈ S', consider its
transitions in D, on each a ∈ ∑.

if 𝛅(s,a) = t, then 𝛅'(s,a) = r, where r
is the representative of the group
containing t.

𝛅 = { (B,a)->B, (B,b)->D,
 (C,a)->B, (C,b)->C,
 (D,a)->B, (D,b)->E,
 (E,a)->B, (E,b)->C }

{A
,C
}

bB D E

a

b

a

b
a

a

b

Minimal DFA for (a|b)*abb

a
bB

C

A D E

ab

b

a

b
a

a

b

DFA for (a|b)*abbNo
n-

mini
mize

d

Phases of
a

compiler

Figure 1.6,
page 5 of text

Syntactic
structure

http://www.softwarepreservation.org/projects/FORTRAN/paper/p4-backus.pdf

http://www.bitsavers.org/pdf/univac/flow-matic/U1518_FLOW-MATIC_Programming_System_1958.pdf

https://commons.wikimedia.org/wiki/File:Algol&Fortran_family-by-Borkowski.svg

Rear Admiral Grace Murray Hopper
(1906 - 1992)

In 1952, Hopper completed her first compiler (for Sperry-Rand computer), known as the A-0
System. […]

After the A-0, Grace Hopper and her group produced versions A-1 and A-2, improvements over
the older version. The A-2 compiler was the first compiler to be used extensively, paving the way
to the development of programming languages.

[…]

Hopper also originated the idea that computer programs could be written in English. She viewed
letters as simply another kind of symbol that the computer could recognize and convert into
machine code. Hopper's compiler later evolved to FLOW-MATIC compiler, which will be the base
for the extremely important language—COBOL.

https://history-computer.com/ModernComputer/Software/FirstCompiler.html

https://history-computer.com/ModernComputer/Software/FirstCompiler.html
https://commons.wikimedia.org/wiki/File:Commodore_Grace_M._Hopper,_USN_(covered).jpg
https://commons.wikimedia.org/wiki/File:Grace_Murray_Hopper,_in_her_office_in_Washington_DC,_1978,_%C2%A9Lynn_Gilbert.jpg
https://commons.wikimedia.org/wiki/File:Grace_Hopper_and_UNIVAC.jpg

Context Free Grammars
CFG G = (N, T, P , S)

N is a set of non-terminals

T is a set of terminals (= tokens from lexical analyzer)

T ∩ N = ∅ (i.e. a symbol is either a terminal or a non-terminal, not both)

P is a set of productions/grammar rules

P ⊆ N × (N ∪ T)*

R ∈ P is written as X → α, where X ∈ N and α ∈ (N ∪ T)*

S ∈ N is the start symbol

Derivations
⇒G "derives in one step (from G)"

If A→β ∈ P, and α, γ ∈ (N ∪ T)* then αAγ ⇒G αβγ

⇒G* "derives in many steps (from G)"

If αi ∈ (N ∪ T)*, m ≥ 1 and α1 ⇒G α2 ⇒G α3 ⇒G α4 … ⇒G αm

 then α1 ⇒G* αm

⇒G* is the reflexive and transitive closure of ⇒G

Languages

ℒ(G) = { w | w ∈ T* and S ⇒G* w }

L is a CF language if it is ℒ(G) for a
CFG G.

G1 and G2 are equivalent iff
ℒ(G1)=ℒ(G2).

Example
L = { 0, 1, 00, 11, 000, 111, 0000, 1111, … }

G = ({0,1}, {S, ZeroList, OneList},
{S -> ZeroList | OneList,
ZeroList -> 0 | 0 ZeroList,
OneList -> 1 | 1 OneList },
S)

Derivations from G
Derivation of 0 0 0 0
S => ZeroList
 => 0 ZeroList
 => 0 0 ZeroList
 => 0 0 0 ZeroList
 => 0 0 0 0

Derivation of 1 1 1
S => OneList
 => 1 OneList
 => 1 1 OneList
 => 1 1 1

