
CSE443
Compilers
Dr. Carl Alphonce

alphonce@buffalo.edu
343 Davis Hall

Phases of
a

compiler

Figure 1.6,
page 5 of text

Syntactic
structure

GitHub classroom

Accept assignment (link in Piazza) to create repo

Part 1 of project

Four files likely:

- Makefile

- lexicalStructure.lex (input to FLEX)

- typedefs.h (definitions of token values)

- runner.c (containing a main that calls yylex())

This structure will change slightly for part 2

Makefile

- targets: lex.yy.c, lexer, clean

lexicalStructure.lex (input to FLEX)

- regular expressions + supporting code

typedefs.h (definitions of token values)

 #define ID 101

runner.c (containing a main that calls yylex())

Readings

Chapter 2 gives good overview of the
compilation process.

Chapters 3 through 9 give details.

Follow along in textbook as we go though topics,
and use it as a reference for details as you work
through the project.

Lexical Analysis

Chapter 3

- 3.5 discusses the LEX tool. Read the FLEX
manual as that's the tool you'll be using.

- 3.6 and 3.7 go into more detail on NFA to DFA
conversion.

Syntax Analysis

Chapters 4 and 5

- We'll take a fair bit of time working through
this material

- Consult text on an as-needed basis for details

- 4.9 discusses the YACC tool. Read the BISON
manual as that's the tool you'll be using.

5

Language terminology
(from Sebesta (10th ed), p. 115)

• A language is a set of strings of symbols, drawn from
some finite set of symbols (called the alphabet of the
language).

• “The strings of a language are called sentences”
• “Formal descriptions of the syntax […] do not include

descriptions of the lowest-level syntactic units […] called
lexemes.”

• “A token of a language is a category of its lexemes.”
• Syntax of a programming language is often presented in

two parts:
– regular grammar for token structure (e.g. structure of identifiers)
– context-free grammar for sentence structure

6

Examples of lexemes and tokens
Lexemes Tokens

foo identifier
i identifier
sum identifier
-3 integer_literal
10 integer_literal
1 integer_literal
; statement_separator
= assignment_operator

7

Backus-Naur Form (BNF)
• Backus-Naur Form (1959)

– Invented by John Backus to describe ALGOL 58, modified by
Peter Naur for ALGOL 60

– BNF is equivalent to context-free grammar
– BNF is a metalanguage used to describe another language,

the object language
– Extended BNF: adds syntactic sugar to produce more

readable descriptions

8

BNF Fundamentals
• Sample rules [p. 128]

<assign> → <var> = <expression>
<if_stmt> → if <logic_expr> then <stmt>
<if_stmt> → if <logic_expr> then <stmt> else <stmt>

• non-terminals/tokens surrounded by < and >
• lexemes are not surrounded by < and >
• keywords in language are in bold
• → separates LHS from RHS
• | expresses alternative expansions for LHS

<if_stmt> → if <logic_expr> then <stmt>
| if <logic_expr> then <stmt> else <stmt>

• = is in this example a lexeme

tokens

singleton token represented by its sole lexeme

9

BNF Rules
• A rule has a left-hand side (LHS) and a right-hand

side (RHS), and consists of terminal and
nonterminal symbols

• A grammar is often given simply as a set of rules
(terminal and non-terminal sets are implicit in
rules, as is start symbol)

10

Describing Lists
• There are many situations in which a

programming language allows a list of items
(e.g. parameter list, argument list).

• Such a list can typically be as short as empty
or consisting of one item.

• Such lists are typically not bounded.
• How is their structure described?

11

Describing lists
• The are described using recursive rules.
• Here is a pair of rules describing a list of

identifiers, whose minimum length is one:
<ident_list> -> ident

| ident , <ident_list>
• Notice that ‘,’ is part of the object language (the

language being described by the grammar).

Sample grammars
http://www.schemers.org/Documents/Standards/
R5RS/HTML/

https://sicstus.sics.se/sicstus/docs/latest4/
html/sicstus.html/
ref_002dsyn_002dsyn_002dsen.html

https://docs.oracle.com/javase/specs/jls/se13/
html/jls-19.html

http://blackbox.userweb.mwn.de/Pascal-EBNF.html

https://cs.wmich.edu/~gupta/teaching/cs4850/
sumII06/The%20syntax%20of%20C%20in%20Backus-
Naur%20form.htm

http://www.schemers.org/Documents/Standards/R5RS/HTML/
http://www.schemers.org/Documents/Standards/R5RS/HTML/
https://sicstus.sics.se/sicstus/docs/latest4/html/sicstus.html/ref_002dsyn_002dsyn_002dsen.html
https://sicstus.sics.se/sicstus/docs/latest4/html/sicstus.html/ref_002dsyn_002dsyn_002dsen.html
https://sicstus.sics.se/sicstus/docs/latest4/html/sicstus.html/ref_002dsyn_002dsyn_002dsen.html
https://docs.oracle.com/javase/specs/jls/se13/html/jls-19.html
https://docs.oracle.com/javase/specs/jls/se13/html/jls-19.html
http://blackbox.userweb.mwn.de/Pascal-EBNF.html
https://cs.wmich.edu/~gupta/teaching/cs4850/sumII06/The%20syntax%20of%20C%20in%20Backus-Naur%20form.htm
https://cs.wmich.edu/~gupta/teaching/cs4850/sumII06/The%20syntax%20of%20C%20in%20Backus-Naur%20form.htm

Observations
Every string of symbols in a derivation is a
sentential form.
A sentence is a sentential form that has only
terminal symbols.
A leftmost derivation is one in which the
leftmost nonterminal in each sentential form
is the one that is expanded
A derivation can be leftmost, rightmost, or
neither.

Programming Language
Grammar Fragment

<program> -> <stmt-list>
<stmt-list> -> <stmt> | <stmt> ; <stmt-list>
<stmt> -> <var> = <expr>
<var> -> a | b | c | d
<expr> -> <term> + <term> | <term> - <term>
<term> -> <var> | const

Notes:
<var> is defined in the grammar
const is not defined in the grammar

rightmost derivation

derivations of
a = b + const

leftmost derivation

<program> => <stmt-list>
 => <stmt>
 => <var> = <expr>
 => a = <expr>
 => a = <term> + <term>
 => a = <var> + <term>
 => a = b + <term>
 => a = b + const

<program> => <stmt-list>
 => <stmt>
 => <var> = <expr>
 => <var> = <term> + <term>
 => <var> = <term> + const
 => <var> = <var> + const
 => <var> = b + const
 => a = b + const

<program> -> <stmt-list>
<stmt-list> -> <stmt> | <stmt> ; <stmt-list>
<stmt> -> <var> = <expr>
<var> -> a | b | c | d
<expr> -> <term> + <term> | <term> - <term>
<term> -> <var> | const

grammar

Parse tree
<program>

<stmt-list>

<stmt>

 <var> = <expr>

 a <term> + <term>

 <var> const

 b Sam
e p

ars
e t

ree

reg
ard

les
s o

f

de
riv

ati
on

Parse trees and compilation

A compiler builds a parse tree for a program
(or for different parts of a program)
If the compiler cannot build a well-formed
parse tree from a given input, it reports a
compilation error
The parse tree serves as the basis for
semantic interpretation/translation of the
program.

Ambiguity in grammars

A grammar is ambiguous if and only if it
generates a sentential form that has two
or more distinct parse trees.
Operator precedence and operator
associativity are two examples of ways in
which a grammar can provide unambiguous
interpretation.

Operator precedence ambiguity

The following grammar is ambiguous:

<expr> -> <expr> <op> <expr> | const
<op> -> - | /

The grammar treats the two operators, '-' and
'/', equivalently

26

An ambiguous grammar
for arithmetic expressions

<expr> -> <expr> <op> <expr> | const
<op> -> / | -

<expr>

<expr> <expr>

<expr> <expr>

<expr>

<expr> <expr>

<expr> <expr>

<op>

<op>

<op>

<op>

const const const const const const- -/ /

<op>

Disambiguating the grammar

This grammar (fragment) is unambiguous:

<expr> -> <expr> - <term> | <term>
<term> -> <term> / const | const

The grammar treats the two operators, '-' and '/',
differently.

In this grammar, '/' has higher precedence than
'-'. Within a given subtree, deeper nodes are
evaluated before shallower notes.

28

Disambiguating the grammar
• If we use the parse tree to indicate precedence levels of the

operators, we can remove the ambiguity.
• The following rules give / a higher precedence than -

<expr> -> <expr> - <term> | <term>
<term> -> <term> / const | const

<expr>

<expr> <term>

<term> <term>

const const

const/

-

30

Derivation of
2+5*3

using C grammar

<expression>

<conditional-expression>

<assignment-expression>

<logical-OR-expression>

<inclusive-OR-expression>

<AND-expression>

<logical-AND-expression>

<exclusive-OR-expression>

<equality-expression>

<relational-expression>

<shift-expression>

<additive-expression>

<additive-expression> + <multiplicative-expression>

<multiplicative-expression>

<cast-expression>

<unary-expression>

<postfix-expression>

<primary-expression>

<constant>

2

<multiplicative-expression> <cast-expression>

<unary-expression>

<postfix-expression>

<primary-expression>

<constant>

3

<cast-expression>

<unary-expression>

<postfix-expression>

<primary-expression>

<constant>

5

*

