CSE4-4-3
Com p tlers
Dr. Carl Ai.pkom':@.

alphonce@buffalo.edu
343 Davis Hall

Phases of
Qa

aompiiﬁ.\“

Flgure 1.6
page § of bext

Svm&aﬁ:&if:

skructkure

Symbol Table

character stream

Y

Lexical Analyzer

token étream

Y

Syntax Analyzer

[
syntax tree

'

Semantic Analyzer

1
syntax tree

Y

Intermediate Code Generator

|
intermediate representation

Machine-Independent
Code Optimizer

|
intermediate representation

Code Generator

|
target-machine code

Y

Machine-Dependent
Code Optimizer

|
target-machine code

Y

CriktHub classroom

o Accept assignment (link in Plazza) ko creake repo

Part 1 of project

o Four files Likely:
- Makefile
- lexicalStructurelex (input to FLEX)
- %vpad@fs‘h (definitions of token values)
- runnerc (containing a main that calls 331@&())

o This structure will change slightly for part 2

- Malkefile

- targets: Lex.vv.t, lexer, clean

' lexicalStructurelex (input to FLEX)

- regular expressions + supporting code

Ejped@fs.h (definitions of token values)
#define ID 101

- runinerc (containing a main that calls vvtex())

Readings

o Chapter 2 gives good overview of the
compilation process.

o Chag%ers 3 through 9 give dekails,

o Follow along in textboolk as we qo though Ec:pi&s,
and use ik as a reference for details as you work
through the Frq}ea&

Lexical Amo&vs&s

2 Ckap%er 3

~ 3.5 discusses the LEX tool. Read the FLEX
manual as that's the tool you'll be using.

- 3.6 and 37 qo into more detail on NFA to DFA
CONVETSLOn

Sv&\%ax Amaivsis

o Ckag%ers 4 and 8

- We'll take a fair bit of time working through
this material

- Consult text on an as—needed basis for details

- 49 discusses the YACC tool. Read the BISON
manual as that's the tool you'll be using.

Gghg yniversity ot mutrate . <cse @’b%&f
Language terminology

(from Sebesta (10" ed), p. 115)

A language 1s a set of strings of symbols, drawn from
some finite set of symbols (called the alphabet of the
language).

“The strings of a language are called sentences ”

“Formal descriptions of the syntax [...] do not include
descriptions of the lowest-level syntactic units [...] called
lexemes.”

“A token of a language 1s a category of its lexemes.”

Syntax of a programming language 1s often presented in
two parts:

— regular grammar for token structure (e.g. structure of 1dentifiers)
— context-free grammar for sentence structure

xse@b%fzr

Examples of lexemes and rokens

foo
sum

= |assignment operator

.cseé’b%/zf

Backus-Naur Form (BNF)

* Backus-Naur Form (1959)

— Invented by John Backus to describe ALGOL 58, modified by
Peter Naur for ALGOL 60

— BNF 1s equivalent to context-free grammar

— BNF 1s a metalanguage used to describe another language,
the object language

— Extended BNF: adds syntactic sugar to produce more
readable descriptions

% University at Buffalo
The State University of New York

BNF Fundamentals

Sample rules [p. 128]
<assign> - <var> = <expression>
<if stmt> - if <logic expr> then <stmt>
<if stmt> - if <logic expr> then <stmt> else <stmt>

non-terminals surrounded by < and >

tokens are not surrounded by < and >
keywords in language are in bold
— separates LHS from RHS

| expresses alternative expansions for LHS
<if stmt> - if <logic expr> then <stmt>
| 1f <logic expr> then <stmt> else <stmt>

= 1s in this example a singleton token represented by its sole lexeme

.cseé’b%/zf

BNF Rules

* A rule has a left-hand side (LHS) and a right-hand
side (RHS), and consists of terminal and
nonterminal symbols

e A grammar 1s often given simply as a set of rules
(terminal and non-terminal sets are implicit in
rules, as 1s start symbol)

.cseé’b%/zf

Describing Lists

There are many situations in which a
programming language allows a list of 1tems
(e.g. parameter list, argument list).

Such a list can typically be as short as empty
or consisting of one item.

Such lists are typically not bounded.

How 1s their structure described?

Describing lists

* The are described using recursive rules.

* Here 1s a pair of rules describing a list of
identifiers, whose minimum length 1s one:

<ident list> -> 1ident
| ident , <ident list>

* Notice that ¢, ’ 1s part of the object language (the
language being described by the grammar).

Sampm Qramriars

http://www.schemers.org/Documents/Standards/
R5RS/HTML/

https://sicstus.sics.se/sicstus/docs/latestd/
html/sicstus.html/
ref _002dsyn_002dsyn_002dsen.html

https://docs.oracle.com/javase/specs/jls/sel3/
html/]1s=19.html

http://blackbox.userweb.mwn.de/Pascal-EBNF.html

https://cs.wmich.edu/~gupta/teaching/cs4850/
sumlIIf6/The%s20syntax%s2001%20C%201n%20Backus—
Naurs%s20form. htm

http://www.schemers.org/Documents/Standards/R5RS/HTML/
http://www.schemers.org/Documents/Standards/R5RS/HTML/
https://sicstus.sics.se/sicstus/docs/latest4/html/sicstus.html/ref_002dsyn_002dsyn_002dsen.html
https://sicstus.sics.se/sicstus/docs/latest4/html/sicstus.html/ref_002dsyn_002dsyn_002dsen.html
https://sicstus.sics.se/sicstus/docs/latest4/html/sicstus.html/ref_002dsyn_002dsyn_002dsen.html
https://docs.oracle.com/javase/specs/jls/se13/html/jls-19.html
https://docs.oracle.com/javase/specs/jls/se13/html/jls-19.html
http://blackbox.userweb.mwn.de/Pascal-EBNF.html
https://cs.wmich.edu/~gupta/teaching/cs4850/sumII06/The%20syntax%20of%20C%20in%20Backus-Naur%20form.htm
https://cs.wmich.edu/~gupta/teaching/cs4850/sumII06/The%20syntax%20of%20C%20in%20Backus-Naur%20form.htm

Observations

Every string of symbols in a derivation is a
sentential form.

A senbence is a sentential form that has only
terminal symbols.

A Llefbwiost derivation is one i which the
leftmost nonkerminal in each senbential form
is the one that is expanded

A derivation can be leftwost, rightmost, or
neither.

Programming Lanquage
Grrammar Fragment

<program> —> <stmt-list>

<stmt-list> —> <stmt> | <stmt> ; <stmt-list>
<stmt> —> <var> = <expr>

<var> —>a | b | c | d

<expr> —> <term> + <term> | <term> - <term>
<term> -> <var> | const

Notes:
<var> 1s defined 1n the grammar
const 1s not defined 1in the grammar

derivations of
a = b + copnst

leftmost derivakion rightmost derivation
<program> => <stmt-list> <program> => <stmt-list>

=> <stmt> => <stmt>
=> <var> = <expr> => <var> = <expr>
=> a = <expr> => <var> = <term> + <term>
=> a = <term> + <term> => <var> = <term> + const
=> a = <var> + <term> => <var> = <var> + const
=> a =b + <term> => <var> = b + const
=> a = b + const => a = b + const

Parse bree

<program>
oy
<stmt-list>
i
<stmt>

= <expr>
L ™
<term> + <term>
i i
<var> const
i
b

Parse krees and tampitaﬁam

o A compiler builds a parse tree for a program
(or for different parts of a program)

o 1f the compiler cannot build a well-formed
parse tree from a given input, it reports a
compilation error

o The parse tree serves as the basis for
semantic interpretation/transtation of the
program,

Ambiguity tn grammars

o A grammar is ambiquous i and only if it
generates a sentential form that has two
or more distinct parse trees.

® Operator precedence and operator
associativity are two examples of ways in
which a gramwmar can provid& unanmbiquous
interpretation,

O-F?eraﬁor Preced@w\&e ambigui&v

The following grammar is ambiquous:

<expr> —> <expr> <op> <expr> | const
<Qp>&> =1/

The grammar treats the two operators, '-' and
7 equivai.emﬂj

G
The State

iversity at Buffalo
e University of New York

An ambiguous grammar

.cseé’b%/zf

for arithmetic expressions

<expr> -> <expr> <op> <expr> |

<op> -> / | =

<expr>

/NN

<expr>

/N

<expr> <op> <expr>

<op> <expr>

const const /| const

const

<expr>

N

<expr> <op> <expr>

/1N

<expr> <op> <expr>

Vo

const const /| const

Disambiquating the grammar

This grammar (fragment) is unambiquous:

<expr> —> <expr> - <term> | <term>
<term> —> <term> / const | const

The gramwmar treats the two OP@J"&&OT’S, '~ and '/,
diﬂ@.renﬂva

In this grammar, '/' has higher precedence than

¢!

. Within a given subtree, deeper nodes are
evaluated before shallower notes.

G sty s mavete cse @’b%&f
Disambiguating the grammar

« If we use the parse tree to indicate precedence levels of the
operators, we can remove the ambiguity.

« The following rules give / a higher precedence than -

<expr> -> <expr> - <term> | <term>
<term> -> <term> / const | const

<expr>

AN

<expr> - <term>
| SN T

<term> <term> /| const
| |

const const

s 2

University at Buffalo <expression>
The State University of New York 1
<assignment-expression>
|
<conditional-expression>
1
<logical-OR-expression>
|
<logical-AND-expression>
|
<inclusive-OR-expression>
|
<exclusive-OR-expression>
|
<AND-expression>
|
<equality-expression>
1
<relational-expression>
1
<shift-expression>
1
<additive-expression>
— 1
<additive-expression> +
|
<multiplicative-expression>
1
<cast-expression>
1
<unary-expression>
1
<postfix-expression>
1
<primary-expression>
1
<constant>
1
2

\

.cseé?b

Derivation of
2+5*%3

using C grammar

<multiplicative-expression>

/
<multiplicative-expression>

|
<cast-expression>
|
<unary-expression>
|
<postfix-expression>
|
<primary-expression>
|
<constant>
|
5

| e
<cast-expression>
|
<unary-expression>

|
<postfix-expression>

|
<primary-expression>

|

<constant>
|
3

