COMPLETS

Dr. Carl Alphonce alphonce@buffalo.edu 343 Davis Hall

Figure 1.6, page 5 of text

	character stream ↓
Syntactic structure	Lexical Analyzer
	token stream
	Syntax Analyzer
	syntax tree
	Semantic Analyzer
	syntax tree
Symbol Table	Intermediate Code Generator
	intermediate representation
	Machine-Independent Code Optimizer
	intermediate representation
	Code Generator
	target-machine code
	Machine-Dependent Code Optimizer
	target-machine code

cse@buffalo

Recursion and parentheses

- To generate 2+3*4 or 3*4+2, the parse tree is built so that + is higher in the tree than *.
- To force an addition to be done prior to a multiplication we must use parentheses, as in (2+3)*4.
- Grammar captures this in the recursive case of an expression, as in the following grammar fragment:

 $\langle expr \rangle \rightarrow \langle expr \rangle + \langle term \rangle | \langle term \rangle$

- <term> \rightarrow <term> * <factor> | <factor>
- <factor> \rightarrow <variable> | <constant> | "(" <expr> ")"

- o Given a regular language L we can always construct a context free grammar G such that $L = \mathcal{L}(G)$.
- For every regular language L there is an NFA $M = (S, \Sigma, \delta, F, s_0)$ such that $L = \mathcal{L}(M)$.
- O Build G = (N,T,P,So) as follows:
 - $o N = \{ N_s \mid s \in S \}$
 - $T = \{ t \mid t \in \Sigma \}$
 - 𝔅 If δ(i,a)=j, then add N_i → a N_j to P
 - 𝔅 If i ∈ F, then add N_i → ε to P
 - @ So = Nso

- Show that not all CF languages are regular.
- To do this we only need to
 demonstrate that there exists a CFL
 that is not regular.
- Consider L = { anbn | n ≥ 1 }
- o Claim: $L \in CFL$, $L \notin RL$

Relevance? Nesled { and }

public class Foo {
 public static void main(String[] args) {
 for (int i=0; i<args.length; i++) {
 if (args[I].length() < 3) { ... }
 else { ... }</pre>

}

Context Free Grammars and parsing

- O(n³) algorithms to parse any CFG
 exist
- Programming Language constructs
 can generally be parsed in O(n)

Topedown fr bollomep

- A top-down parser builds a parse tree from
 root to the leaves
 - o easier to construct by hand
- A bottom-up parser builds a parse tree from leaves to root
 - Handles a larger class of grammars
 - @ tools (yacc/bison) build bottom-up parsers

Our presentation First top-down, then bottom-up

@ Present top-down parsing first.

- Introduce necessary vocabulary and data structures.
- Move on to bottom-up parsing second.

vocab: Look-ahead

 The current symbol being scanned in the input is called the lookahead symbol.

Top-down parsing

- Start from grammar's start symbol
 Build parse tree so its yield matches input
- ø predictive parsing: a simple form of recursive descent parsing

- If α∈(NUT)* then FIRST(α) is "the set of terminals that appear as the first symbols of one or more strings of terminals generated from α."
 [p. 64]
- $o Ex: If A \rightarrow a \beta$ then $FIRST(A) = \{a\}$

• First sets are considered when there are two (or more) productions to expand $A \in N$: $A \rightarrow \alpha \mid \beta$

Eproductions

If Lookahead symbol does not match first set,
 use ε production not to advance Lookahead
 symbol but instead "discard" non-terminal:

optexpt -> expr ε

• "While parsing optexpr, if the Lookahead symbol is not in FIRST(expr), then the ε production is used" [p. 66]

Left recursion

 Grammars with left recursion are problematic for top-down parsers, as they lead to infinite regress.

Left recursion example expr Grammar: Aα term expr -> expr + term term term term -> id @ FIRST sets for rule term alternatives are not disjoint: expr @ FIRST(expr) = id term @ FIRST(term) = id

Aα

Rewriting grammar to remove left recursion

@ expr rule is of form A -> A α | β

o Rewrite as two rules

Ø A -> β R

 $R \rightarrow \alpha R \epsilon$

Ambiguily

a A grammar G is ambiguous if $\exists \sigma \in \mathcal{L}(G)$ that has two or more distinct parse trees. Example - dangling 'else': if <expr> then if <expr> then <stmt> else <stmt> if <expr> then { if <expr> then <stmt> } else <stmt> if <expr> then { if <expr> then <stmt> else <stmt> }

dangling else resolution

- usually resolved so else matches closest if then
- we can re-write grammar to force this
 interpretation (ms = matched statement, os =
 open statement)
 - <stmt> -> <ms> <os>
 - <ms> -> if <expr> then <ms> else <ms> [...
 - <05> -> if <expr> then <stmt> | if <expr> then <ms> else <0s>

Left factoring

- If two (or more) rules share a prefix then their FIRST sets do not distinguish between rule alternatives.
- If there is a choice point later in the rule, rewrite rule by factoring common prefix
- Example: rewrite

 $A \rightarrow \alpha \beta_1 \mid \alpha \beta_2$

0 as

A -> α A'

 $A' \rightarrow \beta_1 \mid \beta_2$

```
Predictive parsing:
     a special case of recursive-descent
parsing that does not require backtracking
Each non-terminal A \in N has an associated procedure:
void A()
  choose an A-production A -> X1 X2 ... Xk
  for (i = 1 \text{ to } k)
     if (xi \in N)
       call xi()
     else if (xi = current input symbol) {
       advance input to next symbol
     else error
```

Predictive parsing: a special case of recursive-descent parsing that does not require backtracking Each non-terminal $A \in N$ has an associated procedure: void A()choose an A-production A -> X1 X2 ... XK for (i = 1 to k)There is non-determinism if $(xi \in N)$ in choice of production. If "wrong" choice is made call xi() the parser will need to revisit its choice by else if (xi = current input symbol) { backtracking. advance input to next symbol A predictive parser can always make the correct else error choice here.

FICST(X)

- if X ∈ T then FIRST(X) = { X }
- o if $X \in N$ and $X \rightarrow Y_1 Y_2 \dots Y_k \in P$ for $k \ge 1$, then
 - add a ∈ T to FIRST(X) if ∃i s.t. a ∈ FIRST(Y_i) and ε ∈ FIRST(Y_j) ∀ j < i(i.e. Y₁ Y₂ ... Y_{i-1} ⇒* ε)

 - 𝔅 if X → ε ∈ P, then add ε to FIRST(X)

- Place \$ in FOLLOW(S), where S is the start symbol
 (\$ is an end marker)
- if A -> $\alpha B \in P$ or A -> $\alpha B\beta \in P$ where $\varepsilon \in FIRST(\beta)$, then everything in FOLLOW(A) is in FOLLOW(B)

Table-driven predictive parsing Algorithm 4.32 (p. 224)

- o INPUT: Grammar G = (N,T,P,S)
- o OUTPUT: Parsing table M
- For each production A -> α of G:
 - 1. For each terminal $\alpha \in FIRST(\alpha)$, add $A \rightarrow \alpha$ to $M[A,\alpha]$
 - 2. If $\varepsilon \in FIRST(\alpha)$, then for each terminal b in FOLLOW(A), add A -> α to M[A,b]
 - 3. If $\varepsilon \in FIRST(\alpha)$ and $\$ \in FOLLOW(A)$, add $A \rightarrow \alpha$ to M[A,\$]