
CSE443
Compilers
Dr. Carl Alphonce

alphonce@buffalo.edu
343 Davis Hall

Phases of
a

compiler

Figure 1.6,
page 5 of text

Syntactic
structure

31

Recursion and parentheses

• To generate 2+3*4 or 3*4+2, the parse tree is built
so that + is higher in the tree than *.

• To force an addition to be done prior to a
multiplication we must use parentheses, as in
(2+3)*4.

• Grammar captures this in the recursive case of an
expression, as in the following grammar fragment:

<expr> à <expr> + <term> | <term>
<term> à <term> * <factor> | <factor>
<factor> à <variable> | <constant> | “(” <expr> “)”

RL ⊆ CFL
Given a regular language L we can always construct a
context free grammar G such that L = 𝓛(G).

For every regular language L there is an NFA M = (S,∑,𝛅,F,s0)
such that L = 𝓛(M).

Build G = (N,T,P,S0) as follows:

N = { Ns | s ∈ S }

T = { t | t ∈ ∑ }

If 𝛅(i,a)=j, then add Ni → a Nj to P

If i ∈ F, then add Ni → 𝜀 to P

S0 = Nso

RL ⊊ CFL
Show that not all CF languages are
regular.

To do this we only need to
demonstrate that there exists a CFL
that is not regular.

Consider L = { anbn | n ≥ 1 }

Claim: L ∈ CFL, L ∉ RL

Relevance?
Nested '{' and '}'

public class Foo {
 public static void main(String[] args) {
 for (int i=0; i<args.length; i++) {
 if (args[I].length() < 3) { … }

else { … }
 }

 }
}

Context Free Grammars
and parsing

O(n3) algorithms to parse any CFG
exist

Programming language constructs
can generally be parsed in O(n)

Top-down &
bottom-up

A top-down parser builds a parse tree from
root to the leaves

easier to construct by hand

A bottom-up parser builds a parse tree from
leaves to root

Handles a larger class of grammars

tools (yacc/bison) build bottom-up parsers

Our presentation
First top-down, then bottom-up

Present top-down parsing first.

Introduce necessary vocabulary and
data structures.

Move on to bottom-up parsing
second.

vocab: look-ahead
The current symbol being scanned
in the input is called the lookahead
symbol.

token token token token token token

PARSER

Top-down parsing

Start from grammar's start symbol

Build parse tree so its yield matches
input

predictive parsing: a simple form of
recursive descent parsing

Basic idea:
try to build a derivation

S =>* input
S =>* 𝛼

 …?…

 =>* input
...?...

S

input

𝛼

If 𝛼∈(NUT)* then FIRST(𝛼) is "the set of
terminals that appear as the first symbols of one
or more strings of terminals generated from 𝛼."
[p. 64]

Ex: If A -> a 𝛽 then FIRST(A) = {a}

Ex. If A -> a 𝛽 | B then FIRST(A) = {a} ∪ FIRST(B)

FIRST(𝛼)

FIRST(𝛼)

First sets are considered when there
are two (or more) productions to
expand A ∈ N: A -> 𝛼 | 𝛽

Predictive parsing requires that
FIRST(𝛼) ∩ FIRST(𝛽) = ∅

𝜀 productions

If lookahead symbol does not match first set,
use 𝜀 production not to advance lookahead
symbol but instead "discard" non-terminal:

optexpt -> expr | 𝜀

"While parsing optexpr, if the lookahead
symbol is not in FIRST(expr), then the 𝜀
production is used" [p. 66]

Left recursion
Grammars with left recursion are
problematic for top-down parsers, as
they lead to infinite regress.

Left recursion example

Grammar:

expr -> expr + term | term

term -> id

FIRST sets for rule
alternatives are not disjoint:

FIRST(expr) = id

FIRST(term) = id

expr

+ termexpr

+ termexpr

+ term

term

expr

Left recursion example

Grammar:

expr -> expr + term | term

term -> id

FIRST sets for rule
alternatives are not disjoint:

FIRST(expr) = id

FIRST(term) = id

expr

+ termexpr

+ termexpr

+ term

term

𝛽 A𝛼 A𝛼 A𝛼

expr

𝛽A 𝛼

Rewriting grammar to
remove left recursion

expr rule is of form A -> A 𝛼 | 𝛽

Rewrite as two rules

A -> 𝛽 R

R -> 𝛼 R | 𝜀

Back to example

Grammar is re-
written as

expr -> term R

R -> + term R | 𝜀

expr

R

+ term

term

𝛽 𝛼 𝛼 𝛼

R

+ term R

+ term

𝜀

R

Ambiguity

A grammar G is ambiguous if ∃ 𝛔 ∈ 𝓛(G)
that has two or more distinct parse trees.

Example - dangling 'else':

if <expr> then if <expr> then <stmt> else <stmt>

if <expr> then { if <expr> then <stmt> } else <stmt>

if <expr> then { if <expr> then <stmt> else <stmt> }

dangling else resolution

usually resolved so else matches closest if-
then

we can re-write grammar to force this
interpretation (ms = matched statement, os =
open statement)

<stmt> -> <ms> | <os>

<ms> -> if <expr> then <ms> else <ms> | …

<os> -> if <expr> then <stmt> | if <expr> then <ms> else <os>

Left factoring
If two (or more) rules share a prefix then their
FIRST sets do not distinguish between rule
alternatives.

If there is a choice point later in the rule, rewrite
rule by factoring common prefix

Example: rewrite

A -> 𝛼 𝛽1 | 𝛼 𝛽2

as

A -> 𝛼 A'

A' -> 𝛽1 | 𝛽2

Predictive parsing:
a special case of recursive-descent

parsing that does not require backtracking

Each non-terminal A ∈ N has an associated procedure:

void A() {

choose an A-production A -> X1 X2 … Xk

for (i = 1 to k) {

if (xi ∈ N) {

call xi()

}

else if (xi = current input symbol) {

advance input to next symbol

}

else error

}

}

Predictive parsing:
a special case of recursive-descent

parsing that does not require backtracking

Each non-terminal A ∈ N has an associated procedure:

void A() {

choose an A-production A -> X1 X2 … Xk

for (i = 1 to k) {

if (xi ∈ N) {

call xi()

}

else if (xi = current input symbol) {

advance input to next symbol

}

else error

}

}

There is non-determinism
in choice of production.

If "wrong" choice is made
the parser will need to

revisit its choice by
backtracking.

A predictive parser can
always make the correct

choice here.

FIRST(X)

if X ∈ T then FIRST(X) = { X }

if X ∈ N and X -> Y1 Y2 … Yk ∈ P for k≥1, then

add a ∈ T to FIRST(X) if ∃i s.t. a ∈ FIRST(Yi) and
𝜀 ∈ FIRST(Yj) ∀ j < i (i.e. Y1 Y2 … Yi-1 ⇒* 𝜀)

if 𝜀 ∈ FIRST(Yj) ∀ j <= k add 𝜀 to FIRST(X)

if X -> 𝜀 ∈ P, then add 𝜀 to FIRST(X)

FOLLOW(X)

Place $ in FOLLOW(S), where S is the start symbol
($ is an end marker)

if A -> 𝛼B𝛽 ∈ P, then FIRST(𝛽) - {𝜀} is in FOLLOW(B)

if A -> 𝛼B ∈ P or A -> 𝛼B𝛽 ∈ P where 𝜀 ∈ FIRST(𝛽),
then everything in FOLLOW(A) is in FOLLOW(B)

Table-driven predictive parsing
Algorithm 4.32 (p. 224)

INPUT: Grammar G = (N,T,P,S)

OUTPUT: Parsing table M

For each production A -> 𝛼 of G:

1. For each terminal a ∈ FIRST(𝛼), add A -> 𝛼 to
M[A,a]

2. If 𝜀 ∈ FIRST(𝛼), then for each terminal b in
FOLLOW(A), add A -> 𝛼 to M[A,b]

3. If 𝜀 ∈ FIRST(𝛼) and $ ∈ FOLLOW(A), add A -> 𝛼 to
M[A,$]

