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Recursion and parentheses

• To generate 2+3*4 or 3*4+2, the parse tree is built 
so that + is higher in the tree than *.

• To force an addition to be done prior to a 
multiplication we must use parentheses, as in 
(2+3)*4.

• Grammar captures this in the recursive case of an 
expression, as in the following grammar fragment:

<expr> à <expr> + <term> | <term>
<term> à <term> * <factor> | <factor>
<factor> à <variable> | <constant> | “(” <expr> “)”



RL ⊆ CFL
Given a regular language L we can always construct a 
context free grammar G such that L = 𝓛(G). 

For every regular language L  there is an NFA M = (S,∑,𝛅,F,s0) 
such that L = 𝓛(M). 

Build G = (N,T,P,S0) as follows: 

N = { Ns | s ∈ S } 

T = { t | t ∈ ∑ } 

If 𝛅(i,a)=j, then add Ni → a Nj to P 

If i ∈ F, then add Ni → 𝜀 to P 

S0 = Nso



RL ⊊ CFL
Show that not all CF languages are 
regular. 

To do this we only need to 
demonstrate that there exists a CFL 
that is not regular. 

Consider L = { anbn | n ≥ 1 } 

Claim: L ∈ CFL, L ∉ RL



Relevance? 
Nested '{' and '}'

public class Foo { 
  public static void main(String[] args) { 
    for (int i=0; i<args.length; i++) { 
        if (args[I].length() < 3) { … } 

else { … } 
 } 

 } 
}



Context Free Grammars 
and parsing

O(n3) algorithms to parse any CFG 
exist 

Programming language constructs 
can generally be parsed in O(n)



Top-down & 
bottom-up

A top-down parser builds a parse tree from 
root to the leaves 

easier to construct by hand 

A bottom-up parser builds a parse tree from 
leaves to root 

Handles a larger class of grammars 

tools (yacc/bison) build bottom-up parsers



Our presentation 
First top-down, then bottom-up

Present top-down parsing first. 

Introduce necessary vocabulary and 
data structures. 

Move on to bottom-up parsing 
second.



vocab: look-ahead
The current symbol being scanned 
in the input is called the lookahead 
symbol.

token token token token token token

PARSER



Top-down parsing

Start from grammar's start symbol 

Build parse tree so its yield matches 
input 

predictive parsing: a simple form of 
recursive descent parsing



Basic idea: 
try to build a derivation 

S =>* input
S =>* 𝛼 

    …?… 

  =>* input
...?...

S

input

𝛼



If 𝛼∈(NUT)* then FIRST(𝛼) is "the set of 
terminals that appear as the first symbols of one 
or more strings of terminals generated from 𝛼." 
[p. 64] 

Ex: If A -> a 𝛽 then FIRST(A) = {a} 

Ex. If A -> a 𝛽 | B then FIRST(A) = {a} ∪ FIRST(B)

FIRST(𝛼)



FIRST(𝛼)

First sets are considered when there 
are two (or more) productions to 
expand A ∈ N:  A -> 𝛼 | 𝛽 

Predictive parsing requires that 
FIRST(𝛼) ∩ FIRST(𝛽) = ∅



𝜀 productions

If lookahead symbol does not match first set, 
use 𝜀 production not to advance lookahead 
symbol but instead "discard" non-terminal: 

optexpt -> expr | 𝜀 

"While parsing optexpr, if the lookahead 
symbol is not in FIRST(expr), then the 𝜀 
production is used" [p. 66]



Left recursion
Grammars with left recursion are 
problematic for top-down parsers, as 
they lead to infinite regress.



Left recursion example

Grammar: 

expr -> expr + term | term 

term -> id 

FIRST sets for rule 
alternatives are not disjoint: 

FIRST(expr) = id 

FIRST(term) = id

expr

+ termexpr

+ termexpr

+ term

term

expr



Left recursion example

Grammar: 

expr -> expr + term | term 

term -> id 

FIRST sets for rule 
alternatives are not disjoint: 

FIRST(expr) = id 

FIRST(term) = id

expr

+ termexpr

+ termexpr

+ term

term

𝛽 A𝛼 A𝛼 A𝛼

expr

𝛽A 𝛼



Rewriting grammar to 
remove left recursion

expr rule is of form A -> A 𝛼 | 𝛽 

Rewrite as two rules 

A -> 𝛽 R 

R -> 𝛼 R | 𝜀



Back to example

Grammar is re-
written as 

expr -> term R 

R -> + term R | 𝜀

expr

R

+ term

term

𝛽 𝛼 𝛼 𝛼

R

+ term R

+ term

𝜀

R



Ambiguity

A grammar G is ambiguous if ∃ 𝛔 ∈ 𝓛(G) 
that has two or more distinct parse trees. 

Example - dangling 'else': 

if <expr> then if <expr> then <stmt> else <stmt> 

if <expr> then { if <expr> then <stmt> } else <stmt> 

if <expr> then { if <expr> then <stmt> else <stmt> }



dangling else resolution

usually resolved so else matches closest if-
then 

we can re-write grammar to force this 
interpretation (ms = matched statement, os = 
open statement) 

<stmt> -> <ms> | <os> 

<ms> -> if <expr> then <ms> else <ms> | … 

<os> -> if <expr> then <stmt> | if <expr> then <ms> else <os>



Left factoring
If two (or more) rules share a prefix then their 
FIRST sets do not distinguish between rule 
alternatives. 

If there is a choice point later in the rule, rewrite 
rule by factoring common prefix 

Example:  rewrite 

A -> 𝛼 𝛽1 | 𝛼 𝛽2 

as 

A -> 𝛼 A' 

A' -> 𝛽1 | 𝛽2



Predictive parsing: 
a special case of recursive-descent 

parsing that does not require backtracking

Each non-terminal A ∈ N has an associated procedure: 

void A() { 

choose an A-production A -> X1 X2 … Xk 

for (i = 1 to k) { 

if (xi ∈ N) { 

call xi() 

} 

else if (xi = current input symbol) { 

advance input to next symbol 

} 

else error 

} 

} 



Predictive parsing: 
a special case of recursive-descent 

parsing that does not require backtracking

Each non-terminal A ∈ N has an associated procedure: 

void A() { 

choose an A-production A -> X1 X2 … Xk 

for (i = 1 to k) { 

if (xi ∈ N) { 

call xi() 

} 

else if (xi = current input symbol) { 

advance input to next symbol 

} 

else error 

} 

} 

There is non-determinism 
in choice of production.  

If "wrong" choice is made 
the parser will need to 

revisit its choice by 
backtracking. 

A predictive parser can 
always make the correct 

choice here.  



FIRST(X)

if X ∈ T then FIRST(X) = { X } 

if X ∈ N and X -> Y1 Y2 … Yk ∈ P for k≥1, then 

add a ∈ T to FIRST(X) if ∃i s.t. a ∈ FIRST(Yi) and 
𝜀 ∈ FIRST(Yj) ∀ j < i ( i.e. Y1 Y2 … Yi-1 ⇒* 𝜀 ) 

if 𝜀 ∈ FIRST(Yj) ∀ j <= k add 𝜀 to FIRST(X) 

if X -> 𝜀 ∈ P, then add 𝜀 to FIRST(X)



FOLLOW(X)

Place $ in FOLLOW(S), where S is the start symbol 
($ is an end marker) 

if A -> 𝛼B𝛽 ∈ P, then FIRST(𝛽) - {𝜀} is in FOLLOW(B) 

if A -> 𝛼B ∈ P or A -> 𝛼B𝛽 ∈ P where 𝜀 ∈ FIRST(𝛽), 
then everything in FOLLOW(A) is in FOLLOW(B)



Table-driven predictive parsing 
Algorithm 4.32 (p. 224)

INPUT: Grammar G = (N,T,P,S) 

OUTPUT: Parsing table M 

For each production A -> 𝛼 of G: 

1. For each terminal a ∈ FIRST(𝛼), add A -> 𝛼 to 
M[A,a] 

2. If 𝜀 ∈ FIRST(𝛼), then for each terminal b in 
FOLLOW(A), add A -> 𝛼 to M[A,b] 

3. If 𝜀 ∈ FIRST(𝛼) and $ ∈ FOLLOW(A), add A -> 𝛼 to 
M[A,$]


