
CSE443
Compilers
Dr. Carl Alphonce

alphonce@buffalo.edu
343 Davis Hall

Phases of
a

compiler

Figure 1.6,
page 5 of text

Syntactic
structure

Bottom-up parsing

Top-down predictive parsing gave us a
quick overview of issues related to

parsing.

With this context we can more easily
describe bottom-up parsing.

Example grammar

E -> E + T
E -> T
T -> T * F
T -> F
F -> (E)
F -> id

Same expression grammar we
used for top-down presentation.

Terminology

If S ⇒*lm 𝛼 then we call 𝛼 a left-

sentential form of the grammar
(lm means leftmost)

If S ⇒*rm 𝛼 then we call 𝛼 a right-

sentential form of the grammar
(rm means rightmost)

handle
"Informally, a 'handle' is a substring that matches the
body of a production and whose reduction represents
one step along the reverse of a rightmost derivation."
[p. 235]

"Formally, if S ⇒*rm 𝛼A𝜔 ⇒rm 𝛼𝛽𝜔, then the production A

-> 𝛽 in the position following 𝛼 is a handle of 𝛼𝛽𝜔" [p.
235]

"Alternatively, a handle of a right-sentential form 𝛾 is
a production A -> 𝛽 and a position of 𝛾 where the
string 𝛽 may be found, such that replacing 𝛽 at that
position by A produces the previous right-sentential
form in a rightmost derivation of 𝛾." [p. 235]

As a picture

"A handle A -> 𝛽 in the parse tree for 𝛼𝛽𝜔" Fig
4.27 [p. 236]

S

𝛼 𝛽 𝜔

A

A rightmost derivation of the string

id * id

[p.235]

Rightmost derivation Production

E

⇒ T E -> T

⇒ T * F T -> T * F

⇒ T * id F -> id

⇒ F * id T -> F

⇒ id * id F -> id

E -> E + T
E -> T

Recall grammar
T -> T * F

T -> F
F -> (E)
F -> id

A bottom-up parse: what we're aiming for!

Table is reverse of that on previous slide.

figure 4.26 [p.235]

Right sentential form Handle Reducing production

id * id id F -> id

F * id F T -> F

T * id id F -> id

T * F T * F T -> T * F

T T E -> T

E

id * id has handle id

(or more formally F -> id is a handle)

figure 4.26 [p.235]

Right sentential form Handle Reducing production

id * id id F -> id

F * id F T -> F

T * id id F -> id

T * F T * F T -> T * F

T T E -> T

E

F * id has handle F

(or more formally T -> F is a handle)

figure 4.26 [p.235]

Right sentential form Handle Reducing production

id * id id F -> id

F * id F T -> F

T * id id F -> id

T * F T * F T -> T * F

T T E -> T

E

T * id has handle id

(or more formally F -> id is a handle after T *)

figure 4.26 [p.235]

Right sentential form Handle Reducing production

id * id id F -> id

F * id F T -> F

T * id id F -> id

T * F T * F T -> T * F

T T E -> T

E

T * F has handle T * F

(or more formally T -> T * F is a handle)

figure 4.26 [p.235]

Right sentential form Handle Reducing production

id * id id F -> id

F * id F T -> F

T * id id F -> id

T * F T * F T -> T * F

T T E -> T

E

T has handle T

(or more formally E -> T is a handle)

figure 4.26 [p.235]

Right sentential form Handle Reducing production

id * id id F -> id

F * id F T -> F

T * id id F -> id

T * F T * F T -> T * F

T T E -> T

E

What happens if we reduce
something that's not a handle?

Right sentential form Handle Reducing production

id * id id F -> id

F * id F T -> F

T * id id F -> id

T * id has handle id

(or more formally F -> id is a handle after T *)

figure 4.26 [p.235]

Consider this point
in the previous table.

We identified F -> id
as a handle.

Example - figure 4.26 [p.235]

Right sentential form Handle Reducing production

id * id id F -> id

F * id F T -> F

T * id T E -> T

What if …
… we made a

different choice?

Example - figure 4.26 [p.235]

T * id could be reduced to E * id using
production E -> T, but E -> T is not a handle
since that reduction does not represent "one step
along the reverse of a rightmost derivation."

Right sentential form Handle Reducing production

id * id id F -> id

F * id F T -> F

T * id T E -> T

E * id id F -> id

E * F F T -> F

E * T T E -> T

E * E *FAIL*

E -> E + T
E -> T
T -> T * F
T -> F
F -> (E)
F -> id

Basic idea
If we know what the handle is for
each right sentential form, we can run
the rightmost derivation in reverse!

Handle pruning [p 235]

"A rightmost derivation in reverse can be
obtained by 'handle pruning' "

If 𝜔 ∈ 𝓛(G):

S = 𝛾0 ⇒rm 𝛾1 ⇒rm 𝛾2 ⇒rm … ⇒rm 𝛾n-1 ⇒rm 𝛾n = 𝜔

Rightmost derivation

Handle pruning

Big question
How do we figure out the handles?

Big question
How do we figure out the handles?

We'll answer this in a bit, but first let's
consider how a parse will proceed in

a bit more detail.

Shift-reduce parsing

STACK
[Bottom…Top]

INPUT

$ 𝜔 $

$ S $

[modified from fig 4.28, p 237]

Revisit example, with input: id * id $

Stack Lookahead Handle Action

$ id * id $ Shift

$ id * id $ id Reduce F -> id

$ F * id $ F Reduce T -> F

$ T * id $ Shift

$ T * id $ Shift

$ T * id $ id Reduce F -> id

$ T * F $ T * F Reduce T -> T * F

$ T $ T Reduce E -> T

$ E $ Accept

Observations [p 235]
𝜔, the string after the handle, must be ∈
T*

We say "a handle" rather than "the
handle" since the grammar may be
ambiguous and may therefore allow more
than one rightmost derivation of 𝛼𝛽𝜔.

If a grammar is unambiguous, then every
right-sentential form of the grammar has
exactly one handle.

"How does a shift-reduce parser know when
to shift and when to reduce?" [p 242]

"…by maintaining states to keep track of
where we are in a parse."

Each state is a set of items.

An item is a grammar rule annotated with
a dot, •, somewhere on the RHS.

Items

Rules and items

A -> X Y Z

A -> • X Y Z

A -> X • Y Z

A -> X Y • Z

A -> X Y Z •

The • shows where in a rule we
might be during a parse.

A -> 𝜀

A -> •

Building the finite control
for a bottom-up parser

Build a finite state machine, whose
states are sets of items

Build a table (M) incorporating
shift/reduce decisions

Augment grammar
Given a grammar

G = (N,T,P,S)

we augment to a grammar

G' = (N∪{S'},T,P∪{S'->S},S'), where S'∉N

G' has exactly one rule with S' on left.

We need two operations to
build our finite state machine

CLOSURE(I)

GOTO(I,X)

CLOSURE(I)
I is a set of items

CLOSURE(I) fixed point construction

CLOSURE0(I) = I

repeat {

 CLOSUREi+1(I) =

 CLOSUREi(I) ∪ { B->•𝛾 | A -> 𝛼•B𝛽 ∈ CLOSUREi(I) and B -> 𝛾 ∈ P }

} until CLOSUREi+1(I) = CLOSUREi(I)

CLOSURE(I)

I is a set of items

CLOSURE(I) fixed point construction

CLOSURE0(I) = I

repeat {

CLOSUREi+1(I) = CLOSUREi(I) ∪ { B->•𝛾 | A -> 𝛼•B𝛽 ∈ CLOSUREi(I) and B -> 𝛾
∈ P }

} until CLOSUREi+1(I) = CLOSUREi(I)

Intuition: an item like A -> X • Y Z conveys that we've already
seen X, and we're expecting to see a Y followed by a Z.

The closure of this item is all the other items that are relevant
at this point in the parse.

For example, if Y -> R S T is a production, then Y -> • R S T is
in the closure because if the next thing in the input can derive

from Y, it can derive from R.

GOTO(I,X)
GOTO(I,X) is the closure of the set of items A -> 𝛼X•𝛽 s.t.
A -> 𝛼•X𝛽 ∈ I

GOTO(I,X) construction for G' (figure 4.32):

set-of-items CLOSURE(I) {
J = I
repeat {

for each item A -> 𝛼•B𝛽 ∈ J
 for each production B -> 𝛾 ∈ P
 if B->•𝛾 not already in J
 add B->•𝛾 to J

} until no more items are added to J
return J

}

Building the LR(0) automaton

void items(G') {
C = { CLOSURE({ S' -> •S }) }
repeat {

for each set of items I ∈ C and
for each grammar symbol X ∈ (NUT)
if (GOTO(I,X) is not empty and not already in C)
 add GOTO(I,X) to C

} until no new sets of items are added to C
}

C is a set of sets of items

Example [p 245]

Grammar G Augmented Grammar G'

S' -> E

E -> E + T E -> E + T

E -> T E -> T

T -> T * F T -> T * F

T -> F T -> F

F -> (E) F -> (E)

F -> id F -> id

SET OF ITEMS (I) i CLOSUREi(I)

{ S' -> • E } 0 { S' -> • E }

Compute items(G') S' -> E
E -> E + T

E -> T
T -> T * F

T -> F
F -> (E)
F -> id

Compute items(G')

SET OF ITEMS (I) i CLOSUREi(I)

{ S' -> • E } 0 { S' -> • E }

1 CLOSURE0(I) ∪ { E -> • E + T , E -> • T }

S' -> E
E -> E + T

E -> T
T -> T * F

T -> F
F -> (E)
F -> id

SET OF ITEMS (I) i CLOSUREi(I)

{ S' -> • E } 0 { S' -> • E }

1 CLOSURE0(I) ∪ { E -> • E + T , E -> • T }

2 CLOSURE1(I) ∪ { T -> • T * F , T -> • F }

Compute items(G') S' -> E
E -> E + T

E -> T
T -> T * F

T -> F
F -> (E)
F -> id

SET OF ITEMS (I) i CLOSUREi(I)

{ S' -> • E } 0 { S' -> • E }

1 CLOSURE0(I) ∪ { E -> • E + T , E -> • T }

2 CLOSURE1(I) ∪ { T -> • T * F , T -> • F }

3 CLOSURE2(I) ∪ { F -> • (E) , F -> • id }

Compute items(G') S' -> E
E -> E + T

E -> T
T -> T * F

T -> F
F -> (E)
F -> id

SET OF ITEMS (I) i CLOSUREi(I)

{ S' -> • E } 0 { S' -> • E }

1 CLOSURE0(I) ∪ { E -> • E + T , E -> • T }

2 CLOSURE1(I) ∪ { T -> • T * F , T -> • F }

3 CLOSURE2(I) ∪ { F -> • (E) , F -> • id }

4 CLOSURE3(I) ∪ ∅

Compute items(G') S' -> E
E -> E + T

E -> T
T -> T * F

T -> F
F -> (E)
F -> id

Terminology

Kernel items: S' -> • S and all items
with • not at left edge

Non-kernel items: all items with •
at left edge, except S' -> • S

This gives us the first state of the
finite state machine, I0

I0 S' -> • E

E -> • E + T
E -> • T
T -> • T * F
T -> • F
F -> • (E)
F -> • id

kernel item

non-kernel items
are computed from
CLOSURE(kernel),
and therefore do
not need to be
explicitly stored

Next we compute GOTO(I0,X) ∀ X ∈ N ∪ T
N ∪ T = { E , T , F , + , * , (,) , id }

N.B. - augmented start symbol S' can be ignored

I1 S' -> E •
E -> E • + T

GOTO(I0,E) = CLOSURE({ S' -> E • , E -> E • + T })

= { S' -> E • , E -> E • + T }

only kernel items

N.B. there is no non-terminal
after the •, so no new items are
added by CLOSURE operation

