
CSE443 
Compilers
Dr. Carl Alphonce 

alphonce@buffalo.edu 
343 Davis Hall 



Phases of 
a 

compiler

Figure 1.6, 
page 5 of text

Syntactic 
structure



Bottom-up parsing 

Top-down predictive parsing gave us a 
quick overview of issues related to 

parsing. 

With this context we can more easily 
describe bottom-up parsing.



Example grammar

E -> E + T 
E -> T 
T -> T * F 
T -> F 
F -> ( E ) 
F -> id

Same expression grammar we 
used for top-down presentation.



Terminology

If S ⇒*lm 𝛼 then we call 𝛼 a left-

sentential form of the grammar 
(lm means leftmost) 

If S ⇒*rm 𝛼 then we call 𝛼 a right-

sentential form of the grammar 
(rm means rightmost) 



handle
"Informally, a 'handle' is a substring that matches the 
body of a production and whose reduction represents 
one step along the reverse of a rightmost derivation." 
[p. 235] 

"Formally, if S ⇒*rm 𝛼A𝜔 ⇒rm 𝛼𝛽𝜔, then the production A 

-> 𝛽 in the position following 𝛼 is a handle of 𝛼𝛽𝜔" [p. 
235] 

"Alternatively, a handle of a right-sentential form 𝛾 is 
a production A -> 𝛽 and a position of 𝛾 where the 
string 𝛽 may be found, such that replacing 𝛽 at that 
position by A produces the previous right-sentential 
form in a rightmost derivation of 𝛾." [p. 235]



As a picture

"A handle A -> 𝛽 in the parse tree for 𝛼𝛽𝜔" Fig 
4.27 [p. 236]
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𝛼 𝛽 𝜔

A



A rightmost derivation of the string 

id * id

[p.235]

Rightmost derivation Production

E

⇒ T E -> T

⇒ T * F T -> T * F

⇒ T * id F -> id

⇒ F * id T -> F

⇒ id * id F -> id

E -> E + T 
E -> T 

Recall grammar 
T -> T * F 

T -> F 
F -> ( E ) 
F -> id



A bottom-up parse: what we're aiming for! 

Table is reverse of that on previous slide.

figure 4.26 [p.235]

Right sentential form Handle Reducing production

id * id id F -> id

F * id F T -> F

T * id id F -> id

T * F T * F T -> T * F

T T E -> T

E



id * id has handle id 

(or more formally F -> id is a handle)

figure 4.26 [p.235]

Right sentential form Handle Reducing production

id * id id F -> id

F * id F T -> F

T * id id F -> id

T * F T * F T -> T * F

T T E -> T

E



F * id has handle F 

(or more formally T -> F is a handle)

figure 4.26 [p.235]

Right sentential form Handle Reducing production

id * id id F -> id

F * id F T -> F

T * id id F -> id

T * F T * F T -> T * F

T T E -> T

E



T * id has handle id 

(or more formally F -> id is a handle after T *)

figure 4.26 [p.235]

Right sentential form Handle Reducing production

id * id id F -> id

F * id F T -> F

T * id id F -> id

T * F T * F T -> T * F

T T E -> T

E



T * F has handle T * F 

(or more formally T -> T * F is a handle)

figure 4.26 [p.235]

Right sentential form Handle Reducing production

id * id id F -> id

F * id F T -> F

T * id id F -> id

T * F T * F T -> T * F

T T E -> T

E



T has handle T 

(or more formally E -> T is a handle)

figure 4.26 [p.235]

Right sentential form Handle Reducing production

id * id id F -> id

F * id F T -> F

T * id id F -> id

T * F T * F T -> T * F

T T E -> T

E



What happens if we reduce 
something that's not a handle?



Right sentential form Handle Reducing production

id * id id F -> id

F * id F T -> F

T * id id F -> id

T * id has handle id 

(or more formally F -> id is a handle after T *)

figure 4.26 [p.235]

Consider this point 
in the previous table.

We identified F -> id 
as a handle.



Example - figure 4.26 [p.235]

Right sentential form Handle Reducing production

id * id id F -> id

F * id F T -> F

T * id T E -> T

What if …
… we made a 

different choice?



Example - figure 4.26 [p.235]

T * id could be reduced to E * id using 
production E -> T, but E -> T is not a handle 
since that reduction does not represent "one step 
along the reverse of a rightmost derivation."

Right sentential form Handle Reducing production

id * id id F -> id

F * id F T -> F

T * id T E -> T

E * id id F -> id

E * F F T -> F

E * T T E -> T

E * E *FAIL*

E -> E + T 
E -> T 
T -> T * F 
T -> F 
F -> ( E ) 
F -> id



Basic idea
If we know what the handle is for 
each right sentential form, we can run 
the rightmost derivation in reverse!



Handle pruning [p 235]

"A rightmost derivation in reverse can be 
obtained by 'handle pruning' " 

If 𝜔 ∈ 𝓛(G): 

S = 𝛾0 ⇒rm 𝛾1 ⇒rm 𝛾2 ⇒rm … ⇒rm 𝛾n-1 ⇒rm 𝛾n = 𝜔

Rightmost derivation

Handle pruning



Big question
How do we figure out the handles?



Big question
How do we figure out the handles? 

We'll answer this in a bit, but first let's 
consider how a parse will proceed in 

a bit more detail.



Shift-reduce parsing

STACK 
[Bottom…Top]

INPUT

$ 𝜔 $

$ S $



[modified from fig 4.28, p 237] 

Revisit example, with input: id * id $

Stack Lookahead Handle Action

$ id * id $ Shift

$ id * id $ id Reduce F -> id

$ F * id $ F Reduce T -> F

$ T * id $ Shift

$ T * id $ Shift

$ T * id $ id Reduce F -> id

$ T * F $ T * F Reduce T -> T * F

$ T $ T Reduce E -> T

$ E $ Accept



Observations [p 235]
𝜔, the string after the handle, must be ∈ 
T* 

We say "a handle" rather than "the 
handle" since the grammar may be 
ambiguous and may therefore allow more 
than one rightmost derivation of 𝛼𝛽𝜔. 

If a grammar is unambiguous, then every 
right-sentential form of the grammar has 
exactly one handle.



"How does a shift-reduce parser know when 
to shift and when to reduce?" [p 242] 

"…by maintaining states to keep track of 
where we are in a parse." 

Each state is a set of items. 

An item is a grammar rule annotated with 
a dot, •, somewhere on the RHS. 

Items



Rules and items

A -> X Y Z

A -> • X Y Z

A -> X • Y Z

A -> X Y • Z

A -> X Y Z •

The • shows where in a rule we 
might be during a parse.

A -> 𝜀

A -> •



Building the finite control 
for a bottom-up parser

Build a finite state machine, whose 
states are sets of items 

Build a table (M) incorporating 
shift/reduce decisions



Augment grammar
Given a grammar 

G = (N,T,P,S) 

we augment to a grammar 

G' = (N∪{S'},T,P∪{S'->S},S'), where S'∉N 

G' has exactly one rule with S' on left. 



We need two operations to 
build our finite state machine

CLOSURE(I) 

GOTO(I,X)



CLOSURE(I)
I is a set of items 

CLOSURE(I) fixed point construction 

CLOSURE0(I) = I 

repeat { 

  CLOSUREi+1(I) =  

        CLOSUREi(I) ∪ { B->•𝛾 | A -> 𝛼•B𝛽 ∈ CLOSUREi(I) and B -> 𝛾 ∈ P } 

} until CLOSUREi+1(I) = CLOSUREi(I)



CLOSURE(I)

I is a set of items 

CLOSURE(I) fixed point construction 

CLOSURE0(I) = I 

repeat { 

CLOSUREi+1(I) = CLOSUREi(I) ∪ { B->•𝛾 | A -> 𝛼•B𝛽 ∈ CLOSUREi(I) and B -> 𝛾 
∈ P } 

} until CLOSUREi+1(I) = CLOSUREi(I)

Intuition: an item like A -> X • Y Z conveys that we've already 
seen X, and we're expecting to see a Y followed by a Z. 

The closure of this item is all the other items that are relevant 
at this point in the parse. 

For example, if Y -> R S T is a production, then Y -> • R S T is 
in the closure because if the next thing in the input can derive 

from Y, it can derive from R.



GOTO(I,X)
GOTO(I,X) is the closure of the set of items A -> 𝛼X•𝛽 s.t.     
A -> 𝛼•X𝛽 ∈ I 

GOTO(I,X) construction for G' (figure 4.32): 

set-of-items CLOSURE(I) { 
J = I 
repeat { 

for each item A -> 𝛼•B𝛽 ∈ J 
    for each production B -> 𝛾 ∈ P 
        if B->•𝛾 not already in J 
            add B->•𝛾 to J 

} until no more items are added to J 
return J 

}



Building the LR(0) automaton

void items(G') { 
C = { CLOSURE( { S' -> •S } ) } 
repeat { 

for each set of items I ∈ C and 
for each grammar symbol X ∈ (NUT) 
if ( GOTO(I,X) is not empty and not already in C ) 
   add GOTO(I,X) to C 

} until no new sets of items are added to C 
}

C is a set of sets of items



Example [p 245]

Grammar G Augmented Grammar G'

S' -> E

E -> E + T E -> E + T

E -> T E -> T

T -> T * F T -> T * F

T -> F T -> F

F -> ( E ) F -> ( E )

F -> id F -> id



SET OF ITEMS (I) i CLOSUREi(I)

{ S' -> • E } 0 { S' -> • E }

Compute items(G') S' -> E 
E -> E + T 

E -> T 
T -> T * F 

T -> F 
F -> ( E ) 
F -> id



Compute items(G')

SET OF ITEMS (I) i CLOSUREi(I)

{ S' -> • E } 0 { S' -> • E }

1 CLOSURE0(I) ∪ { E -> • E + T , E -> • T }

S' -> E 
E -> E + T 

E -> T 
T -> T * F 

T -> F 
F -> ( E ) 
F -> id



SET OF ITEMS (I) i CLOSUREi(I)

{ S' -> • E } 0 { S' -> • E }

1 CLOSURE0(I) ∪ { E -> • E + T , E -> • T }

2 CLOSURE1(I) ∪ { T -> • T * F , T -> • F }

Compute items(G') S' -> E 
E -> E + T 

E -> T 
T -> T * F 

T -> F 
F -> ( E ) 
F -> id



SET OF ITEMS (I) i CLOSUREi(I)

{ S' -> • E } 0 { S' -> • E }

1 CLOSURE0(I) ∪ { E -> • E + T , E -> • T }

2 CLOSURE1(I) ∪ { T -> • T * F , T -> • F }

3 CLOSURE2(I) ∪ { F -> • ( E ) , F -> • id }

Compute items(G') S' -> E 
E -> E + T 

E -> T 
T -> T * F 

T -> F 
F -> ( E ) 
F -> id



SET OF ITEMS (I) i CLOSUREi(I)

{ S' -> • E } 0 { S' -> • E }

1 CLOSURE0(I) ∪ { E -> • E + T , E -> • T }

2 CLOSURE1(I) ∪ { T -> • T * F , T -> • F }

3 CLOSURE2(I) ∪ { F -> • ( E ) , F -> • id }

4 CLOSURE3(I) ∪ ∅

Compute items(G') S' -> E 
E -> E + T 

E -> T 
T -> T * F 

T -> F 
F -> ( E ) 
F -> id



Terminology

Kernel items: S' -> • S and all items 
with • not at left edge 

Non-kernel items: all items with • 
at left edge, except S' -> • S



This gives us the first state of the  
finite state machine, I0

I0 S' -> • E  

E -> • E + T 
E -> • T 
T -> • T * F 
T -> • F 
F -> • ( E ) 
F -> • id

kernel item 

non-kernel items 
are computed from  
CLOSURE(kernel), 
and therefore do 
not need to be 
explicitly stored



Next we compute GOTO(I0,X) ∀ X ∈ N ∪ T  
N ∪ T = { E , T , F , + , * , ( , ) , id } 

N.B. - augmented start symbol S' can be ignored

I1 S' -> E •  
E -> E • + T

GOTO(I0,E) = CLOSURE( { S' -> E • , E -> E • + T } )  

= { S' -> E • , E -> E • + T }

only kernel items

N.B. there is no non-terminal 
after the •, so no new items are 
added by CLOSURE operation


