COMPLETS

Dr. Carl Alphonce alphonce@buffalo.edu 343 Davis Hall

Figure 1.6, page 5 of text

	character stream
	Lexical Analyzer
Syntactic structure	token stream
	Syntax Analyzer
	syntax tree
	Semantic Analyzer
	syntax tree
Symbol Table	Intermediate Code Generator
	intermediate representation
	Machine-Independent Code Optimizer
	intermediate representation
	Code Generator
	target-machine code
	Machine-Dependent Code Optimizer
	target-machine code

Bollom-up parsing

Top-down predictive parsing gave us a quick overview of issues related to parsing.

With this context we can more easily describe bottom-up parsing.

 $E \rightarrow E + T$ $E \rightarrow T + F$ $T \rightarrow T + F$ $F \rightarrow F = (E)$ $F \rightarrow id$

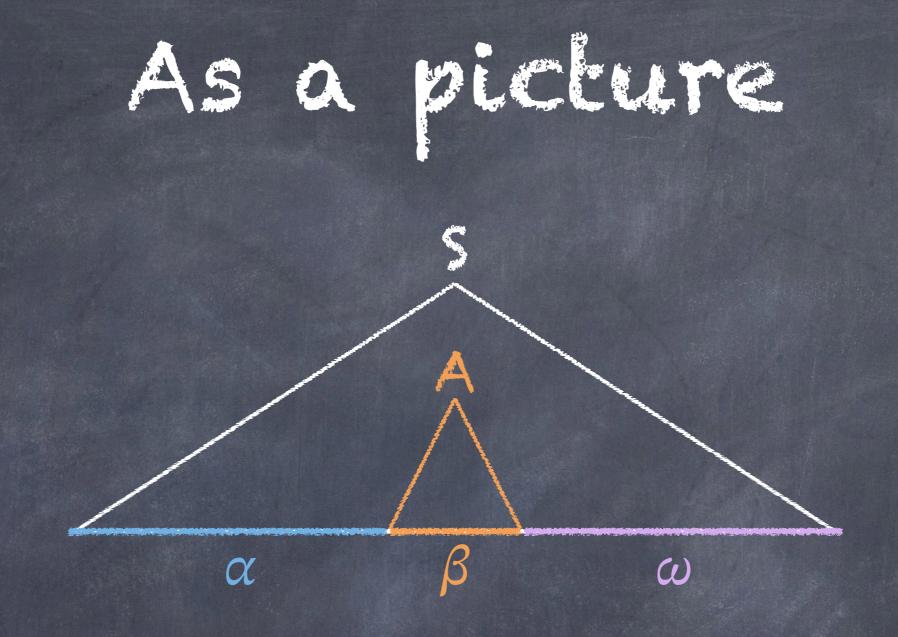
Same expression grammar we used for top-down presentation.

Terminology

- If S ⇒*im α then we call α a leftsentential form of the grammar (Im means leftmost)
- If S ⇒*_{rm} α then we call α a rightsentential form of the grammar (rm means rightmost)

handle

- "Informally, a 'handle' is a substring that matches the body of a production and whose reduction represents one step along the reverse of a rightmost derivation."
 [p. 235]
- "Formally, if $S \Rightarrow *_{rm} \alpha A \omega \Rightarrow_{rm} \alpha \beta \omega$, then the production A -> β in the position following α is a handle of $\alpha \beta \omega$ " [p. 235]
- The "Alternatively, a handle of a right-sentential form γ is a production A -> β and a position of γ where the string β may be found, such that replacing β at that position by A produces the previous right-sentential form in a rightmost derivation of γ ." [p. 235]



"A handle A -> β in the parse tree for $\alpha\beta\omega$ " Fig 4.27 [p. 236]

A rightmost derivation of the string id * id

Rightmost derivation	Production
E	
\Rightarrow T	E -> T
⇒T×F	T -> T * F
⇒T * id	F -> id
⇒ F * id	T -> F
⇒ id * id	F -> id

[p.235]

	Recall grammar	
E->E+T	T -> T * F	F->(E)
E -> T	T -> F	F -> id

A bottom-up parse: what we're aiming for! Table is reverse of that on previous slide.

Right sentential form	Handle	Reducing production
id * id	id	F -> id
F * id	F	T -> F
T * id	id	F -> id
T*F	T * F	T -> T * F
Т	Т	E -> T
E		

id * id has handle id

(or more formally F -> id is a handle)

Right sentential form	Handle	Reducing production
id * id	id	F -> id
F * id	F	T -> F
T * id	id	F -> id
T*F	T * F	T -> T * F
T	Т	E -> T
E		

F * id has handle F

(or more formally T -> F is a handle)

Right sentential form	Handle	Reducing production
id * id	id	F -> id
F * id	F	T -> F
T * id	id	F -> id
T*F	T*F	T->T * F
Т	Т	E -> T
ε		

T * id has handle id

(or more formally F -> id is a handle after T *)

Right sentential form	Handle	Reducing production
id * id	id	F -> id
F * id	F	T -> F
T * id	id	F -> id
T*F	T * F	T -> T * F
Т	Т	E -> T
E		

T * F has handle T * F

(or more formally T -> T * F is a handle)

Right sentential form	Handle	Reducing production
id * id	id	F -> id
F * id	F	T -> F
T * id	id	F -> id
T*F	T * F	T->T * F
Т	Т	E -> T
E		

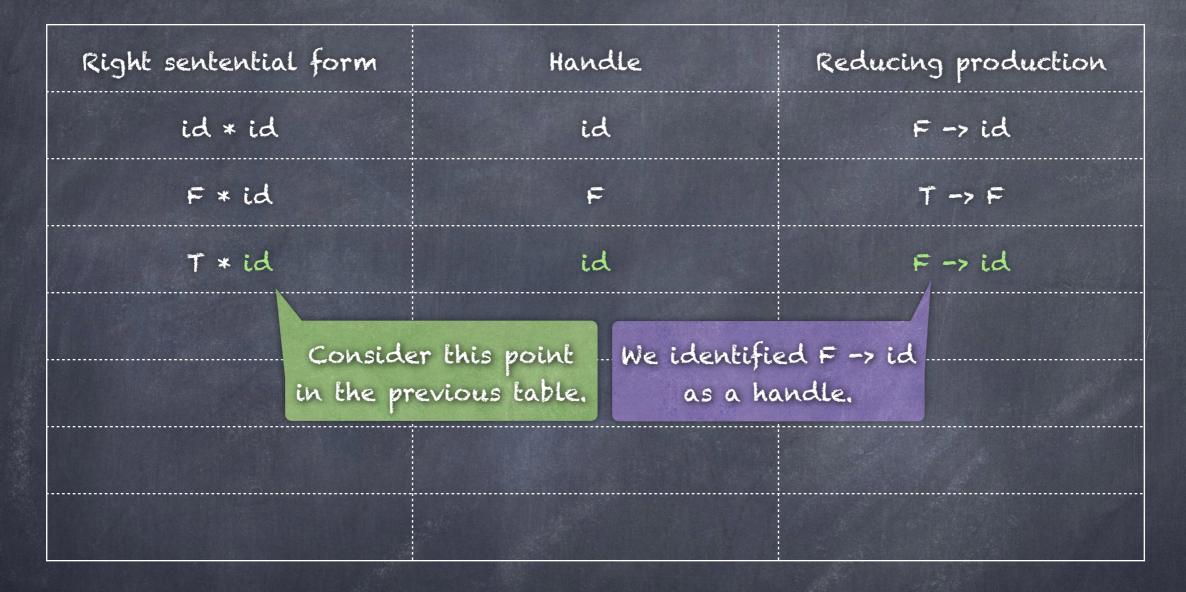
T has handle T

(or more formally E -> T is a handle)

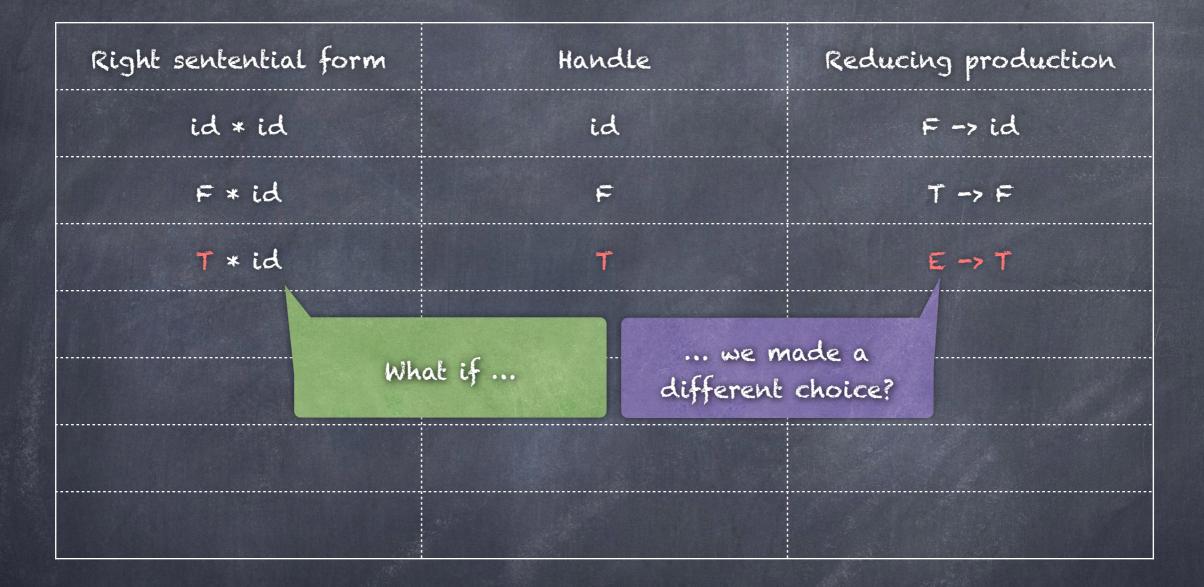
Right sentential form	Handle	Reducing production
id * id	id	F -> id
F * id	F	T -> F
T * id	id	F -> id
T * F	T * F	T -> T * F
T	Т	E -> T
E		

What happens if we reduce something that's not a handle?

T * id has handle id (or more formally F -> id is a handle after T *)



Example - figure 4.26 [p.235]



Example - figure 4.26 [p.235]

Right sentential form	Handle	Reducing production
id * id	id	F -> id
F * id	F	T -> F
T * id	Т	E -> T
E * id	id	F -> id
E * F	F	T -> F
E * T	Т	E -> T
E * E	*FAIL*	

T * id could be reduced to E * id using production E -> T, but E -> T is not a handle since that reduction does not represent "one step along the reverse of a rightmost derivation."

Basic idea

If we know what the handle is for each right sentential form, we can run the rightmost derivation in reverse!

Handle pruning [p 235]

"A rightmost derivation in reverse can be obtained by 'handle pruning' "

o If $\omega \in \mathcal{L}(G)$:

Rightmost derivation,

 $S = \gamma_0 \Rightarrow_{rm} \gamma_1 \Rightarrow_{rm} \gamma_2 \Rightarrow_{rm} \dots \Rightarrow_{rm} \gamma_{n-1} \Rightarrow_{rm} \gamma_n = \omega$

Handle pruning

Big question

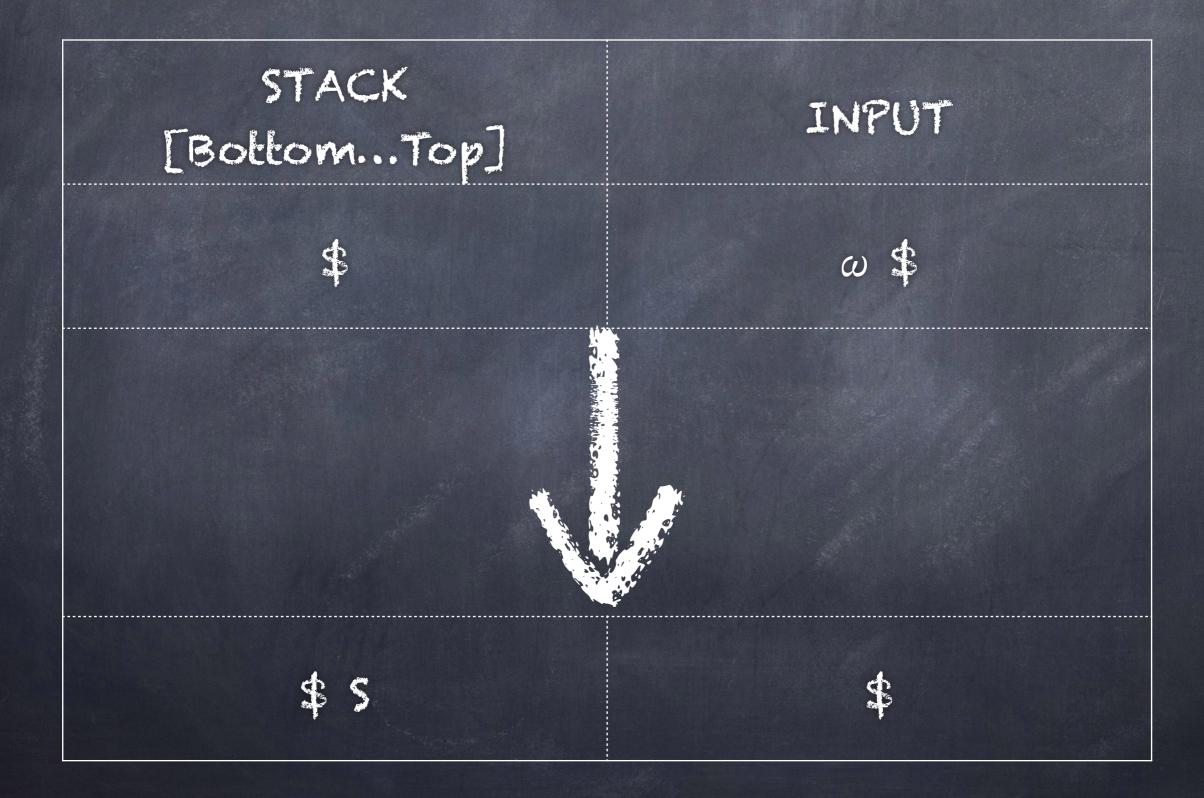
How do we figure out the handles?

BLG QUESCION

How do we figure out the handles?

We'll answer this in a bit, but first let's consider how a parse will proceed in a bit more detail.

shift reduce parsing



[modified from fig 4.28, p 237] Revisit example, with input: id * id \$

Stack	Lookahead	Handle	Action
\$	id * id \$		Shift
\$ id	* id \$	id	Reduce F -> id
\$ F	* id \$	F	Reduce T -> F
\$ T	* id \$		Shift
\$7*	id \$		Shift
\$ T * id	\$	id	Reduce F -> id
\$T * F	\$	T * F	Reduce T -> T * F
\$ T	\$	Т	Reduce E -> T
\$ E	\$		Accept

Observations [p 235]

- ${\mathfrak o}$ w, the string after the handle, must be \in T*
- We say "a handle" rather than "the handle" since the grammar may be ambiguous and may therefore allow more than one rightmost derivation of αβω.
- If a grammar is unambiguous, then every right-sentential form of the grammar has exactly one handle.

ILCMS

- "How does a shift-reduce parser know when to shift and when to reduce?" [p 242]
- "...by maintaining states to keep track of where we are in a parse."
- @ Each state is a set of items.
- An item is a grammar rule annotated with a dot, o, somewhere on the RHS.

Rules and ilems

The c shows where in a rule we might be during a parse.

Building the finite control for a bottom-up parser

Build a finite state machine, whose states are sets of items

Build a table (M) incorporating shift/reduce decisions

Augment grammar

Given a grammar G = (N,T,P,S)

we augment to a grammar $G' = (Nu\{S'\}, T, Pu\{S' -> S\}, S'), where S' \in N$

G'has exactly one rule with s' on left.

We need two operations to build our finite state machine

CLOSURE(I)

COTO(I,X)

CLOSURE(I)

- @ I is a set of items
- @ CLOSURE(I) fixed point construction

 $CLOSURE_{o}(I) = I$

repeat {

 $CLOSURE_{i+1}(I) =$

 $CLOSURE_i(I) \cup \{ B \rightarrow \gamma \mid A \rightarrow \alpha \in B\beta \in CLOSURE_i(I) \text{ and } B \rightarrow \gamma \in P \}$

} until CLOSURE:+1(I) = CLOSURE:(I)

CLOSURE(I)

o I is a set of items

@ CLOSURE(I) fixed point construction

Intuition: an item like A -> X • Y Z conveys that we've already seen X, and we're expecting to see a Y followed by a Z.

The closure of this item is all the other items that are relevant at this point in the parse.

For example, if Y -> R S T is a production, then Y -> • R S T is in the closure because if the next thing in the input can derive from Y, it can derive from R.

COTO(I,X)

- GOTO(I,X) is the closure of the set of items A → αX^oβ s.t.
 A → α^oXβ ∈ I
- o GOTO(I,X) construction for G' (figure 4.32):

```
set-of-items CLOSURE(I) {
J = I
repeat {
   for each item A -> \alpha \circ \beta \in J
       for each production B \rightarrow \gamma \in P
           if B->=> not already in J
                add B-rey to J
 f until no more items are added to J
return J
```

Building the LR(0) automaton

void items(G') {
 C = { CLOSURE({ s' -> •s }) }
 C is a set of sets of items
 repeat {
 for each set of items I ∈ C and
 for each grammar symbol X ∈ (NUT)
 if (GOTO(I,X) is not empty and not already in C)
 add GOTO(I,X) to C
 }
 until no new sets of items are added to C

Example [p 246]

Grammar G	Augmented Grammar G'
	5' -> E
E->E+T	E->E+T
E -> T	E -> T
T -> T * F	T -> T * F
T -> F	T -> F
F->(E)	F->(E)
F -> id	F -> id

SET OF ITEMS (I)	ĩ	CLOSURE:(I)
{ S' -> @ E }	0	{ S' -> • E }

SET OF ITEMS (I)	Ļ	$CLOSURE_i(I)$
{ S' -> • E }	0	{ S' -> • E }
	1	$CLOSURE_{o}(I) \cup \{E \rightarrow o E + T, E \rightarrow o T\}$

SET OF ITEMS (I)	Ļ	$CLOSURE_i(I)$
{ 5' -> @ E }	0	$\{s' \rightarrow o \in \}$
	1	$CLOSURE_{o}(I) \cup \{E \rightarrow o E + T, E \rightarrow o T\}$
	2	$CLOSURE_1(I) \cup \{T \rightarrow \circ T \ast F, T \rightarrow \circ F\}$

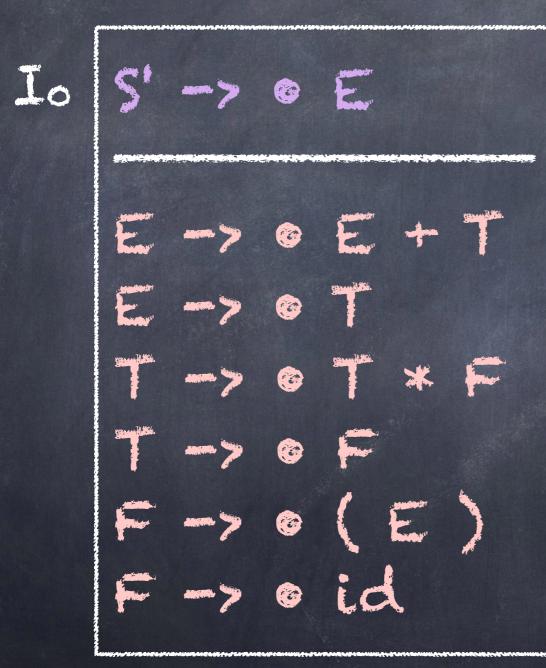
SET OF ITEMS (I)	Ļ	$CLOSURE_i(I)$
{ S' -> @ E }	0	{ 5' -> • E }
	1	$CLOSURE_{o}(I) \cup \{E \rightarrow o E + T, E \rightarrow o T\}$
	2	$CLOSURE_1(I) \cup \{T \rightarrow \circ T \ast F, T \rightarrow \circ F\}$
	3	$CLOSURE_2(I) \cup \{F \rightarrow o(E), F \rightarrow oid\}$

SET OF ITEMS (I)	Ļ	$CLOSURE_i(I)$
{ S' -> @ E }	0	{ 5' -> @ E }
	1	$CLOSURE_{o}(I) \cup \{E \rightarrow o E + T, E \rightarrow o T\}$
	2	$CLOSURE_1(I) \cup \{T \rightarrow \circ T \ast F, T \rightarrow \circ F \}$
	3	$CLOSURE_2(I) \cup \{F \rightarrow o(E), F \rightarrow oid\}$
	4	CLOSURE3(I) U Ø

Kernel items: S' -> • S and all items
 with • not at left edge

Non-kernel items: all items with
 at left edge, except 5' ->

This gives us the first state of the finite state machine, Io



kernel ilem

non-kernel items are computed from CLOSURE(kernel), and therefore do not need to be explicitly stored

Next we compute $GOTO(I_0, X) \forall X \in N \cup T$ $N \cup T = \{E, T, F, +, *, (,), id\}$ N.B. - augmented start symbol s' can be ignored

 $GOTO(I_{o},E) = CLOSURE(\{S' \rightarrow E \circ, E \rightarrow E \circ + T\})$

 $= \{ S' - > E \circ, E - > E \circ + T \}$

N.B. there is no non-terminal after the •, so no new items are added by CLOSURE operation

$$1 \begin{array}{c} S' \longrightarrow E \\ E \longrightarrow E \\ E \longrightarrow T \end{array}$$

only kernel items