CSE4-4-3
Com p tlers
Dr. Carl Ai.pkom':@.

alphonce@buffalo.edu
343 Davis Hall

Phases of
Qa

aompiiﬁ.\“

Flqure 1.7
page § of bext

Svm&aﬁ:&if:

skructkure

Symbol Table

character stream

Y

Lexical Analyzer

token étream

Y

Syntax Analyzer

[
syntax tree

'

Semantic Analyzer

1
syntax tree

Y

Intermediate Code Generator

|
intermediate representation

Machine-Independent
Code Optimizer

|
intermediate representation

Code Generator

|
target-machine code

Y

Machine-Dependent
Code Optimizer

|
target-machine code

Y

Example 481 [p. 260

Grammar from example 4.4%:

S—>L=R|R
L= xR | id
R -» L

Example 4.51 {Fe 603

Grammar from exampi.e 4- 4-2"

S—>L=R|R
L= xR | id
R -» L

Viable prefix

"Why can LR(0) automata be used ko make
shift-reduce decisions? The LR(©) automaton
for a grammar characterizes the strings of
grammar symbols that can appear on the
stack... The stack contents must be a prefix
of a right-sentential form. If the stack
holds a and the rest of the input is x, then o

sequence of reductions will take ax to S, In

terms of derivations, S=rme ax." [p. 266]

Viable prefix

"Not all pre&xes of right-sentential
forms can appear on the stack...since
the parser must not shift past the
handle.” [p. 256]

E =me B *id =20 (E) *id

Viable prefix

"Not all prefixes of right-sentential
forms can appear on the stack...since
the parser must not shift past the
handle.” [p. 256]

E S B xid o250 (£) xid

Viable r@fnx

(Parser «towfugurahahs shown)

, Cid) *id $)
;‘«d>*‘*d$>

k42 V*xid$) Cannot shift '*' here, because

) * t,ci $ Y » ; | s(tg t)t
) J :.,d $) = is a handle,

e e e W W N e

Viable prefix

"The pre&xes of right sentential forms
that can appear on the stack of a
shift-reduce parser are called viable
prefixes.” [p. 266]

P e R R R B o o e R

o
m
O

\;EOL i,e -

1 Lci) * :.,cl $)

LR(1) tkems

"...in the SLR wethod, state I calls for
reduction by A—a if the set of items I

conkains itkem [A—ae] and input
symbol a is in FOLLOW(A)." [p. 260]

LR(1) tkems

"I some situations, however, when
state I appears on top of the stack the
viable prefix fa on the stack is such

that A cannot be followed bv a i any
right-sentential form.” {F"‘ 260]

Example 4.51 [p: 260 |

Grammar from example 4.4%: o S
S—>L=R|R '
L= xR | id

R ->» L

State 12 from fiqure 4.39
S =l =20
R->Le

"Consider the set of ikems I, The first ikem in this set mokes ACTION[2,=] be 'shift
&', Since FOLLOW(R) contains = [...] the second item sekts ACTION[2,=] to reduce R
-» L." [p. 265]

"...the SLR parser calls for reduction b:j R =2 L in state 2 with = as the next input
(Ehe shift action is also called for ...). However, there is no right-sentential form of
the gqrammar ... that begins R = Thus state 2, which is the state corresponding to
viable prefix L only, should not really call for reduction of that L to R." [p. 260]

LR(1Y ikems

"By splitting states when necessary, we can
arrahge to have each state ... indicate exactly
which nput svmbots can follow a handle a for

which there is a possibte reduction to A" [p. 260]]

"The general form of an item becomes
[A->aef o]

where A =» af is a produc&aon and a is a

terminal or ... $." [p. 260]

LR(1Y ikems

"The Llookahead has no effect in an iktem
of the form [A -» a ¢ 3, a], where g is
not ¢, buk an itkem of the form [A => a s,
a] calls for reduction bv A =7 a only 3
the next iv\puﬁ svmbc}t is a. [...] The set
of such a's will always be a subset of
FOLLOW(A), bub it could be a proper
subsek ..." 2 260]]

LALR (lookahead LR)

"SLR and LALR kables ... always have the same
number of states.” [F" 266]

Idea: merqe sets of LR(1) items with the same
core.

Cannot introduce Shift/Reduce conflicts, may
introduce Reduce/Reduce conflicts,

Rison and YACC prodaae LALR parsers.

character stream

Y

Lexical Analyzer

Phases of

|
Q token stream

Y
@0 m F E;i,@_r Syntax Analyzer

synta:ix: tree

Senmankic sl
Semantic Analyzer
&M&i' }SL3 syntaic tree

Symbol Table Intermediate Code Generator

|
intermediate representation

Machine-Independent
Code Optimizer

|
intermediate representation

Code Generator
Loyt ' rget-machine cod
PLQM’.T'Q 1@&; ta get. ma(v: e code

PO\SQ 5 an %Qx& Machine-Dependent

Code Optimizer

|
target-machine code

Y

Semantics

» “Semantics” has to do with the meaning of a
program.

* We will consider two types of semantics:

— Static semantics: semantics which can be enforced
at compile-time.

— Dynamic semantics: semantics which express the
run-time meaning of programs.

Static semantics

» Semantic checking which can be done at
compile-time

* Type-compatiblility is a prime example
— int can be assigned to double (type coercion)

— double cannot be assigned to int without explicit
type cast

» Type-compatibility can be captured in grammar,
but only at expense of larger, more complex
grammar

Ex: adding type rules in grammar

Must introduce new non-terminals which encode types:
Instead of a generic grammar rule for assignment:

- <stmt> 2 <var> ‘=’ <expr> ‘;’

we need multiple rules:

— <stmt> - <doubleVar> ‘=’ <intExpr> | <doubleExpr> ‘';’
— <stmt> - <intVar> ‘=’ <intExpr> ‘;’

Of course, such rules need to handle all the relevant
type possibilities (e.g. byte, char, short, int, long,
float and double).

Alternative: attribute grammars

 Attribute grammars provide a neater way of
encoding such information.

» Each syntactic rule of the grammar can be
decorated with:

— a set of semantic rules/functions
— a set of semantic predicates

Attributes

* We can associate with each symbol X of the
grammar a set of attributes A(X). Attributes are
partitioned into:

synthesized attributes S(X) — pass info up parse tree

inherited attributes |(X) — pass info down parse tree

Semantic rules/functions

* We can associate with each rule R of the grammar a set
of semantic functions.

X0 .
e Forrule X0 - X1 X2 .. Xn .

— synthesized attribute of LHS:
S(X0) = £(A(X1), A(X2), .., A(Xn)) X1l X2 ..

N “

— lnherited attribute of RHS member:
for 1<=j<=n, I(Xj) = £(A(X0),..,A(X3-1))
(note that dependence 1s on siblings to left only)
X0 o,

X1 .. Xi-1 Xi..

Predicates

We can associate with each rule R of the grammar
a set of semantic predicates.

Boolean expression involving the attributes and a
set of attribute values

If true, node Is ok

If false, node violates a semantic rule

Example

<assign> 2 <var> = <expr> _.

Start with a production of the grammar

Syntactic rule
Semantic rule/function
Semantic predicate

Example

<assign> 2 <var> = <expr>
<expr>.expType

Assoclate an abbtribute with a non-
terminal, <expr>, on the right of the
pradu&&ow expType (the expected type
of the express£0m§

Syntactic rule
Semantic rule/function
Semantic predicate

Example

<assign> 2 <var> = <expr>
<expr>.expType <& <var>.actType

Assign to <exprr.expT gp@. the value of
avarr.actType, the actual bype of the
variable {the type the variable was
d@.ﬂ?&red as).

Syntactic rule
Semantic rule/function
Semantic predicate

Example

<assign> 2 <var> = <expr>
<expr>.expType <& <var>.actType

In other words, we expect the expression
whose value is being assiqned to a
variable to have the same type as the
variable.

Syntactic rule
Semantic rule/function
Semantic predicate

Example

<assign> 2 <var> = <expr>
<expr>.expType <& <var>.actType

<expr> 2 <var>[2] + <var>[3]

Ancther gramm production

Syntactic rule
Semantic rule/function
Semantic predicate

Example

Syntactic rule
<assign> =2 <var> = <expr> Semantic rule/function

<expr>.expType & <var>.actType Semantic predicate

<expr> 2 <var>[2] + <var>[3]
<expr>.actType ¢ if (var[2].actType = int) and
(var[3] .actType = int)
then int
else real

This production has a wmore involved
semantic rule: it handles Emﬂ@. coercion,
This rule assumes that there are cmtv o
numeric types (int and real) and that ink
can be coerced ko real.

Example

Syntactic rule
<assign> =2 <var> = <expr> Semantic rule/function

<expr>.expType & <var>.actType Semantic predicate

<expr> 2 <var>[2] + <var>[3]
<expr>.actType ¢ if (var[2].actType = int) and
(var[3] .actType = int)
then int
else real
<expr>.actType == <expr>.expType f

Here is our first semantic predicate,
which enforces a type-checking
constraint: the actual type of <expr> must
mabch the expected bype (from elsewhere
in the bree)

Example

_ Syntactic rule
<assign> > <var> = <expr> Semantic rule/function
<expr>.expType & <var>.actType Semantic predicate

<expr> 2 <var>[2] + <var>[3]
<expr>.actType ¢ if (var[2].actType = int) and
(var[3] .actType = int)
then int
else real
<expr>.actType == <expr>.expType

<expr> 2 <var>

4o Anocther
<expr>.actType <& <var>.actType % | . .
<expr>.actType == <expr>.expType P‘“Odt&,ﬁ&b(}@f\; ML&k
a semantic rule
and a semantic
Fv‘l"éCﬁ,ﬁ&%Qq

Example

Syntactic rule
<assign> =2 <var> = <expr> Semantic rule/function

<expr>.expType & <var>.actType Semantic predicate

<expr> 2 <var>[2] + <var>[3]
<expr>.actType ¢ if (var[2].actType = int) and
(var[3] .actType = int)
then int
else real

<expr>.actType == <expr>.expType Tkig Séﬂﬂ&ﬂ&i& r%t&
cexprs S <var> says that the type
<expr>.actType <& <var>.actType Oﬂf &M Eﬁd@_h&i}%&ﬁr Emg

<expr>.actType == <expr>.expType .
determined bv
<var> 2 A | B | C

<var>.actType <& lookUp (<va‘string) LOOR“‘MS MP D&S

bupe it Ehe sumbol
¥ table. /

All the productions, rules and predicates

<assign> 2 <var> = <expr>
<expr>.expType <& <var>.actType

<expr> 2 <var>[2] + <var>[3]
<expr>.actType <& if (var[2].actType = int) and
(var[3] .actType = int)
then int
else real
<expr>.actType == <expr>.expType

<expr> > <var>

<expr>.actType <& <var>.actType
<expr>.actType == <expr>.expType

Syntactic rule

<var> 2> A | B | C Semantic rule/function
<var>.actType <& 1lookUp(<var>.string) Semantic predicate

Leb's see how Ehese rules
WOTk LA Ferox:ﬁ&e.!

<assign>
In this axamptﬁ A and B are
both of type nt.
<expr=
<var> <var>[2] | <var>[3]
Suppose:
A — A + B Ais int
B is int

Effects of the semantic

<assign>
J rules s showi U red.

expected
type = N actual
v | int <expr> type=
) Int
A
actual type = int
., <var> <var>{2] | <var>[3]
actual actual
. type = type =
actual type = int int int Suppose:
A = A + B Ais int
Bis int

This is the same axamyi&
skructure, but now assume A

< ign>
asslg is of type real and B is of
%3y@. ik,
<expr=
<var> <var>[2] | <var>[3]
Suppose:
A = A + B Alis real
B is int

This is the same axam!ze{@.
skructure, but now assume A

<assign>
assign is of type real and B is of

%tﬁ@; tnk,
ted
teyxppeeg © < _actual
v | real <expr> type=
. real
A
actual type = real
., <var> <var>{2] | <var>[3]
actual actual
type = type =
actual type = real real int Suppose:
A = A + B A'is real
B is int

This is the same axamyie
skructure, but now assume A

<assign>
assign is of type real and B is of

%W@; ik,
expected . .
type = _actual | type coercion during ‘+’:
¥ | real <expr> type = |int> real
) real

actual type = real

\ <var> <var>{Z]
actual actual
type = type =
actual type = real real int Suppose:
A = A + B A'is real
B is int

actual type = real

<assign>

N <var=

actual type = real

A

This is the same axamyie
skructure, but now assume A
is of type real and B is of
%W@; tk,

expected fLal
type = < > fycpgaz Grenerate code to do
real expr e .
v /
<var>f2] | <var>[3]

actual actual
type = type =
I’ea| |nt Suppose

A + B Ais real

B is int

This is the same axamyi&
skructure, but now assume A

< ian>
assIy is of type nt and B is of
%aﬂm real.
<expr=
<var> <var>[2] | <var>[3]
Suppose:
A — A + B A is int
B is real

This is the same axam!ze{@.
skructure, but now assume A

<assign>
assIign is of type it and B is of

%oﬂm real.
ted
teyxppeeg © < _actual
v |int <expr= type =
. real
A
actual type = int
., <var> <var3f2] | <var>[3]
actual actual
| type = type =
actual type = Int int real SUppOSG:
A = A + B Ais int
B is real

Houston, we have a problem!
Semantic predicate is false.

<assign>

expected
type = _actual
v |int <expr= type =
. real
A
actual type = int
., <var> <var>{2] | <var>[3]
actual actual
| type = type =
actual type = int int real Suppose:
A = A + B Ais int
B is real

<assign> Grenerate error message. }

expected
type = < N actual
v | int <expr> type=
. real
A
actual type = int
., <var> <var>{2] | <var>[3]
actual actual
. type = type =
actual type = int int real SUppOSG:
A = A + B Ais int
B is real

