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Example 4.51 [p. 260]
Grammar from example 4.48: 

S -> L = R | R 
L -> *R | id 

R -> L



Example 4.51 [p. 260]
Grammar from example 4.48: 

S -> L = R | R 
L -> *R | id 

R -> L

"[This grammar] is 
not ambiguous.  This 
shift/reduce conflict 
arises [because] SLR 
parser construction 
method [does not] 
remember enough left 
context…"  

[p. 255]



Viable prefix
"Why can LR(0) automata be used to make 
shift-reduce decisions?  The LR(0) automaton 
for a grammar characterizes the strings of 
grammar symbols that can appear on the 
stack… The stack contents must be a prefix 
of a right-sentential form.  If the stack 
holds 𝛼 and the rest of the input is x, then a 
sequence of reductions will take 𝛼x to S.  In 
terms of derivations, S⇒rm* 𝛼x." [p. 256]



Viable prefix
"Not all prefixes of right-sentential 
forms can appear on the stack…since 
the parser must not shift past the 
handle." [p. 256] 

E ⇒rm* F * id ⇒rm ( E ) * id 



Viable prefix
"Not all prefixes of right-sentential 
forms can appear on the stack…since 
the parser must not shift past the 
handle." [p. 256] 

E ⇒rm* F * id ⇒rm ( E ) * id 

( E ) is a handle of 
F -> ( E )



Viable prefix 
(parser configurations shown)

( $ , '(' id ')' * id $ ) 
( $ '(' , id ')' * id $ ) 
( $ '(' id , ')' * id $ ) 
( $ '(' F , ')' * id $ ) 
( $ '(' T , ')' * id $ ) 
( $ '(' E , ')' * id $ ) 
( $ '(' E ')' , * id $ ) 
( $ F , * id $ ) 
( $ T , * id $ ) 
( $ T * , id $ ) 
etc.

Cannot shift '*' here, because 
'(' E ')' 

is a handle.



Viable prefix
"The prefixes of right sentential forms 
that can appear on the stack of a 
shift-reduce parser are called viable 
prefixes." [p. 256] 



Viable prefix
( $ , '(' id ')' * id $ ) 
( $ '(' , id ')' * id $ ) 
( $ '(' id , ')' * id $ ) 
( $ '(' F , ')' * id $ ) 
( $ '(' T , ')' * id $ ) 
( $ '(' E , ')' * id $ ) 
( $ '(' E ')' , * id $ ) 
( $ F , * id $ ) 
( $ T , * id $ ) 
( $ T * , id $ ) 
etc.

Cannot shift '*' here, because 
'(' E ')' 

is a handle.

Therefore 
'(' E ')' * 

is not a viable prefix.



LR(1) items
"…in the SLR method, state I calls for 
reduction by A→𝛼 if the set of items Ii 
contains item [A→𝛼•] and input 
symbol a is in FOLLOW(A)." [p. 260]



LR(1) items
"In some situations, however, when 
state I appears on top of the stack the 
viable prefix 𝛽𝛼 on the stack is such 
that 𝛽A cannot be followed by a in any 
right-sentential form." [p. 260]



Example 4.51 [p. 260]
Grammar from example 4.48: 
S -> L = R | R 
L -> *R | id 
R -> L 

State I2 from figure 4.39 
S -> L • = R 
R -> L • 

"Consider the set of items I2.  The first item in this set makes ACTION[2,=] be 'shift 
6'.  Since FOLLOW(R) contains = […] the second item sets ACTION[2,=] to reduce R 
-> L." [p. 255] 

"…the SLR parser calls for reduction by R -> L in state 2 with = as the next input 
(the shift action is also called for …).  However, there is no right-sentential form of 
the grammar … that begins R = … . Thus state 2, which is the state corresponding to 
viable prefix L only, should not really call for reduction of that L to R." [p. 260]

See section 4.7.5 (p. 270) for more discussion of this example.



LR(1) items

"By splitting states when necessary, we can 
arrange to have each state … indicate exactly 
which input symbols can follow a handle 𝛼 for 
which there is a possible reduction to A." [p. 260] 

"The general form of an item becomes 
[ A -> 𝛼 • 𝛽, a] 

where A -> 𝛼𝛽 is a production and a is a 
terminal or … $." [p. 260]



LR(1) items

"The lookahead has no effect in an item 
of the form [ A -> 𝛼 • 𝛽, a], where 𝛽 is 
not 𝜀, but an item of the form [ A -> 𝛼 •, 
a] calls for reduction by A -> 𝛼 only if 
the next input symbol is a. […] The set 
of such a's will always be a subset of 
FOLLOW(A), but it could be a proper 
subset …" [p. 260]



LALR (lookahead LR)

"SLR and LALR tables … always have the same 
number of states." [p. 266] 

Idea: merge sets of LR(1) items with the same 
core. 

Cannot introduce Shift/Reduce conflicts, may 
introduce Reduce/Reduce conflicts. 

Bison and YACC produce LALR parsers.



Phases of 
a 

compiler

Figure 1.6, 
page 5 of text

Semantic 
analysis



Semantics

• “Semantics” has to do with the meaning of a 
program. 

• We will consider two types of semantics: 

– Static semantics: semantics which can be enforced 
at compile-time. 

– Dynamic semantics: semantics which express the 
run-time meaning of programs.



Static semantics

• Semantic checking which can be done at 
compile-time 

• Type-compatibility is a prime example 
– int can be assigned to double (type coercion) 
– double cannot be assigned to int without explicit 

type cast 

• Type-compatibility can be captured in grammar, 
but only at expense of larger, more complex 
grammar



Ex: adding type rules in grammar
• Must introduce new non-terminals which encode types: 
• Instead of a generic grammar rule for assignment: 

– <stmt>  <var> ‘=’ <expr> ‘;’ 

• we need multiple rules: 
– <stmt>  <doubleVar> ‘=’ <intExpr> | <doubleExpr> ‘;’ 
– <stmt>  <intVar> ‘=’ <intExpr> ‘;’ 

• Of course, such rules need to handle all the relevant 
type possibilities (e.g. byte, char, short, int, long, 
float and double).



Alternative: attribute grammars

• Attribute grammars provide a neater way of 
encoding such information. 

• Each syntactic rule of the grammar can be 
decorated with: 
– a set of semantic rules/functions 
– a set of semantic predicates



Attributes
• We can associate with each symbol X of the 

grammar a set of attributes A(X).  Attributes are 
partitioned into: 

synthesized attributes S(X) – pass info up parse tree 

inherited attributes I(X) – pass info down parse tree



Semantic rules/functions
• We can associate with each rule R of the grammar a set 

of semantic functions. 

• For rule   X0  X1 X2 … Xn 
– synthesized attribute of LHS: 

S(X0) = f(A(X1), A(X2), …, A(Xn)) 

– inherited attribute of RHS member: 
for 1<=j<=n, I(Xj) = f(A(X0),…,A(Xj-1)) 
(note that dependence is on siblings to left only)

X0

X1 X2 … XN

X0

X1 … Xj-1 Xj…



Predicates
• We can associate with each rule R of the grammar 

a set of semantic predicates. 

• Boolean expression involving the attributes and a 
set of attribute values 

• If true, node is ok 

• If false, node violates a semantic rule



Example
<assign>  <var> = <expr> 
<expr>.expType  <var>.actType 

<expr>  <var>[2] + <var>[3] 
<expr>.actType  if (var[2].actType = int) and 
      (var[3].actType = int) 
   then int 
   else real 
<expr>.actType == <expr>.expType 

<expr>  <var> 
<expr>.actType  <var>.actType 
<expr>.actType == <expr>.expType 

<var>  A | B | C 
<var>.actType  lookUp(<var>.string)

Syntactic rule 
Semantic rule/function 
Semantic predicate

Start with a production of the grammar



Example
<assign>  <var> = <expr> 
<expr>.expType  <var>.actType 

<expr>  <var>[2] + <var>[3] 
<expr>.actType  if (var[2].actType = int) and 
      (var[3].actType = int) 
   then int 
   else real 
<expr>.actType == <expr>.expType 

<expr>  <var> 
<expr>.actType  <var>.actType 
<expr>.actType == <expr>.expType 

<var>  A | B | C 
<var>.actType  lookUp(<var>.string)

Syntactic rule 
Semantic rule/function 
Semantic predicate

Associate an attribute with a non-
terminal, <expr>, on the right of the 

production: expType (the expected type 
of the expression)



Example
<assign>  <var> = <expr> 
<expr>.expType  <var>.actType 

<expr>  <var>[2] + <var>[3] 
<expr>.actType  if (var[2].actType = int) and 
      (var[3].actType = int) 
   then int 
   else real 
<expr>.actType == <expr>.expType 

<expr>  <var> 
<expr>.actType  <var>.actType 
<expr>.actType == <expr>.expType 

<var>  A | B | C 
<var>.actType  lookUp(<var>.string)

Syntactic rule 
Semantic rule/function 
Semantic predicate

Assign to <expr>.expType the value of 
<var>.actType, the actual type of the 
variable (the type the variable was 

declared as).



Example
<assign>  <var> = <expr> 
<expr>.expType  <var>.actType 

<expr>  <var>[2] + <var>[3] 
<expr>.actType  if (var[2].actType = int) and 
      (var[3].actType = int) 
   then int 
   else real 
<expr>.actType == <expr>.expType 

<expr>  <var> 
<expr>.actType  <var>.actType 
<expr>.actType == <expr>.expType 

<var>  A | B | C 
<var>.actType  lookUp(<var>.string)

Syntactic rule 
Semantic rule/function 
Semantic predicate

In other words, we expect the expression 
whose value is being assigned to a 

variable to have the same type as the 
variable.



Example
<assign>  <var> = <expr> 
<expr>.expType  <var>.actType 

<expr>  <var>[2] + <var>[3] 
<expr>.actType  if (var[2].actType = int) and 
      (var[3].actType = int) 
   then int 
   else real 
<expr>.actType == <expr>.expType 

<expr>  <var> 
<expr>.actType  <var>.actType 
<expr>.actType == <expr>.expType 

<var>  A | B | C 
<var>.actType  lookUp(<var>.string)

Syntactic rule 
Semantic rule/function 
Semantic predicate

Another grammar production



Example
<assign>  <var> = <expr> 
<expr>.expType  <var>.actType 

<expr>  <var>[2] + <var>[3] 
<expr>.actType  if (var[2].actType = int) and 
      (var[3].actType = int) 
   then int 
   else real 
<expr>.actType == <expr>.expType 

<expr>  <var> 
<expr>.actType  <var>.actType 
<expr>.actType == <expr>.expType 

<var>  A | B | C 
<var>.actType  lookUp(<var>.string)

This production has a more involved 
semantic rule: it handles type coercion. 
This rule assumes that there are only two 
numeric types (int and real) and that int 

can be coerced to real. 

Syntactic rule 
Semantic rule/function 
Semantic predicate



Example
<assign>  <var> = <expr> 
<expr>.expType  <var>.actType 

<expr>  <var>[2] + <var>[3] 
<expr>.actType  if (var[2].actType = int) and 
      (var[3].actType = int) 
   then int 
   else real 
<expr>.actType == <expr>.expType 

<expr>  <var> 
<expr>.actType  <var>.actType 
<expr>.actType == <expr>.expType 

<var>  A | B | C 
<var>.actType  lookUp(<var>.string)

Here is our first semantic predicate, 
which enforces a type-checking 

constraint: the actual type of <expr> must 
match the expected type (from elsewhere 

in the tree)

Syntactic rule 
Semantic rule/function 
Semantic predicate



Example
<assign>  <var> = <expr> 
<expr>.expType  <var>.actType 

<expr>  <var>[2] + <var>[3] 
<expr>.actType  if (var[2].actType = int) and 
      (var[3].actType = int) 
   then int 
   else real 
<expr>.actType == <expr>.expType 

<expr>  <var> 
<expr>.actType  <var>.actType 
<expr>.actType == <expr>.expType 

<var>  A | B | C 
<var>.actType  lookUp(<var>.string)

Another 
production, with 
a semantic rule 
and a semantic 

predicate.

Syntactic rule 
Semantic rule/function 
Semantic predicate



Example
<assign>  <var> = <expr> 
<expr>.expType  <var>.actType 

<expr>  <var>[2] + <var>[3] 
<expr>.actType  if (var[2].actType = int) and 
      (var[3].actType = int) 
   then int 
   else real 
<expr>.actType == <expr>.expType 

<expr>  <var> 
<expr>.actType  <var>.actType 
<expr>.actType == <expr>.expType 

<var>  A | B | C 
<var>.actType  lookUp(<var>.string)

This semantic rule 
says that the type 
of an identifier is 

determined by 
looking up its 

type in the symbol 
table.

Syntactic rule 
Semantic rule/function 
Semantic predicate



All the productions, rules and predicates
<assign>  <var> = <expr> 
<expr>.expType  <var>.actType 

<expr>  <var>[2] + <var>[3] 
<expr>.actType  if (var[2].actType = int) and 
      (var[3].actType = int) 
   then int 
   else real 
<expr>.actType == <expr>.expType 

<expr>  <var> 
<expr>.actType  <var>.actType 
<expr>.actType == <expr>.expType 

<var>  A | B | C 
<var>.actType  lookUp(<var>.string)

Syntactic rule 
Semantic rule/function 
Semantic predicate



A = A + B

<var> <var>[2] <var>[3]

<expr>

<assign>

Suppose: 
A is int 
B is int

Let's see how these rules 
work in practice! 

In this example A and B are 
both of type int.



A = A + B

<var> <var>[2] <var>[3]

<expr>

<assign>

Suppose: 
A is int 
B is int

actual type = int

actual type = int

expected 
type = 
int

actual 
type =  
int

actual 
type =  
int

actual 
type =  
int

Effects of the semantic 
rules is shown in red.



A = A + B

<var> <var>[2] <var>[3]

<expr>

<assign>

Suppose: 
A is real 
B is int

This is the same example 
structure, but now assume A 
is of type real and B is of 

type int.



A = A + B

<var> <var>[2] <var>[3]

<expr>

<assign>

actual type = real

actual type = real

expected 
type = 
real

actual 
type =  
real

actual 
type =  
int

actual 
type =  
real

This is the same example 
structure, but now assume A 
is of type real and B is of 

type int.

Suppose: 
A is real 
B is int



A = A + B

<var> <var>[2] <var>[3]

<expr>

<assign>

actual type = real

actual type = real

expected 
type = 
real

actual 
type =  
real

actual 
type =  
int

actual 
type =  
real

type coercion during ‘+’: 
int  real

This is the same example 
structure, but now assume A 
is of type real and B is of 

type int.

Suppose: 
A is real 
B is int



A = A + B

<var> <var>[2] <var>[3]

<expr>

<assign>

actual type = real

actual type = real

expected 
type = 
real

actual 
type =  
real

actual 
type =  
int

actual 
type =  
real

This is the same example 
structure, but now assume A 
is of type real and B is of 

type int.

Generate code to do 
conversion.

Suppose: 
A is real 
B is int



A = A + B

<var> <var>[2] <var>[3]

<expr>

<assign>

Suppose: 
A is int 

B is real

This is the same example 
structure, but now assume A 
is of type int and B is of 

type real.



A = A + B

<var> <var>[2] <var>[3]

<expr>

<assign>

actual type = int

actual type = int

expected 
type = 
int

actual 
type =  
int

actual 
type =  
real

actual 
type =  
real

This is the same example 
structure, but now assume A 
is of type int and B is of 

type real.

Suppose: 
A is int 

B is real



A = A + B

<var> <var>[2] <var>[3]

<expr>

<assign>

actual type = int

actual type = int

expected 
type = 
int

actual 
type =  
int

actual 
type =  
real

actual 
type =  
real

Houston, we have a problem! 
Semantic predicate is false.

Suppose: 
A is int 

B is real



A = A + B

<var> <var>[2] <var>[3]

<expr>

<assign>

actual type = int

actual type = int

expected 
type = 
int

actual 
type =  
int

actual 
type =  
real

actual 
type =  
real

Generate error message.

Suppose: 
A is int 

B is real


