
CSE443
Compilers
Dr. Carl Alphonce

alphonce@buffalo.edu
343 Davis Hall

Phases of
a

compiler

Figure 1.7,
page 5 of text

Syntactic
structure

Example 4.51 [p. 260]
Grammar from example 4.48:

S -> L = R | R
L -> *R | id

R -> L

Example 4.51 [p. 260]
Grammar from example 4.48:

S -> L = R | R
L -> *R | id

R -> L

"[This grammar] is
not ambiguous. This
shift/reduce conflict
arises [because] SLR
parser construction
method [does not]
remember enough left
context…"

[p. 255]

Viable prefix
"Why can LR(0) automata be used to make
shift-reduce decisions? The LR(0) automaton
for a grammar characterizes the strings of
grammar symbols that can appear on the
stack… The stack contents must be a prefix
of a right-sentential form. If the stack
holds 𝛼 and the rest of the input is x, then a
sequence of reductions will take 𝛼x to S. In
terms of derivations, S⇒rm* 𝛼x." [p. 256]

Viable prefix
"Not all prefixes of right-sentential
forms can appear on the stack…since
the parser must not shift past the
handle." [p. 256]

E ⇒rm* F * id ⇒rm (E) * id

Viable prefix
"Not all prefixes of right-sentential
forms can appear on the stack…since
the parser must not shift past the
handle." [p. 256]

E ⇒rm* F * id ⇒rm (E) * id

(E) is a handle of
F -> (E)

Viable prefix
(parser configurations shown)

($, '(' id ')' * id $)
($ '(' , id ')' * id $)
($ '(' id , ')' * id $)
($ '(' F , ')' * id $)
($ '(' T , ')' * id $)
($ '(' E , ')' * id $)
($ '(' E ')' , * id $)
($ F , * id $)
($ T , * id $)
($ T * , id $)
etc.

Cannot shift '*' here, because
'(' E ')'

is a handle.

Viable prefix
"The prefixes of right sentential forms
that can appear on the stack of a
shift-reduce parser are called viable
prefixes." [p. 256]

Viable prefix
($, '(' id ')' * id $)
($ '(' , id ')' * id $)
($ '(' id , ')' * id $)
($ '(' F , ')' * id $)
($ '(' T , ')' * id $)
($ '(' E , ')' * id $)
($ '(' E ')' , * id $)
($ F , * id $)
($ T , * id $)
($ T * , id $)
etc.

Cannot shift '*' here, because
'(' E ')'

is a handle.

Therefore
'(' E ')' *

is not a viable prefix.

LR(1) items
"…in the SLR method, state I calls for
reduction by A→𝛼 if the set of items Ii
contains item [A→𝛼•] and input
symbol a is in FOLLOW(A)." [p. 260]

LR(1) items
"In some situations, however, when
state I appears on top of the stack the
viable prefix 𝛽𝛼 on the stack is such
that 𝛽A cannot be followed by a in any
right-sentential form." [p. 260]

Example 4.51 [p. 260]
Grammar from example 4.48:
S -> L = R | R
L -> *R | id
R -> L

State I2 from figure 4.39
S -> L • = R
R -> L •

"Consider the set of items I2. The first item in this set makes ACTION[2,=] be 'shift
6'. Since FOLLOW(R) contains = […] the second item sets ACTION[2,=] to reduce R
-> L." [p. 255]

"…the SLR parser calls for reduction by R -> L in state 2 with = as the next input
(the shift action is also called for …). However, there is no right-sentential form of
the grammar … that begins R = … . Thus state 2, which is the state corresponding to
viable prefix L only, should not really call for reduction of that L to R." [p. 260]

See section 4.7.5 (p. 270) for more discussion of this example.

LR(1) items

"By splitting states when necessary, we can
arrange to have each state … indicate exactly
which input symbols can follow a handle 𝛼 for
which there is a possible reduction to A." [p. 260]

"The general form of an item becomes
[A -> 𝛼 • 𝛽, a]

where A -> 𝛼𝛽 is a production and a is a
terminal or … $." [p. 260]

LR(1) items

"The lookahead has no effect in an item
of the form [A -> 𝛼 • 𝛽, a], where 𝛽 is
not 𝜀, but an item of the form [A -> 𝛼 •,
a] calls for reduction by A -> 𝛼 only if
the next input symbol is a. […] The set
of such a's will always be a subset of
FOLLOW(A), but it could be a proper
subset …" [p. 260]

LALR (lookahead LR)

"SLR and LALR tables … always have the same
number of states." [p. 266]

Idea: merge sets of LR(1) items with the same
core.

Cannot introduce Shift/Reduce conflicts, may
introduce Reduce/Reduce conflicts.

Bison and YACC produce LALR parsers.

Phases of
a

compiler

Figure 1.6,
page 5 of text

Semantic
analysis

Semantics

• “Semantics” has to do with the meaning of a
program.

• We will consider two types of semantics:

– Static semantics: semantics which can be enforced
at compile-time.

– Dynamic semantics: semantics which express the
run-time meaning of programs.

Static semantics

• Semantic checking which can be done at
compile-time

• Type-compatibility is a prime example
– int can be assigned to double (type coercion)
– double cannot be assigned to int without explicit

type cast

• Type-compatibility can be captured in grammar,
but only at expense of larger, more complex
grammar

Ex: adding type rules in grammar
• Must introduce new non-terminals which encode types:
• Instead of a generic grammar rule for assignment:

– <stmt> <var> ‘=’ <expr> ‘;’

• we need multiple rules:
– <stmt> <doubleVar> ‘=’ <intExpr> | <doubleExpr> ‘;’
– <stmt> <intVar> ‘=’ <intExpr> ‘;’

• Of course, such rules need to handle all the relevant
type possibilities (e.g. byte, char, short, int, long,
float and double).

Alternative: attribute grammars

• Attribute grammars provide a neater way of
encoding such information.

• Each syntactic rule of the grammar can be
decorated with:
– a set of semantic rules/functions
– a set of semantic predicates

Attributes
• We can associate with each symbol X of the

grammar a set of attributes A(X). Attributes are
partitioned into:

synthesized attributes S(X) – pass info up parse tree

inherited attributes I(X) – pass info down parse tree

Semantic rules/functions
• We can associate with each rule R of the grammar a set

of semantic functions.

• For rule X0 X1 X2 … Xn
– synthesized attribute of LHS:

S(X0) = f(A(X1), A(X2), …, A(Xn))

– inherited attribute of RHS member:
for 1<=j<=n, I(Xj) = f(A(X0),…,A(Xj-1))
(note that dependence is on siblings to left only)

X0

X1 X2 … XN

X0

X1 … Xj-1 Xj…

Predicates
• We can associate with each rule R of the grammar

a set of semantic predicates.

• Boolean expression involving the attributes and a
set of attribute values

• If true, node is ok

• If false, node violates a semantic rule

Example
<assign> <var> = <expr>
<expr>.expType <var>.actType

<expr> <var>[2] + <var>[3]
<expr>.actType if (var[2].actType = int) and
 (var[3].actType = int)
 then int
 else real
<expr>.actType == <expr>.expType

<expr> <var>
<expr>.actType <var>.actType
<expr>.actType == <expr>.expType

<var> A | B | C
<var>.actType lookUp(<var>.string)

Syntactic rule
Semantic rule/function
Semantic predicate

Start with a production of the grammar

Example
<assign> <var> = <expr>
<expr>.expType <var>.actType

<expr> <var>[2] + <var>[3]
<expr>.actType if (var[2].actType = int) and
 (var[3].actType = int)
 then int
 else real
<expr>.actType == <expr>.expType

<expr> <var>
<expr>.actType <var>.actType
<expr>.actType == <expr>.expType

<var> A | B | C
<var>.actType lookUp(<var>.string)

Syntactic rule
Semantic rule/function
Semantic predicate

Associate an attribute with a non-
terminal, <expr>, on the right of the

production: expType (the expected type
of the expression)

Example
<assign> <var> = <expr>
<expr>.expType <var>.actType

<expr> <var>[2] + <var>[3]
<expr>.actType if (var[2].actType = int) and
 (var[3].actType = int)
 then int
 else real
<expr>.actType == <expr>.expType

<expr> <var>
<expr>.actType <var>.actType
<expr>.actType == <expr>.expType

<var> A | B | C
<var>.actType lookUp(<var>.string)

Syntactic rule
Semantic rule/function
Semantic predicate

Assign to <expr>.expType the value of
<var>.actType, the actual type of the
variable (the type the variable was

declared as).

Example
<assign> <var> = <expr>
<expr>.expType <var>.actType

<expr> <var>[2] + <var>[3]
<expr>.actType if (var[2].actType = int) and
 (var[3].actType = int)
 then int
 else real
<expr>.actType == <expr>.expType

<expr> <var>
<expr>.actType <var>.actType
<expr>.actType == <expr>.expType

<var> A | B | C
<var>.actType lookUp(<var>.string)

Syntactic rule
Semantic rule/function
Semantic predicate

In other words, we expect the expression
whose value is being assigned to a

variable to have the same type as the
variable.

Example
<assign> <var> = <expr>
<expr>.expType <var>.actType

<expr> <var>[2] + <var>[3]
<expr>.actType if (var[2].actType = int) and
 (var[3].actType = int)
 then int
 else real
<expr>.actType == <expr>.expType

<expr> <var>
<expr>.actType <var>.actType
<expr>.actType == <expr>.expType

<var> A | B | C
<var>.actType lookUp(<var>.string)

Syntactic rule
Semantic rule/function
Semantic predicate

Another grammar production

Example
<assign> <var> = <expr>
<expr>.expType <var>.actType

<expr> <var>[2] + <var>[3]
<expr>.actType if (var[2].actType = int) and
 (var[3].actType = int)
 then int
 else real
<expr>.actType == <expr>.expType

<expr> <var>
<expr>.actType <var>.actType
<expr>.actType == <expr>.expType

<var> A | B | C
<var>.actType lookUp(<var>.string)

This production has a more involved
semantic rule: it handles type coercion.
This rule assumes that there are only two
numeric types (int and real) and that int

can be coerced to real.

Syntactic rule
Semantic rule/function
Semantic predicate

Example
<assign> <var> = <expr>
<expr>.expType <var>.actType

<expr> <var>[2] + <var>[3]
<expr>.actType if (var[2].actType = int) and
 (var[3].actType = int)
 then int
 else real
<expr>.actType == <expr>.expType

<expr> <var>
<expr>.actType <var>.actType
<expr>.actType == <expr>.expType

<var> A | B | C
<var>.actType lookUp(<var>.string)

Here is our first semantic predicate,
which enforces a type-checking

constraint: the actual type of <expr> must
match the expected type (from elsewhere

in the tree)

Syntactic rule
Semantic rule/function
Semantic predicate

Example
<assign> <var> = <expr>
<expr>.expType <var>.actType

<expr> <var>[2] + <var>[3]
<expr>.actType if (var[2].actType = int) and
 (var[3].actType = int)
 then int
 else real
<expr>.actType == <expr>.expType

<expr> <var>
<expr>.actType <var>.actType
<expr>.actType == <expr>.expType

<var> A | B | C
<var>.actType lookUp(<var>.string)

Another
production, with
a semantic rule
and a semantic

predicate.

Syntactic rule
Semantic rule/function
Semantic predicate

Example
<assign> <var> = <expr>
<expr>.expType <var>.actType

<expr> <var>[2] + <var>[3]
<expr>.actType if (var[2].actType = int) and
 (var[3].actType = int)
 then int
 else real
<expr>.actType == <expr>.expType

<expr> <var>
<expr>.actType <var>.actType
<expr>.actType == <expr>.expType

<var> A | B | C
<var>.actType lookUp(<var>.string)

This semantic rule
says that the type
of an identifier is

determined by
looking up its

type in the symbol
table.

Syntactic rule
Semantic rule/function
Semantic predicate

All the productions, rules and predicates
<assign> <var> = <expr>
<expr>.expType <var>.actType

<expr> <var>[2] + <var>[3]
<expr>.actType if (var[2].actType = int) and
 (var[3].actType = int)
 then int
 else real
<expr>.actType == <expr>.expType

<expr> <var>
<expr>.actType <var>.actType
<expr>.actType == <expr>.expType

<var> A | B | C
<var>.actType lookUp(<var>.string)

Syntactic rule
Semantic rule/function
Semantic predicate

A = A + B

<var> <var>[2] <var>[3]

<expr>

<assign>

Suppose:
A is int
B is int

Let's see how these rules
work in practice!

In this example A and B are
both of type int.

A = A + B

<var> <var>[2] <var>[3]

<expr>

<assign>

Suppose:
A is int
B is int

actual type = int

actual type = int

expected
type =
int

actual
type =
int

actual
type =
int

actual
type =
int

Effects of the semantic
rules is shown in red.

A = A + B

<var> <var>[2] <var>[3]

<expr>

<assign>

Suppose:
A is real
B is int

This is the same example
structure, but now assume A
is of type real and B is of

type int.

A = A + B

<var> <var>[2] <var>[3]

<expr>

<assign>

actual type = real

actual type = real

expected
type =
real

actual
type =
real

actual
type =
int

actual
type =
real

This is the same example
structure, but now assume A
is of type real and B is of

type int.

Suppose:
A is real
B is int

A = A + B

<var> <var>[2] <var>[3]

<expr>

<assign>

actual type = real

actual type = real

expected
type =
real

actual
type =
real

actual
type =
int

actual
type =
real

type coercion during ‘+’:
int real

This is the same example
structure, but now assume A
is of type real and B is of

type int.

Suppose:
A is real
B is int

A = A + B

<var> <var>[2] <var>[3]

<expr>

<assign>

actual type = real

actual type = real

expected
type =
real

actual
type =
real

actual
type =
int

actual
type =
real

This is the same example
structure, but now assume A
is of type real and B is of

type int.

Generate code to do
conversion.

Suppose:
A is real
B is int

A = A + B

<var> <var>[2] <var>[3]

<expr>

<assign>

Suppose:
A is int

B is real

This is the same example
structure, but now assume A
is of type int and B is of

type real.

A = A + B

<var> <var>[2] <var>[3]

<expr>

<assign>

actual type = int

actual type = int

expected
type =
int

actual
type =
int

actual
type =
real

actual
type =
real

This is the same example
structure, but now assume A
is of type int and B is of

type real.

Suppose:
A is int

B is real

A = A + B

<var> <var>[2] <var>[3]

<expr>

<assign>

actual type = int

actual type = int

expected
type =
int

actual
type =
int

actual
type =
real

actual
type =
real

Houston, we have a problem!
Semantic predicate is false.

Suppose:
A is int

B is real

A = A + B

<var> <var>[2] <var>[3]

<expr>

<assign>

actual type = int

actual type = int

expected
type =
int

actual
type =
int

actual
type =
real

actual
type =
real

Generate error message.

Suppose:
A is int

B is real

