
 2020 Carl Alphonce - Reproduction of this material is prohibited without the author's consent©

CSE443
Compilers
Dr. Carl Alphonce

alphonce@buffalo.edu
343 Davis Hall

Phases of
a

compiler

Figure 1.6,
page 5 of text

Target machine
code generation

 2020 Carl Alphonce - Reproduction of this material is prohibited without the author's consent©

Significant tasks of code generator

instruction selection

register allocation and assignment

instruction ordering

 2020 Carl Alphonce - Reproduction of this material is prohibited without the author's consent©

Significant tasks of code generator

instruction selection

register allocation and assignment

instruction ordering

Which variables are kept in
registers?

 2020 Carl Alphonce - Reproduction of this material is prohibited without the author's consent©

Significant tasks of code generator

instruction selection

register allocation and assignment

instruction ordering

Which specific register holds
which value?

 2020 Carl Alphonce - Reproduction of this material is prohibited without the author's consent©

Significant tasks of code generator

instruction selection

register allocation and assignment

instruction ordering

E.g. to minimize the number
of registers needed.

 2020 Carl Alphonce - Reproduction of this material is prohibited without the author's consent©

Simple generation
strategy vs. code size

If we generate code for each
intermediate code instruction in
isolation and string the results
together the result may include
redundant instructions

 2020 Carl Alphonce - Reproduction of this material is prohibited without the author's consent©

Small example [p. 509]

Consider:
x = y + z

This might be translated as:
LD R0, y
ADD R0, R0, z
ST x, R0

<— load the value of y into register R0

<— put into R0 the result of
 adding R0 and the value of z

<— store the value of register R0 to x

 2020 Carl Alphonce - Reproduction of this material is prohibited without the author's consent©

Larger example [p. 509]

Consider applying the same template to a
larger example:

a = b + c
d = a + e

This might be translated as:
LD R0, b
ADD R0, R0, c
ST a, R0
LD R0, a
ADD R0, R0, e
ST d, R0

 2020 Carl Alphonce - Reproduction of this material is prohibited without the author's consent©

Larger example [p. 509]

Consider applying the same template to a
larger example:

a = b + c
d = a + e

This might be translated as:
LD R0, b
ADD R0, R0, c
ST a, R0
LD R0, a
ADD R0, R0, e
ST d, R0

This instruction is
redundant: it is loading into
R0 the value that is already

there.

Basic Blocks

&

Flow Graphs

Basic blocks and
flow graphs

To help us analyze the intermediate
code we will group instructions
from our program into "basic
blocks".

Basic Block
A basic block is a "maximal sequence of
consecutive three-address instructions with the
properties that,

a) the flow of control can only enter the basic
block through the first instruction in the block
[…]

b) control will leave the block without halting
or branching, except possibly at the last
instruction in the block"

[p. 526]

Flow Graph

"The basic blocks become the nodes of
a flow graph, whose edges indicate
which blocks can follow which other
blocks."

[p 526]

Partitioning IR into BB
"Algorithm 8.5 [p. 526]
INPUT: a sequence B of three-address instructions.
OUTPUT: a list of basic blocks for B, in which each instruction is
assigned to exactly one basic block
METHOD: First, find leaders (see below).
For each leader, its basic block consists of itself and all
instructions up to but not including the next leader, or the end
of the intermediate program." [lightly edited from original]

"The rules for finding leaders are:
1) The first three address instruction (3AI) in the intermediate
code is a leader.
2) Any instruction that is the target of a (conditional or
unconditional) jump is a leader.
3) Any instruction that immediately follows a (conditional or
unconditional) jump is a leader." [lightly edited from original]

Example
Figure 8.8 [p. 527]

for (i=1; i<=10; i=i+1) {
 for (j=1; j<=10; j=j+1) {
 a[i,j] = 0.0;
 }
}
for (i=1; i<=10; i=i+1) {
 a[i,i] = 1.0;
}

This code initializes a 10x10 real matrix
to the identity matrix (1's along the main
diagonal).

Assumptions:
matrix is of size 10x10 containing reals
a real occupies 8 bytes
matrix is stored in row-major form (see p. 382)

a[1,1]

a[1,2]

a[1,3]

a[1,4]

a[1,5]
a

a[1,6]

a[1,7]

a[1,8]

a[1,9]

a[1,10]

a[2,1]

a[2,2]

a[2,3]

a[2,4]

a[2,5]
a

a[2,6]

a[2,7]

a[2,8]

a[2,9]

a[2,10]

Example
Figure 8.7 [p. 527]

1) i = 1
2) j = 1
3) t1 = 10 * i
4) t2 = t1 + j
5) t3 = 8 * t2
6) t4 = t3 - 88
7) a[t4] = 0.0
8) j = j + 1
9) if j<= 10 goto (3)
10)i = i + 1
11)if i <= 10 goto (2)
12)i = 1
13)t5 = i - 1
14)t6 = 88 * t5
15)a[t6] = 1.0
16)i = i + 1
17)if i <= 10 goto (13)

A possible three-address
code translation of the high-

level program.

Identifying leaders
1) i = 1
2) j = 1
3) t1 = 10 * i
4) t2 = t1 + j
5) t3 = 8 * t2
6) t4 = t3 - 88
7) a[t4] = 0.0
8) j = j + 1
9) if j<= 10 goto (3)
10)i = i + 1
11)if i <= 10 goto (2)
12)i = 1
13)t5 = i - 1
14)t6 = 88 * t5
15)a[t6] = 1.0
16)i = i + 1
17)if i <= 10 goto (13)

Leaders are:
1. first instruction
2. the target of any jump
3. the instruction

immediately after any
jump

L

Identifying leaders
1) i = 1
2) j = 1
3) t1 = 10 * i
4) t2 = t1 + j
5) t3 = 8 * t2
6) t4 = t3 - 88
7) a[t4] = 0.0
8) j = j + 1
9) if j<= 10 goto (3)
10)i = i + 1
11)if i <= 10 goto (2)
12)i = 1
13)t5 = i - 1
14)t6 = 88 * t5
15)a[t6] = 1.0
16)i = i + 1
17)if i <= 10 goto (13)

Leaders are:
1. first instruction
2. the target of any jump
3. the instruction

immediately after any
jump

L
L
L

L

Identifying leaders
1) i = 1
2) j = 1
3) t1 = 10 * i
4) t2 = t1 + j
5) t3 = 8 * t2
6) t4 = t3 - 88
7) a[t4] = 0.0
8) j = j + 1
9) if j<= 10 goto (3)
10)i = i + 1
11)if i <= 10 goto (2)
12)i = 1
13)t5 = i - 1
14)t6 = 88 * t5
15)a[t6] = 1.0
16)i = i + 1
17)if i <= 10 goto (13)

Leaders are:
1. first instruction
2. the target of any jump
3. the instruction

immediately after any
jump

L
L
L

L

L
L

8.4.3 Flow Graphs

Each basic block is a node in the flow graph.

There is an edge between blocks B and C of the flow
graph if:

1. there is a (conditional or unconditional) jump
from from the end of B to the start of C, or

2. C immediately follows B and B does not end with
an unconditional jump.

Terminology

B is a predecessor of C

C is a successor of B

B

C

Flow
Graph

Figure 8.9 [p. 530]

i = 1

j = 1

t1 = 10 * i
t2 = t1 + j
t3 = 8 * t2
t4 = t3 - 88
a[t4] = 0.0
j = j + 1
if j<= 10 goto B3

i = i + 1
if i <= 10 goto B2

i = 1

t5 = i - 1
t6 = 88 * t5
a[t6] = 1.0
i = i + 1
if i <= 10 goto B6

B1

B2

B3

B4

B5

B6

Entry and exit
nodes added.

Jump targets
replaced by
block names.

ENTRY

EXIT

8.4.2 Liveness and next-use

"Knowing when the value of a variable
will be used next is essential for
generating good code. If the value of
a variable that is currently in a
register will never be referenced
subsequently, then that register can be
assigned to another variable."

8.4.2 Liveness and next-use

i: x = …
 . assuming there
 . are no assignments
 . to x between i and j
j: … = x op …

If statement j uses x, then x is live at i. Since we
need the value of x we should try to keep it in a
register.

8.4.2 Liveness and next-use

i: … x …
 . assuming there
 . is no use of x
 . between i and j
j: x = …

Statement j overwrites old value of x; we say
x is dead at i. This means we need not preserve
that value in a register.

Algorithm 8.7 [p. 528]
Determining the liveness and next-use information for each
statement in a basic block.

INPUT: A basic block B of three address instructions. Assume
the symbol table initially shows all non-temporary variables
in B as being live on exit.

OUTPUT: At each statement i: x = y + z in B, we attach to i the
liveness and next-use information for x, y, and z.

METHOD: We start at the last statement in B and scan
backwards to the beginning of B. At each statement i: x = y +
z in B do the following:

1) attach to statement i the information currently
found in the symbol table regarding the next-use and
liveness of x, y, and Z.
2) In the symbol table, set x to "not live" and "no next
use".
3) In the symbol table, set y and z to "live" and the
next uses of y and z to instruction i.

Not this instruction specifically, but instructions of the form
x = y op z, x = op y, or x = y.

Code Transformations
on basic blocks

Local optimizations can be performed
on code inside basic blocks.

Represent code inside a basic block
as a DAG.

The basic blocks will themselves be
connected to form a flow graph.

Constructing DAG for
basic blocks [p. 533]

1. For each variable in the block,
create a node representing the
variable's initial value.

2. For each statement s in the block,
create a node N.

"The children of N are those nodes corresponding to
statements that are the last definitions, prior to s, of
the operands used by s."

Constructing DAG for
basic blocks

3. For each node representing a
statement, label it with the operator
applied.

4. For each node representing a
statement, attach a list of the
variables for which it is the last
definition within the block.

Constructing DAG for
basic blocks

5. For each node representing a
statement, its children are the nodes
that are the last definitions of the
operands used in the statement.

6. Identify as output nodes those whose
variables are live on exit from the
block ("their values may be used later,
in another block of the flow graph")

Example 8.10 [p. 534]

1) a = b + c
2) b = a - d
3) c = b + c
4) d = a - d

Example 8.10 [p. 534]

1) a = b + c
2) b = a - d
3) c = b + c
4) d = a - d

b0 c0

Apply the "value-number" method
from section 6.1.1

1. For each variable in the block, create a node
representing the variable's initial value.

Example 8.10 [p. 534]

1) a = b + c
2) b = a - d
3) c = b + c
4) d = a - d

+

b0 c0

a

Apply the "value-number" method
from section 6.1.1

2. For each statement s in
the block, create a node N.

3. For each node
representing a statement,
label it with the operator
applied.

4. For each node
representing a statement,
attach a list of the
variables for which it is the
last definition within the
block.

Example 8.10 [p. 534]

1) a = b + c
2) b = a - d
3) c = b + c
4) d = a - d

-

+

b0 c0

d0a

b

Apply the "value-number" method
from section 6.1.1

Example 8.10 [p. 534]

1) a = b + c
2) b = a - d
3) c = b + c
4) d = a - d

-

+

+

b0 c0

d0a

b

Apply the "value-number" method
from section 6.1.1

c

Example 8.10 [p. 534]

1) a = b + c
2) b = a - d
3) c = b + c
4) d = a - d

-

+

+

b0 c0

d0a

b,d

Apply the "value-number" method
from section 6.1.1

c

Example 8.10 [p. 534]

1) a = b + c
2) b = a - d
3) c = b + c
4) d = b

-

+

+

b0 c0

d0a

b,d

If b is live on exit:

c

Example 8.10 [p. 534]

-

+

+

b0 c0

d0a

d

If b is not live on exit:

c

If b is not live on exit:If b is not live on exit:

1) a = b + c
2) d = a - d
3) c = d + c

