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Significant tasks of code generator

instruction selection 

register allocation and assignment 

instruction ordering
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Significant tasks of code generator

instruction selection 

register allocation and assignment 

instruction ordering

Which variables are kept in 
registers?
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Significant tasks of code generator

instruction selection 

register allocation and assignment 

instruction ordering

Which specific register holds 
which value?
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Significant tasks of code generator

instruction selection 

register allocation and assignment 

instruction ordering

E.g. to minimize the number 
of registers needed.
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Simple generation 
strategy vs. code size

If we generate code for each 
intermediate code instruction in 
isolation and string the results 
together the result may include 
redundant instructions
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Small example [p. 509]

Consider: 
x = y + z  

This might be translated as: 
LD R0, y 
ADD R0, R0, z 
ST x, R0 

<— load the value of y into register R0

<— put into R0 the result of 
      adding R0 and the value of z

<— store the value of register R0 to x 



 2020 Carl Alphonce - Reproduction of this material is prohibited without the author's consent©

Larger example [p. 509]

Consider applying the same template to a 
larger example: 

a = b + c  
d = a + e 

This might be translated as: 
LD R0, b 
ADD R0, R0, c 
ST a, R0 
LD R0, a 
ADD R0, R0, e 
ST d, R0 
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Larger example [p. 509]

Consider applying the same template to a 
larger example: 

a = b + c  
d = a + e 

This might be translated as: 
LD R0, b 
ADD R0, R0, c 
ST a, R0 
LD R0, a 
ADD R0, R0, e 
ST d, R0 

This instruction is 
redundant: it is loading into 
R0 the value that is already 

there.



Basic Blocks 
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Flow Graphs



Basic blocks and 
flow graphs

To help us analyze the intermediate 
code we will group instructions 
from our program into "basic 
blocks".



Basic Block
A basic block is a "maximal sequence of 
consecutive three-address instructions with the 
properties that, 

a) the flow of control can only enter the basic 
block through the first instruction in the block 
[…] 

b) control will leave the block without halting 
or branching, except possibly at the last 
instruction in the block" 

[p. 526]



Flow Graph

"The basic blocks become the nodes of 
a flow graph, whose edges indicate 
which blocks can follow which other 
blocks." 

[p 526]



Partitioning IR into BB
"Algorithm 8.5 [p. 526] 
INPUT: a sequence B of three-address instructions. 
OUTPUT: a list of basic blocks for B, in which each instruction is 
assigned to exactly one basic block 
METHOD: First, find leaders (see below). 
For each leader, its basic block consists of itself and all 
instructions up to but not including the next leader, or the end 
of the intermediate program." [lightly edited from original] 

"The rules for finding leaders are: 
1) The first three address instruction (3AI) in the intermediate 
code is a leader. 
2) Any instruction that is the target of a (conditional or 
unconditional) jump is a leader. 
3) Any instruction that immediately follows a (conditional or 
unconditional) jump is a leader." [lightly edited from original]



Example 
Figure 8.8 [p. 527]

for (i=1; i<=10; i=i+1) { 
    for (j=1; j<=10; j=j+1) { 
        a[i,j] = 0.0; 
    } 
} 
for (i=1; i<=10; i=i+1) { 
    a[i,i] = 1.0; 
} 

This code initializes a 10x10 real matrix 
to the identity matrix (1's along the main 
diagonal). 

Assumptions: 
matrix is of size 10x10 containing reals 
a real occupies 8 bytes 
matrix is stored in row-major form      (see p. 382)
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Example 
Figure 8.7 [p. 527]

1) i = 1 
2) j = 1 
3) t1 = 10 * i 
4) t2 = t1 + j 
5) t3 = 8 * t2 
6) t4 = t3 - 88 
7) a[t4] = 0.0 
8) j = j + 1 
9) if j<= 10 goto (3) 
10)i = i + 1 
11)if i <= 10 goto (2) 
12)i = 1 
13)t5 = i - 1 
14)t6 = 88 * t5 
15)a[t6] = 1.0 
16)i = i + 1 
17)if i <= 10 goto (13)

A possible three-address 
code translation of the high-

level program.



Identifying leaders
1) i = 1 
2) j = 1 
3) t1 = 10 * i 
4) t2 = t1 + j 
5) t3 = 8 * t2 
6) t4 = t3 - 88 
7) a[t4] = 0.0 
8) j = j + 1 
9) if j<= 10 goto (3) 
10)i = i + 1 
11)if i <= 10 goto (2) 
12)i = 1 
13)t5 = i - 1 
14)t6 = 88 * t5 
15)a[t6] = 1.0 
16)i = i + 1 
17)if i <= 10 goto (13)

Leaders are: 
1. first instruction 
2. the target of any jump 
3. the instruction 

immediately after any 
jump

L 
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8.4.3 Flow Graphs

Each basic block is a node in the flow graph. 

There is an edge between blocks B and C of the flow 
graph if: 

1. there is a (conditional or unconditional) jump 
from from the end of B to the start of C, or 

2. C immediately follows B and B does not end with 
an unconditional jump.



Terminology

B is a predecessor of C 

C is a successor of B

B

C



Flow 
Graph 

Figure 8.9 [p. 530]

i = 1

j = 1

t1 = 10 * i 
t2 = t1 + j 
t3 = 8 * t2 
t4 = t3 - 88 
a[t4] = 0.0 
j = j + 1 
if j<= 10 goto B3

i = i + 1 
if i <= 10 goto B2 

i = 1

t5 = i - 1 
t6 = 88 * t5 
a[t6] = 1.0 
i = i + 1 
if i <= 10 goto B6

B1

B2

B3

B4

B5

B6

Entry and exit 
nodes added. 

Jump targets 
replaced by 
block names.

ENTRY

EXIT



8.4.2 Liveness and next-use

"Knowing when the value of a variable 
will be used next is essential for 
generating good code.  If the value of 
a variable that is currently in a 
register will never be referenced 
subsequently, then that register can be 
assigned to another variable."



8.4.2 Liveness and next-use

i:    x = … 
      .               assuming there 
      .               are no assignments 
      .               to x between i and j 
j:    … = x op … 

If statement j uses x, then x is live at i.  Since we 
need the value of x we should try to keep it in a 
register.



8.4.2 Liveness and next-use

i:    … x … 
      .               assuming there 
      .               is no use of x  
      .               between i and j 
j:    x = … 

Statement j overwrites old value of x; we say 
x is dead at i.  This means we need not preserve 
that value in a register. 



Algorithm 8.7 [p. 528] 
Determining the liveness and next-use information for each 
statement in a basic block. 

INPUT: A basic block B of three address instructions.  Assume 
the symbol table initially shows all non-temporary variables 
in B as being live on exit. 

OUTPUT: At each statement i: x = y + z in B, we attach to i the 
liveness and next-use information for x, y, and z. 

METHOD: We start at the last statement in B and scan 
backwards to the beginning of B.  At each statement i: x = y + 
z in B do the following: 

1) attach to statement i the information currently 
found in the symbol table regarding the next-use and 
liveness of x, y, and Z. 
2) In the symbol table, set x to "not live" and "no next 
use". 
3) In the symbol table, set y and z to "live" and the 
next uses of y and z to instruction i.

Not this instruction specifically, but instructions of the form 
x = y op z, x = op y, or x = y.



Code Transformations 
on basic blocks

Local optimizations can be performed 
on code inside basic blocks. 

Represent code inside a basic block 
as a DAG. 

The basic blocks will themselves be 
connected to form a flow graph.



Constructing DAG for 
basic blocks [p. 533]

1. For each variable in the block, 
create a node representing the 
variable's initial value. 

2. For each statement s in the block, 
create a node N. 

"The children of N are those nodes corresponding to 
statements that are the last definitions, prior to s, of 
the operands used by s."



Constructing DAG for 
basic blocks

3. For each node representing a 
statement, label it with the operator 
applied. 

4. For each node representing a 
statement, attach a list of the 
variables for which it is the last 
definition within the block.



Constructing DAG for 
basic blocks

5. For each node representing a 
statement, its children are the nodes 
that are the last definitions of the 
operands used in the statement. 

6. Identify as output nodes those whose 
variables are live on exit from the 
block ("their values may be used later, 
in another block of the flow graph")



Example 8.10 [p. 534]

1) a = b + c 
2) b = a - d 
3) c = b + c 
4) d = a - d



Example 8.10 [p. 534]

1) a = b + c 
2) b = a - d 
3) c = b + c 
4) d = a - d

b0 c0

Apply the "value-number" method 
from section 6.1.1

1. For each variable in the block, create a node 
representing the variable's initial value.



Example 8.10 [p. 534]

1) a = b + c 
2) b = a - d 
3) c = b + c 
4) d = a - d

+

b0 c0

a

Apply the "value-number" method 
from section 6.1.1

2. For each statement s in 
the block, create a node N. 

3. For each node 
representing a statement, 
label it with the operator 
applied. 

4. For each node 
representing a statement, 
attach a list of the 
variables for which it is the 
last definition within the 
block.
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Apply the "value-number" method 
from section 6.1.1
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Example 8.10 [p. 534]

1) a = b + c 
2) b = a - d 
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If b is live on exit:

c



Example 8.10 [p. 534]

-

+

+

b0 c0

d0a

d

If b is not live on exit:

c

If b is not live on exit:If b is not live on exit:

1) a = b + c 
2) d = a - d 
3) c = d + c 


