CSE4-4-3
Com p tlers
Dr. Carl Ai.pkom':@.

alphonce@buffalo.edu
343 Davis Hall

© 2020 Carl Alphonce - Reproduction of this material is prohibited without the author's consent



Phases of
Qa

COMF’»’EL@J‘

Symbol Table

T&rge& machiine
code generation

Flgure 1.6
page § of bext

character stream

Y

Lexical Analyzer

|
token stream

Y

Syntax Analyzer

[
syntax tree

Y

Semantic Analyzer

1
syntax tree

Y

Intermediate Code Generator

|
intermediate representation

|

Machine-Independent
Code Optimizer

i |
intermediate representation

|

Code Generator

|
target-machine code

v

Machine—Dependent
Code Optimizer

|
target-machine code

Y




Significant tasks of code qenerator

o Urskructktion selection
o register allocation and assigiment

o nstruction ordering

© 2020 Carl Alphonce - Reproduction of this material is Prokibi&ed without the author's consent



which variables are ieept in
reqisters?

© 2020 Carl Alphonce - Reproduction of this material is prohibited without the author's consent
P P P .



Significant tasks of ¢~

' Which specific register holds
which value?

o instruction selection
o reqgister allocation and assiqument

o Unstruction ordering

© 2020 Carl Alphonce - rieproducki.on of this material is Proktbi&ed without the author's consent



£.9. ko minimize the number
of reqgisters needed.

© 2020 Carl Alphonce - Reproduction of this material is prohibited without the author's consent
P P P .



Simple generation
strategy vs, code size

1f we generate code for each
inkermediate code instruction in
isolation and string the resulks
together the result may include
redundant inskructions



Small example [p. £09 |

Consider:
M=y F

This might be translated as:

LD R@’ y <— load the value of y into register RO

ADD R@’ R@’ 7 <— put into RO the result of

adding RO and the value of z
ST X, R@ <— store the value of register RO to x

© 2020 Carl Alphonce - Reproduction of this material is Frokibi&e_d without the author's consent



Larger example [p. §09]

Cownsider O‘PPL:?EMS the samwe &ampto&é o a

larger example:
ag= D kre
d.=-a 4 e

This might be Eranslated as:
LD RO, b
ADD RO, RO, cC
ST a, RO
LD RO, a
ADD RO, RO, e
ST d, RO

© 2020 Carl Alphonce - Reproduction of this material is Proktbi&ed without the author's consent



Larger example [p. §09]

Cownsider applviv\g the same &empm&e o a

larger example:
D+
a:de

a
d

This might be Eranslated as:

LD RO, b

ADD RO, RO, c

ST o - RO This tnskruction is

LD RO, a redundant: it is loading into

ADD RO, RO, e
ST d, RO

RO the value thab is a\ire:adj
there.,

© 2020 Carl Alphonce - erroduc&ion“of this material is prohibited without the author's consen






Basic blocks and
fHow graphs

o To help us analyze the inkermediate
code we will group tnstructions
from our program into "basic
blockes”.



RBasic Block

A basic block is a "maximal sequence of
consecutive bhree-address instructions wikth the
proper&i&s Ehalk,

a) the flow of control can only enter the basic
block through the first tnstruction in the block

[

b) control will leave the block without halking
or branching, except possibly at the Last
instruction in the block”

[p. 6 26 ]



~low (}rapk

"The basic blocks become the nodes of
a flow graph, whose edges indicate
which blocks can follow which other
blockes.”

[p 6 26 ]



Partitioning IR into BB

"Algorithm .5 [p. 526]

INPUT: a sequence B of three-address instructions.

OUTPUT: a List of basic blocks for B, in which each inskruction is
assigned to exactly one basic block

METHOD: First, find leaders (see below).

For each leader, its basic block consists of itself and all
instructions up to but not including the next leader, or the end
of the intermediate program.” [Lightly edited from original]

"The rules for finding leaders are:

1) The first three address instruction (3AI) in the intermediate
code is a leader

2) Any nstruction that is the target of a (conditional or
uhconditional) Jump is a leader.

3) Any instruction that immediately follows a (conditional or
unconditional) Jump is a leader.” [Llightly edited from original]



Examwple
Figure ¥.% [p. 627]

for (i=1: i<=10:; i=i+1) {
for (j=1; j<=10; j=j+1) {
aligl =.0.0:
}
}

for (i=1; i<=10; i=i+1) {
ali,i] = 1.0;
¥

This code initializes a 10x10 real makrix
to the Ld@\&b&v makbrix (1's along the main
diagonal).

Assumptions:
makbrix is of size 10x10 containing reals
a real occupies ¥ bytes

matrix is stored W row-major form

" (see p. 3%2)

al1,1]

al1,2]

al1,3]

a[1,4]

a[1,5]

a[1,6]

al1,7]

al[1,%]

al1,2]

al1,10]

al2,1]

al2,2]

al2,3]

al[2,4 ]

a[2,5]

al2,6]

al2,7]

a[2,%]

a[2,2]

al[2,10]




E XA FL@.
Flqure ¥.7 IF’* 527

1) . 3=k

2) Ja= |

3)atl = A0k

4F 12 = B+ ] A possible three-address
f55; :EZ = %3* téS code translation of the high-
7 alta] = 0.0 level program.

8) ] =3+ 1

9) if j<= 10 goto

189) .= 3 ¢+ 1 )

11)if i <= 10 goto (2)

12)17="1

13k tE =1

14) t6 = 88 % t5

15)a[t6] = 1.0

16) 1 = 11

17)if i <= 10 goto (13)



Identifying leaders

1
J
ki
12

1
1

Leaders are:

10 * 1 1. first tastruction

b ]
t3 Sk 2
t4+ £33 — 88
altd] = 0.0
] i 1
if j<= 10 goto &3}
o= 1T 1

if 1 <= 10-gotaet2)
e

RPRRPRPRPRPOOONOUESWNERE
DI N O ' ' ' '

f i <= 10 goto (13)



Identifying leaders

Leaders are:

J’E% 3 %? :': } 1. first instruction

el T 2. the tarqet of any Jump
14 &= {3 — 88

alt4] = 0.0

' T |

RPRRPRPRPRPOOONOUESEWNERE
DI N P O ' ' ' '
—
1
| S—

f 1'<= 10%g0ioad13)



Identifying leaders

BRI e
L 2) Jae , Leaders are:
¥ 2; E% ¥ %? t : . first instruction
5) t3 = 8 % t% 2. the target Oﬂf any jumry
6) t4 = t3 - 88 3. the nskruction
1) alktdl = 0.0 immediately after any
81 7 = | Jump
9) if j<= 10 goto &3}
L 18} 1= 1" |
11)if 1 <= 1@-gotaet2)
L &2 ) T
L SE3 g o n
14) t6 = 88 * t5
15)alt6]ld=— 410
1691 = 15 I
17)if 1 <= 1086l g813)



?ﬂ 4" " "t LO ) G’ T PL‘\ S

Each basic blocik is a in the flow graph.
There is an between blocks B and C of the flow
graph i

1. there is a (conditional or unconditional) Jump
from from the end of B to the start of C, or

2.C immediately follows B and B does not end with
an unconditional jump.



Terminology

® B is a predecessor of C

o C is a successor of B




Bl
B2
B3

B4

B5
B6

i=1

!

ENTRY

1

]

!

10 x 1

ik 55

t3 8 x t2

t4 t3 — 88
altd] = 0.0
Ji= ] gtad

if j<= 10 goto B3

tl
t2

!

17 = 8]
if 1 <= 10 goto B2

1f 1 <= 10 goto BG6

Flow
Grraph
Figure %9 [p. 5§30]
Eimﬁrj and exik
nodes added.

Jump targets
repi&aec& bfj

block names.

EXIT




w42 Liveness and nexb-use

"Kinowing when the value of a variable
will be used next is essential for
generating qood code. If the value of
a variable that is currently in a
reqister will never be referenced
subsequently, then that register can be
assigned to anocther variable.”



w42 Liveness and nexb-use

L & —
assuming there
are WO assigiments
: to x between i and |
B i e op ...

If statement j uses x, then x is Llive ab i, Since we
need the value of x we should btry to keep it in o
reqgister.



w42 Liveness and nexb-use

L Ax
assuming there
s ho use of x
: between i and j
g3 e

Statement j overwrites old value of x; we say
x 18 dead ab L. This meains we heed nok preserve
that value in a register.



Algorithm %7 [p. 62% ]
Determining the Liveness and next-use mnformaf:mn for each
statement in a basic block,

INPUT: A basic block B of three address ihnstructions, Assume
the symbol table initially shows all Mow-&empormv variables
n B as being Live on exit. [T

oo nn;qgntggﬁ‘gti" ;
OUTPUT: At each staktement i x = Y+ zinB we attach to L the
Liveness and next-use information for x, y, and 2.

METHOD: We start at the Last statement in B and scan
backwards to the beginning of B. At each statement i x = y +
z in B do the following:
1) attach to statement i the information currently
found in the symbol table regarding the next-use and
Liveness of x, Y, and Z,
2) In the symbol table, set x to "not Live" and "no next
use”,
3) In the svmbmt table, sek Y and z ko "live" and the
next uses of Y and z ko instruction L.



Code Transformations
on basic blocies

o Local optimizations can be Perﬂformed
on code inside basic blocks,

o Represent code a basic bloclke
as a DACG,

o The basic blockes will themselves be
connected to form a flow graph.



Constructing PAG for
basic blocks [[m £33]

1. For each variable in the blocl,
create a hode representing the
variable's initial value.

2. For each staktement s in the blocie,
creake a node N.

"The children of N are those nodes corresponding to
statements that are the last definitions, prior to s, of
the operands used by s."



Cownstructing DAG for
basic blocks

. For each node r@.pre.semﬁsf\g a
statement, label it with the operator
&F?pi.i,ecl«

- For each hode representing a
statement, attach a List of the
variables for which it is the Last
definibtion within the block.



Cownstructing DAG for
basic bloclks

5. For each node representing a
statewent, its children are the nodes

that are the Last definitions of the
operamdl,s used i the stakement.

&, Ic{amﬂﬂffj as output nodes those whose
vartables are Live on exit from the
block ("their values may be used later,
in another block of the flow graph™)



| XOLMFLQ ?ﬂla [‘P‘ 534‘]




| «xam[p{@. ¥.1l0 IF’« 534 ]

Appi;v the "value-number” mebthod
fyom seckion 6.1.1

b@ Co

1. For each variable in the block, create a node

representing the variable's initial value.



AFF”-}j the "value-number” mebhod
fyom section 6.1.1

2. For each statement s in
the blocle, create a node N,

3. For each node
representing a statement,
Label ik with the operator
apptied.

4. For each node
representing a statement,
attach a List of the
variables for which it is the
Last definition within the
block,



AF’F”%} the "value-number” mebthod
fyom seckion 6.1.1

Y az=b+c
2 b=a -4
ec=b+c
4Y%d =z=a -4




AF’F”%} the "value-number” mebthod
fyom seckion 6.1.1

1) azb+e
2 b=za - 4d
ec=b+e




| «xam[p{@. ¥.1l0 IF’« 534 ]

Appi;v the "value-number” mebthod
fyom seckion 6.1.1

D a=b+c
2 b=za -d

Ne=b+rec
4Yd =za-d







| XO&MFLQ ?ﬂ 10 { . 534’:}
< 1£ b is hob live o exit:




