
 2021 Carl Alphonce - Reproduction of this material is prohibited without the author's consent©

CSE443
Compilers
Dr. Carl Alphonce

alphonce@buffalo.edu
343 Davis Hall

 2021 Carl Alphonce - Reproduction of this material is prohibited without the author's consent©

Phases of
a

compiler

Figure 1.6,
page 5 of text

Target machine
code generation

 2020 Carl Alphonce - Reproduction of this material is prohibited without the author's consent©

8.6 A Simple Code Generator [p. 542]

algorithm focuses on generation of
code for a single basic block

generates code for each three
address code instruction

manages register allocations/
assignment to avoid redundant
loads/stores

 2020 Carl Alphonce - Reproduction of this material is prohibited without the author's consent©

Principal uses of registers

operator operands

temporaries needed within block

variables that span multiple blocks

stack pointer

function arguments

 2020 Carl Alphonce - Reproduction of this material is prohibited without the author's consent©

"We […] assume that for each operator, there is
exactly one machine instruction that takes the
necessary operands in registers and performs
that operation, leaving the result in a register.
The machine instructions are of the form:

LD reg, mem

ST mem, reg

OP reg, reg, reg" [p. 543]

movl MEM, REG

movl REG, MEM

addl REG, REG

x86 assembly resources (will add more as we go along)
https://en.wikipedia.org/wiki/X86_assembly_language
https://gcc-renesas.com/pdf/manuals/Assembler.pdf
man as <—- at OS prompt

 2021 Carl Alphonce - Reproduction of this material is prohibited without the author's consent©

8.6.1 Register and Address Descriptors

A three-address instruction of the
form:

v = a op b

we generate:
LD Rx, a
LD Ry, b
OP Rx, Rx, Ry
ST Rx, v

 2020 Carl Alphonce - Reproduction of this material is prohibited without the author's consent©

8.6.1 Register and Address Descriptors

A three-address instruction of the
form:

v = a op b

we generate:
LD Rx, a
LD Ry, b
OP Rx, Rx, Ry
ST Rx, v

movl -4(%rbp), %edx
movl -8(%rbp), %eax
addl %edx, %eax
movl %eax, -12(%rbp)

where a, b, and v are int
v = a + b

in
x86
asm

 2020 Carl Alphonce - Reproduction of this material is prohibited without the author's consent©

movl -4(%rbp), %edx
movl -8(%rbp), %eax
addl %edx, %eax
movl %eax, -12(%rbp)

where a, b, and v are int
v = a + b

in
x86
asm

an int is 32
bits wide

the 'l' in instructions
indicate 32 bits

these offsets are
stored in symbol table you can use easier register names,

then print them with proper names

 2021 Carl Alphonce - Reproduction of this material is prohibited without the author's consent©

This results in many redundant
loads and stores and may not make
effective use of available registers.

To better manage register use,
employ two data structures:

- register descriptor

- address descriptor

 2021 Carl Alphonce - Reproduction of this material is prohibited without the author's consent©

register descriptor

"For each available register, a register
descriptor keeps track of the variable
names whose current value is in that
register." [p. 543]

 2021 Carl Alphonce - Reproduction of this material is prohibited without the author's consent©

address descriptor

"For each program variable, an
address descriptor keeps track of the
location or locations where the
current value of that variable can be
found." [p. 543]

 2021 Carl Alphonce - Reproduction of this material is prohibited without the author's consent©

Note that I is an instruction,
not a variable!

getReg function

"…getReg(I)…selects registers for each
memory location associated with the
three-address instruction I." [p. 544]

Note that I is an instruction,
not a variable!

 2021 Carl Alphonce - Reproduction of this material is prohibited without the author's consent©

Example
(paraphrased from 8.6.2, page 544)

A three-address instruction of the form:
v = a op b

1. Use getReg(v = a op b) to select
registers for v, a and b: Rv, Ra, and
Rb respectively

2. If a is not already in Ra, generate LD
Ra, a' (where a' is one of the possibly
many current locations of a)

3. Similarly for b.
4. Generate OP Rv, Ra, Rb

 2021 Carl Alphonce - Reproduction of this material is prohibited without the author's consent©

copy instructions
x = y

"We assume getReg will always choose
the same register for both x and y. If
y is not already in that register Ry,
then generate the machine instruction
LD Ry, y. If y was already in Ry, we
do nothing. It is only necessary that
we adjust the register descriptor for
Ry so that it includes x as one of the
values found there." [p. 544]

 2021 Carl Alphonce - Reproduction of this material is prohibited without the author's consent©

Writing back to memory at end of block

At the end of a basic block we must
ensure that live variables are stored back
into memory.

"…for each variable x whose address
descriptor does not say that its value is
located in the memory location for x, we
must generate the instruction ST x, R,
where R is a register in which x's value
exists at the end of the block." [p. 545]

 2021 Carl Alphonce - Reproduction of this material is prohibited without the author's consent©

Updating register descriptors (RD)
and address descriptors (AD)

1. LD R, x
 (a) Set RD of R to only x
 (b) Add R to AD of x
 (c) Remove R from the AD of any variable other than x
2. ST x, R
 (a) Add &x to AD of x
3. OP Rx, Ry, Rz for x = y op z
 (a) Set RD of Rx to only x
 (b) Set AD of x to only Rx (&x not in AD of x !)
 (c) Remove Rx from the AD of any variable other than x
4. "When we process a copy statement x = y, after generating
the load for y into register Ry, if needed, and after
managing descriptors as for all load statement (per rule 1):"
[p. 545]
 (a) Add x to the RD of Ry
 (b) Set AD of x to only Ry

 2021 Carl Alphonce - Reproduction of this material is prohibited without the author's consent©

Example [p. 546]

t = a - b what does liveness and next use info looking like here?
u = a - c
v = t + u
a = d
d = v + u

 2021 Carl Alphonce - Reproduction of this material is prohibited without the author's consent©

Algorithm 8.7 [p. 528]
Determining the liveness and next-use information for each
statement in a basic block.

INPUT: A basic block B of three address instructions. Assume
the symbol table initially shows all non-temporary variables
in B as being live on exit.

OUTPUT: At each statement i: x = y + z in B, we attach to i the
liveness and next-use information for x, y, and z.

METHOD: We start at the last statement in B and scan
backwards to the beginning of B. At each statement i: x = y +
z in B do the following:

1) attach to statement i the information currently
found in the symbol table regarding the next-use and
liveness of x, y, and Z.
2) In the symbol table, set x to "not live" and "no next
use".
3) In the symbol table, set y and z to "live" and the
next uses of y and z to instruction i.

Not this instruction specifically, but instructions of the form
x = y op z, x = op y, or x = y.

 2021 Carl Alphonce - Reproduction of this material is prohibited without the author's consent©

Example [p. 546]

a b c d t u v

L L L L

INPUT: A basic block
B of three address
instructions. Assume
the symbol table
initially shows all
non-temporary
variables in B as
being live on exit.

1:t = a - b

2:u = a - c

3:v = t + u

4:a = d

5:d = v + u

a b c d t u v

