CSE4-4-3
Com p tlers
Dr. Carl Ai.pkom':@.

alphonce@buffalo.edu
343 Davis Hall

© 2021 Carl Alphonce - Reproduction of this material is prohibited without the author's consent



Phases of
Qa

Comp?ii.@.r

Symbol Table

T&rge& machiine
code generation

Flgure 1.6,
page § of bext

© 2021 Carl ALFhomce - (Zeproclm:ﬁo

character stream

Y

Lexical Analyzer

|
token stream

Y

Syntax Analyzer

[
syntax tree

Y

Semantic Analyzer

1
syntax tree

Y

Intermediate Code Generator

|
intermediate representation

|

Machine-Independent
Code Optimizer

i |
intermediate representation

|

Code Generator

|
target-machine code

v

Machine—Dependent
Code Optimizer

|
target-machine code

Y




¥.6 A Simple Code Generator [p. £§42 ]

o alqorithm focuses on generation of
code for a single basic block

o generates code for each three
address code inskruction

@ wmanhages reqister allocations/
assignment to avoid redundant
loads/stores

© 2020 Carl Alphonce - Reproduction of this material is Prokibi&ed without the author's consent



Principal uses of registers

o opera&or operav\c&s

o temporaries needed wikthin bloclke
o variables that span mulkiple blocis
o staclk Faim&e\'

o function arqumemnts

© 2020 Carl Alphonce - Reproduction of this material is Prokibi&ed without the author's consent



"We [...] assume that for each operator, there is
exactly one machine instruction that takes the
necessary operands in registers and performs
that operation, leaving the result in a register.
The machine instructions are of the form:

o LD reqg, mem MEM, REG
o ST mem, reqg REG, MEM

o OP reg, reg, reg” [p. §43] REG, REG

x86 assembly resources (will add more as we go along)

© 2020 Carl Alphonce - Reproduction of this material is prokibi&ed without the author's consent



¥.6.1 Register and Address Descriptors

A three-address instruction of the
form:
vzaopbh

we qgeherate:
LD Kx, a
LD Ry, b
OF Rx, Kx, Ky
ST Rx, v

© 2021 Carl Alphonce - Reproduction of this material is prohibited without the author's consent



¥.6.1 Register and Address Descriptors

A three-address instruction of the

form: where a, b, and v are 1int
v = a op b

we qgeherate:

LD Rx, a -4(%rbp), %edx
LD Ry, b -8(%rbp), %eax
0 RKx, Kx, !’23 %edx, %eax

ST Rx, v seax, —=12(%rbp)

© 2020 Carl Alphonce - Reproduction of this material is Proktbi&ed without the author's consent



an 1nt 1s 32
bits wide

i

where a, b, and v are int

the 'l' 1n 1instructions
indicate 32 bits

-4(%rbp), %edx
-8(%rbp), %eax
%edx, %eax
seax, =12(%rbp)
o P

==

these offsets are
stored 1in symbol table YyOu can use easiler register names,
then print them with proper names

© 2020 Carl Alphonce - Reproduction of this material is Prokibi&e_d without the author's consent



o This resulks in many redundank
Loads and skores and nmay nok malee
effective use of available reqgisters.

o To bebter manaqge register use,
employ two data structures:

- register descriptor

- address c&@.scr&pﬁor

© 2021 Carl Alphonce - Reproduction of this material is prohibited without the author's consent



register descriptor

"For each available reqister, a reqgister
descriptor keeps track of the variable
names whose current value ts i that
register.” [p. §43]

© 2021 Carl Alphonce - Reproduction of this material is prohibited without the author's consent



address c&esarﬁpﬁor

"For each program variable, an
address descriptor keeps track of the
Locabkion or locations where the
current value of that variable can be

found.” [p. & 43]

© 2021 Carl Alphonce - Reproduction of this material is prohibited without the author's consent



qgetReq function

"...qgetReq(I)...selects reqisters for each
mermory Llocation associated with the
three-address tnstruction 1." [[m §4-4]

Note that I ts ah thstruction,
not a variable!

© 2021 Carl Alphonce - Reproduction of this material is prohibited without the author's consent



Example
(Faraphrasad from %.6.2, page 54-4)

A three-address instruction of the form:
vzaopbh

1. Use getReglv = a op b) to select
reqisters for v, a and b: Ry, Ra, and
Rb respectively

2. If a is not already in Ra, generate LD
Ra, o (where o is one of the possibly
many current locations of a)

3. Similarly for b.

4, CGrenerate 0P Rv, Ra, Rb

© 2021 Carl Alphonce - Reproduction of this material is prohibited without the author's consent



copy tnskruckions
X = v

"We assume getReq will always choose
the same register for both x and y. 1f
y is hot atreaciv in that register Ry,
then generate the machine instruction
LD Qv, Ye Lf Y was atremiv LA f?;v, we
do nothing. It is only necessary that
we adjust the register descriptor for
Ry so that it includes x as one of the
values found there.” {p«. 544 ]

© 2021 Carl Alphonce - Reproduction of this material is prohibited without the author's consent



Writing back to memory at end of block

At the end of a basic block we must
ensure bhal Live variables are stored baclke
ko menmory,

"...for each variable x whose address
descriptor does not say that its value is
located in the memory Llocation for x, we
must generate the instruction ST x; R,
where R is a register in which x's value
exists abt the end of the block.” 2 £4-5]

© 2021 Carl Alphonce - Reproduction of this material is prohibited without the author's consent



Updating register descriptors (RD)

and address descriptors (AD)

1. LD K, x

(@) Set RD of R to only x

(b) Add R ko AD of x

(c) Remove R from the AD of any variable other than x
2.57 x =&

(a) Add &x ko AD of x
3. 07 Rx, Ry, Rz for x = y op z

() Set RD of Rx to only x

(b) Set AD of x ko only Rx (&x nok in AD of x !)

(€) Remove Rx from the AD of any variable other than x
4. "When we process a copy statement x = vy, after generating
the Lload for y into register Ry, U needed, and after
managing descriptors as for all load statement (per rule 1):"
[p. 545 ]

(@) Add x to the RD of Ry

(b) Set AD of x to only Ry

© 2021 Carl Alphonce - Reproduction of this material is prohibited without the author's consent



O -Q) <o C et
< Q=ip=k D) Q)
+
c

© 2021 Carl Alphonce - Reproduction of this material is prohibited without the author's consent



Algorithm %7 [p. 2% ]
Determining the Liveness and next-use m{arma&mm for each
statement in a basic block,

INPUT: A basic block B of three address instructions. Assume
the Sjmbai table initially shows all Mow-&emporqrv__valrmbi.es

in B as being Live on exit. Not this instruction specificatly, but instructions of the form

XEYyopz xsopy OFrx =Yy

OUTPUT: At each statement iz x = y + 2 in B, we attach to i the
Liveness and next-use information for x, y, and 2.

METHOD: We start ot the Last statement in B and scan
backwards to the beginning of B. At each s&o&emeh& X =y
z in B do the following:
1) attach to statement i the information currenﬂv
found in the symbol table regarding the next-use and
Liveness of x, Y, and Z,
2) In the srjmbci table, sek x ko "not Live" and "no next
use”,
3) In the svmbot table, sek Y and z ko "live" and the

next uses of y and z to inskruction .
© 2021 Carl Alphonce - Qaproclu.c&iom of this material is Prohibi&ec’\ without the author's consent



Example [p. §46]

INPUT: A basic block
B of three address
tnstructions, Assume
the symbol table
imi&iauv shows all
Mah%&mpcrarv
variables in B as
being Live on exit.

© 2021 Carl Alphonce - Reproduction of this material is prohibited without the author's consent



