
 2021 Carl Alphonce - Reproduction of this material is prohibited without the author's consent©

CSE443
Compilers
Dr. Carl Alphonce

alphonce@buffalo.edu
343 Davis Hall

End-of-Semester overview

M W F

Optimizations 2 Workshop day Optimizations 3

Workshop day Team Presentations Team Presentations

Review for final exam

Final exam:
8:00 AM - 11:00 AM

Norton 210
(this room)

4/21 4/23 4/25

4/28 4/30 5/02

5/05

TODAY

5/07 5/09

5/12 5/14

 2020 Carl Alphonce - Reproduction of this material is prohibited without the author's consent©

Phases of
a

compiler

Figure 1.6,
page 5 of text

Optimizations

 2021 Carl Alphonce - Reproduction of this material is prohibited without the author's consent©

Algebraic Identities [p. 536]

Constant folding

"…evaluate constant expressions at compile
time and replace the constant expressions

by their values."

 2021 Carl Alphonce - Reproduction of this material is prohibited without the author's consent©

Algebraic Identities [p. 536]

See footnote 2:

"Arithmetic expressions should be evaluated the
same way at compile time as they are at run time.
K. Thompson has suggested an elegant solution to
constant folding: compile the constant expression,
execute the target code on the spot, and replace
the expression with the result. Thus, the compiler
does not need to contain an interpreter."

 2021 Carl Alphonce - Reproduction of this material is prohibited without the author's consent©

Peephole optimization
[p 549]

"The peephole is a small, sliding
window on a program." [p. 549]

"In general, repeated passes over the
target code are necessary to get the
maximum benefit." [p. 550]

 2021 Carl Alphonce - Reproduction of this material is prohibited without the author's consent©

LD R0, a
ST a, R0

If the ST instruction has a label,
cannot remove it. (If instructions are
in the same block we're OK.)

Peephole optimization: redundant LD/ST

 2021 Carl Alphonce - Reproduction of this material is prohibited without the author's consent©

 if E=K goto L1
 goto L2
L1: …
 …
L2: …
 …

Peephole optimization: unreachable code

Suppose K is a constant.

This case takes
several slides…

 2021 Carl Alphonce - Reproduction of this material is prohibited without the author's consent©

 if E=K goto L1
 goto L2
L1: …do something…
…
L2: …do something…
…

Eliminate jumps over jumps

Peephole optimization: unreachable code

 2021 Carl Alphonce - Reproduction of this material is prohibited without the author's consent©

Peephole optimization: unreachable code

 if E=K goto L1
 goto L2
L1: …
 …
L2: …
 …

 if E!=K goto L2
L1: …
 …
L2: …
 …

Eliminate jumps over jumps

 2021 Carl Alphonce - Reproduction of this material is prohibited without the author's consent©

Peephole optimization: unreachable code

 if E=K goto L1
 goto L2
L1: …
 …
L2: …
 …

 if E!=K goto L2
 …
 …
L2: …
 …

If there are no
jumps to L1, we can remove

label

 2021 Carl Alphonce - Reproduction of this material is prohibited without the author's consent©

Peephole optimization: unreachable code

If E is set to a
constant value other than K,

then…

 if E=K goto L1
 goto L2
L1: …
 …
L2: …
 …

 if E!=K goto L2
 …
 …
L2: …
 …

 2021 Carl Alphonce - Reproduction of this material is prohibited without the author's consent©

Peephole optimization: unreachable code

…conditional jump
becomes unconditional…

 if E=K goto L1
 goto L2
L1: …
 …
L2: …
 …

 if true goto L2
 …
 …
L2: …
 …

 2021 Carl Alphonce - Reproduction of this material is prohibited without the author's consent©

Peephole optimization: unreachable code

…and the
unreachable code can be

removed.

 if E=K goto L1
 goto L2
L1: …
 …
L2: …
 …

 goto L2
 …
L2: …
 …

 2021 Carl Alphonce - Reproduction of this material is prohibited without the author's consent©

Peephole optimization: flow-of-control

 goto L1
 …
L1: goto L2
 …
l2:

 2021 Carl Alphonce - Reproduction of this material is prohibited without the author's consent©

Peephole optimization: flow-of-control

 goto L1
 …
L1: goto L2
 …
l2:

 goto L2
 …
L1: goto L2
 …
l2:

 2021 Carl Alphonce - Reproduction of this material is prohibited without the author's consent©

Peephole optimization: flow-of-control

 goto L1
 …
L1: goto L2
 …
l2:

 goto L2
 …
L1: goto L2
 …
l2:

If there are no jumps to L1,
and L1 is preceded by an unconditional

jump…

 2021 Carl Alphonce - Reproduction of this material is prohibited without the author's consent©

Peephole optimization: flow-of-control

 goto L1
 …
L1: goto L2
 …
l2:

 goto L2
 …

 …
l2:

…then we can eliminate the statement
labelled L1

 2021 Carl Alphonce - Reproduction of this material is prohibited without the author's consent©

Peephole optimization: flow-of-control

 if a < b goto L1
 …
L1: goto L2
 …
l2:

 if a < b goto L2
 …

 …
l2:

…similar arguments can be made for
conditional jumps.

 2020 Carl Alphonce - Reproduction of this material is prohibited without the author's consent©

Optimization

The semantics of a program must be
preserved by optimizations.

The compiler does not know a
programmer's intent - it can only
reason about the program as
written.

 2020 Carl Alphonce - Reproduction of this material is prohibited without the author's consent©

Data-flow analysis

View program execution as a
sequence of state transformations.

Each program state consists of all
the variables in the program along
with their current values.

 2020 Carl Alphonce - Reproduction of this material is prohibited without the author's consent©

State transformation

intermediate instruction

prog
state

prog
state

input state

output state

 2020 Carl Alphonce - Reproduction of this material is prohibited without the author's consent©

State transformation

intermediate instruction

Program
states are
called

program
points.

A sequence
of program
points is

called a path.

prog
state

prog
state

 2020 Carl Alphonce - Reproduction of this material is prohibited without the author's consent©

Data-flow analysis

Begin by considering only the flow
graph for a single function.

 2020 Carl Alphonce - Reproduction of this material is prohibited without the author's consent©

Properties

Within a basic block:

- Program point after a statement is
same as program point before the
next statement.

- Why?

 2020 Carl Alphonce - Reproduction of this material is prohibited without the author's consent©

Properties

Between basic blocks:

- "If there is an edge from block B1
to block B2, then the program point
after the last statement of B1 may be
followed immediately by the
program point before the first
statement of B2."

[p. 597]

 2020 Carl Alphonce - Reproduction of this material is prohibited without the author's consent©

Execution path

"An execution path (or just path) from point p1 to
point pn [is] a sequence of points p1, p2, …, pn
such that for each i = 1,2,…,n-1, either

1. pi is the point immediately preceding a
statement and pi+1 is the point immediately
following that same statement, or

2. pi is the end of some block and pi+1 is the
beginning of a successor block."

[p. 597]

 2020 Carl Alphonce - Reproduction of this material is prohibited without the author's consent©

Example 9.8 (p. 598)
d1: a = 1

if read() <= 0 goto B4

d2: b = a
d3: a = 243

goto B2

B1

B2

B3

… B4

(1)

(2)
(3)

(4)

(5)

(6)

(7)

(8)

(9)

Path: (1,2,3,4,9)

Path: (1,2,3,4,5,6,7,8,3,4,9)

a has value 1 first
time (5) is executed.
d1 reaches (5) on
the first iteration.

a has value 243
at (5) on the second

and subsequent
iterations.

d3 reaches (5) on
those iterations.

Program points

 2020 Carl Alphonce - Reproduction of this material is prohibited without the author's consent©

Reaching definitions

"The definitions that may reach a
program point along some path are
known as reaching definitions."

[p. 598]

 2020 Carl Alphonce - Reproduction of this material is prohibited without the author's consent©

Gathering different data
for different uses

"… at point (5) … the value of a is one of { 1 , 243 }
and … it may be defined by one of { d1 , d3 }."

[p. 598]

"… at point (5) … there is no definition that must be the
definition of a at that point, so this set is empty for a
at point (5). Even if a variable has a unique definition
at a point, that definition must assign a constant to the
variable. Thus, we may simply describe certain variables
as 'not a constant', instead of collecting all their
possible values or all their possible definitions."

[p. 599]

for 'constant folding'

to determine possible values

 2020 Carl Alphonce - Reproduction of this material is prohibited without the author's consent©

9.2.2 Data-flow analysis schema

"In each application of data-flow analysis, we
associate with every program point a data-
flow value that represents an abstraction of
the set of all possible program states that can
be observed at that point." [p. 599]

"The set of possible data-flow values is the
domain…" [p. 599]

"We denote the data-flow values before and
after each statement s by IN[s] and OUT[s],
respectively." [p. 599]

 2020 Carl Alphonce - Reproduction of this material is prohibited without the author's consent©

9.2.2 Data-flow analysis schema

"The data-flow problem is to find a
solution to a set of constraints on the
IN[s]'s and OUT[s]'s, for all statements
s. There are two sets of constraints:
those based on the semantics of the
statements ("transfer functions") and
those based on the flow of control."
[p. 599]

 2020 Carl Alphonce - Reproduction of this material is prohibited without the author's consent©

Transfer functions

Information can flow forwards or
backwards.

Forward flow: OUT[s] = fs (IN[s])

Backward flow: IN[s] = gs (OUT[s])

 2020 Carl Alphonce - Reproduction of this material is prohibited without the author's consent©

Control flow constraints

In a sequence s1, s2, …,sn without jumps,

IN[si+1] = OUT[si] for all i=1,2,…,n-1

For data-flow between blocks, take "the
union of the definitions after last
statements of each of the predecessor
blocks." [p. 600]

 2020 Carl Alphonce - Reproduction of this material is prohibited without the author's consent©

9.2.3 Data-flow schemas on basic blocks

Suppose a basic block B consists of the
sequence of statements s1, s2, …,sn. Define
IN[B] = IN[s1] and OUT[B] = OUT[sn].

The transfer function of B:

fB = fsn∘ … ∘ fs2∘ fs1

The transfer function of B:

OUT[B] = fB(IN[B])

 2020 Carl Alphonce - Reproduction of this material is prohibited without the author's consent©

9.2.3 Data-flow schemas on basic blocks

Forward flow problem

OUT[B] = fB(IN[B])

IN[B] = ∪P a predecessor of B OUT[P]

Backward flow problem

IN[B] = gB(OUT[B])

OUT[B] = ∪S a successor of B IN[S]

 2020 Carl Alphonce - Reproduction of this material is prohibited without the author's consent©

9.2.3 Data-flow schemas on basic blocks

"…data-flow equations usually do not have a
unique solution. Our goal is to find the most
'precise' solution that satisfies the two sets of
constraints: control-flow and transfer
constraints. That is, we need a solution that
encourages valid code improvements, but
does not justify unsafe transformations…"

[p. 601]

 2020 Carl Alphonce - Reproduction of this material is prohibited without the author's consent©

9.2.4 Reaching definitions

"A definition d reaches a point p if there is a
path from the point immediately following d
to p, such that d is not 'killed' along that
path." [p. 601]

"We kill a definition of a variable x if there
is any other definition of x anywhere along
the path." [p. 601]

 2020 Carl Alphonce - Reproduction of this material is prohibited without the author's consent©

9.2.4 Reaching definitions

"A definition of a variable x is a
statement that assigns, or may assign,
a value to x."

What is meant by "may assign"?

 2020 Carl Alphonce - Reproduction of this material is prohibited without the author's consent©

9.2.4 Reaching definitions

"Procedure parameters, array accesses,
and indirect references all may have
aliases, and it is not easy to tell if a
statement is referring to a particular
variable x." [p. 601]

"Program analysis must be
conservative" [p. 601]

 2020 Carl Alphonce - Reproduction of this material is prohibited without the author's consent©

Transfer equations for reaching definitions

For this definition:

d: u = v + w

The transfer equation is:

fd(𝜎) = gend ∪ (𝜎 - killd)

where gend = {d}. killd is the set of all
other definitions of u in the program
The argument of a transfer function is a data-flow value,
which "represents an abstraction of the set of all possible

program states that can be observed for that point." [p. 599]
Recall too that a program state consists of all the variables

in the program along with their current values.

𝜎 is a data-
flow value

 2020 Carl Alphonce - Reproduction of this material is prohibited without the author's consent©

Figure 9.13
(p. 604)

d4: i = i + 1
d5: j = j - 1

d7: i = u3

B1

B2

B3
d6: a = u2

B4

genB1 = { ? }
killB1 = { ? }

d1: i = m - 1
d2: j = n
d3: a = u1

genB2 = { ? }
killB2 = { ? }

genB3 = { ? }
killB3 = { ? }

genB4 = { ? }
killB4 = { ? }

ENTRY

EXIT

 2020 Carl Alphonce - Reproduction of this material is prohibited without the author's consent©

Figure 9.13
(p. 604)

d4: i = i + 1
d5: j = j - 1

d7: i = u3

B1

B2

B3
d6: a = u2

B4

genB1 = { d1, d2, d3 }
killB1 = { ? }

d1: i = m - 1
d2: j = n
d3: a = u1

genB2 = { ? }
killB2 = { ? }

genB3 = { ? }
killB3 = { ? }

genB4 = { ? }
killB4 = { ? }

ENTRY

EXIT

 2020 Carl Alphonce - Reproduction of this material is prohibited without the author's consent©

Figure 9.13
(p. 604)

d4: i = i + 1
d5: j = j - 1

d7: i = u3

B1

B2

B3
d6: a = u2

B4

genB1 = { d1, d2, d3 }
killB1 = { d4, d5, d6, d7 }

d1: i = m - 1
d2: j = n
d3: a = u1

genB2 = { ? }
killB2 = { ? }

genB3 = { ? }
killB3 = { ? }

genB4 = { ? }
killB4 = { ? }

ENTRY

EXIT

 2020 Carl Alphonce - Reproduction of this material is prohibited without the author's consent©

Figure 9.13
(p. 604)

d4: i = i + 1
d5: j = j - 1

d7: i = u3

B1

B2

B3
d6: a = u2

B4

genB1 = { d1, d2, d3 }
killB1 = { d4, d5, d6, d7 }

d1: i = m - 1
d2: j = n
d3: a = u1

genB2 = { ? }
killB2 = { ? }

genB3 = { ? }
killB3 = { ? }

genB4 = { ? }
killB4 = { ? }

ENTRY

EXIT

Q: Why kill d4 - d7 here,
since they are not on a

path to B1?

 2020 Carl Alphonce - Reproduction of this material is prohibited without the author's consent©

Figure 9.13
(p. 604)

d4: i = i + 1
d5: j = j - 1

d7: i = u3

B1

B2

B3
d6: a = u2

B4

genB1 = { d1, d2, d3 }
killB1 = { d4, d5, d6, d7 }

d1: i = m - 1
d2: j = n
d3: a = u1

genB2 = { ? }
killB2 = { ? }

genB3 = { ? }
killB3 = { ? }

genB4 = { ? }
killB4 = { ? }

ENTRY

EXIT

Q: Why kill d4 - d7 here,
since they are not on a

path to B1?

A: Here we are looking
just at this block, and

not trying to account for
flow between blocks.

Inter-block flow is taken
into account later.

 2020 Carl Alphonce - Reproduction of this material is prohibited without the author's consent©

Figure 9.13
(p. 604)

d4: i = i + 1
d5: j = j - 1

d7: i = u3

B1

B2

B3
d6: a = u2

B4

genB1 = { d1, d2, d3 }
killB1 = { d4, d5, d6, d7 }

d1: i = m - 1
d2: j = n
d3: a = u1

genB2 = { ? }
killB2 = { ? }

genB3 = { ? }
killB3 = { ? }

genB4 = { ? }
killB4 = { ? }

ENTRY

EXIT

 2020 Carl Alphonce - Reproduction of this material is prohibited without the author's consent©

Figure 9.13
(p. 604)

d4: i = i + 1
d5: j = j - 1

d7: i = u3

B1

B2

B3
d6: a = u2

B4

genB1 = { d1, d2, d3 }
killB1 = { d4, d5, d6, d7 }

d1: i = m - 1
d2: j = n
d3: a = u1

genB2 = { d4, d5 }
killB2 = { ? }

ENTRY

EXIT

genB3 = { ? }
killB3 = { ? }

genB4 = { ? }
killB4 = { ? }

 2020 Carl Alphonce - Reproduction of this material is prohibited without the author's consent©

Figure 9.13
(p. 604)

d4: i = i + 1
d5: j = j - 1

d7: i = u3

B1

B2

B3
d6: a = u2

B4

genB1 = { d1, d2, d3 }
killB1 = { d4, d5, d6, d7 }

d1: i = m - 1
d2: j = n
d3: a = u1

genB2 = { d4, d5 }
killB2 = { d1, d2, d7 }

ENTRY

EXIT

genB3 = { ? }
killB3 = { ? }

genB4 = { ? }
killB4 = { ? }

 2020 Carl Alphonce - Reproduction of this material is prohibited without the author's consent©

Figure 9.13
(p. 604)

d4: i = i + 1
d5: j = j - 1

d7: i = u3

B1

B2

B3
d6: a = u2

B4

genB1 = { d1, d2, d3 }
killB1 = { d4, d5, d6, d7 }

d1: i = m - 1
d2: j = n
d3: a = u1

genB2 = { d4, d5 }
killB2 = { d1, d2, d7 }

genB3 = { d6 }
killB3 = { ? }

ENTRY

EXIT

genB4 = { ? }
killB4 = { ? }

 2020 Carl Alphonce - Reproduction of this material is prohibited without the author's consent©

Figure 9.13
(p. 604)

d4: i = i + 1
d5: j = j - 1

d7: i = u3

B1

B2

B3
d6: a = u2

B4

genB1 = { d1, d2, d3 }
killB1 = { d4, d5, d6, d7 }

d1: i = m - 1
d2: j = n
d3: a = u1

genB2 = { d4, d5 }
killB2 = { d1, d2, d7 }

genB3 = { d6 }
killB3 = { d3 }

ENTRY

EXIT

genB4 = { ? }
killB4 = { ? }

 2020 Carl Alphonce - Reproduction of this material is prohibited without the author's consent©

Figure 9.13
(p. 604)

d4: i = i + 1
d5: j = j - 1

d7: i = u3

B1

B2

B3
d6: a = u2

B4

genB1 = { d1, d2, d3 }
killB1 = { d4, d5, d6, d7 }

d1: i = m - 1
d2: j = n
d3: a = u1

genB2 = { d4, d5 }
killB2 = { d1, d2, d7 }

genB3 = { d6 }
killB3 = { d3 }

genB4 = { d7 }
killB4 = { ? }

ENTRY

EXIT

 2020 Carl Alphonce - Reproduction of this material is prohibited without the author's consent©

Figure 9.13
(p. 604)

d4: i = i + 1
d5: j = j - 1

d7: i = u3

B1

B2

B3
d6: a = u2

B4

genB1 = { d1, d2, d3 }
killB1 = { d4, d5, d6, d7 }

d1: i = m - 1
d2: j = n
d3: a = u1

genB2 = { d4, d5 }
killB2 = { d1, d2, d7 }

genB3 = { d6 }
killB3 = { d3 }

genB4 = { d7 }
killB4 = { d1, d4 }

ENTRY

EXIT

 2020 Carl Alphonce - Reproduction of this material is prohibited without the author's consent©

Extending transfer equations
from statements to blocks

Composition of f1 and f2:

f1(x) = gen1 ∪ (x - kill1)

f2(x) = gen2 ∪ (x - kill2)

f2(f1(x)) = gen2 ∪ ((gen1 ∪ (x - kill1)) - kill2)

= gen2 ∪ ((gen1 - kill2) ∪ ((x - kill1) - kill2))

= gen2 ∪ (gen1 - kill2) ∪ (x - (kill1 ∪ kill2))

 2020 Carl Alphonce - Reproduction of this material is prohibited without the author's consent©

Extending transfer equations
from statements to blocks

In general:

fB(x) = genB ∪ (x - killB)

killB = ∪i∈n killi

genB = genn ∪
(genn-1 - killn) ∪
(genn-2 - killn-1 - killn) ∪
 … ∪
(gen1 - kill2 - kill3 - … - killn)

 2020 Carl Alphonce - Reproduction of this material is prohibited without the author's consent©

Extending transfer equations
from statements to blocks

"The gen set contains all the definitions inside
the block that are "visible" immediately after the
block - we refer to them as downwards exposed.
A definition is downwards exposed in a basic
block only if it is not "killed" by a subsequent
definition to the same variable inside the same
basic block." [p. 605]

 2020 Carl Alphonce - Reproduction of this material is prohibited without the author's consent©

Algorithm [p. 606]

INPUT: A flow graph for which killB and genB have been computed for
each block B.

OUTPUT: IN[B] and OUT[B], the set of definitions reaching the entry
and exit of each block B of the flow graph

METHOD:
OUT[ENTRY] = ∅
for (each basic block B other than ENTRY) { OUT[B] = ∅ }
while (changes to any OUT occurs) {

for (each basic block B other than ENTRY) {
IN[B] = ∪P a predecessor of B OUT[P]

OUT[B] = genB ∪ (IN[B] - killB)
}

}

Iterative algorithm for reaching definitions

See footnote 4 on page 606

 2020 Carl Alphonce - Reproduction of this material is prohibited without the author's consent©

Algorithm [p. 606]

INPUT: A flow graph for which killB and genB have been computed for
each block B.

OUTPUT: IN[B] and OUT[B], the set of definitions reaching the entry
and exit of each block B of the flow graph

METHOD:
OUT[ENTRY] = ∅
for (each basic block B other than ENTRY) { OUT[B] = ∅ }
while (changes to any OUT occurs) {

for (each basic block B other than ENTRY) {
IN[B] = ∪P a predecessor of B OUT[P]

OUT[B] = genB ∪ (IN[B] - killB)
}

}

Iterative algorithm for reaching definitions

See footnote 4 on page 606

Written this way to allow
different entry conditions
for different data flow

algorithms.

 2020 Carl Alphonce - Reproduction of this material is prohibited without the author's consent©

Figure 9.13
(p. 604)

genB1 = { d1, d2, d3 }
killB1 = { d4, d5, d6, d7 }

genB2 = { d4, d5 }
killB2 = { d1, d2, d7 }

genB3 = { d6 }
killB3 = { d3 }

genB4 = { d7 }
killB4 = { d1, d4 }

d4: i = i + 1
d5: j = j - 1

d7: i = u3

B1

B2

B3
d6: a = u2

B4

d1: i = m - 1
d2: j = n
d3: a = u1

ENTRY

EXIT

 2020 Carl Alphonce - Reproduction of this material is prohibited without the author's consent©

OUT[ENTRY] = ∅
for (each basic block B other than ENTRY) { OUT[B] = ∅ }
while (changes to any OUT occurs) {

for (each basic block B other than ENTRY) {
IN[B] = ∪P a predecessor of B OUT[P]
OUT[B] = genB ∪ (IN[B] - killB)

}
}

Example 9.12 - building off figure 9.13

OUT[B]0 IN[B]1 OUT[B]1 IN[B]2 OUT[B]2

B1 000 0000 000 0000 111 0000 000 0000 111 0000

B2 000 0000 111 0000 001 1100 111 0111 001 1110

B3 000 0000 001 1100 000 1110 001 1110 000 1110

B4 000 0000 001 1110 001 0111 001 1110 001 0111

EXIT 000 0000 001 0111 001 0111 001 0111 001 0111

Represent di as a bit vector, where each d is a definition from 9.13

Union of sets A ∪ B: A OR B Difference of sets A - B: A AND B'

Compute in order B1, B2, B3, B4, EXIT

IN[B2]1 = OUT[B1]1 ∪ OUT[B4]0 = 111 0000 ∪ 000 0000 = 111 0000

OUT[B2]1 = genB2 ∪ (IN[B2]1 - killB2)
= 000 1100 + (111 0000 - 110 0001)
= 000 1100 + 001 0000 = 001 1100

For example:

 2020 Carl Alphonce - Reproduction of this material is prohibited without the author's consent©

Example 9.12 - building off figure 9.13

OUT[B]0 IN[B]1 OUT[B]1 IN[B]2 OUT[B]2

B1 000 0000 000 0000 111 0000 000 0000 111 0000

B2 000 0000 111 0000 001 1100 111 0111 001 1110

B3 000 0000 001 1100 000 1110 001 1110 000 1110

B4 000 0000 001 1110 001 0111 001 1110 001 0111

EXIT 000 0000 001 0111 001 0111 001 0111 001 0111

OUT[ENTRY] = ∅
for (each basic block B other than ENTRY) { OUT[B] = ∅ }
while (changes to any OUT occurs) {

for (each basic block B other than ENTRY) {
IN[B] = ∪P a predecessor of B OUT[P]
OUT[B] = genB ∪ (IN[B] - killB)

}
}

 2020 Carl Alphonce - Reproduction of this material is prohibited without the author's consent©

Example 9.12

OUT[B]0 IN[B]1 OUT[B]1 IN[B]2 OUT[B]2

B1 000 0000 000 0000 111 0000 000 0000 111 0000

B2 000 0000 111 0000 001 1100 111 0111 001 1110

B3 000 0000 001 1100 000 1110 001 1110 000 1110

B4 000 0000 001 1110 001 0111 001 1110 001 0111

EXIT 000 0000 001 0111 001 0111 001 0111 001 0111

OUT[ENTRY] = ∅
for (each basic block B other than ENTRY) { OUT[B] = ∅ }
while (changes to any OUT occurs) {

for (each basic block B other than ENTRY) {
IN[B] = ∪P a predecessor of B OUT[P]
OUT[B] = genB ∪ (IN[B] - killB)

}
}

d4: i = i + 1
d5: j = j - 1

d7: i = u3

B

B

Bd6: a = u2

B

d1: i = m - 1
d2: j = n
d3: a = u1

ENTRY

EXIT

B1

B2

B4

B3

IN[B1] = pred(B1) = ENTRY
OUT[B1] = genB1 ∪ (IN[B1] - killB1)
genB1 = { d1, d2, d3 }
killB1 = { d4, d5, d6, d7 }

 2020 Carl Alphonce - Reproduction of this material is prohibited without the author's consent©

Example 9.12

OUT[B]0 IN[B]1 OUT[B]1 IN[B]2 OUT[B]2

B1 000 0000 000 0000 111 0000 000 0000 111 0000

B2 000 0000 111 0000 001 1100 111 0111 001 1110

B3 000 0000 001 1100 000 1110 001 1110 000 1110

B4 000 0000 001 1110 001 0111 001 1110 001 0111

EXIT 000 0000 001 0111 001 0111 001 0111 001 0111

OUT[ENTRY] = ∅
for (each basic block B other than ENTRY) { OUT[B] = ∅ }
while (changes to any OUT occurs) {

for (each basic block B other than ENTRY) {
IN[B] = ∪P a predecessor of B OUT[P]
OUT[B] = genB ∪ (IN[B] - killB)

}
}

d4: i = i + 1
d5: j = j - 1

d7: i = u3

B

B

Bd6: a = u2

B

d1: i = m - 1
d2: j = n
d3: a = u1

ENTRY

EXIT

B1

B2

B4

B3

IN[B2] = pred(B2) = OUT[B1] ∪ OUT[B4]
OUT[B2] = genB2 ∪ (IN[B2] - killB2)
genB2 = { d4, d5 }
killB2 = { d1, d2, d7 }

 2020 Carl Alphonce - Reproduction of this material is prohibited without the author's consent©

Example 9.12

OUT[B]0 IN[B]1 OUT[B]1 IN[B]2 OUT[B]2

B1 000 0000 000 0000 111 0000 000 0000 111 0000

B2 000 0000 111 0000 001 1100 111 0111 001 1110

B3 000 0000 001 1100 000 1110 001 1110 000 1110

B4 000 0000 001 1110 001 0111 001 1110 001 0111

EXIT 000 0000 001 0111 001 0111 001 0111 001 0111

OUT[ENTRY] = ∅
for (each basic block B other than ENTRY) { OUT[B] = ∅ }
while (changes to any OUT occurs) {

for (each basic block B other than ENTRY) {
IN[B] = ∪P a predecessor of B OUT[P]
OUT[B] = genB ∪ (IN[B] - killB)

}
}

d4: i = i + 1
d5: j = j - 1

d7: i = u3

B

B

Bd6: a = u2

B

d1: i = m - 1
d2: j = n
d3: a = u1

ENTRY

EXIT

B1

B2

B4

B3

IN[B3] = pred(B3) = OUT[B2]
OUT[B3] = genB3 ∪ (IN[B3] - killB3)
genB3 = { d6 }
killB3 = { d3 }

 2020 Carl Alphonce - Reproduction of this material is prohibited without the author's consent©

Example 9.12

OUT[B]0 IN[B]1 OUT[B]1 IN[B]2 OUT[B]2

B1 000 0000 000 0000 111 0000 000 0000 111 0000

B2 000 0000 111 0000 001 1100 111 0111 001 1110

B3 000 0000 001 1100 000 1110 001 1110 000 1110

B4 000 0000 001 1110 001 0111 001 1110 001 0111

EXIT 000 0000 001 0111 001 0111 001 0111 001 0111

OUT[ENTRY] = ∅
for (each basic block B other than ENTRY) { OUT[B] = ∅ }
while (changes to any OUT occurs) {

for (each basic block B other than ENTRY) {
IN[B] = ∪P a predecessor of B OUT[P]
OUT[B] = genB ∪ (IN[B] - killB)

}
}

d4: i = i + 1
d5: j = j - 1

d7: i = u3

B

B

Bd6: a = u2

B

d1: i = m - 1
d2: j = n
d3: a = u1

ENTRY

EXIT

B1

B2

B4

B3

genB4 = { d7 }
killB4 = { d1, d4 }

IN[B4] = OUT[B2] ∪ OUT[B3]
OUT[B4] = genB4 ∪ (IN[B4] - killB4)

 2020 Carl Alphonce - Reproduction of this material is prohibited without the author's consent©

Example 9.12

OUT[B]0 IN[B]1 OUT[B]1 IN[B]2 OUT[B]2

B1 000 0000 000 0000 111 0000 000 0000 111 0000

B2 000 0000 111 0000 001 1100 111 0111 001 1110

B3 000 0000 001 1100 000 1110 001 1110 000 1110

B4 000 0000 001 1110 001 0111 001 1110 001 0111

EXIT 000 0000 001 0111 001 0111 001 0111 001 0111

OUT[ENTRY] = ∅
for (each basic block B other than ENTRY) { OUT[B] = ∅ }
while (changes to any OUT occurs) {

for (each basic block B other than ENTRY) {
IN[B] = ∪P a predecessor of B OUT[P]
OUT[B] = genB ∪ (IN[B] - killB)

}
}

d4: i = i + 1
d5: j = j - 1

d7: i = u3

B

B

Bd6: a = u2

B

d1: i = m - 1
d2: j = n
d3: a = u1

ENTRY

EXIT

B1

B2

B4

B3

IN[EXIT] = OUT[B4]
OUT[EXIT] = IN[EXIT]

 2020 Carl Alphonce - Reproduction of this material is prohibited without the author's consent©

OUT[B]0 IN[B]1 OUT[B]1 IN[B]2 OUT[B]2

B1 000 0000 000 0000 111 0000 000 0000 111 0000

B2 000 0000 111 0000 001 1100 111 0111 001 1110

B3 000 0000 001 1100 000 1110 001 1110 000 1110

B4 000 0000 001 1110 001 0111 001 1110 001 0111

EXIT 000 0000 001 0111 001 0111 001 0111 001 0111

OUT[ENTRY] = ∅
for (each basic block B other than ENTRY) { OUT[B] = ∅ }
while (changes to any OUT occurs) {

for (each basic block B other than ENTRY) {
IN[B] = ∪P a predecessor of B OUT[P]
OUT[B] = genB ∪ (IN[B] - killB)

}
}

d4: i = i + 1
d5: j = j - 1

d7: i = u3

B

B

Bd6: a = u2

B

d1: i = m - 1
d2: j = n
d3: a = u1

ENTRY

EXIT

 2020 Carl Alphonce - Reproduction of this material is prohibited without the author's consent©

OUT[B]0 IN[B]1 OUT[B]1 IN[B]2 OUT[B]2

B1 000 0000 000 0000 111 0000 000 0000 111 0000

B2 000 0000 111 0000 001 1100 111 0111 001 1110

B3 000 0000 001 1100 000 1110 001 1110 000 1110

B4 000 0000 001 1110 001 0111 001 1110 001 0111

EXIT 000 0000 001 0111 001 0111 001 0111 001 0111

OUT[ENTRY] = ∅
for (each basic block B other than ENTRY) { OUT[B] = ∅ }
while (changes to any OUT occurs) {

for (each basic block B other than ENTRY) {
IN[B] = ∪P a predecessor of B OUT[P]
OUT[B] = genB ∪ (IN[B] - killB)

}
}

d4: i = i + 1
d5: j = j - 1

d7: i = u3

B

B

Bd6: a = u2

B

d1: i = m - 1
d2: j = n
d3: a = u1

ENTRY

EXIT

 2020 Carl Alphonce - Reproduction of this material is prohibited without the author's consent©

OUT[B]0 IN[B]1 OUT[B]1 IN[B]2 OUT[B]2

B1 000 0000 000 0000 111 0000 000 0000 111 0000

B2 000 0000 111 0000 001 1100 111 0111 001 1110

B3 000 0000 001 1100 000 1110 001 1110 000 1110

B4 000 0000 001 1110 001 0111 001 1110 001 0111

EXIT 000 0000 001 0111 001 0111 001 0111 001 0111

OUT[ENTRY] = ∅
for (each basic block B other than ENTRY) { OUT[B] = ∅ }
while (changes to any OUT occurs) {

for (each basic block B other than ENTRY) {
IN[B] = ∪P a predecessor of B OUT[P]
OUT[B] = genB ∪ (IN[B] - killB)

}
}

d4: i = i + 1
d5: j = j - 1

d7: i = u3

B

B

Bd6: a = u2

B

d1: i = m - 1
d2: j = n
d3: a = u1

ENTRY

EXIT

 2020 Carl Alphonce - Reproduction of this material is prohibited without the author's consent©

OUT[B]0 IN[B]1 OUT[B]1 IN[B]2 OUT[B]2

B1 000 0000 000 0000 111 0000 000 0000 111 0000

B2 000 0000 111 0000 001 1100 111 0111 001 1110

B3 000 0000 001 1100 000 1110 001 1110 000 1110

B4 000 0000 001 1110 001 0111 001 1110 001 0111

EXIT 000 0000 001 0111 001 0111 001 0111 001 0111

OUT[ENTRY] = ∅
for (each basic block B other than ENTRY) { OUT[B] = ∅ }
while (changes to any OUT occurs) {

for (each basic block B other than ENTRY) {
IN[B] = ∪P a predecessor of B OUT[P]
OUT[B] = genB ∪ (IN[B] - killB)

}
}

d4: i = i + 1
d5: j = j - 1

d7: i = u3

B

B

Bd6: a = u2

B

d1: i = m - 1
d2: j = n
d3: a = u1

ENTRY

EXIT

 2020 Carl Alphonce - Reproduction of this material is prohibited without the author's consent©

OUT[B]0 IN[B]1 OUT[B]1 IN[B]2 OUT[B]2

B1 000 0000 000 0000 111 0000 000 0000 111 0000

B2 000 0000 111 0000 001 1100 111 0111 001 1110

B3 000 0000 001 1100 000 1110 001 1110 000 1110

B4 000 0000 001 1110 001 0111 001 1110 001 0111

EXIT 000 0000 001 0111 001 0111 001 0111 001 0111

OUT[ENTRY] = ∅
for (each basic block B other than ENTRY) { OUT[B] = ∅ }
while (changes to any OUT occurs) {

for (each basic block B other than ENTRY) {
IN[B] = ∪P a predecessor of B OUT[P]
OUT[B] = genB ∪ (IN[B] - killB)

}
}

d4: i = i + 1
d5: j = j - 1

d7: i = u3

B

B

Bd6: a = u2

B

d1: i = m - 1
d2: j = n
d3: a = u1

ENTRY

EXIT

 2020 Carl Alphonce - Reproduction of this material is prohibited without the author's consent©

9.2.4 Reaching definitions

Useful for constant propagation and constant
folding (§8.5.4 - p. 536, §9.4 - p. 632).
Additional discussion and examples:

en.wikipedia.org/wiki/Constant_folding

Useful for global common subexpression
elimination (§9.1.4 - p. 588, §9.2.6 - p. 610, §9.5 -
p. 639). Additional discussion and examples:

en.wikipedia.org/wiki/Common_subexpression_elimination

https://en.wikipedia.org/wiki/Constant_folding
https://en.wikipedia.org/wiki/Common_subexpression_elimination

 2020 Carl Alphonce - Reproduction of this material is prohibited without the author's consent©

9.2.5 Live variable analysis

Useful for effective register management.

"After a value is computed in a register, and
presumably used within a block, it is not
necessary to store that value if it is dead at
the end of the block. Also, if all registers are
full and we need another register, we should
favor using a register with a dead value, since
that value does not have to be stored." [p. 608]

 2020 Carl Alphonce - Reproduction of this material is prohibited without the author's consent©

9.2.5 Live variable analysis

"In live variable analysis we wish to know for
variable x and point p whether the value of x
at p could be used along some path in the
flow graph starting at p. If so, we say x is
live at p; otherwise, x is dead at p." [p. 608]

In contrast to reaching analysis, which used
a forward transfer function, live variable
analysis uses a backward transfer function.

 2020 Carl Alphonce - Reproduction of this material is prohibited without the author's consent©

9.2.5 Live variable analysis
definitions, page 609

defB is "the set of variables defined in
B prior to any use of that variable in
B"

useB is "the set of variables whose
values may be used in B prior to any
definition of the variable"

 2020 Carl Alphonce - Reproduction of this material is prohibited without the author's consent©

9.2.5 Live variable analysis
definitions, page 609

IN[EXIT] = ∅

IN[B] = useB ∪ (OUT[B] - defB)

OUT[B] = ∪S a successor of B IN[S]

 2020 Carl Alphonce - Reproduction of this material is prohibited without the author's consent©

9.2.5 Live variable analysis
Algorithm [p. 610]

INPUT: A flow graph with def and use computed for each block.

OUTPUT: IN[B] and OUT[B], the set of variables live on entry
and exit of each block of the flow graph.

METHOD:
IN[EXIT] = ∅
for (each basic block B other than EXIT) { IN[B] = ∅ }
while (changes to any IN occur) {
 for (each basic block B other than EXIT) {
 OUT[B] = ∪S a successor of B IN[S]

 IN[B] = useB ∪ (OUT[B] - defB)
 }
}

 2020 Carl Alphonce - Reproduction of this material is prohibited without the author's consent©

9.2.6 Available expressions

"An expression x+y is available at a
point p if every path from the entry
node to p evaluates to x+y, and after
the last such evaluation prior to
reaching p, there are no subsequent
assignments to x or y." [p. 610]

 2020 Carl Alphonce - Reproduction of this material is prohibited without the author's consent©

9.2.6 Available expressions

"…a block kills expression x+y if it
assigns (or may assign) x or y and
does not subsequently recompute x+y."
[p. 610]

"A block generates expression x+y if it
definitely evaluates x+y and does not
subsequently define x or y." [p. 611]

 2020 Carl Alphonce - Reproduction of this material is prohibited without the author's consent©

Figure 9.17

t1 = 4 * i

t2 = 4 * i

B1

B2

?

B3

"…the expression 4 * i in
block B3 will be a

common subexpression if
4 * i is available at the
entry point of block B3."

[p 611]

 2020 Carl Alphonce - Reproduction of this material is prohibited without the author's consent©

Figure 9.17

t1 = 4 * i

t2 = 4 * i

B1

B2no
assignment

to i

B3

"It will be available if i
is not assigned a new

value in block B2, …" [p
611]

Here 4 * i in B3 can be
replaced by value of t1,

regardless of which
branch is taken.

 2020 Carl Alphonce - Reproduction of this material is prohibited without the author's consent©

Figure 9.17

t1 = 4 * i

t2 = 4 * i

B1

B2

?

B3

t1 = 4 * i

t2 = 4 * i

B1

B2
i = …
t1 = 4 * i

B3

"… or if … 4 * i is
recomputed after i is

assigned in B2." [p 611]

Again, 4 * i in B3 can be
replaced by value of t1,

regardless of which
branch is taken

(since t1 contains the
correct value of 4 * i in

both cases)

 2020 Carl Alphonce - Reproduction of this material is prohibited without the author's consent©

9.2.6 Available expressions
Informally:

"If at point p set S of expressions is available,
and q is the point after p, with statement
x=y+z between them, then we form the set of
expressions available at q by the following
steps:

1. Add to S the expression y+z.
2. Delete from S any expression involving
variable x."

[p. 611]

 2020 Carl Alphonce - Reproduction of this material is prohibited without the author's consent©

Example 9.15

Statement Available expressions
∅

a = b + c

{ b + c }

b = a - d

{ a - d }

c = b + c

{ a - d }

d = a - d
∅

 2020 Carl Alphonce - Reproduction of this material is prohibited without the author's consent©

9.2.6 Available expressions
"We can find available expressions in a manner
reminiscent of the way reaching definitions are
computed. Suppose U is the 'universal' set of all
expressions appearing on the right of one or more
statement of the program. For each block B, let
IN[B] be the set of expressions in U that are
available at the point just before the beginning of
B. Let OUT[B] be the same for the point following
the end of B. Define e_genB to be the expressions
generated by B and e_killB to be the set of
expressions in U killed in B. Note that IN, OUT,
e_gen, and e_kill can all be represented by bit
vectors." [p. 612]

 2020 Carl Alphonce - Reproduction of this material is prohibited without the author's consent©

9.2.6 Available expressions
definitions, page 612

OUT[ENTRY] = ∅

OUT[B] = e_genB ∩ (IN[B] - e_killB)

IN[B] = ∩P a predecessor of B OUT[P]

 2020 Carl Alphonce - Reproduction of this material is prohibited without the author's consent©

9.2.6 Available expressions
definitions, page 612

OUT[ENTRY] = ∅

OUT[B] = e_genB ∩ (IN[B] - e_killB)

IN[B] = ∩P a predecessor of B OUT[P]

Note use of ∩ rather than ∪.

"…an expression is available at the beginning of
a block only if it is available at the end of ALL

its predecessors." [p. 612]

 2020 Carl Alphonce - Reproduction of this material is prohibited without the author's consent©

9.2.6 Available expressions
Algorithm [p. 614]

INPUT: A flow graph with e_killB and e_genB computed for each
block B. The initial block is B1.

OUTPUT: IN[B] and OUT[B], the set of expressions available at the
entry and exit of each block of the flow graph.

METHOD:
OUT[ENTRY] = ∅
for (each basic block B other than ENTRY) { OUT[B] = U }
while (changes to any OUT occur) {
 for (each basic block B other than EXIT) {
 IN[B] = ∩P a predecessor of B OUT[P]

 OUT[B] = e_genB ∩ (IN[B] - e_killB)
 }
}

 2020 Carl Alphonce - Reproduction of this material is prohibited without the author's consent©

9.2.6 Available expressions
Algorithm [p. 614]

INPUT: A flow graph with e_killB and e_genB computed for each
block B. The initial block is B1.

OUTPUT: IN[B] and OUT[B], the set of expressions available at the
entry and exit of each block of the flow graph.

METHOD:
OUT[ENTRY] = ∅
for (each basic block B other than ENTRY) { OUT[B] = U }
while (changes to any OUT occur) {
 for (each basic block B other than EXIT) {
 IN[B] = ∩P a predecessor of B OUT[P]

 OUT[B] = e_genB ∩ (IN[B] - e_killB)
 }
}

Recall: U is
set of all
expressions

 2020 Carl Alphonce - Reproduction of this material is prohibited without the author's consent©

9.2 Summary

Reaching definitions Live variables Available expressions

Domain sets of definitions sets of variables sets of expressions

Direction forward backward forward
Transfer
function

genB ∪ (x - killB) useB ∪ (x - defB) e_genB ∩ (x - e_killB)

Boundary OUT[ENTRY] = ∅ IN[EXIT] = ∅ OUT[ENTRY] = ∅

Meet (⋀) ∪ ∪ ∩

Equations
OUT[B] = fB(IN[B])

IN[B] = ⋀P,pred(B)OUT[P]
IN[B] = fB(OUT[B])

OUT[B] = ⋀S,succ(B)IN[S]
OUT[B] = fB(IN[B])

IN[B] = ⋀P,pred(B)OUT[P]

Initialize OUT[B] = ∅ IN[B] = ∅ OUT[B] = U

