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Algebraic Identities [p. 536]

Constant folding 

"…evaluate constant expressions at compile 
time and replace the constant expressions 

by their values."
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Algebraic Identities [p. 536]

See footnote 2: 

"Arithmetic expressions should be evaluated the 
same way at compile time as they are at run time.  
K. Thompson has suggested an elegant solution to 
constant folding: compile the constant expression, 
execute the target code on the spot, and replace 
the expression with the result.  Thus, the compiler 
does not need to contain an interpreter."
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Peephole optimization 
[p 549]

"The peephole is a small, sliding 
window on a program." [p. 549] 

"In general, repeated passes over the 
target code are necessary to get the 
maximum benefit." [p. 550]
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LD R0, a 
ST a, R0 

If the ST instruction has a label, 
cannot remove it.  (If instructions are 
in the same block we're OK.)

Peephole optimization: redundant LD/ST
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    if E=K goto L1 
    goto L2 
L1: … 
    … 
L2: … 
    … 

Peephole optimization: unreachable code

Suppose K is a constant.

This case takes 
several slides…
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    if E=K goto L1 
    goto L2 
L1: …do something… 
… 
L2: …do something… 
… 

Eliminate jumps over jumps

Peephole optimization: unreachable code
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Peephole optimization: unreachable code

    if E=K goto L1 
    goto L2 
L1: … 
    … 
L2: … 
    … 

    if E!=K goto L2 
L1: … 
    … 
L2: … 
    … 

Eliminate jumps over jumps
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Peephole optimization: unreachable code

    if E=K goto L1 
    goto L2 
L1: … 
    … 
L2: … 
    … 

    if E!=K goto L2 
    … 
    … 
L2: … 
    … 

If there are no 
jumps to L1, we can remove 

label
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Peephole optimization: unreachable code

If E is set to a 
constant value other than K, 

then…

    if E=K goto L1 
    goto L2 
L1: … 
    … 
L2: … 
    … 

    if E!=K goto L2 
    … 
    … 
L2: … 
    … 
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Peephole optimization: unreachable code

…conditional jump 
becomes unconditional…

    if E=K goto L1 
    goto L2 
L1: … 
    … 
L2: … 
    … 

    if true goto L2 
    … 
    … 
L2: … 
    … 
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Peephole optimization: unreachable code

…and the 
unreachable code can be 

removed.

    if E=K goto L1 
    goto L2 
L1: … 
    … 
L2: … 
    … 

    goto L2 
    … 
L2: … 
    … 
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Peephole optimization: flow-of-control

    goto L1 
    … 
L1: goto L2 
    … 
l2: 
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Peephole optimization: flow-of-control

    goto L1 
    … 
L1: goto L2 
    … 
l2: 

    goto L2 
    … 
L1: goto L2 
    … 
l2: 
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Peephole optimization: flow-of-control

    goto L1 
    … 
L1: goto L2 
    … 
l2: 

    goto L2 
    … 
L1: goto L2 
    … 
l2: 

If there are no jumps to L1, 
and L1 is preceded by an unconditional 

jump…
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Peephole optimization: flow-of-control

    goto L1 
    … 
L1: goto L2 
    … 
l2: 

    goto L2 
    … 

    … 
l2: 

…then we can eliminate the statement 
labelled L1
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Peephole optimization: flow-of-control

    if a < b goto L1 
    … 
L1: goto L2 
    … 
l2: 

    if a < b goto L2 
    … 

    … 
l2: 

…similar arguments can be made for 
conditional jumps.
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Optimization

The semantics of a program must be 
preserved by optimizations. 

The compiler does not know a 
programmer's intent - it can only 
reason about the program as 
written.
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Data-flow analysis

View program execution as a 
sequence of state transformations. 

Each program state consists of all 
the variables in the program along 
with their current values.
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State transformation

intermediate instruction

prog 
state

prog 
state

input state

output state
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State transformation

intermediate instruction

Program 
states are 
called 

program 
points.

A sequence 
of program 
points is 

called a path.

prog 
state

prog 
state
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Data-flow analysis

Begin by considering only the flow 
graph for a single function.
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Properties

Within a basic block: 

- Program point after a statement is 
same as program point before the 
next statement. 

- Why?
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Properties

Between basic blocks: 

- "If there is an edge from block B1 
to block B2, then the program point 
after the last statement of B1 may be 
followed immediately by the 
program point before the first 
statement of B2." 

[p. 597]
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Execution path

"An execution path (or just path) from point p1 to 
point pn [is] a sequence of points p1, p2, …, pn 
such that for each i = 1,2,…,n-1, either 

1. pi is the point immediately preceding a 
statement and pi+1 is the point immediately 
following that same statement, or 

2. pi is the end of some block and pi+1 is the 
beginning of a successor block." 

[p. 597]
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Example 9.8 (p. 598)
d1: a = 1

if read() <= 0 goto B4

d2: b = a 
d3: a = 243 

goto B2

B1

B2

B3

… B4

(1)

(2)
(3)

(4)

(5)

(6)

(7)

(8)

(9)

Path: (1,2,3,4,9)

Path: (1,2,3,4,5,6,7,8,3,4,9)

a has value 1 first  
time (5) is executed. 
d1 reaches (5) on 
the first iteration. 

a has value 243 
at (5) on the second 

and subsequent 
iterations. 

d3 reaches (5) on 
those iterations.

Program points
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Reaching definitions

"The definitions that may reach a 
program point along some path are 
known as reaching definitions." 

[p. 598]
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Gathering different data 
for different uses

"… at point (5) … the value of a is one of { 1 , 243 } 
and … it may be defined by one of { d1 , d3 }." 

[p. 598] 

"… at point (5) … there is no definition that must be the 
definition of a at that point, so this set is empty for a 
at point (5).  Even if a variable has a unique definition 
at a point, that definition must assign a constant to the 
variable.  Thus, we may simply describe certain variables 
as 'not a constant', instead of collecting all their 
possible values or all their possible definitions." 

[p. 599]

for 'constant folding'

to determine possible values
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9.2.2 Data-flow analysis schema

"In each application of data-flow analysis, we 
associate with every program point a data-
flow value that represents an abstraction of 
the set of all possible program states that can 
be observed at that point." [p. 599] 

"The set of possible data-flow values is the 
domain…" [p. 599] 

"We denote the data-flow values before and 
after each statement s by IN[s] and OUT[s], 
respectively." [p. 599]
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9.2.2 Data-flow analysis schema

"The data-flow problem is to find a 
solution to a set of constraints on the 
IN[s]'s and OUT[s]'s, for all statements 
s.  There are two sets of constraints: 
those based on the semantics of the 
statements ("transfer functions") and 
those based on the flow of control." 
[p. 599]
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Transfer functions

Information can flow forwards or 
backwards. 

Forward flow: OUT[s] = fs ( IN[s] ) 

Backward flow: IN[s] = gs ( OUT[s] )
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Control flow constraints

In a sequence s1, s2, …,sn without jumps, 

IN[si+1] = OUT[si] for all i=1,2,…,n-1 

For data-flow between blocks, take "the 
union of the definitions after last 
statements of each of the predecessor 
blocks." [p. 600]
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9.2.3 Data-flow schemas on basic blocks

Suppose a basic block B consists of the 
sequence of statements s1, s2, …,sn.  Define 
IN[B] = IN[s1] and OUT[B] = OUT[sn]. 

The transfer function of B: 

fB = fsn∘ … ∘ fs2∘ fs1 

The transfer function of B: 

OUT[B] = fB( IN[B] )
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9.2.3 Data-flow schemas on basic blocks

Forward flow problem 

OUT[B] = fB( IN[B] )  

IN[B] = ∪P a predecessor of B OUT[P] 

Backward flow problem 

IN[B] = gB( OUT[B] )  

OUT[B] = ∪S a successor of B IN[S]
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9.2.3 Data-flow schemas on basic blocks

"…data-flow equations usually do not have a 
unique solution. Our goal is to find the most 
'precise' solution that satisfies the two sets of 
constraints: control-flow and transfer 
constraints.  That is, we need a solution that 
encourages valid code improvements, but 
does not justify unsafe transformations…" 

[p. 601]
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9.2.4 Reaching definitions

"A definition d reaches a point p if there is a 
path from the point immediately following d 
to p, such that d is not 'killed' along that 
path." [p. 601] 

"We kill a definition of a variable x if there 
is any other definition of x anywhere along 
the path." [p. 601]
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9.2.4 Reaching definitions

"A definition of a variable x is a 
statement that assigns, or may assign, 
a value to x." 

What is meant by "may assign"?



 2020 Carl Alphonce - Reproduction of this material is prohibited without the author's consent©

9.2.4 Reaching definitions

"Procedure parameters, array accesses, 
and indirect references all may have 
aliases, and it is not easy to tell if a 
statement is referring to a particular 
variable x." [p. 601] 

"Program analysis must be 
conservative" [p. 601]



 2020 Carl Alphonce - Reproduction of this material is prohibited without the author's consent©

Transfer equations for reaching definitions

For this definition: 

d: u = v + w 

The transfer equation is: 

fd(𝜎) = gend ∪ ( 𝜎 - killd ) 

where gend = {d}.  killd is the set of all 
other definitions of u in the program
The argument of a transfer function is a data-flow value, 
which "represents an abstraction of the set of all possible 

program states that can be observed for that point." [p. 599] 
Recall too that a program state consists of all the variables 

in the program along with their current values.

𝜎 is a data-
flow value
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Figure 9.13 
(p. 604)

d4: i = i + 1 
d5: j = j - 1

d7: i = u3

B1

B2

B3
d6: a = u2

B4

genB1 = { ? } 
killB1 = { ? }

d1: i = m - 1 
d2: j = n 
d3: a = u1

genB2 = { ? } 
killB2 = { ? }

genB3 = { ? } 
killB3 = { ? }

genB4 = { ? } 
killB4 = { ? }

ENTRY

EXIT
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Figure 9.13 
(p. 604)

d4: i = i + 1 
d5: j = j - 1

d7: i = u3

B1

B2

B3
d6: a = u2

B4

genB1 = { d1, d2, d3 } 
killB1 = { ? }

d1: i = m - 1 
d2: j = n 
d3: a = u1

genB2 = { ? } 
killB2 = { ? }

genB3 = { ? } 
killB3 = { ? }

genB4 = { ? } 
killB4 = { ? }

ENTRY

EXIT
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Figure 9.13 
(p. 604)

d4: i = i + 1 
d5: j = j - 1

d7: i = u3

B1

B2

B3
d6: a = u2

B4

genB1 = { d1, d2, d3 } 
killB1 = { d4, d5, d6, d7 }

d1: i = m - 1 
d2: j = n 
d3: a = u1

genB2 = { ? } 
killB2 = { ? }

genB3 = { ? } 
killB3 = { ? }

genB4 = { ? } 
killB4 = { ? }

ENTRY

EXIT
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Figure 9.13 
(p. 604)

d4: i = i + 1 
d5: j = j - 1

d7: i = u3

B1

B2

B3
d6: a = u2

B4

genB1 = { d1, d2, d3 } 
killB1 = { d4, d5, d6, d7 }

d1: i = m - 1 
d2: j = n 
d3: a = u1

genB2 = { ? } 
killB2 = { ? }

genB3 = { ? } 
killB3 = { ? }

genB4 = { ? } 
killB4 = { ? }

ENTRY

EXIT

Q: Why kill d4 - d7 here, 
since they are not on a 

path to B1?
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Figure 9.13 
(p. 604)

d4: i = i + 1 
d5: j = j - 1

d7: i = u3

B1

B2

B3
d6: a = u2

B4

genB1 = { d1, d2, d3 } 
killB1 = { d4, d5, d6, d7 }

d1: i = m - 1 
d2: j = n 
d3: a = u1

genB2 = { ? } 
killB2 = { ? }

genB3 = { ? } 
killB3 = { ? }

genB4 = { ? } 
killB4 = { ? }

ENTRY

EXIT

Q: Why kill d4 - d7 here, 
since they are not on a 

path to B1? 

A: Here we are looking 
just at this block, and 

not trying to account for 
flow between blocks. 

Inter-block flow is taken 
into account later.
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Figure 9.13 
(p. 604)

d4: i = i + 1 
d5: j = j - 1

d7: i = u3

B1

B2

B3
d6: a = u2

B4

genB1 = { d1, d2, d3 } 
killB1 = { d4, d5, d6, d7 }

d1: i = m - 1 
d2: j = n 
d3: a = u1

genB2 = { ? } 
killB2 = { ? }

genB3 = { ? } 
killB3 = { ? }

genB4 = { ? } 
killB4 = { ? }

ENTRY

EXIT
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Figure 9.13 
(p. 604)

d4: i = i + 1 
d5: j = j - 1

d7: i = u3

B1

B2

B3
d6: a = u2

B4

genB1 = { d1, d2, d3 } 
killB1 = { d4, d5, d6, d7 }

d1: i = m - 1 
d2: j = n 
d3: a = u1

genB2 = { d4, d5 } 
killB2 = { ? }

ENTRY

EXIT

genB3 = { ? } 
killB3 = { ? }

genB4 = { ? } 
killB4 = { ? }
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Figure 9.13 
(p. 604)

d4: i = i + 1 
d5: j = j - 1

d7: i = u3

B1

B2

B3
d6: a = u2

B4

genB1 = { d1, d2, d3 } 
killB1 = { d4, d5, d6, d7 }

d1: i = m - 1 
d2: j = n 
d3: a = u1

genB2 = { d4, d5 } 
killB2 = { d1, d2, d7 }

ENTRY

EXIT

genB3 = { ? } 
killB3 = { ? }

genB4 = { ? } 
killB4 = { ? }
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Figure 9.13 
(p. 604)

d4: i = i + 1 
d5: j = j - 1

d7: i = u3

B1

B2

B3
d6: a = u2

B4

genB1 = { d1, d2, d3 } 
killB1 = { d4, d5, d6, d7 }

d1: i = m - 1 
d2: j = n 
d3: a = u1

genB2 = { d4, d5 } 
killB2 = { d1, d2, d7 }

genB3 = { d6 } 
killB3 = { ? }

ENTRY

EXIT

genB4 = { ? } 
killB4 = { ? }
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Figure 9.13 
(p. 604)

d4: i = i + 1 
d5: j = j - 1

d7: i = u3

B1

B2

B3
d6: a = u2

B4

genB1 = { d1, d2, d3 } 
killB1 = { d4, d5, d6, d7 }

d1: i = m - 1 
d2: j = n 
d3: a = u1

genB2 = { d4, d5 } 
killB2 = { d1, d2, d7 }

genB3 = { d6 } 
killB3 = { d3 }

ENTRY

EXIT

genB4 = { ? } 
killB4 = { ? }
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Figure 9.13 
(p. 604)

d4: i = i + 1 
d5: j = j - 1

d7: i = u3

B1

B2

B3
d6: a = u2

B4

genB1 = { d1, d2, d3 } 
killB1 = { d4, d5, d6, d7 }

d1: i = m - 1 
d2: j = n 
d3: a = u1

genB2 = { d4, d5 } 
killB2 = { d1, d2, d7 }

genB3 = { d6 } 
killB3 = { d3 }

genB4 = { d7 } 
killB4 = { ? }

ENTRY

EXIT
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Figure 9.13 
(p. 604)

d4: i = i + 1 
d5: j = j - 1

d7: i = u3

B1

B2

B3
d6: a = u2

B4

genB1 = { d1, d2, d3 } 
killB1 = { d4, d5, d6, d7 }

d1: i = m - 1 
d2: j = n 
d3: a = u1

genB2 = { d4, d5 } 
killB2 = { d1, d2, d7 }

genB3 = { d6 } 
killB3 = { d3 }

genB4 = { d7 } 
killB4 = { d1, d4 }

ENTRY

EXIT
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Extending transfer equations 
from statements to blocks

Composition of f1 and f2:  

f1(x) = gen1 ∪ ( x - kill1 ) 

f2(x) = gen2 ∪ ( x - kill2 ) 

f2( f1(x) ) = gen2 ∪ ( (gen1 ∪ ( x - kill1 )) - kill2 ) 

= gen2 ∪ ( (gen1 - kill2) ∪ (( x - kill1 ) - kill2)) 

= gen2 ∪ (gen1 - kill2) ∪ ( x - (kill1 ∪ kill2))
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Extending transfer equations 
from statements to blocks

In general: 

fB(x) = genB ∪ ( x - killB ) 

killB = ∪i∈n killi 

genB = genn ∪  
(genn-1 - killn) ∪  
(genn-2 - killn-1 - killn) ∪ 
 … ∪  
(gen1 - kill2 - kill3 - … - killn) 
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Extending transfer equations 
from statements to blocks

"The gen set contains all the definitions inside 
the block that are "visible" immediately after the 
block - we refer to them as downwards exposed. 
A definition is downwards exposed in a basic 
block only if it is not "killed" by a subsequent 
definition to the same variable inside the same 
basic block." [p. 605]



 2020 Carl Alphonce - Reproduction of this material is prohibited without the author's consent©

Algorithm [p. 606] 

INPUT: A flow graph for which killB and genB have been computed for 
each block B. 

OUTPUT: IN[B] and OUT[B], the set of definitions reaching the entry 
and exit of each block B of the flow graph 

METHOD: 
OUT[ENTRY] = ∅ 
for (each basic block B other than ENTRY) { OUT[B] = ∅ } 
while (changes to any OUT occurs) { 

for (each basic block B other than ENTRY) { 
IN[B] = ∪P a predecessor of B OUT[P] 

OUT[B] = genB ∪ ( IN[B] - killB ) 
} 

}

Iterative algorithm for reaching definitions

See footnote 4 on page 606
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Algorithm [p. 606] 

INPUT: A flow graph for which killB and genB have been computed for 
each block B. 

OUTPUT: IN[B] and OUT[B], the set of definitions reaching the entry 
and exit of each block B of the flow graph 

METHOD: 
OUT[ENTRY] = ∅ 
for (each basic block B other than ENTRY) { OUT[B] = ∅ } 
while (changes to any OUT occurs) { 

for (each basic block B other than ENTRY) { 
IN[B] = ∪P a predecessor of B OUT[P] 

OUT[B] = genB ∪ ( IN[B] - killB ) 
} 

}

Iterative algorithm for reaching definitions

See footnote 4 on page 606

Written this way to allow 
different entry conditions 
for different data flow 

algorithms.
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Figure 9.13 
(p. 604)

genB1 = { d1, d2, d3 } 
killB1 = { d4, d5, d6, d7 }

genB2 = { d4, d5 } 
killB2 = { d1, d2, d7 }

genB3 = { d6 } 
killB3 = { d3 }

genB4 = { d7 } 
killB4 = { d1, d4 }

d4: i = i + 1 
d5: j = j - 1

d7: i = u3

B1

B2

B3
d6: a = u2

B4

d1: i = m - 1 
d2: j = n 
d3: a = u1

ENTRY

EXIT
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OUT[ENTRY] = ∅ 
for (each basic block B other than ENTRY) { OUT[B] = ∅ } 
while (changes to any OUT occurs) { 

for (each basic block B other than ENTRY) { 
IN[B] = ∪P a predecessor of B OUT[P] 
OUT[B] = genB ∪ ( IN[B] - killB ) 

} 
}

Example 9.12 - building off figure 9.13

OUT[B]0 IN[B]1 OUT[B]1 IN[B]2 OUT[B]2

B1 000 0000 000 0000 111 0000 000 0000 111 0000

B2 000 0000 111 0000 001 1100 111 0111 001 1110

B3 000 0000 001 1100 000 1110 001 1110 000 1110

B4 000 0000 001 1110 001 0111 001 1110 001 0111

EXIT 000 0000 001 0111 001 0111 001 0111 001 0111

Represent di as a bit vector, where each d is a definition from 9.13 

Union of sets A ∪ B: A OR B        Difference of sets A - B: A AND B' 

Compute in order B1, B2, B3, B4, EXIT 

IN[B2]1 = OUT[B1]1 ∪ OUT[B4]0 = 111 0000 ∪ 000 0000 = 111 0000 

OUT[B2]1 = genB2 ∪ (IN[B2]1 - killB2)  
= 000 1100 + (111 0000 - 110 0001)  
= 000 1100 + 001 0000 = 001 1100 

For example:
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Example 9.12 - building off figure 9.13

OUT[B]0 IN[B]1 OUT[B]1 IN[B]2 OUT[B]2

B1 000 0000 000 0000 111 0000 000 0000 111 0000

B2 000 0000 111 0000 001 1100 111 0111 001 1110

B3 000 0000 001 1100 000 1110 001 1110 000 1110

B4 000 0000 001 1110 001 0111 001 1110 001 0111

EXIT 000 0000 001 0111 001 0111 001 0111 001 0111

OUT[ENTRY] = ∅ 
for (each basic block B other than ENTRY) { OUT[B] = ∅ } 
while (changes to any OUT occurs) { 

for (each basic block B other than ENTRY) { 
IN[B] = ∪P a predecessor of B OUT[P] 
OUT[B] = genB ∪ ( IN[B] - killB ) 

} 
}
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Example 9.12

OUT[B]0 IN[B]1 OUT[B]1 IN[B]2 OUT[B]2

B1 000 0000 000 0000 111 0000 000 0000 111 0000

B2 000 0000 111 0000 001 1100 111 0111 001 1110

B3 000 0000 001 1100 000 1110 001 1110 000 1110

B4 000 0000 001 1110 001 0111 001 1110 001 0111

EXIT 000 0000 001 0111 001 0111 001 0111 001 0111

OUT[ENTRY] = ∅ 
for (each basic block B other than ENTRY) { OUT[B] = ∅ } 
while (changes to any OUT occurs) { 

for (each basic block B other than ENTRY) { 
IN[B] = ∪P a predecessor of B OUT[P] 
OUT[B] = genB ∪ ( IN[B] - killB ) 

} 
}

d4: i = i + 1 
d5: j = j - 1

d7: i = u3

B

B

Bd6: a = u2

B

d1: i = m - 1 
d2: j = n 
d3: a = u1

ENTRY

EXIT

B1

B2

B4

B3

IN[B1] = pred(B1) = ENTRY 
OUT[B1] = genB1 ∪ ( IN[B1] - killB1 ) 
genB1 = { d1, d2, d3 } 
killB1 = { d4, d5, d6, d7 }  
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Example 9.12

OUT[B]0 IN[B]1 OUT[B]1 IN[B]2 OUT[B]2

B1 000 0000 000 0000 111 0000 000 0000 111 0000

B2 000 0000 111 0000 001 1100 111 0111 001 1110

B3 000 0000 001 1100 000 1110 001 1110 000 1110

B4 000 0000 001 1110 001 0111 001 1110 001 0111

EXIT 000 0000 001 0111 001 0111 001 0111 001 0111

OUT[ENTRY] = ∅ 
for (each basic block B other than ENTRY) { OUT[B] = ∅ } 
while (changes to any OUT occurs) { 

for (each basic block B other than ENTRY) { 
IN[B] = ∪P a predecessor of B OUT[P] 
OUT[B] = genB ∪ ( IN[B] - killB ) 

} 
}

d4: i = i + 1 
d5: j = j - 1

d7: i = u3

B

B

Bd6: a = u2

B

d1: i = m - 1 
d2: j = n 
d3: a = u1

ENTRY

EXIT

B1

B2

B4

B3

IN[B2] = pred(B2) = OUT[B1] ∪ OUT[B4] 
OUT[B2] = genB2 ∪ ( IN[B2] - killB2 ) 
genB2 = { d4, d5 } 
killB2 = { d1, d2, d7 }  
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Example 9.12

OUT[B]0 IN[B]1 OUT[B]1 IN[B]2 OUT[B]2

B1 000 0000 000 0000 111 0000 000 0000 111 0000

B2 000 0000 111 0000 001 1100 111 0111 001 1110

B3 000 0000 001 1100 000 1110 001 1110 000 1110

B4 000 0000 001 1110 001 0111 001 1110 001 0111

EXIT 000 0000 001 0111 001 0111 001 0111 001 0111

OUT[ENTRY] = ∅ 
for (each basic block B other than ENTRY) { OUT[B] = ∅ } 
while (changes to any OUT occurs) { 

for (each basic block B other than ENTRY) { 
IN[B] = ∪P a predecessor of B OUT[P] 
OUT[B] = genB ∪ ( IN[B] - killB ) 

} 
}

d4: i = i + 1 
d5: j = j - 1

d7: i = u3

B

B

Bd6: a = u2

B

d1: i = m - 1 
d2: j = n 
d3: a = u1

ENTRY

EXIT

B1

B2

B4

B3

IN[B3] = pred(B3) = OUT[B2] 
OUT[B3] = genB3 ∪ ( IN[B3] - killB3 ) 
genB3 = { d6 } 
killB3 = { d3 }  
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Example 9.12

OUT[B]0 IN[B]1 OUT[B]1 IN[B]2 OUT[B]2

B1 000 0000 000 0000 111 0000 000 0000 111 0000

B2 000 0000 111 0000 001 1100 111 0111 001 1110

B3 000 0000 001 1100 000 1110 001 1110 000 1110

B4 000 0000 001 1110 001 0111 001 1110 001 0111

EXIT 000 0000 001 0111 001 0111 001 0111 001 0111

OUT[ENTRY] = ∅ 
for (each basic block B other than ENTRY) { OUT[B] = ∅ } 
while (changes to any OUT occurs) { 

for (each basic block B other than ENTRY) { 
IN[B] = ∪P a predecessor of B OUT[P] 
OUT[B] = genB ∪ ( IN[B] - killB ) 

} 
}

d4: i = i + 1 
d5: j = j - 1

d7: i = u3

B

B

Bd6: a = u2

B

d1: i = m - 1 
d2: j = n 
d3: a = u1

ENTRY

EXIT

B1

B2

B4

B3

genB4 = { d7 } 
killB4 = { d1, d4 }  

IN[B4] = OUT[B2] ∪ OUT[B3] 
OUT[B4] = genB4 ∪ (IN[B4] - killB4) 
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Example 9.12

OUT[B]0 IN[B]1 OUT[B]1 IN[B]2 OUT[B]2

B1 000 0000 000 0000 111 0000 000 0000 111 0000

B2 000 0000 111 0000 001 1100 111 0111 001 1110

B3 000 0000 001 1100 000 1110 001 1110 000 1110

B4 000 0000 001 1110 001 0111 001 1110 001 0111

EXIT 000 0000 001 0111 001 0111 001 0111 001 0111

OUT[ENTRY] = ∅ 
for (each basic block B other than ENTRY) { OUT[B] = ∅ } 
while (changes to any OUT occurs) { 

for (each basic block B other than ENTRY) { 
IN[B] = ∪P a predecessor of B OUT[P] 
OUT[B] = genB ∪ ( IN[B] - killB ) 

} 
}

d4: i = i + 1 
d5: j = j - 1

d7: i = u3

B

B

Bd6: a = u2

B

d1: i = m - 1 
d2: j = n 
d3: a = u1

ENTRY

EXIT

B1

B2

B4

B3

IN[EXIT] = OUT[B4] 
OUT[EXIT] = IN[EXIT]
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OUT[B]0 IN[B]1 OUT[B]1 IN[B]2 OUT[B]2

B1 000 0000 000 0000 111 0000 000 0000 111 0000

B2 000 0000 111 0000 001 1100 111 0111 001 1110

B3 000 0000 001 1100 000 1110 001 1110 000 1110

B4 000 0000 001 1110 001 0111 001 1110 001 0111

EXIT 000 0000 001 0111 001 0111 001 0111 001 0111

OUT[ENTRY] = ∅ 
for (each basic block B other than ENTRY) { OUT[B] = ∅ } 
while (changes to any OUT occurs) { 

for (each basic block B other than ENTRY) { 
IN[B] = ∪P a predecessor of B OUT[P] 
OUT[B] = genB ∪ ( IN[B] - killB ) 

} 
}

d4: i = i + 1 
d5: j = j - 1

d7: i = u3

B

B

Bd6: a = u2

B

d1: i = m - 1 
d2: j = n 
d3: a = u1

ENTRY

EXIT
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OUT[B]0 IN[B]1 OUT[B]1 IN[B]2 OUT[B]2

B1 000 0000 000 0000 111 0000 000 0000 111 0000

B2 000 0000 111 0000 001 1100 111 0111 001 1110

B3 000 0000 001 1100 000 1110 001 1110 000 1110

B4 000 0000 001 1110 001 0111 001 1110 001 0111

EXIT 000 0000 001 0111 001 0111 001 0111 001 0111

OUT[ENTRY] = ∅ 
for (each basic block B other than ENTRY) { OUT[B] = ∅ } 
while (changes to any OUT occurs) { 

for (each basic block B other than ENTRY) { 
IN[B] = ∪P a predecessor of B OUT[P] 
OUT[B] = genB ∪ ( IN[B] - killB ) 

} 
}

d4: i = i + 1 
d5: j = j - 1

d7: i = u3

B

B

Bd6: a = u2

B

d1: i = m - 1 
d2: j = n 
d3: a = u1

ENTRY

EXIT
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OUT[B]0 IN[B]1 OUT[B]1 IN[B]2 OUT[B]2

B1 000 0000 000 0000 111 0000 000 0000 111 0000

B2 000 0000 111 0000 001 1100 111 0111 001 1110

B3 000 0000 001 1100 000 1110 001 1110 000 1110

B4 000 0000 001 1110 001 0111 001 1110 001 0111

EXIT 000 0000 001 0111 001 0111 001 0111 001 0111

OUT[ENTRY] = ∅ 
for (each basic block B other than ENTRY) { OUT[B] = ∅ } 
while (changes to any OUT occurs) { 

for (each basic block B other than ENTRY) { 
IN[B] = ∪P a predecessor of B OUT[P] 
OUT[B] = genB ∪ ( IN[B] - killB ) 

} 
}

d4: i = i + 1 
d5: j = j - 1

d7: i = u3

B

B

Bd6: a = u2

B

d1: i = m - 1 
d2: j = n 
d3: a = u1

ENTRY

EXIT
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OUT[B]0 IN[B]1 OUT[B]1 IN[B]2 OUT[B]2

B1 000 0000 000 0000 111 0000 000 0000 111 0000

B2 000 0000 111 0000 001 1100 111 0111 001 1110

B3 000 0000 001 1100 000 1110 001 1110 000 1110

B4 000 0000 001 1110 001 0111 001 1110 001 0111

EXIT 000 0000 001 0111 001 0111 001 0111 001 0111

OUT[ENTRY] = ∅ 
for (each basic block B other than ENTRY) { OUT[B] = ∅ } 
while (changes to any OUT occurs) { 

for (each basic block B other than ENTRY) { 
IN[B] = ∪P a predecessor of B OUT[P] 
OUT[B] = genB ∪ ( IN[B] - killB ) 

} 
}

d4: i = i + 1 
d5: j = j - 1

d7: i = u3

B

B

Bd6: a = u2

B

d1: i = m - 1 
d2: j = n 
d3: a = u1

ENTRY

EXIT
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OUT[B]0 IN[B]1 OUT[B]1 IN[B]2 OUT[B]2

B1 000 0000 000 0000 111 0000 000 0000 111 0000

B2 000 0000 111 0000 001 1100 111 0111 001 1110

B3 000 0000 001 1100 000 1110 001 1110 000 1110

B4 000 0000 001 1110 001 0111 001 1110 001 0111

EXIT 000 0000 001 0111 001 0111 001 0111 001 0111

OUT[ENTRY] = ∅ 
for (each basic block B other than ENTRY) { OUT[B] = ∅ } 
while (changes to any OUT occurs) { 

for (each basic block B other than ENTRY) { 
IN[B] = ∪P a predecessor of B OUT[P] 
OUT[B] = genB ∪ ( IN[B] - killB ) 

} 
}

d4: i = i + 1 
d5: j = j - 1

d7: i = u3

B

B

Bd6: a = u2

B

d1: i = m - 1 
d2: j = n 
d3: a = u1

ENTRY

EXIT
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9.2.4 Reaching definitions

Useful for constant propagation and constant 
folding (§8.5.4 - p. 536, §9.4 - p. 632).  
Additional discussion and examples: 

en.wikipedia.org/wiki/Constant_folding  

Useful for global common subexpression 
elimination (§9.1.4 - p. 588, §9.2.6 - p. 610, §9.5 - 
p. 639).  Additional discussion and examples: 

en.wikipedia.org/wiki/Common_subexpression_elimination 

https://en.wikipedia.org/wiki/Constant_folding
https://en.wikipedia.org/wiki/Common_subexpression_elimination
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9.2.5 Live variable analysis

Useful for effective register management. 

"After a value is computed in a register, and 
presumably used within a block, it is not 
necessary to store that value if it is dead at 
the end of the block.  Also, if all registers are 
full and we need another register, we should 
favor using a register with a dead value, since 
that value does not have to be stored." [p. 608]
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9.2.5 Live variable analysis

"In live variable analysis we wish to know for 
variable x and point p whether the value of x 
at p could be used along some path in the 
flow graph starting at p.  If so, we say x is 
live at p; otherwise, x is dead at p." [p. 608] 

In contrast to reaching analysis, which used 
a forward transfer function, live variable 
analysis uses a backward transfer function.
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9.2.5 Live variable analysis 
definitions, page 609

defB is "the set of variables defined in 
B prior to any use of that variable in 
B" 

useB is "the set of variables whose 
values may be used in B prior to any 
definition of the variable"
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9.2.5 Live variable analysis 
definitions, page 609

IN[EXIT] = ∅ 

IN[B] = useB ∪ (OUT[B] - defB) 

OUT[B] = ∪S a successor of B IN[S]
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9.2.5 Live variable analysis
Algorithm [p. 610] 

INPUT: A flow graph with def and use computed for each block. 

OUTPUT: IN[B] and OUT[B], the set of variables live on entry 
and exit of each block of the flow graph. 

METHOD: 
IN[EXIT] = ∅ 
for (each basic block B other than EXIT) { IN[B] = ∅ } 
while (changes to any IN occur) { 
    for (each basic block B other than EXIT) { 
        OUT[B] = ∪S a successor of B IN[S] 

        IN[B] = useB ∪ (OUT[B] - defB) 
    } 
}
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9.2.6 Available expressions

"An expression x+y is available at a 
point p if every path from the entry 
node to p evaluates to x+y, and after 
the last such evaluation prior to 
reaching p, there are no subsequent 
assignments to x or y." [p. 610]
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9.2.6 Available expressions

"…a block kills expression x+y if it 
assigns (or may assign) x or y and 
does not subsequently recompute x+y." 
[p. 610] 

"A block generates expression x+y if it 
definitely evaluates x+y and does not 
subsequently define x or y." [p. 611]
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Figure 9.17

t1 = 4 * i

t2 = 4 * i

B1

B2

?

B3

"…the expression 4 * i in 
block B3 will be a 

common subexpression if 
4 * i is available at the 
entry point of block B3." 

[p 611]
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Figure 9.17

t1 = 4 * i

t2 = 4 * i

B1

B2no 
assignment 

to i

B3

"It will be available if i 
is not assigned a new 

value in block B2, …" [p 
611] 

Here 4 * i in B3 can be 
replaced by value of t1, 

regardless of which 
branch is taken.
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Figure 9.17

t1 = 4 * i

t2 = 4 * i

B1

B2

?

B3

t1 = 4 * i

t2 = 4 * i

B1

B2
i = … 
t1 = 4 * i

B3

"… or if … 4 * i is 
recomputed after i is 

assigned in B2." [p 611] 

Again, 4 * i in B3 can be 
replaced by value of t1, 

regardless of which 
branch is taken 

(since t1 contains the 
correct value of 4 * i in 

both cases)
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9.2.6 Available expressions
Informally: 

"If at point p set S of expressions is available, 
and q is the point after p, with statement 
x=y+z between them, then we form the set of 
expressions available at q by the following 
steps: 

1. Add to S the expression y+z. 
2. Delete from S any expression involving 
variable x." 

[p. 611]



 2020 Carl Alphonce - Reproduction of this material is prohibited without the author's consent©

Example 9.15

Statement Available expressions
∅

a = b + c

{ b + c }

b = a - d

{ a - d }

c = b + c

{ a - d }

d = a - d
∅
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9.2.6 Available expressions
"We can find available expressions in a manner 
reminiscent of the way reaching definitions are 
computed. Suppose U is the 'universal' set of all 
expressions appearing on the right of one or more 
statement of the program.  For each block B, let 
IN[B] be the set of expressions in U that are 
available at the point just before the beginning of 
B.  Let OUT[B] be the same for the point following 
the end of B.  Define e_genB to be the expressions 
generated by B and e_killB to be the set of 
expressions in U killed in B.  Note that IN, OUT, 
e_gen, and e_kill can all be represented by bit 
vectors." [p. 612]
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9.2.6 Available expressions 
definitions, page 612

OUT[ENTRY] = ∅ 

OUT[B] = e_genB ∩ (IN[B] - e_killB) 

IN[B] = ∩P a predecessor of B OUT[P]
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9.2.6 Available expressions 
definitions, page 612

OUT[ENTRY] = ∅ 

OUT[B] = e_genB ∩ (IN[B] - e_killB) 

IN[B] = ∩P a predecessor of B OUT[P]

Note use of ∩ rather than ∪. 

"…an expression is available at the beginning of 
a block only if it is available at the end of ALL 

its predecessors." [p. 612]
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9.2.6 Available expressions
Algorithm [p. 614] 

INPUT: A flow graph with e_killB and e_genB computed for each 
block B.  The initial block is B1. 

OUTPUT: IN[B] and OUT[B], the set of expressions available at the 
entry and exit of each block of the flow graph. 

METHOD: 
OUT[ENTRY] = ∅ 
for (each basic block B other than ENTRY) { OUT[B] = U } 
while (changes to any OUT occur) { 
    for (each basic block B other than EXIT) { 
        IN[B] = ∩P a predecessor of B OUT[P] 

        OUT[B] = e_genB ∩ (IN[B] - e_killB) 
   } 
}
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9.2.6 Available expressions
Algorithm [p. 614] 

INPUT: A flow graph with e_killB and e_genB computed for each 
block B.  The initial block is B1. 

OUTPUT: IN[B] and OUT[B], the set of expressions available at the 
entry and exit of each block of the flow graph. 

METHOD: 
OUT[ENTRY] = ∅ 
for (each basic block B other than ENTRY) { OUT[B] = U } 
while (changes to any OUT occur) { 
    for (each basic block B other than EXIT) { 
        IN[B] = ∩P a predecessor of B OUT[P] 

        OUT[B] = e_genB ∩ (IN[B] - e_killB) 
   } 
}

Recall: U is 
set of all 
expressions
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9.2 Summary

Reaching definitions Live variables Available expressions

Domain sets of definitions sets of variables sets of expressions

Direction forward backward forward
Transfer 
function

genB ∪ (x - killB) useB ∪ (x - defB) e_genB ∩ (x - e_killB)

Boundary OUT[ENTRY] = ∅ IN[EXIT] = ∅ OUT[ENTRY] = ∅

Meet (⋀) ∪ ∪ ∩

Equations
OUT[B] = fB(IN[B]) 

IN[B] = ⋀P,pred(B)OUT[P]
IN[B] = fB(OUT[B]) 

OUT[B] = ⋀S,succ(B)IN[S]
OUT[B] = fB(IN[B]) 

IN[B] = ⋀P,pred(B)OUT[P]

Initialize OUT[B] = ∅ IN[B] = ∅ OUT[B] = U


