CSE4-4-3
Com p tlers
Dr. Carl Ai.pkom':@.

alphonce@buffalo.edu
343 Davis Hall

© 2021 Carl Alphonce - Reproduction of this material is prohibited without the author's consent

End-of-Semester

4/21

4/23

OVerview

Q/28 mEi

Final exam:
¥:00 AM - 11:00 AM
Nortown 210
(Ehis room)

LT OTODAY
Op&imiaaﬁioms 2 Work‘shop da\j OPEE,mE,aaELOMS 2
4/2% 4-/30 s/02
Nork*sko[a dmj Team Presenkakions Team Presenkakbions
s/08 5/07 5/60
Review for final exam
5/12 5/14

character stream

Y

Lexical Analyzer

Phases of

|
Q token stream

Y
@0 m F E;i,@_r Syntax Analyzer

[
syntax tree

Y

Semantic Analyzer

1
syntax tree

Y

Symbol Table Intermediate Code Generator

: | S
iutermediate representaticn

Y
Machine-Independent

0‘ F& Lm E«&O\& E.f(:} NS Code Optimizer

|
intermediate representation

Code Generator

FT E,guf,re. 1 ‘6 5 target—mai:hine code

Machine-Dependent
Code Optimizer

page § of bext

|
target-machine code

Y

ronsent

Algebraic Identities 2 £36]

Constant folding
"...evaluate constant expressions ak com[wit@.

e and répta&@. Fhe cownskank expressions
bv heir values.”

© 2021 Carl Alphonce - Reproduction of this material is prohibited without the author's consent

Algebraic Identities 2 £36]

See foobtnote 2:

"Arithmetic expressions should be evaluated the
same way ak c:om[a&t@. Lime as &he:j are at run kime,
K. Thompson has suqqested an elegant solution to
constant folding: compile the constant expression,
execute the target code on the spot, and replace
the expression with the resulk. Thus, the tompater
does ok need to contain an interpreter.”

© 2021 Carl Alphonce - Reproduction of this material is prohibited without the author's consent

‘P@.@.phoi& opEimizaﬁiom

[p 542]

"The peephole is a small, sliding
window on a pragro\mﬁ" fp £49]

"In general, repec&ed passes over the
target code are hecessary to get the
moximum benefit." [p. §50]

© 2021 Carl Alphonce - Reproduction of this material is prohibited without the author's consent

‘Peepkoi.@. op%imaz.a&ww redundant LDAT

LD KO, a
ST o, Ro

1f the ST instruction has a label,
cannol remove ik, (If nstructions are
Un the same block we're OK.)

© 2021 Carl Alphonce - Reproduction of this material is prohibited without the author's consent

Peephole optimization: unreachable code

This case balees
several slides...

i £2K qoto L1
qoto L2
LIz

L2¢ ...

SMPF’OSQ K s a constant.

© 2021 Carl Alphonce - Reproduction of this material is prohibited without the author's consent

Peephole optimization: unreachable code

i £2K qoto L1
qoto L2
L1: ...do something...

L2: ...do something...

Eliminake ju,mps over ju,mps

© 2021 Carl Alphonce - Reproduction of this material is prohibited without the author's consent

Peephole optimization: unreachable code

i £2K qoto L1 f £'=K qgoto L2

qoto L2] o,
L1 s
L2% ... ’

Eliminake jumps over jumps

© 2021 Carl Alphonce - Keprotiuetieon—o-thtsal erial is Frckibi&ed without the author's consent

Peephole optimization: unreachable code

i £2K qoto L1 f £'=K qgoto L2
qoto L2

L1zse
LZ: ...

L2: ... ’

1{ there are no

Jumps to L1, we can remove
Llabel

© 2021 Carl Ai.pkc:-vwe - KEprocnetiemn—op-thts Mal erial is Frokibi&ed without the aubthor's consent

Peephole optimization: unreachable code

i £2K qoto L1 f £'=K qgoto L2
qoto L2

L1zse
LZ: ...

L2: ... ’

1f £ is set to a
constant value other thawn K,
thewn...

© 2021 Carl Ai.pkc:-vwe - KEprocnetiemn—op-thts Mal erial is Frokibi&ed without the aubthor's consent

Peephole optimization: unreachable code

i £2K qoto L1 if true gobo L2

qoto L2
L1 s
L2% ... ’

condikional \}u,m[p
becomes unconditional...

© 2021 Carl Alphonce - Keprotiuetieon—o-thtsal erial is Frckibi&ed without the author's consent

Peephole optimization: unreachable code

i £2K qoto L1 qoto L2
qoto L2
Ll L& ...
L2: ...
eand bhe
unreachable code can be
removed.,

© 2021 Carl Ai.pkc:-vwe - KEprocnetiemn—op-thts Mal erial is Frokibi&ed without the aubthor's consent

Peephole optimization: flow-of-control

qoto L1

L1l: qoto L2

12;

© 2021 Carl Alphonce - Reproduction of this material is prohibited without the author's consent

Peephole optimization: flow-of-control

qgoto L1 qoto L2 -

L1l: qoto L2 L1l: qoto L2~

- L2:

© 2021 Carl Alphonce - Reproduction of this material is prohibited without the author's consent

Peephole optimization: flow-of-control

qoto L1 qoto L2

L1l: qoto L2

L1l: qoto L2~

12; 12;

1{ there are no ju,mps to L1,
and L1 is erecec&ed bv ain uhcondikional
ju.m[p...

© 2021 Carl Alphonce - Reproduction of this material is prohibited without the author's consent

Peephole optimization: flow-of-control

qoto L1 qoto L2

L1l: qoto L2

12;

12;

LEhen we can elimminabe the skakemenkt
Llabelled L1

© 2021 Carl Alphonce - Reproduction of this material is prohibited without the author's consent

Peephole optimization: flow-of-control

4 a < b gqobo L1

L1l: qoto L2

12;

...stmilar arquments can be made for
conditional jumps.

© 2021 Carl Alphonce - Reproduction of this material is prohibited without the author's consent

0~F9E£m£z.aﬁ0m

o The semamntics of a program be
preserved by optimizations.

o The compiler does not know a
programmer’s intent - it can only
reason about the program as
wriktten.

© 2020 Carl Alphonce - Reproduction of this material is Prokibi&ed without the author's consenl

Data—~flow amatjsis

o View program execubtion as a
sequence of state btransformatiomns,

o Each program state consists of all
the variables in the program along
with their current values.

© 2020 Carl Alphonce - Reproduction of this material is Proktbi&ed without the author's consenl

State Eransformation

; taput state >

© 2020 Carl Alphonce - Reproduc&i.on of this material is Proktbi&ed without the author's consent

State Eransformation

Program
states are
called
program
pom&s‘.

A sequence
of program
Foiv\%s Ls
called a Fw&hﬂ.

© 2020 Carl Alphonce - raeprodwcki.on of this material is Prokibi&ed without the author's consent

Data-flow analysis

o Begin by considering only the flow
grapk for a single function.

‘Prcaper&@.s

o Within a basic blocke:

- Program point after a statement is
same as program point before the
next staktement.

- Why?

© 2020 Carl Alphonce - Reproduction of this material is Prokibi&ed without the author's consent

‘Prcaper&@.s

o Belween basic blociks:

- "If there is an edge from block B1
to block B2, then the program point
after the Last statement of Bl may be
followed immediately by the
program point before the first
statement of B2."

2 597]

Execubtion Fw&k

"An execution path (or just path) from point p: to
point pn [is] a sequence of points p1, pz, .oy Pn
such that for each i = 1,2,...,n-1, either

1. pi is the point immediately preceding a
statement and pin is the point immediately
following that same statement, or

2. pu is the end of some block and pia is the
beginning of a successor blocie.”

Lp. 597]

© 2020 Carl Alphonce - Reproduction of this material is Prokibi&ed without the author's consenl

Example 9.% (p. §9%)

d1: a = 1 Bl Path: (1,2,3,4,9)

(2) .

(3) * _4 Path: (1,2,3,4,5,&;7,2’,3,4;9)
U read() <= © goto B4 .‘

u}) dZ: b - O
A3 a = 243
qoto BR

a has value 1 first
time (8) is executed.,
d1 reaches (5) on
the first iteration.,

] o has value 243
/ ot (8) on the second
and subsequ@\&

tkerakions.

Soe | B&'g. d3 reaches (8) on

those ikerakions.

© 2020 Carl Alphonce - Reproduction of this material is Frokibi&e_d without the author's consent

Reaching definitions

"The definitions that may reach a
program point along some path are
khown as reaching definitions.”

2 59% |

© 2020 Carl Alphonce - Reproduction of this material is Frokibi&e_d without the author's consenl

Gathering different data
for different uses

"... ot point (8) ... the value of a is one of { 1, 243 }
and ... it may be defined by one of { 41, 43}

Lp. 59% |

"... ab point (8) ... there is ho definition that must be the
definition of a ab thak point, so this set is emply for a
at point (8). Even i a variable has o unique definition
at a point, that definition must assign a constant to the
variable. Thus, we may simply describe certain variables
as 'not a constant', instead of collecting all their
possible values or all their possible definitions.”

Lp. 599]

© 2020 Carl Alphonce - Reproduc&i.on of this material is Proktbi&ed without the author's consent

9.2.2 Data-flow analysis schema

"In each application of data—flow analysis, we
associate with every program point a data-
flow value that represents an abstraction of
the set of all possible program states that can
be observed at that paim&." {F" £99]

"The set of Possibt& data—flow values is the
domain...” [F' £99]

"We denocte the data—flow values before and
after each statement s by IN[s] and OUT[s],
respectively.” [p. £99]

© 2020 Carl Alphonce - Reproduction of this material is Prokibi&ed without the author's consenl

9.2.2 Data-flow analysis schema

"The data—flow Frobi.em is to find a
solubtion to a set of cownstrainks on the
IN[s]'s and OUT[s]'s, for all staktements
s. There are two sets of conskraints:
those based on the semantics of the
statements ("transfer functions™) and
those based own the flow of control.”

Lp. 599]

Transfer functions

Information can flow forwards or
backwards.

Forward flow: OUT[s] = £ (IN[s])

Backward flow: IN[s] = 9. (OUT[s])

Conbrol flow constraints

In a sequence si, Sz, -..,5a without jumps,
IN[si1] = OUT[s] for all i=1,2,...n-1

For data—flow bebween blocks, take "the
union of the definitions after Last
statements of each of the predecessor
blockes,” 2 600]

9.2.3 Data—flow schemas on basic blocks

Suppose a basic block B consists of the
sequence of statements si, sz, ...,5.. Define
IN[R] = IN[s1] and OUTIRB] = OUT[s.].

The transfer function of B:

{B = ‘{sw’ see O ‘fsz" “fsl

The transfer function of B:

oUT[B] = f=(IN[B])

© 2020 Carl Alphonce - Reproduction of this material is Prokibi&ed without the author's consent

9.2.3 Data—flow schemas on basic blocks

Forward flow problem
oUT[R] = f=(IN[B])
INCET 21 Lo o oulte]
Backward flow problem
IN[B] = gs(OUT[B])

OUT{‘BJ = U S a successor of B IN{SJ

© 2020 Carl Alphonce - Reproduction of this material is Prokibi&ed without the author's consent

9.2.3 Data—flow schemas on basic blocks

"...data-flow equations usually do not have a
unique solution. Qur goal is to find the most
'precise’ solution that sakisfies the two sebks of
constraints: conbrol-flow and bransfer
conskrainks, That is, we need a solution thak
encourages valid code improvements, buk
does not justify unsafe transformations...”

[p. &01]

© 2020 Carl Alphonce - Reproduction of this material is Prokibi&ed without the author's consent

92.4 Reaching definitions

"A definition d reaches a point p if there is a
path from the point immediately following 4
to p, such that d is not 'killed' along that
path." [p. 601]

"We kill a definition of a variable x if there
ls ahy other definition of x anywhere along
the path." [p. &o1]

© 2020 Carl Alphonce - Reproduction of this material is Prokibi&ed without the author's consenl

92.4 Reaching definitions

"A definiktion of a variable x is a
statewment that assigns, or may assigi,
a value to x."

What is meant b'j "maj assign"?

© 2020 Carl Alphonce - Reproduction of this material is Proktbi&ed without the author's consent

92.4 Reaching definitions

"Procedure paramelers, array accesses,
and indirect references all may have
aliases, and it is not easy to tell if a
statement is referring to a particular
variable x." [p. 601]

"Program &matvsis musk be
conservative” [p. 601]

© 2020 Carl Alphonce - Reproduction of this material is Proktbi&ed without the author's consenl

Transfer equations for reaching definitions

For this c{eﬂfiniﬁaw
A w=v+w

The transfer equation is:
fa(o) = gena u (o= killa)

where gena = {d}. Kkilld is the set of all
other definitions of u in the program

The arqument of a transfer function is a data-flow value,
which "represents an abstraction of the set of all

program states that can be observed for that point.” [p. §92]
in the program along with their current values.

© 2020 Carl Alphonce - Reproduction of this material is prohibited without the author's co

senk

Flqure 213
(p. 604)

ENTRY

o) =

Al: L

N
W

W

B1
=l

B2
genez = { ¢ }
eillg; =234 2 }
genss = § 7 }

B4

genps = {? }
R‘Etiiaq. - ? %

EXIT

© 2020 Ca}t Alphonce - Reproduction of this material is Prokibi&ed without the author's consent

LY

Flgure 2.13 =

(p. &604)

o) =

®1
Al:i=2=wm - 1
gens: = | d1, d2, 43 }
M’ELLB:L - { ? }

B2
gens: = 121
kille: = { ? }

genes = { 7 }
H‘ELLB,?, -— { ? }

B4 genps = {? }
R‘Etiiaq. - { ? %

EXIT

© 2020 Ca}t Alphonce - Reproduction of this material is Prokibi&ed without the author's consent

LY

Flgure 2.13 =

(p. &604)

o) =

B1
dl: i =2=wm - 1
gens: = | d1, d2, 43 }

kille, = { 44, 45, 46, 47 |

B2
gens: = 121
kille: = { ? }

genes = { 7 }
H‘ELLB,?, -— { ? }

B4 genps = {? }
R‘Etiiaq. - { ? %

EXIT

© 2020 Ca}t Alphonce - Reproduction of this material is Prokibi&ed without the author's consent

Flqure 213 ENTRY
(p. 604) v

Adl: L=wm - 1
d2: J = n
d3: a = ul

21

gens1 = { dl, 42, 43 }
kille: = { 44, 45, 46, 47 |

© zo20 CA]L Alphonce - Reproduction of this material is prohibited without the author's consent
P P P

EXIT

Flqure 213

ENTRY

(p. 604)

Bl
dl: i =wm - 1
d2: J = n
d3: a = ul

gens1 = { d1, 42, 43 }
kille, = { d4, ds, 46, d7

© 2020 CQ]L Alphonce - Reproductioh o

EXIT

LY

Flgure 2.13 =

(p. &604)

o) =

B1
dl: i =2=wm - 1
gens: = | d1, d2, 43 }

kille, = { 44, 45, 46, 47 |

B2
gens: = 121
kille: = { ? }

genes = { 7 }
H‘ELLB,?, -— { ? }

B4 genps = {? }
R‘Etiiaq. - { ? %

EXIT

© 2020 Ca}t Alphonce - Reproduction of this material is Prokibi&ed without the author's consent

LY

o) =

Flgure 2.13 =
(p. 604)

B1
dl: i =2=wm - 1
gens: = | d1, d2, 43 }

kille, = { 44, 45, 46, 47 |

B2
geneg: = { Cilfe-, A5 }
illz; = { ¢ }

genes = { 7 }
H‘ELLB,?, -— { ? }

B4 genps = {? }
R‘Etiiaq. - { ? %

© 2020 Ca}t Alphonce - Reproduction of this material is Prokibi&ed without the author's consent

EXIT

LY

o) =

Flgure 2.13 =
(p. 604)

B1
dl: i =2=wm - 1
gens: = | d1, d2, 43 }

kille, = { 44, 45, 46, 47 |

B2
geneg: = { Cilfe-, A5 }
killez = { 41, 42, 47 }

genes = { 7 }
H‘ELLB,?, -— { ? }

B4 genps = {? }
R‘Etiiaq. - { ? %

© 2020 Ca}t Alphonce - Reproduction of this material is Prokibi&ed without the author's consent

EXIT

LY

o) =

Flgure 2.13 =
(p. 604)

B1
dl: i =2=wm - 1
gens: = | d1, d2, 43 }

kille, = { 44, 45, 46, 47 |

B2
geneg: = { Cilfe-, A5 }
killez = { 41, 42, 47 }

SQV\BB — { dﬁ }
H‘ELLB,?, -— { ? }

B4 genps = {? }
R‘Etiiaq. - { ? %

© 2020 Ca}t Alphonce - Reproduction of this material is Prokibi&ed without the author's consent

EXIT

LY

o) =

Flgure 2.13 =
(p. 604)

B1
dl: i =2=wm - 1
gens: = | d1, d2, 43 }

kille, = { 44, 45, 46, 47 |

B2
geneg: = { Cilfe-, A5 }
killez = { 41, 42, 47 }

SQV\BB — { dﬁ }
killzgs = | 43 }

B4 genps = {? }
R‘Etiiaq. - { ? %

© 2020 Ca}t Alphonce - Reproduction of this material is Prokibi&ed without the author's consent

EXIT

LY

o) =

Flgure 2.13 =
(p. 604)

B1
dl: i =2=wm - 1
gens: = | d1, d2, 43 }

kille, = { 44, 45, 46, 47 |

B2
geneg: = { Cilfe-, A5 }
killez = { 41, 42, 47 }

SQV\BB — { dﬁ }
killzgs = | 43 }

© 2020 Ca}t Alphonce - Reproduction of this material is Prokibi&ed without the author's consent

EXIT

LY

o) =

Flgure 2.13 =
(p. 604)

B1
dl: i =2=wm - 1
gens: = | d1, d2, 43 }

kille, = { 44, 45, 46, 47 |

B2
geneg: = { Cilfe-, A5 }
killez = { 41, 42, 47 }

SQV\BB — { dﬁ }
killzgs = | 43 }

B4 qensg = { A7 }
killes = { A1 / A4 }

© 2020 Ca}t Alphonce - Reproduction of this material is Prokibi&ed without the author's consent

EXIT

Extending Eransfer @.qu.o&mms
from statements ko blocks

Composition of £ and £z
£1(x) = gens U { x - killy)
£20x) = geme U (x = killz)
£ £20¢)) = geme U ((gens u ((x = kills)) - kille)
= gene U { (geny = kill) v ((x = killy) = wille))

= gene u (geny = killz) u { x = (eilly u kill:))

© 2020 Carl Alphonce - Reproduction of this material is Prokibi&ed without the author's consent

Extending Eransfer @.qu.o&mms
from statements ko blocks

In general:

fa(x) = gems u (x - kills)

kille = Ui kill;

SQMB - SQMM U
(9enn-1 - killn) u
(9etn-z - killu-1 - keilln) U
sse U

(g9en - Wills - kills - ... = killn)

© 2020 Carl Alphonce - Reproduction of this material is Prokibi&ed without the author's consent

Extending Eransfer @.qu.o&mms
from statements ko blocks

"The gen set contains all the definitions inside
the block that are "visible” immediately after the
block - we refer to them as downwards exposed.
A definition is downwards exposed in a basic
block only if it is not "killed” by a subsequent
definition to the same variable inside the same
basic block.” [p. 608]

© 2020 Carl Alphonce - Reproduction of this material is Prokibi&ed without the author's consent

Iterative algorithm for reaching definitions

Algorithm [p. 606]

INPUT: A flow graph for which kills and gens have been computed for
each block B,

OUTPUT: IN[B] and OUT[B], the set of definitions reaching the entry
and exit of each block B of the flow graph

METHOD:
OUT[ENTRY] = @
for (each basic block B other than ENTRY) { OUT[B] = o |
while (changes to any OUT occurs) |
for (each basic block B other than ENTRY) {

IN[‘B] = U‘Pa predecessor of B QUT{‘(P]
oUT[B] = gens U IN[R] - kills)

;
;

See foothote 4 on page £06
© 2020 Carl Alphonce - Reproduction of this material is Prokibi&ed without the author's consent

Iterative alqorithm for reaching definitions

Algorithm [p. 606

INPUT: A flow graph for whs.ch |
each block B, '

OUTPUT: IN[B] and OUT[RB], the | (.
and exit of each block B of the

METHOD:
OUT[ENTRY] = 2 e
for (each basic block B other than ENTRY) { OUT [B] = o |
while (changes to any OUT occurs) |

for (each basic block B other than ENTRY) {

IN{BJ — U‘P a predecessor of B OUT[?J
OUTIB] = gens u (IN[B] - kills)

;
;

See foothote 4 on page £06
© 2020 Carl Alphonce - Reproduction of this material is prohibited without the author's consent

LY

o =

Flgure 2.13 =
(p. 604)

B1
dl: i =2=wm - 1
gens: = | d1, d2, 43 }

kille, = { 44, 45, 46, 47 |

B2
geneg: = { Cilfe-, A5 }
killez = { 41, 42, 47 }

SQV\BB — { dﬁ }
killzgs = | 43 }

B4 qensg = { A7 }
killes = { A1 / A4 }

© 2020 Ca}t Alphonce - Reproduction of this material is Prokibi&ed without the author's consent

EXIT

Exampte 9.12 - building off fiqure 9.13

OUT[ENTRY] =
for (each basic bLoclz B other than ENTRY) { OUT[BJ }

while (changes to any OUT occurs) { |
for (each basic block B other than ENTQ‘)’) {

IN[B] = U? a Predecessor of B OUT[?]
OUTIB] = gene u (IN[B] - kills)

Represent di as a bit vector, where each d is a definition from 9.13
Union of sets A U B: A OR B Difference of sets A - B: A AND B

Compute in order Bl, B2, B3, B4, £XIT

ror axo\mpi.e:

IN[B2] = OUT[B1]t U OUT[B4]° = 111 0000 | 000 CCOC = 111 OO0

OUTIBR]: = gene u (IN[B2]t - kills:)
= 000 1100 + (111 0000 - 110 0001)
= 000 1100 + 0O0O] 0000 = 001 1ll00

© 2020 Carl Alphonce - Reproduckiov\ of this material is prohibi&ed without the author's consent

Example 9.12 - building off figure 2.13

OUT[ENTRY] = o
for (each basic block B obher than ENTRY) { OUTDB] = o }

while (changes to any oUT Qccu.rs) {
for (each basic block B other than ENTQ‘)’) {

IN[B] = U? a Predecessor of B OUT[?]
oUT[R] = gens U (IN[B] - kills)

© 2026 C;arLVALPhonce = Reproduckiou of this material is Prohibi&ed without the author's consent

Exampte 9.12 | i 0 e 3

dl: i =2 m -
OUT[ENTRY] = @ R
for (each basic block B other than ENTRY) { ODT[B] = o } e |
while (changes to any OUT occurs) | i by e M;“i 0 i

=NF i foe :

for (each basic block B other than ENTRY) {

IN{B] = UP a predecessor of B OUT[?] =
OUT[B] = gens u (IN[B] - kills) ey @
} : | d7: L = u3 |
} L E%T '}

IN[R1] = pred(Bl) = ENTRY
OUTIR1] = gemer u { IN[B1] - kills:)
gens: = | d1, d2, 43 }

kille: = { d4, 45, 46, 47 |

© 2020 Carl Alphonce - Reproduction of this material is prohibited without the author's consent

Exampte 9.12 | i 0 e 5

dl: i = m -
OUT[ENTRY] = o ST
for (each basic block B other than ENTRY) { OUT[B] = 2 } e’ |
while (changes to any OUT occurs) | i S Mj-*: 0 i

=NF i foe :

for (each basic block B other than ENTRY) {

IN{B] = UP a predecessor of B OUT{‘P] .
OUT[B] = gene v (IN[B] - kills) e
} . | d7: L = u3 |
} i E%T «.»3

IN[R2] = Frec’&(BZ) = QUT[R1] u CUT[R4]
OUT{‘BRJ = gensz U C INEBZJ - keillsy)
geng: = { A4, 48 }

killez = { 41, 42, 47 }

© 2020 Carl Alphonce - Reproduction of this material is prohibited without the author's consent

Exampte 9.12 | i 0 e 5

dl: i =2m -1

OUT[ENTRY] = @ S
for (each basic block B other than ENTRY) { OUT[B] } B

while (changes to any OUT occurs) { o Lt LR
for (each basic block B other than ENTRY) { ds:j=j-1 1§
IN{B] = UP a predecessor of B OUT{‘P] . l
OUT[B] = gens u (IN[B] - Kills) R
} d7: L = u3 o
} L E%T «.»3

IN[B3] = [are.d(.BS) = QUT[®2]
OUT[B3] = genesz u { IN[B3] - killes)
9@.&\33 — { d& }
killez = { 43 }

© 2020 Carl Alphonce - Reproduction of this material is prohibited without the author's consent

Exampte 9.12 | i 0 e 5

dl: i =2m -1

OUT[ENTRY] = @ S
for (each basic block B other than ENTRY) { OUT[B] o1 arlats o1

while (changes to any OUT occurs) { o B2
for (each basic block B other than ENTRY) {

d4: =L+ 1
dS:j:J-l :

IN{B] = UP a predecessor of B OUT{‘PJ |
OUTIB] = genes v (IN[B] - kills) e
} d7: i = u3 i
} i E%T 4T

genss = { A7 }
killegs = { A1 5 A4 }

IN[B4] = OUT[R2] v OUT[B3]
OUT{B"P] = S@.V\BA,. U (IN[B4’] - RLLLBA,.)

© 2020 Carl Alphonce - Reproduction of this material is prok ibited without the author's consent

Example 9.12 it el

dl: i =2m -1

OUT[ENTRY] = e
for (each basic bi.oclx B other than ENTRY) { OUT[B] > e |
while (changes to any OUT occurs) | i M;“_Lt G i
for (each basic block B other than ENTRY) { ds:j=j-1 §
IN[B] = UP o predecessor of 8 OUTLP]
oUT[B] = gens U (IN[B] - Kkills)

B4

IN[EXIT] = OUT[R4]
OUTLEXIT] = IN[EXIT]

© 2020 Carl Alphonce - Reproduction of this material is prokubu&ed withouk. the aubhor's consent

! ENTRY i

OUTLENTRY] = e e

for (each basic bi.oclx B other than ENTRY) { OUT[B] > oy

while (changes to any OUT occurs) { v b dé—:uit 5
for (each basic block B obther than ENTRY) { ds:j=j-1 |

IN[B] = U? a predecessor of B OUT{‘PJ
OUTIB] = gens u (IN[B] - kills)

© 2020 Carl Alphonce - Reproduction of this material is prohibited without the author's consent

! ENTRY !

dl: i =2m -1

OUTLENTRY] = S
for (each basic bi.ock B other than ENTRY) { OUTITB] > oy
while (changes to any OUT occurs) { e) | 55 _Lt 5
for (each basic block B obther than ENTRY) { ds:j=j-1 |
IN[B] = UP a predecessor of 8 OUTLP]

OUTIB] = gens u (IN[B] - kills)

.a WA

© 2020 Carl Alphonce - Reproduction of this material is prohibited without the author's consent

! ENTRY |

dl: i =2m -1

OUT[ENTRY] = e

for (each basic bi.ock B other than ENTRY) { OUTDBJ > e

while (changes to any OUT occurs) | i o _Lt o

for (each basic block B obther than ENTRY) { ds:j=j-1 {
IN[B] = UP a predecessor of 8 OUT[P]

OUTIB] = gens u (IN[B] - kills)

© 2020 Carl Alphonce - Reproduction of this material is prohibited without the author's consent

! ENTRY |

OUT[ENTRY] = e e

for (each basic bi.ocla B other than ENTRY) { OUTUB] o } e

while (changes to any OUT occurs) | ' ' o it o
for (each basic block B other than ENTRY) { ds:j=j-1 {

IN{BJ = UP a predecessor of B OUT[PJ |
OUTIB] = gens u (IN[B] - kills)

© 2020 Carl Alphonce - Reproduction of this material is prohibited without the author's consent

! ENTRY |

OUT[ENTRY] = e e

for (each basic btocw B other than ENTRY) { ODTDB] o } e

while (changes to any OUT occurs) | ' ' o it o
for (each basic block B other than ENTRY) { ds:j=j-1 {

IN[-BJ = UP a predecessor of B OUT[PJ |
OUTIB] = gens u (IN[B] - kills)

© 2020 Carl Alphonce - Reproduction of this material is prohibited without the author's consent

92.4 Reaching definitions

Useful for constant propagation and constant
folding (§%.5.4 - p. 36, §9.4 - p. 6£32).
Additional discussion and examptes:

enwikipedia.org/wiki/Constant_folding

Useful for global common subexpression
elimination (€92.1.4 - p. ¥%, §9.2.6 - p. 610, §9.5 -
p. 639). Additional discussion and examples:

enwikipedia.org/wiki/Common_subexpression_elimination

© 2020 Carl Alphonce - Reproduction of this material is Prokibi&ed without the author's co

senk

https://en.wikipedia.org/wiki/Constant_folding
https://en.wikipedia.org/wiki/Common_subexpression_elimination

9.2.5 Live variable amatvsis

Useful for effective register management.

"After a value is computed in a register, and
presumably used within a block, it is not
necessary to store that value i ik is dead ak
the end of the block, Also, if all registers are
full and we need anocther reqister, we should
favor using a reqister with a dead value, since
that value does not have to be stored.” [p. 60%]

© 2020 Carl Alphonce - Reproduction of this material is Prokibi&ed without the author's consenl

9.2.5 Live variable amatvsis

"In Live variable analysis we wish to know for
variable x and point p whether the value of x
at p could be used along some path in the
flow graph starting ok p. If so, we say x is
live at p; otherwise, x is dead at p." [p. Lo¥]

In contrast to reaching analysis, which used
a forward bransfer function, live variable
analysis uses a backward kransfer function.,

© 2020 Carl Alphonce - Reproduction of this material is Prokibi&ed without the author's consenl

9.2.8 Live variable analysis
definitions, page 609

defs is "the set of variables defined in
B prior to any use of that variable in
B"

uses is "the set of variables whose
values may be used in B prior to any
definition of the variable”

9.2.8 Live variable amaivsis
definitions, page 609

IN[EXIT] = 2
IN[B] = uses u (OUT[B] - defs)

OUTDB:] — U S a successor of B IN{S]

9.2.5 Live variable amatvsis

Algorithm {p« &10]
INPUT: A flow graph with def and use compuled for each block.

CUTPUT: IN[B] and OUT[R], the set of variables Live on ev\%rj
and exit of each block of the flow graph.

METHOD:
IN[EXIT] = ©
for (each basic block B other than £XIT) { IN[B] = 2 }
while (changes to any IN occur) {
for (each basic block B other than EXIT) {

OUTIB] = Us. ccccssorof e IN[S]
IN[B] = uses u (OUT[R] - defs)

© 2020 Carl Alphonce - Reproduction of this material is Prokibi&ed without the author's consent

9.2.6 Available expressions

"An expression x+y is available at a
point p i every path from the entry
node to p evaluates to x+y, and after
the last such evaluation prior to
reaching p, there are no subsequent
assignments to x or y." [p. &10]

9.2.6 Available expressions

"...a block lills expression x+y if ik
assigns (or may assign) x or y and
does not subsequently recompute x+y."
[p. 610]

"A block generobes expression x+y if it
d@fm&&etv evaluates x+y and does not
subsequﬁmﬁv define x or Y. [p. 611]

© 2020 Carl Alphonce - Reproduction of this material is prohibited without the author's consent

no
assighment
to ©

"It will be available if ©
is not assigned a new
value in blocik B2, ..." ['
611]

Here 4 * L in B3 can be
replaced by value of E1,
reqardless of which
branch is taken.,

© 2020 Carl Alphonce - Reproduction of this material is prohibited without the author's co

sent

Again, 4 * L in B3 can be
replaced by value of t1,
reqardless of which
branch is taken
(since k1 cowntains the
correct value of 4 * { in
bobth cases)

© 2020 Carl Alphonce - Reproduction of this material is prohibited without the author's consent

9.2.6 Available expressions

Infor mally:

"If ab point p set S of expressions is available,
and q is the point after p, with statement
X=Ytz. between them, thein we form the set of
expressions available at 9 b"j the following
steps:
1. Add to § the expression y+z.
2. Delete from S any expression tvolving
variable x.”
Lp. 611]

© 2020 Carl Alphonce - Reproduction of this material is prohi

s(J‘._\ B o o K : | o X s b B g ’ .
S AL VI e AL o VLA L& .Y 22075 S H@1% %o

Ou;‘ub"‘ﬁ

© 2020 Carl Alphonce - Reproduction of this material is prohibited without the author's consent

9.2.6 Available expressions

"We can find available expressions in a manner
reminiscent of the way reaching definitions are
ﬂompu%@.dﬂ Suppose U is the 'universal set of all
expressions appearing on the right of one or more
statement of the program. For each block B, let
IN[B] be the set of expressions in U that are
available ot the point just before the beginning of
B. Let OUT[B] be the same for the point following
the end of B. Define e_gens to be the expressions
generated by B and e_kills to be the set of
expressions in U killed tn B, Note that IN, OUT,
e._qgen, and e_kill can all be represemﬁed bv bik
vectors." [p. 612]

© 2020 Carl Alphonce - Reproduction of this material is proktbi&ed without the author's consent

9.2.6 Available expressions
definitions, page 612

OUT[ENTRY] = @

OUT{B] = e _qgens n (INEB] = Qmw’ﬁi.i,@)

IN[B] = ;. s ilin OUT 7.

9.2.6 Available expressmms
cieﬂfm&mns, Fmge 612

OUTTENTRY] = 2
OUTIR] = e_gens n (IN[B] - e_kills)
IN{B] — n?apredecessor of B OUT{?] o

Note use of [N rather than U,
is available at the beginning of

thockout,lfuuanutbhd&hmdofm
decessors.” [p. 612]

9.2.6 Available expressions

Algorithm [p. 614]

INPUT: A flow graph with e_kills and e_gens computed for cach
block B, The initial block is B1.

OUTPUT: IN[B] and OUT[R], the set of expressions available ot the
entry and exit of each block of the flow graph.

METHOD:
CUTL[ENTRY] = ©
for (each basic block B other than ENTRY) { 0UT[B] = U |
while (changes to any OUT occur) |
for (each basic block B other than £XIT) {

IN{B] - n‘? a predecessor of B OUT[—PJ
OUTIR] = e_qgens n (IN[B] - e_Nills)

¥ © 2020 Carl Alphonce - Reproduction of this material is Prokibi&ed without the author's consent

9.2.6 Available expressmms

Algorithm [p. 614]

INPUT: A flow grapk with e_kills and e_gens compu&ed for each
block B, The initial block is B1.

OUTPUT: IN[B] and OUT[R], the set of expressions available at the
entry and exit of each block of the flow graph.

METHOD:
CUTL[ENTRY] = ©
for (each basic block B obher than ENTRY) { OUT[R] = 0 }
while (changes to any OUT occur) | :
for (each basic block B other than EXIT) {

IN[—B] — n? a predeaesscr of B OUT{‘P]
oUT[B] = e_gens N (IN[B] - e_kills)

} © 2020 Carl Alphonce - Reproduction of this makeritt™ e |

9.2 Summarfj

DAoL

Dire Lol

g | ST
I roansSTeY

A CELOWV

LYel¥1% lé\l,s T

- o‘p_yj;molﬂ (>

ry LS -
LALCELOLLZE

Leaching Aetiittlons

sebs of definitions

seks of variables

N 3 ‘\ v e N 4 o o3 .
AVaLLalZle exXpre
.

sets of expressions

forward

backward

forward

SQV\B U (X = R‘Lu.[3>

wses U (X o d?-‘FB>

_emgé.hg ﬂ (x pe QNR‘E’.LB>

OUT[ENTRY] = &

IN[EXIT] = O

OUTIENTRY] = &

U

U

N

0UTIR] = f=(IN[B])
IN{BJ = /\‘P,Pred(B)OUT[?J

IN[R] = $:(0UT[RD])
QUT{B] = /\S,succ(B)IN{SJ

oUTIB] = £(IN[B])
IN[B] = /\‘P,Pred(B)QUT[?J

oUTI[R] = O

IN[R] = O

oUTI[R] = U

© 2020 Carl Alphonce - Reproduction of this material is prohibited without the author's consent

