
CSE 4/573 Fall 2010 v2 Sep 28 2010

 Homework assignment #2 Due Wednesday Oct 6

1. In our database http://www.cse.buffalo.edu/courses/cse573/peter/dbs
there is a file FindText.mat. Start Matlab, load this file, and you
will find a uint8 image IM in your Matlab workspace. This file
contains some hidden text. Submit an m-file with first line

 function ReadIt=FindText(IM)

where

 IM: the specific unit8 file loaded from FindText.mat
 ReadIt: a unit8 image of the same size where the text
 contained in IM can be easily read using imshow(ReadIt)

Your code should perform a grayscale transformation of your own design
which makes the text hidden in IM easily readable. Give some thought
to how you can narrow down your search for where in the image, and at
what grey levels, text may be written.

2. The method for affine geometric transformation described in
lecture slides 04-08 to 04-14a can be extended to nonlinear geometric
transformations as illustrated in this problem. Submit an m-file with
first line

function ImOut=NLGT(InIm,Interp)

where

InIm: a 64x64 uint8 input intensity image
Interp: a string, either `nn` or `lin`
OutIm: a 64x64 uint8 output intensity image

Assume that InIm has been created by sampling an original continuous
input image with Δx=Δy=1/32 beginning with inital values x=y=-1. The
geometric transformation we wish to produce is

x’=(x+y)3
y’=(x-y)3

where (x,y) are the original image coordinates and (x’,y’) are the
transformed coordinates. That is, the transformed image should have at
(x’,y’) the same grey level as the original image at (x,y). OutIm
should be a sampled version of the transformed image with Δx’=Δy’=1/32
beginning with inital values x’=y’=-1.

Here is an example. The left image, when transformed and nearest-

neighbor interpolated using this geomentric transformation, becomes
the right image. It is rotated and the bars thicken with distance from
the center of the image.

 Original Image After geometric transformation

3. Write a script m-file (not a function m-file) hw2p3.m that prompts
for the name of an input file, assumed to be a color jpeg file, and
then prompts for three numbers:

• A magnification factor, any positive real number
• A vertical shift, any non-negative real number
• A horizontal shift, any non-negative real number

The image magnified by the magnification factor and then shifted by
the specified shifts should be computed and displayed. Use bilinear
interpolation for each color component separately,zero-padding as
necessary. The size of the output image should be the minimum size
required to display the magnified and shifted output.

So for instance if the input file InIm is say 128x256 (128 rows by 256
columns) and the magnificiation factor is 2.1, then the bounds for the
magnified image are x’=2.1*128=268.8, y’=2.1*256=537.6. If the
vertical shift is say 11.6 pixels and the horizontal 0.0 pixels, then
the bounds become x’=268.8+11.6=280.4, y’=537.6+0.0=537.6. Thus the
size of the output image needs to be 281 rows by 538 columns. To
compute all the 281x538 output image’s pixel values using bilinear
interpolation you will have to zero-pad the input image, since some of
the output pixel locations map back outside the original 128x256 input
image.

4. Design a filter that works as follows. First specify an odd
integer m, which sets the size of the mask to be mxm. Take the center
pixel in this mask to be the origin of the mask. Next specify
a weight vector w of dimension m2. For each pixel (i,j) in the
input image g(i,j), write down the pixel values g(i+k,j+l) which
lie under the mask (ie. at k,l =-(m-1)/2...+(m-1)/2) in ascending

order, smallest to largest. Multiply the first (smallest) by w(1), the
next by w(2) and so on. Add these m2 products up to get the value of
the filtered output image at the pixel location (i,j). Repeat for all
(i,j) in the image. This is called a weighted rank filter.

Formally, submit an m-file WRF.m whose first line is

function OutIm=WRF(InIm,w,m)

where

InIm: a double normalized intensity image;
m: mask size (a scalar);
w: weight vector (an m2x1 column vector);
OutIm: a double normalized intensity image

Note that the weighted rank filter is a generalization of the median
filter. For instance if we pick m=3 and we set w=[000010000] then
OutIm will be exactly the median-filtered version of InIm (for a mask
of the given size). But we can do more than median-filter with this
filter: for example, with m=3 and w=[0.5 0 0 0 0 0 0 0 0.5] the rank-
order filter will give us, for each pixel in the image, the average of
the largest and the smallest pixels under the mask. For m=[0 0 .2 .2
.2 .2 .2 0 0] we have a filter that will reject the two largest and
two smallest values under the mask while averaging the others. This is
called an outlier rejection filter.

Note also that you have to zero-pad the original image to apply
this filter. For instance, if m=7, you have to add 3 blank rows at
the top, bottom, left and right or else the mask will run off the
image.

