
CSE 4/573 Fall 2010 v2 Oct 31 2010

Homework #3 due Wednesday November 3

1. Construction of a granulometry function: submit an m-file GranFn.m with

first line

 function G_psi = GranFn(InIm,B)

where

InIm: A type uint8 logical binary image whose foreground pixels are 1

B : Structuring element for the granulometry, an nx2 type uint8 logical binary

 matrix whose foreground pixels are 1 and in which B(i,1) is the

 x-coord and B(i,2) is the y-coord of the ith pixel in B. The

 first opening uses B1=B. The second opening uses B2 defined as all

 foreground pixels in B1 plus all pixels that are 4-connected to

 foreground pixels in B1. For each n, Bn+1 consists of all foreground

 pixels in B plus all pixels 4-connected to foreground pixels in Bn.

G_psi: The resulting granulometry function, a unit8 output image where

 each object pixel Gpsi(i,j) takes as its value the index n such that (i,j)

 survives the opening with Bn but not with Bn+1. Each background pixel in

 InIm should be given the value 0 in G_psi.

2. This problem explores how you might fuse foreground objects in a color image

together. Submit an m-file RGBConn.m whose first line is

 function OutIm = RGBConn(InIm,c_type)

where

 InIm: An input type double normalized RGB image

 c_type: A number which must be either 4 or 8

 OutIm: The output type double normalized RGB image

For each pixel in InIm, define Br=sqrt(R2+G2+B2) where R, G and B are the red,

green and blue color values of that pixel, and Br is its brightness. Assume

that your input image InIm consists of object pixels with Br>=0.50 and

background pixels with Br<0.50. What RGBConn.m should do is repeatedly close the

image until one of two things happens: either all foreground pixels are linked

together into a single connected object, or no further changes occur with

additional closing operations. You may use any of the Matlab image processing

toolbox functions you like, such as imclose, bwmorph, bwlabel, etc. But note

that none of these functions operate on RGB images. You will have to decide how

to extend the functions that you use to RGB. Note: there is no unique way to

extend the morphological operations from gray level to color images. Use your

imagination in deciding how you want to define the closing of a color image.

3. The chord distribution (see p 239 ed 2, p 338 ed 3) of a blob can have very

high computationally complex, i.e. take a lot of computing power to compute. A

useful “Monte Carlo” approximation can be computed more efficiently, here is

how. Pick two points on the boundary of the blob at random with all points

having equal probability of being selected. Compute the chord (Euclidean

distance between these two boundary points). Repeat many times. The distribution

of the corresponding chord values will accurately approximate the true chord

distribution. With that in mind, here is what you are asked to do:

Submit a m-file MCCD.m whose first line is

 Function CD=MCCD(CC,n)

where

 CC: the 8-connected Freeman chain code (see p. 236 ed 2, p 335 ed 3) for the

blob’s boundary

 n: the number of bins in the chord distribution.

For instance, if n=20 and the largest chord you found was 65.6 pixels long, then

CD should be a row vector of 20 components where the first component is the

fracton of random chords you found which were between length 0 and length

65.6/20, the second is the fraction with Euclidean lengths between 65.6/20 and

(2*65.6)/20, etc. Note: 1. If there are n bins and m pixels in CC, you should

use n*m randomly selected pairs of points to estimate the chord distribution.

4. Write a Matlab script Moment_script.m that will:

 1. Prompt for the name of a bitmap (.bmp) file. This file may be assumed to

 be a .bmp intensity image which contains a single 8-connected object

 against background pixels all equal to zero.

 2. Then prompt for the maximum desired moment indices (M,N).

 3. Compute and display an MxN type double matrix µµµµ whose (i,j)th element is

 the (i,j)th central moment of the object.

To help you test your code, recall that the central moments are shift-invariant.

So if you generate µµµµ for any image test.bmp of the type described above, and

then shift the object to a different location in the image creating a second

image test_shifted.bmp, the µµµµ for these two images should be identical (up to

small round-off differences). You should not submit these test images, just

submit Moment_script.m.

