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Abstract

This paper describes a new class of adaptive mesh

surface for terrain analysis. The novelty of the con-

tribution resides in the control of the mesh. We use a

variance-bias criterion to select the optimal areas for

the triangular facets of the mesh.In this way the mesh

adapts itself to o�er the best tradeo� between increas-

ing the facet area to minimise the noise variance and

deccreasing the facet area to minimise the bias of the

�tted facet parameters. We provide a illustration of

the e�ectiveness of the new mesh control methodology

for the case where the faces of the mesh represent pla-

nar patches. The piecewise planar mesh is shown to be

e�ective in the modelling of an area of complex terrain

structure in Southern England.

1 Introduction

Automatic terrain analysis has become an im-
portant application domain for surface-modelling
methodology developed in the �elds of both computer
graphics and computer vision. The surface model
must o�er a compromise between economy of represen-
tation and �delity with the underlying terrain struc-
ture. It is for this reasons that adaptive mesh surfaces
have been widely adopted. The literature is rich with
examples. For instance De Floriani et al [3, 4] have de-
veloped a multi-scale mesh which has been exploited
not only for surface representation, but also for stereo-
scopic reconstruction. Several authors have reported
variable topology meshes. Bulpitt and E�ord [1] have
a mesh that adapts itself so as to minimise curvature
and goodness of �t criteria. However, despite o�er-
ing ingenious ways of exerting control over the surface
model, these all share the feature of being geometri-
cally driven [6, 7]. In particular, they overlook the well
known bias-variance dilemma [5, 9] which pervades the
statistical �tting of a model to data. Stated succinctly,
the problem is one of selecting the model-order, i.e.
the number of faces in the mesh. The aim is to strike
a compromise between minimising the noise-variance,

�A fuller report of this work is available at
http://www.cs.york.ac.uk/�wilson/work.htm

and minimising the dispersion of the �t-residuals or
model-bias. This can be viewed as a tradeo� between
increasing the number of sampled data points in each
face of the mesh and using a large number of mesh
faces.

The aim in this paper is to focus more closely on
how this variance-bias tradeo� can be used to exert
control over an active terrain model. In particular we
consider how to select the optimal local area of each of
the faces in the mesh. We present a detailed analysis
of variance which shows that the area-dependance has
a two-component structure. The �rst component of
variance results from the e�ects of noise and decreases
with increasing facet area. The second variance com-
ponent results from the model-bias and increases with
the area of estimation. As a result of the interplay
between these two terms, there is an optimal choice
of the facet area that results in a joint minimisation
of both the noise variance and the model bias. We
develop a semi-empirical model that allows us to com-
pute this optimal area.

2 Variance-bias Analysis

Our overall aim is to couple the faces of a trian-
gular mesh to a set of observed height data. Each
node of the mesh represents a point at which param-
eters of surface-patches are sampled. In practice the
surface-patches are low-order. For instance, in this pa-
per the surface-model is based on simple planar tan-
gent patches. The mesh density is such that the model
�tted to a node has minimum error. This process can
be realised using a series of face split and merge oper-
ations [10].

In practice however, there is a problem of variance-
bias tradeo� that hinders the process of estimating the
facet model parameters and controlling the mesh in
this way.. By increasing the size of the face, the e�ects
of noise variance may be minimised by averaging over
a large sample-size. In other words, the temptation is
to increase the size of the local surface patches so as
to increase the accuracy of the estimated parameters.
Unfortunately, as the surface area is increased, then so
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problems of model bias(over-smoothing) emerge. In a
nutshell, the problem is that the local model order is
insu�cient to represent genuine structure in the data.

The basic issue addressed in this paper is how to re-
solve this dilemma for the speci�c problem of adaptive
mesh �tting.

2.1 Least Squares Tangent Planes

We commence our discussion with a set of 3-
dimensional data-points D = fpij8ig derived from
range data. In realistic tasks, these points are invari-
ably uncertain in the sense that they deviate from the
true surface due to some noise process. In the follow-
ing, we denote the function of the underlying surface
as f(x; y) and the equation of points on this under-
lying surface is therefore z = f(x; y). The data-point
with co-ordinate vector pi = (xi; yi; zi)

T is related to
the true surface as follows zi = f(xi; yi) + ni, where
ni is the additive noise process. In the case of tan-
gent plane �tting, we must �rst estimate the average
height intercept, i.e. f(xo; yo). In this new co-ordinate
system we can estimate the parameters of the surface
patch by performing a least-squares �t of a tangent
plane through the origin, i.e. z0 = ax0 + by0. Suppose
that the current face consists of the set of sample data-
points with index-set S. The positions of the sample
points are represented by the design matrix
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while the corresponding height data is represented by
the vector Zp = (z0

1
; z0

2
; ::)T . With these ingredients,

the least-squares �t for the vector of tangent plane
parameters P = (a; b)T is given by P̂ = LpZp, where
Lp = (XT

p Xp)
�1XT

p is the pseudo-inverse of the design
matrix.

2.2 Analysis of Variance

When the parameter-vector P̂ is estimated in this
way, then its covariance structure can be found by
propagating the variance in the transformed height
data Zp. If �Zp

is the covariance matrix for the trans-
formed height data, then the covariance matrix for the
plane parameters, i.e. E[(P � P̂ )(P � P̂ )T ], is given
by

�p = Lp�Zp
LTp (2)

The total covariance matrix has a two-component
structure which re
ects the two sources of error in the
estimation of the surface normals. The �rst compo-
nent is due to the propagation of noise in the surface-
data-point positions, while the second component is a
bias term that results from ignoring the higher order

terms in the Taylor expansion of the surface function.
We make this two-component structure more explicit
by writing

�p = Lp�NL
T
p + Lp�BL

T
p (3)

The noise component of the parameter covariance ma-
trix is modelled under the assumption that the orig-
inal height data is subject to independent identically
distributed Gaussian noise of zero mean and variance
�2. Under this assumption the noise variance of the
least-squares parameter estimates is given by
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In other words, the noise-component to the total co-
variance matrix depends on the second-order moments
of the points in the surface patch. We assume that the
patch parameters are estimated over a square support
neighbourhood. As a result, the expectation values of
the odd co-ordinate moments are zero. If the density
of sampling points is � and the area of the support
neighbourhood is A, then it is a straightforward mat-
ter to show that the expectation values of the even-
moments are as follows
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As a result the noise contribution has a diagonal co-
variance matrix Speci�cally,

Lp�NL
T
p =

12�2

�A
I (6)

where I is the 2x2 identity matrix.
The bias contribution is more complex and depends

on the second-order, and higher, derivatives of the lo-
cal surface. We model the bias term to second-order
by computing the covariance matrix for the local de-
viations from the planar approximation. Accordingly,
we write bias-component of the covariance matrix as
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2 + : : : is the non-planar deviation of the

point indexed i.
Details of the bias model are outside the scope

of this paper. Su�ce to say that we can compute
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the expectation values for the elements of the non-
planar bias covariancematrix to second-order, neglect-
ing higher order terms of the Taylor expansion. Under
this condition, the bias can be represented as a second-
order polynomial in the patch area A. If K0, K1 and
K2 represent co-e�cient matrices whose elements de-
pend on the second order and higher derivatives of the
surface function, then

Lp�BL
T
p = K0 +K1A+K2A

2 + : : : (8)

As a result the total parameter covariance matrix can
be expressed as the following series of area-dependant
terms

�p(A) =
12�2

�A
I +K0 +K1A+K2A

2 + : : : (9)

In other words, the noise propagation term is inversely
proportional to the area of the estimating patch. The
bias terms, on the other hand, are polynomial in area.
As a result the parameter covariance matrix can be
minimised with respect to the patch area.

2.3 Optimal Facet Area

The problem of determining the optimal area of es-
timation is complicated by the fact that we are dealing
with a covariance matrix rather than a single scalar
quantity. However, since the noise component of �p is
diagonal, we con�ne our attention to minimising the
trace of the covariance matrix. To �rst order in area,
the trace is given by

Tr[�p] = �2a + �2b = 2

�
(
12�2

�A
+ k0 + k1A)

�
(10)

where �2a and �2b are the measured variances for the
plane parameters a and b. This result provides a semi-
empirical model that we can �t to the observed sum
of variances �2a + �2b . In this way we can estimate
the semi-empirical model parameters k0 and k1, given
knowledge of �. Once these parameters are to hand,
the minimum error surface patch area is given by

Aoptimal =

�
�k1

12�2

� 1

2

(11)

We use this result to compute the optimal area for
each facet of our triangulated mesh in turn, In the next
section, we provide details of how the distribution of
mesh facets is controlled.

3 Controlling the Mesh
Our overall goal is to use the minimum parameter-

covariance area to control the split and merge opera-
tions. The bias-variance relationship developed in the

previous section allows us to �t a semi-empirical model
to the computed parameter variances. The strategy
that we adopt in determining the optimal local patch
area is as follows. For each point on the surface we
gradually increase the local patch area and compute
the associated parameter variances. This gives a set of
data points to which we can �t an appropriate empiri-
cal form of the bias-variance curve. The �tted param-
eters can be used to extract the value of the minimum
local patch-area in a stable manner.

Our mesh is based on the Delaunay triangulation
of a set of control points or nodes [8, 6, 7, 3]. The ba-
sic update process underpinning our surface involves
adjusting the mesh-topology by splitting and merg-
ing surface-triangles. This process is realised by ei-
ther inserting or deleting nodes from the mesh. The
node insertion and deletion operations take place with
the objective of delivering a set of faces whose areas
are consistent with the optimal values dictated by the
bias-variance criterion outlined in section 2.

The basic aim when reducing mesh density is to
merge triangles if the aggregate area is more consistent
with the optimal area than the original area. Suppose
that the set of triangles Mj is to be merged to form
a new triangle with area Aj . The average area of the
con�guration of triangles is

A
merge
j =

1

jMj j

X
i2Mj

Ai (12)

The triangles are merged if the fractional di�erence be-
tween the average area and the optimal area is greater
than 10%. In other words, we instantiate the merge if

A
optimal
j �A

merge
j

A
optimal
j

> 0:1 (13)

This tolerancing can be viewed as providing the adap-
tation of the mesh with a degree of hysteresis.

The split operation proceeds thus: A new node is
introduced at the centroid of the original triangle. The
new node-set is re-triangulated to update the edge and
face sets of the triangulation. The condition for initi-
ating a split operation is that the current fractional
di�erence between the triangle area and it optimal
value is greater than 10%. The split condition can
therefore be stated as

Aj �A
optimal
j

A
optimal
j

> 0:1 (14)

4 Experiments
The aim in this section is to illustrate the e�ec-

tiveness of our adaptive mesh for automatic terrain
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Figure 1: Raw terrain height data: The brightness
is proportional to the surface height. Note the �ne
details at the edges of the elevated (i.e. bright) struc-
tures.

analysis. The data used for this study is cartographic
height data from Salisbury Plain in Wiltshire, Eng-
land. The raw height data is shown in Figure 1. Here
the brightness is proportional to the height of the raw
data-points.

The mesh is initialised with its nodes distributed
uniformly across the x � y footprint of the height
data. Figure 2 shows a perspective view of �nal mesh
con�guration overlayed on the rendering of the recon-
structed surface. There are several qualitative features
which deserve further comment. Firstly, there is a no-
ticeable di�erence in density of mesh triangles in the
basin and upland regions. Secondly, the rilles that en-
croach into the boundary of the upland are well rep-
resented. There is also a localised elevation feature in
the basin that is well reconstructed.

5 Conclusions
The main contribution in this paper has been to

present a simple adaptive surface mesh for terrain
modelling. The faces of the mesh represent local tan-
gent planes. We exert control over the mesh using
face split and merge operations. These operations are
aimed at delivering a mesh in which the faces are con-
sistent with an optimal area criterion. The optimality
criterion is based on a tradeo� between noise variance
and model-bias.
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