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Abstract

We show the following results regarding complete sets.

• NP-complete sets and PSPACE-complete sets are many-one autoreducible.

• Complete sets of any level of PH, MODPH, or the Boolean hierarchy over NP are many-one
autoreducible.

• EXP-complete sets are many-one mitotic.

• NEXP-complete sets are weakly many-one mitotic.

• PSPACE-complete sets are weakly Turing-mitotic.

• If one-way permutations and quick pseudo-random generators exist, then NP-complete
languages are m-mitotic.

• If there is a tally language in NP∩ coNP−P, then, for every ε > 0, NP-complete sets are
not 2n(1+ε)-immune.

These results solve several of the open questions raised by Buhrman and Torenvliet in their
1994 survey paper on the structure of complete sets.

1 Introduction

We solve several open questions identified by Buhrman and Torenvliet in their 1994 survey paper
on the structure of complete sets [BT94]. It is important to study the computational structure of
complete sets, because they, by reductions of all the sets in the class to the complete sets, represent
all of the structure that a class might have. For this reason, complete sets might have simpler
computational structure than some other sets in the class. Here we focus attention primarily on
autoreducibility, mitoticity, and immunity.

Trakhtenbrot [Tra70] introduced the notion of autoreducibility in a recursion theoretic setting.
A set A is autoreducible if there is an oracle Turing machine M such that A = L(MA) and M
on input x never queries x. Ladner [Lad73] showed that there exist Turing-complete recursively
enumerable sets that are not autoreducible. Ambos-Spies [AS84] introduced the polynomial-time
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variant of autoreducibility, where we require the oracle Turing machine to run in polynomial time.
Yao [Yao90] introduced the notion of coherence, which coincides with probabilistic polynomial-time
autoreducibility. In this paper, we assume that all reductions are polynomial-time computable. In
particular, we write “autoreducible” to mean “polynomial-time autoreducible.”

The question of whether complete sets for various classes are autoreducible has been studied
extensively [Yao90, BF92, BFvMT00]. Beigel and Feigenbaum [BF92] showed that Turing com-
plete sets for the classes that form the polynomial-time hierarchy, ΣP

i , ΠP
i , and ∆P

i , are Turing
autoreducible. Thus, all Turing complete sets for NP are Turing autoreducible. Buhrman et
al. [BFvMT00] showed that Turing complete sets for EXP and ∆EXP

i are autoreducible, whereas
there exists a Turing complete set for EESPACE that is not Turing auto-reducible. They showed
that answering questions about autoreducibility of intermediate classes result in interesting separa-
tion results. Regarding NP, Buhrman et al. [BFvMT00] showed that all truth-table complete sets
for NP are probabilistic truth-table autoreducible. Thus, all NP-complete sets are probabilistic
truth-table autoreducible.

Buhrman and Torenvliet [BT94] asked whether all NP-complete sets are many-one autore-
ducible and whether all PSPACE-complete sets are many-one autoreducible. We resolve these
questions positively: all NP-complete sets and PSPACE-complete sets are (unconditionally) many-
one autoreducible. We generalize the two results to show that for each class in MODPH [HLS+93]
(the hierarchy constructed by applying to P a constant number of operators chosen from
{∃·,∀·} ∪ {MODk·, coMODk· | k ≥ 2}), all of its nontrivial m-complete sets are m-autoreducible.
We obtain as a corollary that no m-complete sets for NP, PSPACE, or for the classes of MODPH
and 2n-generic.

Autoreducible sets can be thought of as sets having some redundant information. For example,
if A is m-autoreducible by the reduction f , then x and f(x) both contain the same information
concerning whether x belongs to A. How much redundancy is there in complete sets? Informally,
an infinite set is mitotic if it can be partitioned into two equivalent parts. Thus, both parts contain
the same information as the original set. Ladner [Lad73] introduced and studied mitoticity of
recursively enumerable sets. Ambos-Spies [AS84] formulated two notions in the polynomial time
setting, mitoticity and weak mitoticity. Also, he showed that every mitotic set is autoreducible.
Here we settle some questions about mitoticity that Buhrman and Torenvliet raised in their 1994
survey paper. First, Buhrman, Hoene, Torenvliet [BHT98] proved that all EXP-complete sets are
weakly many-one mitotic, and showed a partial result concerning mitoticity of NEXP-complete sets.
Here we strengthen these two results. We prove that all EXP-complete sets are many-one mitotic.
We also prove that all NEXP complete sets are weakly many-one mitotic. In addition, we show that
PSPACE-complete sets are weakly Turing mitotic. Also, we show that if one-way permutations
and quick pseudo-random generators exist, then NP-complete sets are many-one mitotic.

Now let us return to the statement that every mitotic set is autoreducible. We address the
question of whether the converse holds [BT94]; that is, whether every autoreducible set is mitotic.
We show that there exists an m-autoreducible non-m-mitotic set only if P �= PSPACE.

In Section 5, we study the question of whether NP-complete sets have easy subsets.
Berman [Ber77] showed that EXP-complete sets are not P-immune, and Tran [Tra95] showed
that NEXP-complete sets are not P-immune. However, we do not have such unconditional results
for NP-complete sets. Glaßer et al. [GPSS04] showed that if one-way permutations exist, then
NP-complete sets are not 2nε

-immune. Here we provide another partial result in this direction. In
Section 5 we show that if there exists a tally language in NP∩ coNP−P, then every NP-complete
set includes an infinite subset that is recognizable in time 2n(1+ε).

We conclude this paper with results on a few additional properties of complete sets. In Section 6
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we show, under a reasonable hypothesis about the complexity class UP, that every NP-complete
set is exponentially-honest complete. Exponentially-honest reductions were defined and studied by
Ganesan and Homer [GH92]. Section 7 studies robustness of complete sets. We prove that if a set
A is Turing complete for NP and S is a log-dense set, then A−S remains Turing complete for NP.
This result is easier to prove than Buhrman and Torenvliet’s [BT04] similar result about EXP.

2 Preliminaries

We use standard notation and assume familiarity with standard resource-bounded reductions. We
consider words in lexicographic order. All reductions in the paper are polynomial-time computable.

Definition 2.1 ([AS84]). A set A is polynomially T-autoreducible (T-autoreducible, for short) if
there exists a polynomial-time-bounded oracle Turing machine M such that A = L(MA) and for
all x, M on input x never queries x. A set A is polynomially m-autoreducible (m-autoreducible, for
short) if A≤p

mA via a reduction function f such that for all x, f(x) �= x.

Definition 2.2 ([AS84]). A recursive set A is polynomial-time m(T)-mitotic (m(T)-mitotic, for
short) if there exists a set B ∈ P such that:

A ≡p
m(T ) A ∩ B ≡p

m(T ) A ∩ B.

A recursive set A is polynomial-time weakly m(T)-mitotic (weakly m(T)-mitotic, for short) if there
exist disjoint sets A0 and A1 such that A0 ∪ A1 = A, and

A ≡p
m(T ) A0 ≡p

m(T ) A1.

In general, for a reducibility type r, r-autoreducible sets are sets that are autoreducible with
respect to ≤p

r-reductions. The same convention is used for mitotic sets.
A language is DTIME(T (n))-complex if L does not belong to DTIME(T (n)) almost everywhere;

that is, every Turing machine M that accepts L runs in time greater than T (|x|), for all but finitely
many words x. A language L is immune to a complexity class C, or C-immune, if L is infinite
and no infinite subset of L belongs to C. A language L is bi-immune to a complexity class C,
or C-bi-immune, if both L and L are C-immune. Balcázar and Schöning [BS85] proved that for
every time-constructible function T , L is DTIME(T (n))-complex if and only if L is bi-immune to
DTIME(T (n)).

3 Autoreducibility

Since EXP-complete sets are complete with respect to length-increasing reductions [Ber77], they
are m-autoreducible. Ganesan and Homer [GH92] showed that NEXP-complete sets are complete
with 1-1 reductions. This implies that all NEXP-complete sets are also m-autoreducible. To see
this, consider a 1-1 reduction from 0L ∪ 1L to L, where L is the given NEXP-complete set. These
techniques cannot be applied to NP-complete sets, as we do not know any unconditional result
on the degree structure of NP-complete sets. Some partial results are known for NP-complete
sets. Beigel and Feigenbaum [BF92] showed that Turing completes for NP are T -autoreducible.
Buhrman et al. [BFvMT00] showed that all truth-table complete sets for NP are probabilistic tt-
autoreducible. It has not been known whether NP-complete sets are m-autoreducible. Buhrman
and Torenvliet raised this question in their survey papers [BT94, BT98]. Below, we resolve this
question.
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Note that singletons and complements of singletons cannot be m-autoreducible. Therefore, in
connection with m-autoreducibility, a set L is called nontrivial if |L| > 1 and |L| > 1.

Theorem 3.1. All nontrivial NP-complete sets are m-autoreducible.

Proof. Let L be NP-complete and let M be a nondeterministic machine that accepts L. For
a suitable polynomial p we can assume that on input x, all computation paths of M have length
p(|x|). Since L is nontrivial, there exist different words y1, y2 ∈ L and y1, y2 ∈ L. We use the left
set technique of Ogiwara and Watanabe [OW91]. Let

Left(L) df= {〈x, u〉
∣∣ |u| = p(|x|) and ∃v, |v| = |u|, such that
u ≤ v and M(x) accepts along path v}.

Let f ∈ PF reduce Left(L) to L. The algorithm below defines function g which is an m-
autoreduction for L. Let x be an input. Define n

df= |x| and m
df= p(|x|).

1 if f(〈x, 0m〉) �= x then output f(〈x, 0m〉)
2 if f(〈x, 1m〉) = x then
3 if M(x) accepts along 1m then
4 output a string from {y1, y2} − {x}
5 else
6 output a string from {y1, y2} − {x}
7 endif
8 endif
9 // here f(〈x, 0m〉) = x �= f(〈x, 1m〉)
10 determine z of length m such that f(〈x, z〉) = x �= f(〈x, z + 1〉)
11 if M(x) accepts along z then output a string from {y1, y2} − {x}
12 else output f(〈x, z + 1〉)

Note that step 10 is an easy binary search: Start with z1 := 0m and z2 := 1m. Let z′ be the
middle element between z1 and z2. If f(z′) = x then z1 := z′ else z2 := z′. Again, choose the
middle element between z1 and z2, and so on. This shows g ∈ PF. Clearly, g(x) �= x, so it remains
to show L≤p

mL via g.
If the algorithm stops in step 1, then

x ∈ L ⇔ 〈x, 0m〉 ∈ Left(L) ⇔ g(x) = f(〈x, 0m〉) ∈ L.

If the algorithm stops in step 4 or step 6, then f(〈x, 0m〉) = f(〈x, 1m〉). Hence

x ∈ L ⇔ 〈x, 1m〉 ∈ Left(L) ⇔ M(x) accepts along 1m ⇔ g(x) ∈ L.

Assume we reach step 9. There it holds that f(〈x, 0m〉) = x �= f(〈x, 1m〉). If the algorithm stops in
step 11, then x ∈ L and g(x) ∈ L. Assume we stop in step 12. So M(x) does not accept along z.

x ∈ L ⇔ f(〈x, 0m〉) = f(〈x, z〉) ∈ L ⇔ g(x) = f(〈x, z + 1〉) ∈ L.

�

Using the same technique we obtain the following results:
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Corollary 3.1. For every k ≥ 1, all nontrivial sets that are ≤p
k-dtt -complete for NP are ≤p

k-dtt -
autoreducible.

Corollary 3.2. All nontrivial sets that are ≤p
dtt -complete for NP are ≤p

dtt -autoreducible.

Corollary 3.3 below is the analog of Corollaries 3.1 and 3.2 for ≤p
1-tt-reductions. It is unknown

whether the analog holds for ≤p
2-tt-reductions, even for ≤p

2-ctt-reductions.

Corollary 3.3. All nontrivial sets that are ≤p
1-tt-complete for NP are ≤p

1-tt-autoreducible.

Theorem 3.1 shows that every nontrivial NP-complete set is m-autoreducible. We show that
the same result holds for PSPACE.

Theorem 3.2. Each nontrivial m-complete language for PSPACE is m-autoreducible.

Proof. Let S5 be a permutation group over {1, . . . , 5}. Cai and Furst [CF91] show that for
each language L in PSPACE there exist a polynomial p and a polynomial-time computable function
f from Σ∗ × Σ∗ to S5 such that for all x x ∈ L if and only if

f(x, 1p(|x|)) ◦ · · · ◦ f(x, 0p(|x|)) = I5,

where ◦ is the product of permutations calculated from right to left and I5 is the identity permu-
tation. Let L be an arbitrary m-complete language for PSPACE. Suppose that the membership of
L in PSPACE is characterized by p and f . Define A to be the set of all triples 〈x, y, π〉 such that
|y| = p(|x|), π ∈ S5, and

f(x, 1p(|x|)) ◦ · · · ◦ f(x, y) = π.

This set A clearly belongs to PSPACE. Also, L is ≤p
m-reducible to A via a function that maps each

x to 〈x, 0p(|x|), I5〉. So, A is m-complete for PSPACE. Let g be an m-reduction from A to L.
We construct an m-autoreduction h of L as follows: Let x be an input to h. For each y,

|y| = p(|x|), and π ∈ S5, let Q(y, π) = g(〈x, y, π〉). We first compute z = Q(0p(|x|), I5). We have
x ∈ L ⇔ 〈x, 0p(|x|), I5〉 ∈ A and z ∈ L ⇔ 〈x, 0p(|x|), I5〉 ∈ A. So, x ∈ L ⇔ z ∈ L. If z �= x, we set
h(x) = z.

So, assume z = x. We then compute Q(1p(|x|), π), π ∈ S5. Suppose for some π, Q(1p(|x|), π) = x.
Then it holds that x ∈ L ⇔ 〈x, 1p(|x|), π〉 ∈ A. By definition of A, 〈x, 1p(|x|), π〉 belongs to A if
and only if f(x, 1p(|x)) = π. Since f is polynomial-time computable, this condition can be tested
in polynomial time. We select the value of h(x) from a set of fixed members and nonmembers so
that h(x) �= x and so that h(x) ∈ L if and only if f(x, 1p(|x|)) = π.

So, assume that for all π ∈ S5, Q(1p(|x|), π) �= x. We execute binary search to find y, 0p(|x|) ≤
y < 1p(|x|), such that x appears in {Q(y, π) | π ∈ S5} and doesn’t appear in {Q(y + 1, π) | π ∈ S5},
where y + 1 is the successor of y in Σp(|x|). Such y indeed exists. Since g is polynomial-time
computable, the y can be computed in polynomial time. Let ξ ∈ S5 be such that x = Q(y, ξ). Since
g is a many-one reduction from A to L, x ∈ L if and only if

f(x, 1p(|x|)) ◦ · · · ◦ f(x, y + 1) ◦ f(x, y) = ξ.

Let σ be the inverse permutation of f(x, y). Since f is polynomial-time computable and every
permutation has a unique inverse, σ can be computed in polynomial time. By multiplying the
equation in the above by σ from right, we have x ∈ L if and only if

f(x, 1p(|x|)) ◦ · · · ◦ f(x, y + 1) = ξ ◦ σ.
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Let z = Q(y + 1, ξ ◦ σ). We have z ∈ L if and only if the above equality holds. So, x ∈ L ⇔ z ∈ L.
Since x does not appear in {Q(y + 1, π) | π ∈ S5}, x �= z. So, we set h(x) to z. This completes the
proof. �

We generalize the above two results using the concept of polynomial-time bit-
reductions [HLS+93]. We show that every class that is polynomial-time bit-reducible to a regular
language has the property that all of its nontrivial m-complete sets are m-autoreducible. As a corol-
lary to this, we show that for every class in the MODPH hierarchy [HLS+93], all of its nontrivial
m-complete sets are m-autoreducible.

Definition 3.1. [HLS+93] A language A is polynomial-time bit-reducible to a language B if there
exists a pair of polynomial-time computable functions, (f, g), f : Σ∗ × N+ → Σ, g : Σ∗ → N, such
that for all x,

x ∈ A ⇔ f(x, 1) · · · f(x, g(x)) ∈ B.

Proposition 3.1. Let B be a language not in {∅, Σ∗}. Let C be the class of all languages that are
polynomial-time bit-reducible to B. Then C has m-complete sets.

Proof. Let B and C be as in the hypothesis of the proposition. Define K to be the set of
all quadruples 〈x, d, M, 1t〉 such that d is a binary nonnegative integer, M is a Turing machine
transducer, t ≥ 0, and

µ(x, 1) · · ·µ(x, d) ∈ B,

where for each i, 1 ≤ i ≤ d, µ(x, i) = 1 if M(x, i) halts with the output 1 within t steps and
µ(x, i) = 0 otherwise. We claim that K is m-complete for C. To see that K ∈ C, let e1 · · · em,
m ≥ 0, be a string not in B. We define f and g as follows: On input u, if u is of the legitimate form
〈x, d, M, 1t〉 then g(x) = d and for each i, 1 ≤ i ≤ d, f(u, i) = µ(x, i); otherwise, g(x) = m and for
each i, 1 ≤ i ≤ m, f(u, i) = ei. It is easy to see that (f, g) is a polynomial-time bit-reduction from
K to B.

To show that K is m-hard for C, let L be an arbitrary language in C. Let (f, g) be a
polynomial-time bit-reduction from L to B. Let M be a polynomial time-bounded Turing machine
that computes f . Let p be a polynomial such that for all x and i such that 1 ≤ i ≤ g(x), M(x, i)
halts within p(|x|) steps. Let R be the mapping defined for all x by R(x) = 〈x, g(x), M, 1p(|x|)〉.
Then, R is a polynomial-time m-reduction from L to K. �

Next we prove a technical lemma.

Lemma 3.1. Let B �∈ {∅, Σ∗} be regular. Let M = (Q, {0, 1}, δ, q0, qf ) be a finite automaton
recognizing B, where Q is its set of states, δ is its transition function, q0 is its initial state, and qf

is its unique final state. Let f and g be polynomial-time computable functions such that
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f : Σ∗ × N+ → Σ and g : Σ∗ → N. Define

A = {〈x, i, q〉 | 1 ≤ i ≤ g(x) ∧ q ∈ Q ∧ δ(q, f(x, i) · · · f(x, g(x))) = qf}.

Then, A is polynomial-time bit-reducible to B.

Proof. Let B, M = (Q, {0, 1}, δ, q0, qf ), f , g, and A be as in the hypothesis of the lemma.
Let r1, · · · , rt be an enumeration of the states in Q, where rt = qf . Without loss of generality,
we can assume that every state is reachable from q0. Since B �= ∅, Σ∗, t ≥ 2. This means that
r1 �= qf . For each j, 1 ≤ j ≤ t, let e(j) be a fixed word such that δ(q0, e(j)) = rj . For each j,
1 ≤ j ≤ t, let mj = |e(j)| and let e(j, 1), . . . , e(j, mj) be the bits of e(j). Since rt = qf , we have
e(1), · · · , e(t − 1) �∈ B and e(t) ∈ B.

We define a bit-reduction (f ′, g′) from A to B as follows: Let u be an input to the reduction. If u
is not of the form 〈x, i, q〉 such that 1 ≤ i ≤ g(x) and q ∈ Q, u is clearly a nonmember of A. We set
g′(u) = m1 and for each k, 1 ≤ k ≤ m1, f ′(u, k) = e(1, k). We have f ′(u, 1) · · · f(u, g′(u)) = e(1).
Since e(1) �∈ B, the reduction works correctly on u.

If u is of the form 〈x, i, rj〉 such that 1 ≤ i ≤ g(x) and 1 ≤ j ≤ t, then we set g′(u) =
mj + g(x) − i + 1 and for each k, 1 ≤ k ≤ g′(u),

f ′(u, k) =
{

e(j, k) if k ≤ mj ,
f(x, k − mj + i − 1) otherwise.

It holds that f ′(u, 1) · · · f ′(u, g′(u)) = e(j)f(x, i) · · · f(x, g(x)). Since δ(q0, e(j)) = rj , we have

δ(q0, e(j)f(x, i) · · · f(x, g(x))) = δ(rj , f(x, i) · · · f(x, g(x))).

So,

δ(q0, e(j)f(x, i) · · · f(x, g(x))) = qf ⇔ δ(rj , f(x, i) · · · f(x, g(x))) = qf .

Thus, f ′(u, 1) · · · f(u, g′(u)) ∈ B ⇔ u ∈ A. The reduction thus works correctly on u.
It is easy to see that both f ′ and g′ are polynomial-time computable. Thus, A is polynomial-

time bit-reducible to B. �

Theorem 3.3. Let B �∈ {∅, Σ∗} be a regular language recognized by a finite automaton M =
(Q, {0, 1}, δ, q0, qf ). Let C be the polynomial-time bit-reduction closure of B. Then each nontrivial
m-complete set for C is m-autoreducible.1

Proof. Let B, M , and C be as in the hypothesis of the theorem. By Proposition 3.1, C
has m-complete languages. Let L be an arbitrary m-complete language for C. Let (f, g) be a
polynomial-time bit-reduction from L to B. Define A as in Lemma 3.1; that is, A is the set of all
〈x, i, q〉 such that 1 ≤ i ≤ g(x), q ∈ Q, and δ(q, f(x, i) · · · f(x, g(x))) = qf . By Lemma 3.1, A ∈ C,
so A is m-reducible to L. Let h be an m-reduction from A to L. We will design an m-autoreduction,
r, of L. Let a1 and a2 be fixed members of L and let b1 and b2 be fixed nonmembers of L. Let x
be an input to r.

As in the previous constructions, we set r(x) = a2 (respectively, a1, b2, and b1) in the case
where x = a1 (respectively, a2, b1, and b2).

1In terms of leaf languages, this theorem reads as follows: If B is a nontrivial regular language, then m-complete
sets for Leafp

b(B) are m-autoreducible. (The latter denotes the balanced leaf-language class defined by B [HLS+93,
Wag04].)
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So, suppose that x �∈ {a1, a2, b1, b2}. Let y0 = h(〈x, 1, q0〉). Since h is an m-reduction from A
to L, and since x ∈ L if and only if 〈x, 1, q0〉 ∈ A, we have y0 ∈ L ⇔ x ∈ L. So, in the case where
y0 �= x, we can set r(x) = y0.

So, suppose that x = y0. Suppose that there is some q ∈ Q such that h(〈x, g(x), q〉) = x.
By definition 〈x, g(x), q〉 ∈ A ⇔ δ(q, f(x, g(x))) = qf . Since both f and g are polynomial-time
computable, we can test in polynomial time whether 〈x, g(x), q〉 ∈ A. Since h is a many-one
reduction from A to L, 〈x, g(x), q〉 ∈ A ⇔ x ∈ L. So, in polynomial time we can test whether
x ∈ L. We set r(x) = a1 if x ∈ L and r(x) = b1 otherwise.

Now, suppose that x �∈ {h(〈x, g(x), q〉) | q ∈ Q}. Since x = y0 = h(〈x, 1, q0〉), we have
that x ∈ {h(〈x, 1, q〉) | q ∈ Q}. By binary search over the interval [1, g(x)] we can find some i,
1 ≤ i ≤ g(x) − 1, such that x ∈ {h(〈x, i, q〉) | q ∈ Q} and x �∈ {h(〈x, i + 1, q〉) | q ∈ Q}. Let q ∈ Q
be such that x = h(〈x, i, q〉). We have x ∈ L ⇔ 〈x, i, q〉 ∈ A. By definition,

〈x, i, q〉 ∈ A ⇔ δ(q, f(x, i) · · · f(x, g(x))) = qf .

Let q′ = δ(q, f(x, i)) and let y1 = h(〈x, i + 1, q′〉). By the choice of i, x �= y1. Also, y1 ∈ L ⇔
〈x, i + 1, q′〉 ∈ A. We have

δ(q, f(x, i) · · · f(x, g(x))) = δ(δ(q, f(x, i)), f(x, i + 1) · · · f(x, g(x)))
= δ(q′, f(x, i + 1) · · · f(x, g(x))).

So,

δ(q, f(x, i) · · · f(x, g(x))) = qf ⇔ δ(q′, f(x, i + 1) · · · f(x, g(x))) = qf .

This implies that

〈x, i, q〉 ∈ A ⇔ 〈x, i + 1, q′〉 ∈ A.

Since x ∈ L ⇔ 〈x, i, q〉 ∈ A and y1 ∈ L ⇔ 〈x, i + 1, q′〉 ∈ A, we have x ∈ L ⇔ y1 ∈ L. Since x �= y1,
we set r(x) = y1.

Since f is polynomial-time computable, the value of r(x) can be computed in polynomial-time.
This proves the theorem. �

Now we define the hierarchy MODPH.

Definition 3.2. [Sto77, Wra77] Let C be a language class. Define ∃·C to be the set of all languages
L for which there exist a polynomial p and a language A ∈ C such that for all x,

x ∈ L ⇔ (∃y, |y| = p(|x|))[〈x, y〉 ∈ A]

and define ∀ · C to be the set of all languages L for which there exist a polynomial p and a language
A ∈ C such that for all x,

x ∈ L ⇔ (∀y, |y| = p(|x|))[〈x, y〉 ∈ A].

Definition 3.3. [BG92, Sch89] Let k ≥ 2 be an integer. Define MODk · C to be the set of all
languages L for which there exist a polynomial p and a language A ∈ C such that for all x,

x ∈ L ⇔ ‖{y | |y| = p(|x|) ∧ 〈x, y〉 ∈ A}‖ �≡ 0 (mod k),

and define coMODk · C to be the set of all languages L for which there exist a polynomial p and a
language A ∈ C such that for all x,

x ∈ L ⇔ ‖{y | |y| = p(|x|) ∧ 〈x, y〉 ∈ A}‖ ≡ 0 (mod k).
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Definition 3.4. [HLS+93] MODPH is the hierarchy consisting of the classes inductively defined
as follows:

• P belongs to MODPH.

• If C is a class belonging to MODPH then ∃ · C and ∀ · C belong to MODPH.

• For each integer k ≥ 2, if C is a class belonging to MODPH then MODk · C and coMODk · C
belong to MODPH.

Proposition 3.2. [HLS+93] Each class in MODPH is the polynomial-time bit-reduction closure
of some regular language.

By combining Proposition 3.2 and Theorem 3.3, we have the following theorem.

Theorem 3.4. For every class in MODPH it holds that all of its nontrivial m-complete sets are
m-autoreducible.

Corollary 3.4. Every nontrivial set that is m-complete for one of the following classes is m-
autoreducible.

• the levels ΣP
k , ΠP

k , and ∆P
k of the polynomial-time hierarchy

• 1NP

• the levels of the Boolean hierarchy over NP

Proof. For ΣP
k and ΠP

k this is an immediate consequence of Theorem 3.4. For the remaining
classes this follows from Theorem 3.3, since (i) 1NP is the polynomial-time bit-reduction closure
of 0∗10∗, (ii) every ∆P

k is the polynomial-time bit-reduction closure of a suitable regular language
[BSS99, Tra02, BLS+04], and (iii) every level of the Boolean hierarchy over NP is the polynomial-
time bit-reduction closure of a suitable regular language [SW98, BKS99]. �

Now we obtain corollaries about the genericity and dimension of complete sets. The notion of
resource bounded genericity was defined by by Ambos-Spies, Fleischhack, and Huwig [ASFH87].
We use the following equivalent definition [BM95, PS02].

Definition 3.5. Let t be a polynomial. A set L is t(n)-generic if for every oracle Turing machine
M , if ML|x(x) = L(x) for all x, then the running time of M is at least t(2|x|) for all but finitely
many x. Recall that L|x = {y ∈ L

∣∣ y < x}.

We obtain the following corollary regarding genericity of NP-complete sets. Earlier, it was
known that there exists a k > 0, such that NP-complete sets are not O(nk)-generic. This follows
from the work on small span theorems [JL95][ASNT96]. Below we improve this.

Corollary 3.5. NP-complete sets are not 2n-generic.

Proof. Let L be any NP-complete set. If L is trivial, then L is not O(n)-generic. Otherwise, L
is nontrivial and there exists a many-one autoreduction f for L. Consider the following predictor
for L. Recall that on input x, the predictor has access to the partial characteristic sequence L|x.
Given x, the predictor computes f(x). If f(x) < x, then the predictor can decide the membership
of x in L by making one query to L|x. This takes polynomial time in |x|. If f(x) > x, then for every
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y < x, the predictor checks if f(y) = x. Once such y is found, the predictor can decide membership
of x in L. If no such y is found, then the predictor runs the deterministic algorithm for L on x.

We claim that for infinitely many inputs, the predictor runs in time O(2n). If for infinitely
many x, f(x) < x, then, on these strings, the predictor decides x in polynomial time. Assume for
all but finitely many x, f(x) ≥ x. Note that since f is a auto reduction, f(x) �= x. Thus for all but
finitely many x, f(x) > x. Thus for infinitely many x, there exists y < x such that f(y) = x. The
predictor decides all such x by finding a y such that f(y) = x. The time for finding such y is 2O(n).
Thus the predictor decides infinitely many x in time 2O(n) time. Thus L is not O(n)-generic. �

Using the same proof we can show that complete sets for PSPACE and those for each class of
MODPH are non-2n-generic.

Corollary 3.6. Let C be either PSPACE or a class belonging to MODPH. Then no m-complete
sets for C are 2b-generic.

Recently, Hitchcock [Hit04] showed that the (−3)-rd order scaled dimension of NP-complete
sets is zero. His proof uses a small span theorem for (−3)-rd order dimension. We can obtain
Hitchcock’s result using Theorem 3.1.

Corollary 3.7. The class of NP-complete sets has (−3)-rd order dimension zero.

3.1 Relativization

We obtain an oracle satisfying the following properties:

Theorem 3.5. For any k ≥ 2, there is an oracle A such that relative to A there is a set B that is
≤p

k-dtt complete for NP but not ≤p
(k−1)-T autoreducible.

In light of this oracle it probably is not possible to improve Corollary 3.1. Also, this theorem is
interesting because of the following corollary:

Corollary 3.8. There is an oracle A such that relative to A there exists a ≤p
2-dtt -complete set for

NP that is not m-mitotic.

Proof. Taking k = 2 in Theorem 3.5, we obtain an oracle A such that there exists a
≤p

2-dtt -complete set for NP that is not ≤p
1-T autoreducible. The corollary follows from the facts

that if a set is m-mitotic then it is m-autoreducible [AS84] and every many-one reduction is a 1-T
reduction. �

Corollary 3.8 gives a relativized, partial negative answer to an open question of Buhrman and
Torenvliet [BT94] as to whether all T -complete sets for NP are (weakly) m(T )-mitotic. It remains
open whether there is an oracle relative to which not all NP-complete sets are m-mitotic. Another
related question raised by Buhrman and Torenvliet is whether all tt-complete sets for NP are
tt-autoreducible. The following theorem gives a partial answer to this question in a relativized
world.

Theorem 3.6. For any k ≥ 2, there is an oracle A such that relative to A, there is a set B that
is ≤p

dtt complete for NP but not ≤p
btt -autoreducible.

The proof of Theorem 3.6 is similar to that of Theorem 3.5. Now we present the proof of
Theorem 3.5:
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Proof. Let k′ = �log k�. Without loss of generality, we assume k′ is odd (the proof for the case
where k′ is even is essentially the same). Define G to be the set consisting of the first k strings of
length k′. We assume a polynomial-time computable one-to-one pairing function that can take any
finite number of inputs such that its range does not intersect with 0∗ and such that for all i, x, and
l, |〈i, x, 0l〉| > l. Such pairing function can be found very easily. Let {Mj}j≥1 be an enumeration of
polynomial-time (k − 1)-Turing reductions. Let {Ni}i≥1 be an enumeration of all nondeterministic
polynomial-time oracle Turing machines. For each j ≥ 1, let pj be a polynomial that bounds the
running time of both Mj and Nj .

For any set A, let KA = {〈i, x, 0l〉 | NA
i accepts x within l steps } be the canonical complete

set for NPA. Now define

BA
e = {s〈i, x, 0l〉 | s ∈ G ∧ [∃y[|y| = |〈i, x, 0l〉| ∧ s〈i, x, 0l〉y ∈ A]]},

BA
d = {02n | ∃y[|y| = 2n ∧ y ∈ A]},

and
BA = BA

e ∪ BA
d .

Clearly BA
e , BA

d and BA all belong to NPA. We will construct A such that for all but finitely many
combinations of i, x, and l,

〈i, x, 0l〉 ∈ KA ⇔ ∃s[s ∈ G ∧ s〈i, x, 0l〉 ∈ BA],

which implies KA≤p
k-dttB

A. Also, we will construct A such that for every j, there exists an even
number nj such that

MA
j accepts 0nj with oracle BA ⇔ 0nj /∈ BA

or
MA

j on input 0nj queries 0nj to oracle BA,

which will ensure that Mj is not an ≤p
(k−1 )-T autoreduction of B.

We construct A in stages. We initialize n1 = 2, so that p1(n1) < 2n1 , and define A<2 = ∅.
At Stage j, we assume the construction has been done up to strings of length nj − 1, where nj is
some even number chosen in Stage j − 1. Let Aj−1 = A≤nj−1. Now the construction for Stage j

proceeds in two steps. In the first step, we will diagonalize against Mj . If M
Aj−1

j on input 0nj does

not query the string 0nj to BAj−1 , then we will find a string y of length nj such that M
Aj−1∪{y}
j ,

making k−1 queries to BAj−1∪{y} accepts 0nj if and only if 0nj �∈ BAj−1∪{y}. In the second step, we
will do the encoding. We will choose some sufficiently large even number nj+1 and make sure, for
every 〈i, x, 0l〉 such that nj < |s〈i, x, 0l〉y| < nj+1, s ∈ G, and |y| = |〈i, x, 0l〉|, that 〈i, x, 0l〉 ∈ KA

if and only if ∃s∃y[s ∈ G∧ |y| = |〈i, x, 0l〉 ∧ s〈i, x, 0l〉y ∈ A. This will ensure for those 〈i, x, 0l〉 that
〈i, x, 0l〉 ∈ KA if and only if ∃s[s ∈ G ∧ s〈i, x, 0l〉 ∈ BA].

We first show that the string y of length nj needed for the diagonalization step exists. We use
a set NA for reserving strings of length greater than or equal to nj for A. NA is set to ∅ at the
beginning of each stage. We then simulate Mj on input 0nj and resolve each query in the following
way. For each query q made to A, we answer YES if and only if q ∈ Aj−1. If |q| ≥ nj , set NA to
NA ∪{q}. For each query q made to BA, if q = 0nj , we proceed to the encoding step. (In this case,
Mj is not an autoreduction.) Now q �= 0nj . We answer q with YES if and only if q ∈ BAj−1 . For
those q’s such that q is of the form 02n, where 2n > nj , we set NA to NA ∪ {y||y| = |q|}, which will
ensure that q = 02n �∈ BA. For those q’s such that q = s〈i, x, 0l〉, s ∈ G, and k′ + 2|〈i, x, 0l〉| > nj ,
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1 YA := ∅;
//NA is initially the set constructed in the diagonalization step.

2 Qj := {〈i, x, 0l〉 | nj < k′ + 2|〈i, x, 0l〉| < nj+1};
// set of triples 〈i, x, 0l〉 that we need to consider for encoding.

3 For all triples 〈i, x, 0l〉 in Qj in lexicographical order do
4 Simulate Ni on x for l steps with oracle Aj−1 ∪ YA;
5 If Ni accepts then
6 Choose s〈i, x, 0l〉y �∈ NA, such that s ∈ G and |y| = |〈i, x, 0l〉|;
7 YA := YA ∪ {s〈i, x, 0l〉y};
8 Else
9 NA := NA ∪ {s〈i, x, 0l〉y | s ∈ G ∧ |y| = |〈i, x, 0l〉|};
10 EndFor;
11 Aj := Aj−1 ∪ YA;

Figure 1: Procedure for the encoding step at Stage j in Theorem 3.5 (comments start with //).

we set NA to NA ∪ {s〈i, x, 0l〉y | |y| = |〈i, x, 0l〉|}, which will ensure that q = s〈i, x, 0l〉 �∈ BA.
Observe that strings of length nj (an even length) can only be put into NA if they are queried by
Mj to A. So ‖NA ∩ Σ≤nj‖ ≤ pj(nj) since Mj is pj-time bounded. We will see below that in Stage
j − 1, nj was chosen such that pj(nj) < 2nj = ‖Σnj‖. So we choose a string y of length nj such
that y �∈ NA. For this y, M

Aj−1

j (0nj ), which makes k − 1 queries to BAj−1 , accepts if and only if

M
Aj−1∪{y}
j (0nj ), making k − 1 queries to BAj−1∪{y}, accepts. Thus we add y to Aj−1 if and only if

M
Aj−1

j (0nj ) rejects with oracle BAj−1 . This completes the diagonalization step.
Now we need to do the encoding step. At the same time we want to maintain the diagonalization

properties of the oracle from the diagonalization step. This can be ensured by not putting any
string in NA into A. However, by doing so we have to make sure encoding can be done up to length
maxy∈NA

|y|. Also we need pj(nj) < 2nj for the diagonalization step at any Stage j. To fulfill all
these requirements, we choose nj+1 to be the minimum even number such that the following hold:

• pj+1(nj+1) < 2(nj+1−k′)/2

• nj+1 > nj

• nj+1 > maxy∈NA
|y|

Now we encode each triple 〈i, x, 0l〉 such that nj < |s〈i, x, 0l〉y| < nj+1, s ∈ G, and |y| =
|〈i, x, 0l〉|. We have to decide whether to put some string s〈i, x, 0l〉y into A according to whether
〈i, x, 0l〉 ∈ KA, so as to make sure 〈i, x, 0l〉 ∈ KA if and only if ∃s[s ∈ G ∧ s〈i, x, 0l〉 ∈ BA]. As we
said earlier, this task is nontrivial since some of these strings might have already been put into NA.
We need to show that there exist strings that are unreserved for each triple 〈i, x, 0l〉, to be used
for encoding. We will also need a set YA that contains strings reserved for A during the encoding
process. Now we use the following procedure in Fig. 1 to do the encoding from length nj + 1 to
nj+1 − 1.

The correctness of the above encoding procedure follows from the following claims.

Claim 3.1. For every 〈i, x, 0l〉 ∈ Qj in the above procedure, there exists a string s〈i, x, 0l〉y �∈ NA

such that s ∈ G and |y| = |〈i, x, 0l〉|, to select when step 6 is executed.
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Proof. We look back at the diagonalization step. For each query q made to A by Mj , we put
q into NA only if |q| ≥ nj . Since there are at most pj(nj) many such queries due to the fact that
Mj is pj-time bounded, we put at most pj(nj) many strings into NA in because of queries to A.
Now for each 〈i, x, 0l〉 ∈ Qj , for each s ∈ G consider Ss = {s〈i, x, 0l〉y||y| = |〈i, x, 0l〉|}. For each
query q made to BA by Mj , at most one such Ss might be put into NA. Since Mj only makes
k − 1 queries to BA, there must exist one Ss such that no string in Ss is put into NA in due to
queries made to BA by Mj . Let Ss be such a set. Note that ‖Ss‖ = 2|〈i,x,0l〉| ≥ 2(nj−k′)/2 > pj(nj),
where the last inequality follows from the choice of nj at Stage j − 1. So there must exist z ∈ Ss

that is not put into NA because of queries made to A by Mj . Hence, z is a string of the form
s〈i, x, 0l〉y such that s ∈ G and |y| = |〈i, x, 0l〉|, and z �∈ NA by the end of the diagonalization
step. Now during the encoding step, we will only put into NA strings of the form s〈i′, x′, 0l′〉y,
where 〈i′, x′, 0l′〉 �= 〈i, x, 0l〉, upon processing triples 〈i′, x′, 0l′〉 that are lexicographically less than
〈i, x, 0l〉. So z cannot have been put into NA during the encoding step by the time the triple
〈i, x, 0l〉 is processed. Hence, the claim follows. �

Claim 3.2. For any 〈i, x, 0l〉 ∈ Qj in the above procedure,

〈i, x, 0l〉 ∈ KAj ⇔ ∃s[s ∈ G ∧ s〈i, x, 0l〉 ∈ BAj ].

Proof. First note that the following equivalence holds after the triple 〈i, x, 0l〉 ∈ Qj is processed:

〈i, x, 0l〉 ∈ KAj−1∪YA ⇔ ∃s[s ∈ G ∧ s〈i, x, 0l〉 ∈ BAj−1∪YA ]. (∗)

For every triple 〈i′, x′, 0l′〉 ∈ Qj that is processed after 〈i, x, 0l〉, either a string in the form
s′〈i′, x′, 0l′〉y′ such that s′ ∈ G and |y′| = |〈i′, x′, 0l′〉| is put into YA or all the members of the
set {s′〈i′, x′, 0l′〉y′ | s′ ∈ G ∧ |y′| = |〈i′, x′, 0l′ |} are put into NA. Neither of these will change the
truth value of the right-hand side of (∗). Also note that all the strings added to YA or NA after
〈i, x, 0l〉 is processed are of length at least k′ + 2|〈i, x, 0l〉| > l. So the truth value of the left side of
(∗) will not change either after 〈i, x, 0l〉 is processed since the first l steps of Ni’s computation on x
makes queries of length at most l. Therefore, (∗) becomes a loop invariant once the triple 〈i, x, 0l〉
is processed. Since by the end of the loop we have Aj = Aj−1 ∪ YA, it follows that

〈i, x, 0l〉 ∈ KAj ⇔ ∃s[s ∈ G ∧ s〈i, x, 0l〉 ∈ BAj ].

�

Claim 3.3. For every triple 〈i, x, 0l〉 such that |〈i, x, 0l〉| > 2,

〈i, x, 0l〉 ∈ KA ⇔ ∃s[s ∈ G ∧ s〈i, x, 0l〉 ∈ BA].

Proof. Let |〈i, x, 0l〉| > 2. Then 〈i, x, 0l〉 belongs to Qj , for some j ≥ 1. Then, by Claim 3.2, it
holds that

〈i, x, 0l〉 ∈ KAj ⇔ ∃s[s ∈ G ∧ s〈i, x, 0l〉 ∈ BAj ].

We know from the above construction that only strings of length greater than or equal to nj will
be added into A after Stage j and nj > k′ + 2|〈i, x, 0l〉| > l for any 〈i, x, 0l〉 ∈ Qj . It follows that

〈i, x, 0l〉 ∈ KA

13



⇔ 〈i, x, 0l〉 ∈ KAj

⇔ ∃s[s ∈ G ∧ s〈i, x, 0l〉 ∈ BAj ]

⇔ ∃s[s ∈ G ∧ s〈i, x, 0l〉y ∈ BA].

�

This finishes the proof of Theorem 3.5. �

4 Mitoticity

Buhrman, Hoene, and Torenvliet [BHT98] show that all EXP-complete sets are weakly m-mitotic.
We improve this to show that all EXP-complete sets are m-mitotic.

Theorem 4.1. All EXP-complete sets are m-mitotic.

Proof. Let L be any EXP-complete set, and let K be the canonical EXP-complete set. Recall
that all EXP-complete sets are complete with respect to length increasing reductions [Ber77]. Thus
there exists a li-reduction f from K × Σ∗ to K, and a li-reduction g from K to L. There exists a
constant l > 0, such that

∀x, |x| < |f(x)| < |x|l and |x| < |g(x)| < |x|l.

Define t1 = 2 and ti+1 = (ti)2l2 . Consider the following set.

S = {x | for some odd i ti ≤ |x| < ti+1}

Clearly S is in P. We claim that L ∩ S and L ∩ S are each complete for EXP. This shows that L
is m-mitotic.

Claim 4.1. L ∩ S is EXP-complete.

Proof. It is clear that L ∩ S is in EXP. We construct a reduction R from K to L ∩ S. Given
input x the reduction computes i such that ti ≤ |x| < ti+1. We consider two cases.

Case 1: i is odd. We have x ∈ S. Choose y sufficiently large such that

ti+2 < |〈x, y〉| < t2i+2.

Let z = 〈x, y〉. We set R(x) = g(f(z)).
We claim that this works. First, observe that ti+2 < |z| < t2l2

i+2 = ti+3. Since i is odd, i + 2 is
odd, too. Thus z is in S. We have

|g(f(z))| < |f(z)|l < |z|l2 < (t2i+2)
l2 = ti+3,

Since ti+2 < |z| < |g(f(z))| and |g(f(z))| < ti+3, g(f(z)) ∈ S. Now,

x ∈ K ⇔ z ∈ K × Σ∗

⇔ f(z) ∈ K (f is a reduction from K × Σ∗ to K)
⇔ g(f(z)) ∈ L (g is a reduction from K to L)
⇔ g(f(z)) ∈ L ∩ S (g(f(z)) ∈ S).
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Case 2: i is even. We have x �∈ S. Choose y sufficiently large such that

ti+1 < |〈x, y〉| < t2i+2.

Let z = 〈x, y〉. We set R(x) = g(f(z)). Because i is even z ∈ S. As before, we have that
g(f(z)) ∈ S. Then, as in Case 1.1, we have the correctness of the reduction.

It is obvious that the reduction is computable in polynomial time. Thus L ∩ S is complete for
EXP. �
By symmetry we obtain:

Claim 4.2. L ∩ S is EXP-complete.

The theorem follows from Claims 4.1 and 4.2. �

The proof of Theorem 4.1 actually yields the following result: for class C, if L is complete with
length-increasing reductions, then L is m-mitotic. Agrawal [Agr02] shows that if one-way permu-
tations and quick pseudo-random generators exist, then every NP-complete language is complete
with respect to length increasing reductions. Thus,

Corollary 4.1. If one-way permutations and quick pseudo-random generators exist, then NP-
complete languages are m-mitotic.

If L is NP-complete with respect to honest many-one reductions, then L is complete with respect
to length increasing reductions. Thus we have the following corollary.

Corollary 4.2. If L is NP-complete with respect to honest reductions, then L is m-mitotic.

Buhrman, Hoene, and Torenvliet [BHT98] showed that every NEXP-complete set can be parti-
tioned into infinitely many sets such that each one of them is NEXP-complete. They ask whether
this can be improved to show that every NEXP-complete set is weakly m-mitotic. Theorem 4.3
answers this question in the affirmative. For the proof, we need the following result due to Ganesan
and Homer [GH92]. They showed that all NE-complete sets are complete with respect to 1-1 reduc-
tions. Their proof works for NEXP-complete sets also. For the sake of completeness, we provide a
proof of this.

Theorem 4.2 ([GH92]). All ≤p
m-complete sets for NEXP are complete with respect to 1-1 reduc-

tions.

Proof. Let A be any given ≤p
m -complete set for NEXP and let K be any arbitrary set in NEXP.

Let c and d be constants such that there exist nondeterministic Turing machines that accept K
and A in time 2|x|

c
and 2|x|

d
, respectively. It is sufficient to show that K is 1-1 reducible to A.

Let f1, f2, . . . be an enumeration of all polynomial-time computable functions such that fi(x)
can be computed in time 2O((|i|+log |x|)2). Let M be the set of pairs accepted by the following
procedure.

1 input 〈i, x〉
2 if ∃y < x such that fi(〈i, y〉) = fi(〈i, x〉)
3 then if 2|y|

c ≤ |x| then accept 〈i, x〉 if and only if y /∈ K
4 else reject 〈i, x〉
5 else accept 〈i, x〉 if either (a) or (b) holds
6 (a) ∃y > x such that |y| < 2|x|

c
and fi(〈i, x〉) = fi(〈i, y〉)

7 (b) x ∈ K
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Claim 4.3. M ∈ NEXP.

Let us compute the time required for M on input 〈i, x〉. Note that computing fi(〈i, x〉) takes time
2O((|i|+log |〈i,x〉|)2) which is 2O(|〈i,x〉|2). Since there are only 2O(|x|) strings y that are lexicographically
less than x, the condition in step 2 can be computed in time 2O(|〈i,x〉|2). If 2|y|

c ≤ |x|, we can decide
if y ∈ K deterministically in time 2O(|x|). Thus, steps 3 and 4 can be done in time 2O(|x|). In step 6,
we can guess a string y that is of length < 2|x|

c
and compute fi(〈i, y〉) in time 2O((|i|+log |〈i,y〉|)2)

which is 2O(|〈i,x〉|2c). Thus M ∈ NEXP.
Let fj be a reduction from M to A, and let f(x) df= fj(〈j, x〉). We show that f is a 1-1 reduction

from K to A.
Assume that f is not 1-1. Let x2 be the least element such that for some x1 < x2, f(x1) = f(x2).

There are two cases.
Case 1: 2|x1|c ≤ |x2|. In this case, 〈j, x1〉 ∈ M if and only if x1 ∈ K. 〈j, x2〉 ∈ M if and only if

x1 /∈ K. So, fj cannot be a reduction from M to A. Contradiction.
Case 2: 2|x1|c > |x2|. In this case, 〈j, x1〉 ∈ M and 〈j, x2〉 /∈ M . Again, fj cannot be a reduction

from M to A. Contradiction.
Hence, f is 1-1. So on input 〈j, x〉, the conditions in steps 2 and 6 do not hold. Hence,

〈j, x〉 ∈ M if and only if x ∈ K. This shows that f is a reduction from K to A. �

Theorem 4.3. All ≤p
m-complete sets for NEXP are weakly m-mitotic.

Proof. Let K be the standard NEXP-complete set. Let L be any given NEXP-complete set.
We show that L is weakly m-mitotic.

K ′ df= 0K ∪ 1K

is NEXP-complete. K ′ reduces to L via some f ∈ PF. L reduces to K (really K, not K ′) via some
g ∈ PF. Choose k such that f and g can be computed in time O(nk). By Theorem 4.2, we can
assume f and g to be 1-1.

L0
df= {y

∣∣ ∃x, |x| ≤ |y|k, f(0x) = y}
L1

df= {y
∣∣ ∃x, |x| ≤ |y|k, f(1x) = y}

Observe that L0, L1 ∈ EXP. Define the following function:

f0(x) df=

 f(0x) : if |f(0x)|k ≥ |x|,
f0(g(f(0x))) : otherwise.

Note that if |f(0x)|k < |x| then |g(f(0x))| ≤ |f(0x)|k < |x|. So, for some y, |y| < |x|, f0(x) = f0(y).
So, the recursion terminates. Thus, f0 ∈ PF. Note that for every x there exists some y such that
f0(x) = f(0y) and |f(0y)|k ≥ |y|. This implies that for all x, f0(x) ∈ L0.

Similarly define f1 as

f1(x) df=

 f(1x) : if |f(1x)|k ≥ |x|,
f1(g(f(1x))) : otherwise.

By following an argument similar to the one above we can show that f1 ∈ PF and that f1(Σ∗) ⊆ L1.
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We first show K≤p
mL via reduction f0. This is done by induction on the number of recursion

steps r in the definition of f0(x). If r = 0, then f0(x) = f(0x) and therefore,

x ∈ K ⇔ 0x ∈ 0K ⇔ 0x ∈ K ′ ⇔ f0(x) = f(0x) ∈ L.

If r ≥ 1 then f0(x) = f0(g(f(0x))). Let y = g(f(0x)). By our induction hypothesis, y ∈ K ⇔
f0(y) ∈ L. So we obtain

x ∈ K ⇔ 0x ∈ 0K ⇔ 0x ∈ K ′ ⇔ f(0x) ∈ L

⇔ y = g(f(0x)) ∈ K ⇔ f0(y) = f0(g(f(0x))) = f0(x) ∈ L.

Thus, K≤p
mL via f0. Analogously we show K≤p

mL via f1.
Since K≤p

mL via f0 and f0(Σ∗) ⊆ L0 we have

• K≤p
m(L ∩ L0) via f0.

Since f is 1-1, L0 and L1 are disjoint. Since f1(Σ∗) ⊆ L1, we have f1(Σ∗) ⊆ L0. Combining this
with K≤p

mL via f1, we have:

• K≤p
m(L ∩ L0) via f1.

Therefore (L ∩ L0) and (L ∩ L0) are each NEXP-hard. Both sets are NEXP-complete since
L0 ∈ EXP and L ∈ NEXP. �

Note that the above proof actually shows that each NEXP-complete set can be split into m-
equivalent NEXP-complete m-mitotic parts with a set in EXP. The following theorem settles
another questions that was raised by Buhrman and Torenvliet [BT94].

Theorem 4.4. Every ≤p
m-complete set for PSPACE is weakly T -mitotic.

Proof. Let L be ≤p
m -complete for PSPACE. There exists f ∈ PF such that L≤p

mL via f . f
clearly has the property that for all x f(x) �= x. Choose k ≥ 1 such that f is computable in time
nk + k.

Let t be a “tower” function defined by: t(0) df=−1, t(1) df= 2, and t(i + 1) df= t(i)k+1 for i ≥ 1.
Define the inverse tower function as t−1(n) df= min{i

∣∣ t(i) ≥ n}. Note that t−1 ∈ PF.
We first sketch the basic ideas of the proof. We partition Σ∗ into sets A, B ∈ PSPACE such

that L, L ∩ A, and L ∩ B are Turing-equivalent. It essentially suffices to show L≤p
TL ∩ B. Given

any x, we consider the sequence x, f(x), f(f(x)), . . . . These elements alternatively belong to L and
L. So in order to determine whether x ∈ L it suffices to find out for an arbitrary n ≥ 0 whether
fn(x) ∈ L. We define A and B such that for every x the first polynomially many words in the
sequence contain an alternation between A and B; that is, it contains at least one member of A
and at least one member of B.

We embed in each sequence “anchors” with the property that if y is an anchor and f(y) isn’t
one then one of y and f(y) is a member of A and the other is a member of B, and with the property
that the membership in A as well as the membership in B of any anchor can be tested in polynomial
time.

We consider the following three cases:
Case 1: The first polynomially many elements of the sequence are all anchors. We make sure

that in this case the length of the words in the sequence is strictly increasing. This leads us to an
alternation in the sequence (since an anchor belongs to A if and only if the inverse tower function
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of its length is even). So within the first polynomially many words there are anchors fa(x) ∈ B.
Asking the oracle whether fa(x) ∈ L ∩ B tells us whether fa(x) ∈ L.

Case 2: Within the first polynomially many words of the sequence, there exists a non-anchor
that is followed by an anchor. In this case we will be able to identify the anchor easily. Exactly
one of both words belongs to B, and we can easily find out which one (since testing membership
in B is easy for anchors). Say fn(x) ∈ B. Again with help of the oracle we can find out whether
fn(x) ∈ L.

Case 3: There are no anchors within the first polynomially many words. However, A and B
are constructed such that every second word in the sequence causes an alternation between A and
B. In contrast to Case 1 and Case 2, here we do not know the exact positions of these alternations.
Nevertheless, we can gain information as follows: We test 9 consecutive words from the sequence
for membership in L ∩ B. We know that two of these words belong to B such that one is at an
even position in the sequence, while the other one is at an odd position. By the choice of f , the
sequence strictly alternates between L and L. So at least one of the 9 consecutive words belongs
to L ∩ B. This gives an n such that fn(x) ∈ L.

This suffices to show that L≤p
TL ∩ B.

Now we present the proof in full detail.
For every word x, we define its accompanying anchor h(x) to be fg(x)(x), where g(x) is given

as follows: If there exists an m such that |fm+1(x)| > |fm(x)| then g(x) is the smallest such m;
otherwise, g(x) is the smallest n such that fn(x) = min{y | for some i and j, i �= j, y = f i(x) =
f j(x)}. If the word-length never increases in the sequence x, f(x), f2(x), . . . , then it necessarily
enters a cycle. Then h(x) is the smallest word in the cycle and g(x) is the smallest index that
produces h(x). Note that both g and h are computable in PSPACE.

Call a word x an anchor if h(x) = x. Observe that for every x, h(x) is an anchor.

Claim 4.4. For every x, x is an anchor if and only if g(x) = 0,

If g(x) = 0, then h(x) = x and x is an anchor. Assume g(x) > 0. If g(x) = m according to the
first case of g’s definition, then |fm+1(x)| > |fm(x)| but |f(x)| ≤ |x|. Therefore, h(x) = fm(x) �= x
and x is not an anchor. If g(x) = n according to the second case of g’s definition, then for all
i ≥ 0, |f i+1(x)| ≤ |f i(x)|. So the sequence x, f(x), f(f(x)), . . . leads into a cycle, and n (in g’s
definition) is the smallest number such that f l(x) belongs to this cycle. Note that fn(x) is the
lexicographically minimal word of the cycle. Observe that fn(x) �= x, since otherwise g(x) = n = 0
which contradicts our assumption. Therefore, h(x) = fn(x) �= x and x is no anchor. This proves
Claim 4.4.

Claim 4.5. For every non-anchor x, g(x) = g(f(x)) + 1.

By Claim 4.4, g(x) > 0. Assume g(x) = m according to the first case of g’s definition. So
m > 0 is the smallest number such that |fm(f(x))| > |fm−1(f(x))|. Therefore, g(f(x)) = m − 1
and hence g(x) = g(f(x)) + 1. Assume g(x) = n according to the second case of g’s definition. So
the sequence x, f(x), f(f(x)), . . . leads into a cycle. By definition, n > 0 is the smallest number
such that fn−1(f(x)) is the lexicographically minimal word of the cycle. Therefore, g(f(x)) = n−1
and hence g(x) = g(f(x)) + 1. This shows Claim 4.5.

We work toward the definition of A and B. For Case 3 we have to make sure that for every
x, every second word in the sequence x, f(x), f(f(x)), . . . causes an alternation between A and B.
Additionally, Case 2 needs such an alternation whenever a non-anchor is followed by an anchor.
The following set of natural numbers provides the desired alternation structure.

N
df={n

∣∣ n = 0 or n ≡ 2 (mod 4) or n ≡ 3 (mod 4)}
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We also must take Case 1 into account which calls for an alternation whenever we have a
sequence of polynomially many anchors. By the definition of anchors it is clear that a sequence of
consecutive anchors is strictly length-increasing. So we have to make sure that in such a sequence
once in a while we alternate between A and B. We do this by partitioning Σ∗ according to the
inverse tower function. For i ∈ {0, 1} let

Si
df={x

∣∣ t−1(|x|) ≡ i (mod 2)}.

Observe that S0, S1 ∈ P. Now let A
df=(A0 ∪ A1) and B

df=(B0 ∪ B1) where

A0
df= {x

∣∣ h(x) ∈ S0 and g(x) ∈ N},
B0

df= {x
∣∣ h(x) ∈ S0 and g(x) /∈ N},

A1
df= {x

∣∣ h(x) ∈ S1 and g(x) /∈ N}, and
B1

df= {x
∣∣ h(x) ∈ S1 and g(x) ∈ N}.

Observe that (A0, A1, B0, B1) form a partition of Σ∗. Hence (A, B) is a partition as well.
A0, B0, A1, B1, A, B ∈ PSPACE.

In every sequence x, f(x), f(f(x)), . . . either we can find a non-anchor (Cases 2 and 3) or we
can find an anchor in B (Case 1). The following function takes care of this (note that an anchor
belongs to B if and only if it belongs to S1).

r(x) df= min{i
∣∣ |f i+1(x)| ≤ |f i(x)| or f i(x) ∈ S1}

In Claim 4.7 below we will see that r is a total function. For the moment let us assume r(x) to
be infinite if the minimum in r’s definition does not exist.

Claim 4.6. For every x and 0 ≤ i < r(x), |f i(x)| < |x|k+1.

Assume there exist x and i such that 0 ≤ i < r(x) and |f i(x)| ≥ |x|k+1. So t−1(|x|) <
t−1(|x|k+1) ≤ t−1(|f i(x)|) which shows that |x| and |f i(x)| have different inverse tower functions.
Hence there must exist j < i such that |f j(x)| and |f j+1(x)| have different inverse tower functions.
Note that f j(x), f j+1(x) ∈ S0; otherwise, r(x) ≤ j + 1 ≤ i, which is not possible by the choice
of i. This means t−1(|f j+1(x)|) − t−1(|f j(x)|) ≥ 2 and therefore, |f j+1(x)| > |f j(x)|k+1. This
contradicts f ’s computation time and proves Claim 4.6.

Claim 4.7. For every x, r(x) ≤ |x|k+1. Particularly, r is a total function in FP.

Assume there exists x such that r(x) > |x|k+1. Let n
df= |x|k+1 and consider the sequence

f0(x), f1(x), . . . , fn(x). By assumption, f i(x) /∈ S1 for i ≤ n and |f0(x)| < |f1(x)| < · · · < |fn(x)|.
Hence |fn(x)| ≥ n = |x|k+1 which contradicts Claim 4.6. So for every x, r(x) ≤ |x|k+1. Particularly,
r is total. Containment in FP follows from Claim 4.6. This proves Claim 4.7.

The polynomial-time algorithm given in Figure 2 accepts an input x if and only if x ∈ L. For
every x, this algorithm asks at most 9 queries to its oracle L ∩ B. In particular, L≤p

bttL ∩ B.

Claim 4.8. The algorithm works in polynomial time.

By Claim 4.7, n ≤ |x|k+1 after step 1. From Claim 4.6 it follows that for 0 ≤ i ≤ 8, fn+i(x)
can be computed in polynomial time. This shows that all steps of the algorithm can be carried out
in polynomial time. This proves Claim 4.8.

Claim 4.9. If the algorithm stops in step 4, then it accepts if and only if x ∈ L.
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1 n := r(x)
2 if |fn+1(x)| > |fn(x)| then
3 // here fn(x) ∈ S1, g(fn(x)) = 0, and fn(x) ∈ B1
4 accept if and only if [fn(x) ∈ L ∩ B ⇔ n ≡ 0 (mod 2)]
5 else
6 Q := {fn+i(x)

∣∣ 0 ≤ i ≤ 8}
7 if ∀i ∈ [1, 8], |fn+i(x)| ≥ |fn+i+1(x)| then
8 // here for all i ∈ [0, 8], |fn+i(x)| ≥ |fn+i+1(x)|
9 if ‖Q‖ = 9 then
10 choose smallest j ∈ [0, 8] such that fn+j(x) ∈ L ∩ B
11 accept if and only if n + j ≡ 0 (mod 2)
12 else
13 // ∃i ∈ [0, 7],∃j ∈ [(i + 1), 8] such that fn+i(x) = fn+j(x)
14 choose the smallest such i
15 choose l∈ [(i + 1), 8] s.t. fn+l(x)=min{fn+j(x)

∣∣ j∈ [i, 8]}
16 a := n + l
17 endif
18 else
19 // Q has an anchor whose length increases under f
20 choose smallest i ∈ [0, 8] such that |fn+i(x)| < |fn+i+1(x)|
21 a := n + i
22 endif
23 // a ≥ 1, fa(x) is an anchor, and fa−1(x) is no anchor
24 if fa(x) ∈ S1 then
25 // here fa(x) ∈ S1 and therefore fa(x) ∈ B1
26 accept if and only if [fa(x) ∈ L ∩ B ⇔ a ≡ 0 (mod 2)]
27 else
28 // here fa(x) ∈ S0 and therefore fa−1(x) ∈ B0
29 accept if and only if [fa−1(x) ∈ L ∩ B ⇔ a ≡ 1 (mod 2)]
30 endif
31 endif

Figure 2: Algorithm for L≤p
bttL ∩ B in Theorem 4.4.
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If we reach step 3, then by the definition of r(x), fn(x) ∈ S1. Note that fn(x) is an anchor,
since its length increases under f . Hence h(fn(x)) = fn(x) ∈ S1 and g(fn(x)) = 0 ∈ N . Therefore,
fn(x) ∈ B1 ⊆ B and hence

x ∈ L ⇔ [fn(x) ∈ L ⇔ n ≡ 0 (mod 2)]
⇔ [fn(x) ∈ L ∩ B ⇔ n ≡ 0 (mod 2)].

This proves Claim 4.9.

Claim 4.10. If the algorithm stops in step 11, then it accepts if and only if x ∈ L.

Step 11 can only be reached via step 8. Observe that in step 8,

∀i ∈ [0, 8], |fn+i(x)| ≥ |fn+i+1(x)|. (1)

‖Q‖ = 9 once we reach step 10. So for i ∈ [0, 8], all fn+i(x) are pairwise different.
First we want to see that if we apply g to the elements of Q, then this yields at least 5 consecutive

natural numbers. Formally, we claim that there exists t ∈ [0, 4] such that

∀i ∈ [t, t + 3], g(fn+i(x)) = g(fn+i+1(x)) + 1. (2)

If Q does not contain anchors, then by Claim 4.5, for i ∈ [0, 7], g(fn+i(x)) = g(fn+i+1(x)) + 1
and we are done by choosing t = 0. If Q contains anchors, then by (1), these must be anchors
whose lengths do not increase under f . All these anchors are in the same cycle (see second case of
g’s definition). Since every cycle has exactly one anchor, Q must contain exactly one anchor. Say
the anchor is fn+j(x) where j ∈ [0, 8]. If j ≤ 3, then for i ∈ [4, 8], fn+i(x) is no anchor. So (2)
holds for t = 4. If j ≥ 4, then (2) holds for t = 0. This proves equation (2).

From (1) it follows that all w ∈ Q have the same anchor h(w). Choose t ∈ [0, 4] such that (2)
holds. By the definitions of A, B, and N , the following can be verified, by using the periodical
structure of N and the property about the five consecutive indices, as shown in (2).2

1. ∃i ∈ [t, t + 4] such that i is odd and fn+i(x) ∈ A

2. ∃i ∈ [t, t + 4] such that i is even and fn+i(x) ∈ A

3. ∃i ∈ [t, t + 4] such that i is odd and fn+i(x) ∈ B

4. ∃i ∈ [t, t + 4] such that i is even and fn+i(x) ∈ B

Choose i, j ∈ [t, t + 4] ⊆ [0, 8] that satisfy items 3 and 4, respectively. Since i is odd and j is even,
one of fn+i(x) and fn+j(x) has to be in L, since f alternates between L and L. So either fn+i(x)
or fn+j(x) belongs to L∩B. Therefore, the choice in step 10 is possible. After step 10, fn+j(x) ∈ L
and therefore, x ∈ L ⇔ n + j ≡ 0 (mod 2). This proves Claim 4.10.

Claim 4.11. In step 23, a ≥ 1, fa(x) is an anchor, and fa−1(x) is not an anchor.

We can reach step 23 either via step 13 or via step 19. Assume we reach it via step 13. We
already observed that (1) holds in step 8. If we reach step 13, then there must exist i, j such that
0 ≤ i < j ≤ 8 and fn+i(x) = fn+j(x). So Q contains a cycle, and in step 14 we choose the first
element that belongs to this cycle. In step 15 we choose l such that fn+l(x) is the smallest element

2This is the point where we need the fact that N alternates at every second number (except for 0 and 1).

21



of the cycle. Hence fn+l(x) = fa(x) is an anchor. Note that a ≥ 1. Moreover, fa−1(x) already
belongs to the cycle and is therefore no anchor.

Assume now that we reach step 23 via step 19. If we reach step 19, then by the condition in
step 7, in Q there exists an anchor whose length increases under f . We choose the first such anchor
we reach. After step 21, this anchor can be described as fa(x). Note that a ≥ 1, since i > 0 by
the condition in step 2. Moreover, |fa−1(x)| ≥ |fa(x)| which in turn implies that fa−1(x) is not an
anchor. This proves Claim 4.11.

Claim 4.12. The algorithm accepts L.

By Claims 4.9 and 4.10 it remains to argue for the case that the algorithm stops in step 26 or
in step 29.

Assume we stop in step 26. Since fa(x) is an anchor, h(fa(x)) = fa(x) and g(fa(x)) = 0 ∈ N .
Hence fa(x) ∈ B1 ⊆ B, and thus,

x ∈ L ⇔ [fa(x) ∈ L ⇔ a ≡ 0 (mod 2)]
⇔ [fa(x) ∈ L ∩ B ⇔ a ≡ 0 (mod 2)].

Assume we stop in step 29. fa(x) belongs to S0, since (S0, S1) is a partition of Σ∗. We
know that fa−1(x) is no anchor and fa(x) is an anchor. Hence h(fa−1(x)) = fa(x) ∈ S0 and
g(fa−1(x)) = 1 /∈ N .3 It follows that fa−1(x) ∈ B0 ⊆ B. Thus,

x ∈ L ⇔ [fa−1(x) ∈ L ⇔ a ≡ 1 (mod 2)]
⇔ [fa−1(x) ∈ L ∩ B ⇔ a ≡ 1 (mod 2)].

This proves Claim 4.12.
From Claim 4.12 it immediately follows that L≤p

bttL ∩ B. In a similar way we show that
L≤p

bttL ∩ A. For this we only have to modify a few things in the proof above. We have to define r
as

r(x) df= min{i
∣∣ |f i+1(x)| ≤ |f i(x)| or f i(x) ∈ S0}.

Claims 4.6, 4.7, 4.8, 4.9, 4.11, and 4.12 can be proved analogously for A instead of B. In the proof
of Claim 4.10 we have to use the items 1 and 2 instead of 3 and 4. For completeness, we present in
Figure 3 the ≤p

btt -reduction from L to L ∩ A.
It follows that L, L ∩ A, and L ∩ B are Turing-equivalent. Therefore, L is weakly T -mitotic.

This completes the proof of Theorem 4.4. �

We conclude this section by considering a question that asks about relations between mitoticity
and autoreducibility. Ambos-Spies showed that every mitotic set is autoreducible. Buhrman and
Torenvliet [BT94] asked whether whether m-autoreducibility implies m-mitoticity. The following
proposition shows that it is difficult to disprove this implication.

Proposition 4.1. If there exists a set that is m-autoreducible but not m-mitotic, then P �=
PSPACE.

3This is the point where we need the fact that N starts with an alternation, i.e., 0 ∈ N and 1 /∈ N . Suppose we
defined N = {2, 3, 6, 7, 10, 11, . . . } and let wi

df
= fn+i(x). Then it could happen that |w0| = 10, |w1| = 9, |w2| = 10,

|w3| = 9, and so on. The words w1, w3, w5, . . . are anchors. Assume that for all i, h(wi) ∈ S1. So in the whole
sequence w0, w1, w2, . . . there is no word that belongs to B.
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1 n := r(x)
2 if |fn+1(x)| > |fn(x)| then
3 // here fn(x) ∈ S0, g(fn(x)) = 0, and fn(x) ∈ A0
4 accept if and only if [fn(x) ∈ L ∩ A ⇔ n ≡ 0 (mod 2)]
5 else
6 Q := {fn+i(x)

∣∣ 0 ≤ i ≤ 8}
7 if ∀i ∈ [1, 8], |fn+i(x)| ≥ |fn+i+1(x)| then
8 // here for all i ∈ [0, 8], |fn+i(x)| ≥ |fn+i+1(x)|
9 if ‖Q‖ = 9 then
10 choose smallest j ∈ [0, 8] such that fn+j(x) ∈ L ∩ A
11 accept if and only if n + j ≡ 0 (mod 2)
12 else
13 // ∃i ∈ [0, 7],∃j ∈ [(i + 1), 8] such that fn+i(x) = fn+j(x)
14 choose the smallest such i
15 choose l∈ [(i + 1), 8] s.t. fn+l(x)=min{fn+j(x)

∣∣ j∈ [i, 8]}
16 a := n + l
17 endif
18 else
19 // Q has an anchor whose length increases under f
20 choose smallest i ∈ [0, 8] such that |fn+i(x)| < |fn+i+1(x)|
21 a := n + i
22 endif
23 // a ≥ 1, fa(x) is an anchor, and fa−1(x) is no anchor
24 if fa(x) ∈ S0 then
25 // here fa(x) ∈ S0 and therefore fa(x) ∈ A0
26 accept if and only if [fa(x) ∈ L ∩ A ⇔ a ≡ 0 (mod 2)]
27 else
28 // here fa(x) ∈ S1 and therefore fa−1(x) ∈ A1
29 accept if and only if [fa−1(x) ∈ L ∩ A ⇔ a ≡ 1 (mod 2)]
30 endif
31 endif

Figure 3: Algorithm for L≤p
bttL ∩ A in Theorem 4.4.
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Proof. Assume P = PSPACE. Let A be any m-autoreducible set and let f be the autoreduction
function. We show that A is m-mitotic.

Let � be a special symbol not in Σ∗. Define the greatest predecessor of w, Gp(w), by the
following total function Gp : Σ∗ ∪ {�} → Σ∗ ∪ {�}.

Gp(w) df=


v : if v ∈ Σ∗ and v is the lexicographically greatest word less

than w such that f(v) = w,

� : otherwise, i.e., either w = � or w ∈ Σ∗ but such v does
not exist.

Gp ∈ PF, since we assumed P = PSPACE. Define h(w) to be the minimal n ≥ 1 such that
Gpn(w) = � (where Gpn is the n repetitive applications of Gp to w). Note that such n must exist.
Note also that h ∈ PF since we assumed P = PSPACE.

Define f ′(w) = fn(w), where n is the smallest number i ≥ 1 such that f i(w) > f i−1(w). Such
n must exist, since for all w, f(w) �= w. Note that fn(w) can be determined in polynomial space,
since w = f0(w) > f1(w) > · · · > fn−1(w). Therefore, by our assumption, f ′ ∈ PF. Note that f ′

reduces A to A. Also, for every w, Gp(f ′(w)) �= �. Hence, for every w, h(f ′(w)) > 1.
Define B = {w

∣∣ h(w) is odd}. This is a set in P and divides A in the sense of m-mitoticity. It
remains to show that A, A ∩ B, and A ∩ B are m-equivalent. For this, define

r(w) df=


Gp(w) : if h(w) > 1,

f ′(w) : if h(w) = 1 and f ′(w) /∈ B,

Gp(f ′(w)) : if h(w) = 1 and f ′(w) ∈ B.

Observe that r ∈ PF. We claim:

1. r(w) ∈ A ⇔ w ∈ A

2. r(w) ∈ B ⇔ w /∈ B

Proof of (1): If h(w) > 1, then Gp(w) �= � and therefore, r(w) = Gp(w) ∈ A ⇔ f(Gp(w)) =
w ∈ A. If h(w) = 1 and f ′(w) /∈ B, then r(w) = f ′(w) ∈ A ⇔ w ∈ A, since f ′ reduces A to A.
Now assume h(w) = 1 and f ′(w) ∈ B. Here r(w) = Gp(f ′(w)) �= � as shown above. Therefore,
r(w) ∈ A ⇔ f(Gp(f ′(w))) ∈ A ⇔ f ′(w) ∈ A ⇔ w ∈ A.

Proof of (2): If h(w) > 1, then h(Gp(w)) = h(w)−1 and therefore, w ∈ B ⇔ r(w) = Gp(w) /∈
B. If h(w) = 1 and f ′(w) /∈ B, then w ∈ B and r(w) = f ′(w) /∈ B. Finally, assume h(w) = 1
and f ′(w) ∈ B. h(f ′(w)) is odd and > 1 (as seen above). This implies h(f ′(w)) > 2. Therefore,
h(Gp(f ′(w))) is even and greater than 1. So r(w) = Gp(f ′(w)) /∈ B and w ∈ B.

The following function reduces A to A ∩ B: If w ∈ B, then output w; otherwise output r(w).
Function r reduces A ∩ B to A ∩ B. The following function reduces A ∩ B to A: If w /∈ B,
then output w; otherwise output a fixed element from A. Therefore, A, A ∩ B, and A ∩ B are
m-equivalent and hence A is m-mitotic. �

5 Immunity

In Glaßer et al. [GPSS04], the authors proved immunity results for NP-complete sets on the as-
sumption that certain average-case hardness conditions are true. For example, they show that if
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one-way permutations exist, then NP-complete sets are not 2nε
-immune. Here we obtain a non-

immunity result for NP-complete sets under the assumption that the following worst-case hardness
hypothesis holds.

Hypothesis T: There is an NP machine N that accepts 0∗ and no P-machine can compute
its accepting computations. This means that for every polynomial-time machine M there exist
infinitely many n such that M(0n) is not an accepting computation of N(0n).

Though the hypothesis looks verbose, we note that it is implied by a simply stated and believable
hypothesis.

Observation 5.1. If there is a tally language in NP ∩ coNP − P, then Hypothesis T is true.

We show that if Hypothesis T holds, then NP-complete languages are not 2n(1+ε)-immune.

Theorem 5.1. If Hypothesis T holds, then, for every ε > 0, NP-complete languages are not 2n(1+ε)-
immune.

Proof. Let L be any NP-complete language. We first show that there is a reduction from
0∗ to L that is infinitely often exponentially honest. We then use this fact to show that L is not
2n(1+ε)-immune.

Lemma 5.1. Assume that the hypothesis holds. For every NP complete language L, there exists
a constant c > 0, such that for every k′ > 0, there exists a reduction f from 0∗ to L such that for
infinitely many n, |f(0n)| > k′ log n. The reduction f can be computed in time O(nk′+c).

Proof. Let M be the NP machine from the hypothesis. Let an be the lexicographically
maximum accepting computation of M on 0n. Consider the set

S = {〈0n, y〉 | y ≤ an}.

It is obvious that S is in NP. Let g be a many-one reduction from S to L. We now describe a
reduction from 0∗ to L with the desired properties. Let T be the computation tree of M on 0n.
Without loss of generality, assume T is a complete binary tree, and let d denote the depth of T .
The reduction traverses T in stages. At stage k it maintains a list of nodes at level k. Initially at
Stage 1, list1 contains the root of the tree. The reduction also maintains a variable called next,
whose value is initially undefined. We now describe Stage k > 1.

1. Let listk−1 = 〈u1, u2, . . . , ul〉. Let v1, v2, . . . , v2l be the children of nodes in listk−1. Assume
v1 < v2 < · · · < v2l. Set listk = 〈v1, . . . , v2l〉.

2. Consider the first j such that |g(〈0n, vj〉)| > k′ log n.

3. If such j exists, then let listk = 〈v1, v2, . . . , vj−1〉 and next = vj .

4. Prune listk, i.e., if there exist i < r such that g(〈0n, vi〉) = g(〈0n, vr〉), then remove
vi, vi+1, . . . , vr−1 from listk.

The following is the desired reduction f from 0∗ to L. Let x be the input and let n = |x|.

• If x �= 0n, then output a fixed string not in L.

• Run Stages 1, . . . , d.
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• All nodes in listd are leaf nodes. If listd contains an accepting node, then output a fixed
string in L, else output g(〈0n, next〉).

We claim that the above reduction has the desired properties. It is obvious that the reduction
is correct on non-tally strings. So we focus only on tally strings. We show a series of claims that
help us in showing the correctness of the reduction.

We first make a couple of observations.

Observation 5.2. Consider Step 4 of Stage k, if a node vm is removed from listk, then the right-
most accepting computation of M on 0n does not pass through vm.

Proof. Step 4 removes nodes vi, . . . , vr−1 from listk, if there exist i < r such that
g(〈0n, vi〉) = g(〈0n, vr〉). Assume that the right most accepting computation passes through a
node vm such that i ≤ m ≤ r − 1. By definition of S, 〈0n, vi〉 ∈ S and 〈0n, vr〉 /∈ S. How-
ever, g is a many-one reduction from S to L, and g(〈0n, vi〉) = g(〈0n, vr〉). This is a contradiction. �

Observation 5.3. Let k be the first stage at which the variable next is defined. For every r ≥ k
and for all u ∈ listr it holds that u < next.

Proof. We prove the claim by induction. Assume next is defined for the first time during
Stage k. This happens in Step 3, where next = vj and listk = 〈v1, . . . vj−1〉. In Step 4 some nodes
from listk are deleted. Since v1 < v2 < · · · < vj−1 < vj = next, the claim holds after Stage k.
We now show that if the claim holds at the beginning of Stage r, then it holds at the end of
Stage r. Consider Stage r. At the beginning of this stage, listr = 〈u1, . . . , ul〉 where ui < next
for 1 ≤ i ≤ k. During this stage the value of next may or may not change. If the value of next
changes, then it happens in Step 3. Here we set next = vj , listr will be a subset of {v1, . . . , vj−1},
thus the claim holds after the stage. Suppose the value of next does not change. At the end of the
Stage r, listr = 〈v1, · · · , vm〉 and every node v in listr is a child of some node ui. Since ui < next
and v is a child of ui, we have v < next. �

Claim 5.1. For every k > 1, one of the following statements holds at the end of Stage k.

A next is undefined, and the rightmost accepting computation of M on 0n passes through a node
in listk.

B next is defined and the rightmost accepting computation passes through a node in listk.

C next is defined, and the rightmost accepting computation either passes through next or lies
to the right of next.

Proof. We will show that if one of the three statements hold before the begining of Stage k,
then one of the three statements, possibily different, hold at the end of Stage k. Initially, at the
beginning of Stage 2, list2 contains root and next is undefined, so Statement A holds. Let k ≥ 2
and assume that one of the statements holds at the beginning of Stage k. We consider three cases.

Case 1: Statement A holds. Let listk = 〈u1, . . . , ul〉 at the beginning of the stage. After
Step 2 listk becomes 〈v1, v2, . . . , v2l〉. Since the vi’s are children of the ui’s, the rightmost accepting
computation must pass through a node vr that is in listk. Consider Step 3. If there is no j such that
g(〈0n, vj〉)| > k′ log n, then next remains undefined at the end of Stage k, and no changes are made
to list in Step 3. Thus vr ∈ listk after Step 3. In Step 4, we apply pruning. By Observation 5.2, vr
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is not removed from listk during Step 5. Thus at the end of the Stage k, the rightmost accepting
computation passes vr and vr ∈ listk, and so at the end of Stage k, Statement A holds.

Now consider the case where the procedure finds j such that |g(〈0n, vj〉)| > k′ log n. This sets
next to vj . If j ≤ r, then vr is removed from listk. However, since vj ≤ vr, the rightmost accepting
computation either passes through next or lies to the right of next. Statement C thus holds. If
j > r, then after Step 3 vr ∈ listk. By Observation 5.2, vr remains in the list after Stage 4, and so
Statement B holds at the end of Stage k.

Case 2: Statement B holds at the beginning of Stage k. This implies that after Step 2
the rightmost accepting computation passes through a node vr in listk. Again, there are three
possibilities for Step 2: (i) no such j is found, (ii) j is defined and j ≤ r, and (iii) j is defined and
j > r. By following an argument similar to that of the previous case, we can show that one of the
statements holds at the end of the Stage k.

Case 3: Statement C holds at the beginning of Stage k. Let listk = 〈u1, . . . , ul〉 at the
beginning. If the value of next does not change during this stage, then Statement C holds after this
stage. The value of next changes if there is a j such that |g(〈0n, vj)| > k′ log n. By Observation 5.3,
for every u ∈ listk, u < next. Since vj is a child of some node u, we have vj < u < next. Thus
the right most accepting computation lies to the right of vj . Since next becomes vj , Statement C
holds at the end of this stage. �

Claim 5.2. The above reduction f is correct, i.e, for every n, f(0n) is a string in L.

Proof. Note that f(0n) is a fixed string in L, if listd contains an accepting leaf node.
In this case the reduction is obviously correct. Suppose none of the leaf nodes in listd is an
accepting node. Then the right most accepting computation does not pass through any node in
listd. By the previous claim, at the end of Stage d, next is defined and the right most accepting
computation either passes through next or lies to the right of next. Thus (〈0n, next〉) ∈ S. Since
the reduction outputs g(〈0n, next〉), and g is a many-one reduction from S to L, the claim follows. �

Our next claim bounds the size of listr.

Claim 5.3. For every k > 0, at the beginning of Stage k, the size of listk is at most 2nk′
.

Proof. Note that after Step 3, for every node u in listk, |g(〈0n, u〉)| ≤ k′ log n. After Step 4,
for every pair of nodes u and v in listr, we have g(〈0n, u〉) �= g(〈0n, v〉). Thus, after Stage k,
|listk| ≤ 2nk′

. �

Next we show that the reduction runs in polynomial time. Assume that, for any node u ∈ T ,
the computation of g(〈0n, u〉) takes nr steps. Let the depth of the tree T be nl. We define c to be
r + l. Note that the constant c depends only on L, and is independent of k′.

Claim 5.4. The running time of the reduction is O(nk′+c).

Proof. First we calculate the running time of Stage k. Observe that Step 2 is the most
expensive step. By the previous claim, at the beginning of Stage k, |listk| ≤ 2nk′

. After Step 1,
|listk| ≤ 4nk′

. In Step 2, we compute g for every node in listk. The time required for this
computation is O(nk′+r). So, Stage k requires O(nk′+r) steps. Since there are d = nl stages, the
time taken for the reduction is O(nk′+r+l) = O(nk′+c). �
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Claim 5.5. For infinitely many n, after Stage d, listd does not contain accepting nodes.

Proof. Assume that for all but finitely many n, after Stage d, listd contains an accepting
node. By Claim 5.4, the time taken by the reduction is O(nk′+c). Thus, for all but finitely many
n, the procedure computes a polynomial-size list that contains an accepting node. Thus, for all
but finitely many n, there is a polynomial-time algorithm that outputs an accepting computation
of M on 0n. This contradicts Hypothesis T. �

Claim 5.6. For infinitely many n, the reduction outputs a string whose length is bigger than
k′ log n.

Proof. By the previous claim, for infinitely many n, listd does not contain an accepting node.
So, for infinitely many n, the rightmost accepting computation of M on 0n does not pass through
a node in listd. Thus, by Claim 5.1, Statement C holds after Stage d. Thus, next is defined,
and the reduction outputs g(〈0n, next〉). Note that the reduction defines next to be v, only if
|g(〈0n, v〉)| > k′ log n. Thus for infinitely many n, the reduction outputs a string whose length is
bigger than k′ log n. �

This concludes the proof of Lemma 5.1. �

Combing the following lemma with Lemma 5.1 completes the proof of the theorem.

Lemma 5.2. Let L be any NP-complete language. If there is a constant c > 0 such that for every
k > 0 there is a reduction f from 0∗ to L such that, for infinitely many n, |f(0n)| > k log n, and f
can be computed in time O(nk+c), then for every ε > 0, L is not 2n(1+ε)-immune.

Proof. Given ε > 0, pick k such that k > (c + 1)/ε. There is a reduction f from 0∗ to L such
that for infinitely many n, |f(0n)| > k log n. From this it follows that there exist infinitely many
x, |x| = m, for which there exist n < 2m/k such that f(0n) = x. Consider the algorithm that, on
input x, |x| = m, behaves as follows:

1. For i = 1 to 2m/k, if f(0i) = x then accept x and halt.

2. Reject x.

The above algorithm accepts a string x only when it finds that for some i, f(0i) = x. Since f is a
many-one reduction from 0∗ to L, the above algorithm accepts a subset of L. There exist infinitely
many x for which f(0i) = x for some i, 1 ≤ i ≤ 2m/k. So, the above algorithm accepts an infinite
set. The most time-consuming step of the algorithm is computation of f(0i) and this requires ik+c

steps. Since i ranges between 1 and 2m/k, the running time of the algorithm is 2m(1+ c+1
k

). Since
c+1
k < ε, the time taken by the algorithm is 2m(1+ε). Thus L is not 2n(1+ε)-immune. �

Theorem 5.1 follows from the Lemmas 5.1 and 5.2. �

Corollary 5.1. If there is a tally language in NP∩ coNP−P, then, for every ε > 0, NP-complete
languages are not 2n(1+ε)-immune.

Next we consider the possibility of obtaining an unconditional result regarding non-immunity
of NP-complete languages. We show that for certain type of NP-complete languages we get an
unconditional result.
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Definition 5.1. A language L does not have superpolynomial gaps, if there exists k > 0 such that
for all but finitely many n, there exists a string x in L such that n ≤ |x| ≤ nk.

We show that NP-complete languages that have no superpolynomial gaps are not immune.

Theorem 5.2. If L is an NP-complete language that has no superpolynomial gaps, then for every
ε > 0, L is not 2n(1+ε)-immune.

Proof. Suppose there exists a 2n(1+ε)-immune NP-complete language L that does not have
superpolynomial gaps. Then, by a result of Hitchcock and Pavan [HP04], Hypothesis T holds.
Thus, by Theorem 5.1, we have a contradiction. �

The above theorem prompts the following question: Are there NP-complete languages with
superpolynomial gaps? We have the following result. Given two complexity classes A and B, we
say A ⊆ io-B, if for every language A ∈ A, there exists a language B ∈ B such that for infinitely
many n, An = Bn.

Theorem 5.3. If NP has a complete language with superpolynomial gaps, then for every ε > 0,
NP ⊆ io-DTIME(2nε

).

Proof. Assume L is an NP-complete language with superpolynomial gaps, let L ∈ DTIME(2nk
).

Let S be any language in NP. Since L is NP-complete, S is many-one reducible to L via a reduction
f whose running time is nr. Note that for every x, |f(x)| ≤ |x|r. Without loss of generality, assume
r > k, and let l = r/ε. Since L has superpolynomial gaps, for infinitely many n, L is empty between
lengths n1/l and nl. Consider the following algorithm M .

1. Input x, |x| = n.

2. Compute f(x).

3. If n1/l ≤ |f(x)|, then reject x.

4. Else accepts x if and only if f(x) belongs to L.

The algorithm checks for membership of f(x) in L, only when |f(x)| < n1/l. The time taken
for this step is 2|f(x)|k ≤ 2|f(x)|r ≤ 2nr/l

= 2nε
. Thus the language accepted by the above machine

M belongs to DTIME(2nε
).

We now claim that L(M) equals S at infinitely many lengths. Since L has superpolynomial
gaps, for infinitely many n, L is empty between lengths n1/l and nl. Consider one such length n.
Observe that for any string x of length n, |f(x)| ≤ nr ≤ nl. If n1/l ≤ |f(x)| ≤ nl, then x /∈ S.
In this case the algorithm decides x correctly. If |f(x)| < n1/l, the algorithm accepts x if and
only if f(x) ∈ L. Thus the algorithm is correct on x. Thus at length n, Sn = L(M)n. Thus
S ∈ io-DTIME(2nε

). �

Combining Theorems 5.2 and 5.3 we have the following corollary.

Corollary 5.2. If for some δ > 0, NP �⊆ io-DTIME(2nδ
), then for every ε > 0, no NP-complete

language is 2n(1+ε)-immune.
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6 Exponentially Honest Reductions

In the previous section we showed that if NP ∩ coNP − P has a tally language, then there exist
reductions from 0∗ to NP-complete sets that are infinitely often exponentially honest. In this
section, we consider a stronger hypothesis and show that if this hypothesis holds, then every NP-
complete set is complete with respect to exponentially honest reductions.

We first make a few observations regarding Lemma 5.1 and its proof.

Corollary 6.1. Assume there exists an NP machine that accepts 0∗ such that no P-machine can
compute infinitely many accepting computations of M . Then for every NP-complete language L
and for every k > 0, there is a polynomial-time many-one reduction f from 0∗ to L such that for
all but finitely many n, |f(0n)| > k log n.

Proof. Under this stronger hypothesis, the assertions made in the Claims 5.5 and 5.6 hold for
all but finitely many n. �

Corollary 6.2. Assume there exists an NP machine that accepts 0∗ such that no 22n-time-bounded
machine can compute infinitely many accepting computations of M . Let L be any NP-complete
language, and S be any set in NP. For every k > 0, there is a polynomial-time computable, partial
function f such that

(i) f(x) is defined for all x ∈ S,

(ii) if f(x) is defined then (x ∈ S ⇔ f(x) ∈ L) and |f(x)| > k log n, and

(iii) if f(x) is undefined then x /∈ S. Moreover, in polynomial time we can decide whether f(x) is
defined or not.

Proof. Let an be the maximum accepting computation of M on 0n. Consider the following set

S′ = {〈x, y〉 | |x| = n, x ∈ S, y ≤ an}.

Since S′ is in NP, there is a many-one reduction g from S′ to L. The desired function f is similar
to the reduction described in Lemma 5.1. Given x as input, it traverses the tree T in stages.
During Stage k, it maintains listk which is a subset of nodes at level k. It also has an auxiliary
variable next. After Stage d, f considers listd. If listd contains an accepting node u of T , then it
outputs g(〈x, u〉). Otherwise, if next is defined, then it outputs g(〈x, next〉); if next is undefined,
then f is undefined. We argue that for all but finitely many x ∈ S, listd does not contain an
accepting node of T and next is defined. Otherwise we get a 22n-time bounded algorithm that
computes infinitely many accepting computations of M . Thus for all but finitely many x ∈ S, f
outputs g(〈x, next〉) and the length is guaranteed to be bigger than k log n. Similarly, we argue
that for all but finitely many x /∈ S, listd does not contain an accepting node or next is undefined. �

Now we consider the following hypothesis.
UP-machine Hypothesis: For some ε > 0, there is a UP-machine M that accepts 0∗ such

that no 2nε
-time-bounded machine can compute infinitely many accepting computations of M .

We first make the following observation.

Observation 6.1. If the UP-machine hypothesis holds, then, there exists a UP-machine M that
accepts 0∗ such that no 22n-time-bounded machine can compute infinitely many accepting compu-
tations of M .
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Theorem 6.1. Assume the UP-machine hypothesis holds. Let L be any NP-complete language.
For every S ∈ NP and every k > 0, there is a many-one reduction f from S to L such that for
every x, |f(x)| > k log |x|.

Proof. The hypothesis implies the existence of a UP-machine M that accepts 0∗ such that no
22n-time bounded machine can compute infinitely many accepting computations of M . Thus by
Corollary 6.2, there is a function f such that f(x) is defined for all x ∈ S and if f(x) is defined
x ∈ S ⇔ f(x) ∈ L. Now consider the following set.

T = {x | f(x) is undefined}.

Since f is polynomial-time computable, T is in P, and also T ⊆ S. Now consider the following
set. Let an be the unique accepting computation of M(0n).

T ′ = {〈x, y〉 | x ∈ T, |x| = n, y ≤ an}.

Since T is in P and an is unique, T ′ ∈ UP∩ co-UP. Thus there is a many-one reduction from T ′ to
L. Arguing as in Lemma 5.1, we claim that there is a polynomial-time many-one reduction g from
T to L such that if x ∈ T , then |g(x)| > k log n.

Now consider the following reduction h from S to L: Given x, if f(x) is defined, then output
f(x), else output g(x).

Whenever f(x) is defined we have x ∈ S ⇒ f(x) ∈ L. Also recall that for every x ∈ S, f(x)
is defined. Thus x ∈ S ⇒ h(x) ∈ L. Consider the case x /∈ S. If f(x) is defined, then f(x) /∈ L,
thus h(x) /∈ L. If f(x) is undefined, then x ∈ T . Recall that g is a reduction from T to L. Thus
x ∈ T ⇔ g(x) ∈ L. Thus in this case, h(x) /∈ L. Thus h is a valid reduction from S to L. Since f
and g are polynomial-time computable, h is polynomial-time computable. Since |f(x)| and |g(x)|
(if defined) are bigger than k log n, |h(x)| > k log n, for every x. �

7 Robustness

Recently Buhrman and Torenvliet [BT04] proved that Turing-complete sets for EXP are robust
against log-dense sets in P. Using similar ideas, we can prove the same for NP. The proof is easier
though, due to the fact that search reduces to decision for all Turing-complete sets for NP [HS01].
A set S is log-dense if there is a constant c > 0 such that for all n, ‖S≤n‖ ≤ c log n.

Theorem 7.1. If a set A is Turing-complete for NP and S is a log-dense set in P, then A − S is
Turing-complete for NP.

Proof. Let A be Turing complete for NP and let S be a log-dense set in P. Then A − S
belongs to NP, because S belongs to P. Now we show that A is Turing reducible to A − S in
polynomial time. Consider the machine T that reduces search to decision for A in time p(n), for
some polynomial p. Let c > 0 be a constant such that for all n, ‖S≤n‖ ≤ c log n. Then the following
machine M is a polynomial time Turing reduction from A to A − S:

1 Input x
2 For all bit strings s of length c log p(|x|) do
3 k ←− 0;
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4 Repeat
5 Simulate T on x until T makes the next query q;
6 If q �∈ S then continue simulation with YES iff q ∈ A − S;
7 Else
8 Continue the simulation with YES iff sk = 1;

//sk is the k-th bit of s
9 k ←− k + 1;
10 Until T outputs ys or rejects;
11 If T outputs ys and ys is a witness of x then ACCEPT;
12 Endfor;
13 REJECT.

If q /∈ S, then a query to A − S has the same answer as a query to A. So in this case M ’s
simulation of T behaves correctly. At most c log p(|x|) queries q belong to S. For each of these
queries, the bit string s determines the response. If x /∈ A, then no witness ys for x exists. So in
this case M does not accept x. If x ∈ A, then the bit string s that represents the correct answers to
the queries that are in S will make T output a correct witness ys. Hence, M accepts x. Therefore,
the algorithm is correct.

For the running time, there are at most p(|x|)c iterations of the outer loop, each of which is
a simulation of T on x, which costs p(|x|) time. Hence, the total running time is bounded by a
polynomial in |x|. �
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