

Polylogarithmic-round Interactive Proofs for coNP Collapse the
Exponential Hierarchy

Alan L. Selman∗
Department of Computer Science and Engineering

University at Buffalo, Buffalo, NY 14260
Samik Sengupta†

Department of Computer Science and Engineering
University at Buffalo, Buffalo, NY 14260

February 23, 2004

Abstract

It is known [BHZ87] that if every language in coNP has a constant-round interactive proof system,
then the polynomial hierarchy collapses. On the other hand, Lund et al. [LFKN92] have shown that
#SAT, the #P-complete function that outputs the number of satisfying assignments of a Boolean for-
mula, can be computed by a linear-round interactive protocol. As a consequence, the coNP-complete set
SAT has a proof system with linear rounds of interaction.

We show that if every set in coNP has a polylogarithmic-round interactive protocol then the expo-
nential hierarchy collapses to the third level. In order to prove this, we obtain an exponential version
of Yap’s result [Yap83], and improve upon an exponential version of the Karp-Lipton theorem [KL80],
obtained first by Buhrman and Homer [BH92].

1 Introduction
Bábai [Báb85] and Bábai and Moran [BM88] introduced Arthur-Merlin Games to study the power
of randomization in interaction. Soon afterward, Goldwasser and Sipser [GS89] showed that these
classes are equivalent in power to Interactive Proof Systems, introduced by Goldwasser et al. [GMR85].
Study of interactive proof systems and Arthur-Merlin classes has been exceedingly successful [ZH86,
BHZ87, ZF87, LFKN92, Sha92], eventually leading to the discovery of Probabilistically Checkable Proofs
[BOGKW88, LFKN92, Sha92, BFL81, BFLS91, FGL+91, AS92, ALM+92].

Interactive proof systems are successfully placed relative to traditional complexity classes. In particular,
it is known that for any constant k, IP[k] ⊆ Πp

2 [BM88], and IP[poly] = PSPACE [Sha92]. However, the
relationship between coNP and interactive proof systems is not entirely clear. On the one hand, Boppana,
Håstad and Zachos [BHZ87] proved that if every set in coNP has a constant-round interactive proof system,
then the polynomial-time hierarchy collapses below the second level. On the other hand, the best interactive
protocol for any language in coNP comes from the result of Lund et al. [LFKN92], who show that #SAT,
a problem hard for the entire polynomial-time hierarchy [Tod91], is accepted by an interactive proof system
withO(n) rounds of interaction on an input of length n. Can every set in coNP be accepted by an interactive
∗Research partially supported by NSF grant CCR-0307077. Email: selman@cse.buffalo.edu
†Email: samik@cse.buffalo.edu

1

proof system with more that constant but sublinear number of rounds? Answering this question has been
the motivation for this paper.

We show in this paper that coNP cannot have a polylogarithmic-round interactive proof system unless
the exponential hierarchy collapses to the third level, i.e., NEXPΣp2 = coNEXPΣp2 . Three principal steps
lead to the proof of our main result, and these results are of independent interest. Note that although we use
Arthur-Merlin protocols to obtain our results, our main theorem holds for interactive proof systems as well
due to the result of Goldwasser and Sipser [GS89], who showed that an interactive proof system with m
rounds can be simulated by an 2m+ 4-move Arthur-Merlin protocol.

• An Arthur-Merlin protocol with m moves where both Arthur and Merlin exchange at most l(n) bits
at every move can be simulated by a two-move AM protocol where Arthur moves first and uses
O(l(n)m−1) random bits (Theorem 3.1).

• If L is accepted by a two-move AM protocol where Arthur uses 2polylog random bits, then L belongs
to the advice class NP/2polylog (Lemma 3.3).

• If coNP ⊆ NP/2polylog (equivalently NP ⊆ coNP/2polylog) then

NEXPΣp2 = coNEXPΣp2 = Sexp2 ◦ PNP (Theorem 4.1).

In addition to these results, we improve upon a result of Buhrman and Homer [BH92], showing that if NP
has 2polylog-size family of circuits, then NEXPNP = coNEXPNP = SEXP

2 .
We note that Goldreich and Håstad [GH98] and Goldreich, Vadhan, and Wigderson [GVW01] have

studied Arthur-Merlin games and interactive proof systems with bounded message complexity. Their results
are incomparable to our Theorem 3.1. In particular, our simulation of an m-move Arthur-Merlin protocol
by a 2-move Arthur-Merlin protocol assumes that l, the number of message bits used in every move, is
polynomial in the length of the input, and we obtain that the number of random bits used by Arthur in the
2-move protocol is not exponential in l. This is crucial in order to get Theorem 4.1.

2 Preliminaries
For definitions of standard complexity classes, we refer the reader to Homer and Selman [HS01]. The
exponential hierarchy is defined as follows:

EXP = Σexp
0 ,NEXP = Σexp

1 ,NEXPNP = Σexp
2 ,

and in general, for k ≥ 0,
Σexp
k+1 = NEXPΣpk .

For every k ≥ 0,
Πexp
k = {L

∣∣L ∈ Σexp
k }.

We define polylog =
⋃
k>0 logk n and 2polylog =

⋃
k>0 2logk n. Let C be a complexity class. A set

L ∈ C/2polylog if there is a function s : 1∗ 7→ Σ∗, some constant k > 0, and a set A ∈ C such that

1. For every n, |s(1n)| ≤ 2logk n, and

2. For all x, x ∈ L⇔ (x, s(1|x|)) ∈ A. Here A is called the witness language.

2

It is easy to see that D ⊆ C/2polylog if and only if coD ⊆ coC/2polylog.
Bábai [Báb85] introduced Arthur-Merlin protocol, a combinatorial game that is played by Arthur, a

probabilistic polynomial-time machine, and Merlin, a computationally unbounded Turing machine. Arthur
can use random bits, but these bits are public, i.e., Merlin can see them and move accordingly.

Given an input string x, Merlin tries to convince Arthur that x belongs to some language L. The game
consists of a predetermined finite number of moves with Arthur and Merlin moving alternately. In each
move Arthur (or Merlin) prints a finite string on a read-write communication tape. Arthur’s moves depend
on his random bits. After the last move, Arthur either accepts or does not accept x.

Definition 2.1 ([Báb85, BM88]) For any m > 0, a language L is in AM[m] (respectively MA[m]) if for
every string x of length n

• The game consists of m moves

• Arthur (resp., Merlin) moves first

• After the last move, Arthur behaves deterministically to either accept or not accept the input string

• If x ∈ L, then there exists a sequence of moves by Merlin that leads to the acceptance of x by Arthur
with probability is at least 3

4

• if x /∈ L then for all possible moves of Merlin, the probability that Arthur accepts x is less than 1
4 .

Bábai and Moran [BM88] showed that AM[k], where k > 1 is some constant, is the same as AM[2] = AM.
Note that MA[2] = MA, AM[1] = BPP, and MA[1] = M = NP. Bábai [Báb85] proved that MA ⊆ AM.

Now we need to extend modestly the notion of Arthur-Merlin protocols. In the following limited manner,
we consider the possibility that Arthur is a probabilisitic Turing machine, but not necessarily polynomial-
time-bounded. Let f : N 7→ N be some function. Then we define the class AM(f) to be the class of
languages accepted by protocols in which there are only two moves, Arthur moves first, and Arthur can use
at most f(n) random bits on an input of length n. In particular, we will have occasion to consider f to be
quasipolynomial; that is, we will consider the class AM(2logc n), where c is a positive constant.

We note the following standard proposition.

Proposition 2.2 Let E be an event that occurs with probability at least 3
4 . Then, for any polynomial p(·)

such that p(n) ≥ n, there is a constant c such that within t def= c × p(n) independent trials, E occurs for
more than t

2 times with probability (1− 1
2p(n)).

We define Sexp2 as the exponential version of the S2 operator defined by Russell and Sundaram [RS98]
and Canetti [Can96]. A set L is in Sexp2 ◦C if there is some k > 0 andA ∈ C such that for every x ∈ {0, 1}n,

x ∈ L =⇒ ∃y ∀z (x, y, z) ∈ A, and
x /∈ L =⇒ ∃z ∀y (x, y, z) /∈ A,

where |y|, |z| ≤ 2n
k .

Similar to SP
2
def
= S2 ◦ P, the class Sexp2 ◦ C can be thought of as a game between two provers and a

verifier. Let L ∈ Sexp2 ◦ C. On any input x of length n, the Yes-prover attempts to show that x ∈ L, and the
No-prover attempts to show that x /∈ L. Both the proofs are at most exponentially long in |x|. If x ∈ L,
then there must be a proof by the yes-prover (called a yes-proof) that convinces the verifier that x ∈ L no
matter what the proof provided by the no-prover (called a no-proof) is; symmetrically, if x /∈ L, then there
must exist some no-proof such that the verifier rejects x irrespective of the yes-proof. For every input x,

3

there is a yes-prover and a no-prover such that exactly one of them is correct. The verifier has the ability of
the class C; for example, if C = P, then the verifier is a deterministic polynomial-time Turing machine, and
if C = PNP, then the verifier is a polynomial-time oracle Turing machine with SAT as the oracle. It is also
easy to see that if C is closed under complement, then Sexp2 ◦ C is also closed under complement.

We concentrate on the classes SEXP
2

def
= Sexp2 ◦ P and Sexp2 ◦ PNP. The proofs of Russell and Sundaram

can be easily modified to show the following.

Proposition 2.3

1. SEXP
2 ⊆ NEXPNP ∩ coNEXPNP.

2. NEXPNP ∪ coNEXPNP ⊆ Sexp2 ◦ PNP ⊆ NEXPΣP
2 ∩ coNEXPΣP

2 .

Proof We give a short proof of the second inclusion of item (2). Note that since Sexp2 ◦PNP is closed under
complement, it suffices to show that Sexp2 ◦ PNP is a subset of NEXPΣP

2 . Let L ∈ Sexp2 ◦ PNP; therefore,
∃k > 0, L′ ∈ PNP such that

x ∈ L =⇒ ∃y ∀z (x, y, z) ∈ L′, and
x /∈ L =⇒ ∃z ∀y (x, y, z) /∈ L′,

where |y|, |z| ≤ 2|x|
k . We define the language

A = {(x, y, 02|x|
k

)
∣∣ ∃z(x, y, z) /∈ L′}.

A is in Σp
2. We define a NEXP machine N that decides L with A as an oracle. On input x, N guesses

y, |y| ≤ 2|x|
k , and accepts x if and only if (x, y, 02|x|

k

) /∈ A. If x ∈ L, then for the correctly guessed y,
(x, y, z) ∈ L′ for every z; therefore, N accepts x. On the other hand, if x /∈ L, then there is a z such that
for every y, (x, y, z) /∈ L′, and therefore, (x, y, 02|x|

k

) ∈ A and N rejects x. This completes the proof.
2

3 Arthur-Merlin Games with Polylogarithmic Moves
In this section, we show that languages accepted by an Arthur-Merlin protocol with m moves where Arthur
and Merlin exchange at most l(n) bits in every move (on an input of length n) can be accepted by a two-
move Arthur-Merlin protocol where Arthur moves first and uses O(l(n)m−1) random bits. This implies that
if coNP has a polylogarithmic-move Arthur-Merlin protocol, then coNP can be accepted by a two-move
Arthur-Merlin protocol where Arthur uses 2polylog random bits. As a consequence, using Lemma 3.3, we
obtain that coNP can be solved by nondeterministic polynomial-time machines with 2polylog-length advice.

Theorem 3.1 Let m > 2, and let L ∈ AM[m] where on an input of length n, Arthur and Merlin exchange
messages of length at most l(n) in every move. Then there is a constant km such that L ∈ AM(kml(n)m−1).

Proof We show this by induction on m. We assume that in any move during the interaction, Arthur and
Merlin exchange at most l(n) bits. We will show the following stronger result. For m > 2, there is some
constant km such that

1. AM[m] ⊆ AM(kml(n)m−1)

4

2. MA[m] ⊆ AM(kml(n)m−1)

Our proof is reminiscent of the proof of MA ⊆ AM. In order to help the reader understand the proof of
Theorem 3.1, we digress to recall that proof. Let L ∈ MA. There is L′ ∈ P so that for any w ∈ {0, 1}n,

w ∈ L =⇒ ∃v Pr
z

[(w, v, z) ∈ L′] ≥ 3

4
, and

w /∈ L =⇒ ∀v Pr
z

[(w, v, z) ∈ L′] ≤ 1

4
,

where |v|, |z| ≤ l(n). By Proposition 2.2 there exists some constant c > 0 such that if Arthur repeats its
computation cl(n) times and takes the majority vote, then it will get an error probability of at most 1

2l(n)+3 .
Therefore,

w ∈ L =⇒ ∃vPr
z

[(w, v, z) ∈ L′] ≥ 1− 1

2l(n)+3
, and

w /∈ L =⇒ ∀vPr
z

[(w, v, z) ∈ L′] ≤ 1

2l(n)+3
,

where |z| ≤ cl(n)2. Now we want to switch quantifiers, i.e., Arthur should move first. When w is in L,
there is at least one v for which 1− 1

2l(n)+3 fraction of z result in (w, v, z) ∈ L′. Therefore, for 1− 1
2l(n)+3

fraction of z, the same v will result in acceptance of w. On the other hand, the maximum number of strings
v, |v| ≤ l(n), provided by Merlin is 2l(n)+1. Therefore, when w /∈ L, the fraction of z for which there exists
some v where (w, v, z) ∈ L′ is at most 1

2l(n)+3 × 2l(n)+1 ≤ 1
4 . Hence, we have the following:

w ∈ L =⇒ Pr
z

[∃v (w, v, z) ∈ L′] ≥ 1− 1

2l(n)+3
≥ 3

4
, and

w /∈ L =⇒ Pr
z

[∃v (w, v, z) ∈ L′] ≤ 1

4
,

where |z| ≤ cl(n)2. Therefore, MA ⊆ AM. Observe that the total number of random bits required by
Arthur is at most cl(n)2.

Now we prove the base cases, i.e., m = 3. Let L ∈ AMA. Then there is L′ ∈ MA such that for every x
of length n

x ∈ L =⇒ Pr
y

[(x, y) ∈ L′] ≥ 3

4
, and

x /∈ L =⇒ Pr
y

[(x, y) ∈ L′] ≤ 1

4
,

where |y| ≤ l(n). We reduce the error probability to 1
8 by increasing the length of y to kl(n), where k is

some constant. By the above proof of MA ⊆ AM, we know that L′ ∈ AM for a random z of length at most
cl(n)2. Therefore, there is a set B ∈ P such that

w ∈ L′ =⇒ Pr
z

[∃v (w, v, z) ∈ B] ≥ 3

4
, and

w /∈ L′ =⇒ Pr
z

[∃v (w, v, z) ∈ B] ≤ 1

4
.

Again, we reduce the error probability to 1
8 by increasing the length of z to k × cl(n)2. This implies the

following:

x ∈ L =⇒ Pr
y

Pr
z

[∃v (x, y, v, z) ∈ B] ≥ 3

4
, and

x /∈ L =⇒ Pr
y

Pr
z

[∃v (x, y, v, z) ∈ B] ≤ 1

4
,

5

where |y| ≤ kl(n), and |z| ≤ kcl(n)2. This bound works since for both y and z the error probability is
at most 1

8 , and therefore, when considered as one move (i.e. (y, z) is Arthur’s random bit string) the error
probability is at most 1

8 + 1
8 = 1

4 . Therefore, the total number of random bits required by Arthur is at most
kl(n) + kcl(n)2.

Similarly, let L ∈ MAM. There is L′ ∈ AM such that

x ∈ L =⇒ ∃y (x, y) ∈ L′, and
x /∈ L =⇒ ∀y (x, y) /∈ L′,

where |y| ≤ l(n). We amplify the success probability of the AM protocol for L′ to 1 − 1
2l(n)+3 ; so, Arthur

requires at most cl(n)2 random bits, and there is an NP set L′′ such that the following holds:

x ∈ L =⇒ ∃y Pr
z

[(x, y, z) ∈ L′′] ≥ 1− 1

2l(n)+3
, and

x /∈ L =⇒ ∀y Pr
z

[(x, y, z) ∈ L′′] ≤ 1

2l(n)+3
.

Here |y| ≤ l(n) and |z| ≤ cl(n)2. Again, we switch the quantifiers as we have done before for the proof of
MA ⊆ AM. The critical counting is that the fraction of z for which there is some y such that (x, y, z) ∈ L′′
is at most

∑
y∈Σ≤l(n)

1
2l(n)+3 ≤ 1

4 . Therefore, we have

x ∈ L =⇒ Pr
z

[∃y (x, y, z) ∈ L′′] ≥ 1− 1

2l(n)+3
, and

x /∈ L =⇒ Pr
z

[∃y (x, y, z) ∈ L′′] ≤ 1

4
,

with |z| ≤ cl(n)2. Note that since L′′ ∈ NP, this shows that L is in AM. Take k3 = 2kc; we have shown
that MAM ⊆ AM(k3l(n)2) and AMA ⊆ AM(k3l(n)2) as well. Therefore, our base case is proved.

Now, let m > 3, and L ∈ AM[m], i.e., Arthur moves first. Then, similar to the case of m = 3, we have
that there is a constant k and L′ ∈ MA[m− 1] such that

x ∈ L =⇒ Pr
y

[(x, y) ∈ L′] ≥ 3

4
, and

x /∈ L =⇒ Pr
y

[(x, y) ∈ L′] ≤ 1

4
,

where |y| ≤ l(n). We reduce the error probability of this protocol to 1
8 by increasing the length of y to

kl(n). Since L′ ∈ MA[m − 1] ⊆ AM(km−1 × l(n)m−2), there is a set B ∈ P such that for every x of
length n

x ∈ L =⇒ Pr
y

Pr
z

[∃v (x, y, v, z) ∈ B] ≥ 3

4
, and

x /∈ L =⇒ Pr
y

Pr
z

[∃v (x, y, v, z) ∈ B] ≤ 1

4
,

where |y| ≤ kl(n) and |z| ≤ kkm−1l(n)m−2. Note that z is also increased k-fold so that the error probability
of L′ is reduced to 1

8 . Therefore, we have L ∈ AM(kl(n) + kkm−1l(n)m−2).
On the other hand, let us assume that Merlin moves first. Then, there is a set L′ in AM[m − 1], and

therefore, in AM(km−1l(n)m−2), such that for every string x of length n,

x ∈ L =⇒ ∃y (x, y) ∈ L′, and
x /∈ L =⇒ ∀y (x, y) /∈ L′,

6

where |y| ≤ l(n). Using the same technique described above to show that MA ⊆ AM, we need to amplify
the success probability of the Arthur-Merlin protocol for L′ to 1− 1

2l(n)+3 . Therefore, there is a set L′′ ∈ NP
and some c > 0 such that Arthur has to repeat the protocol cl(n) times to obtain the following:

x ∈ L =⇒ ∃y Pr
z

[(x, y, z) ∈ L′′] ≥ 1− 1

2l(n)+3
, and

x /∈ L =⇒ ∀y Pr
z

[(x, y, z) ∈ L′′] ≤ 1

2l(n)+3
,

where |z| ≤ cl(n)× km−1l(n)m−2 = km−1cl(n)m−1. Switching quantifiers as before, we obtain

x ∈ L =⇒ Pr
z

[∃y (x, y, z) ∈ L′′] ≥ 1− 1

2l(n)+3
≥ 3

4
, and

x /∈ L =⇒ Pr
z

[∃y (x, y, z) ∈ L′′] ≤
∑

y∈Σ≤l(n)

1

2l(n)+3
≤ 1

4
.

Note that Arthur now needs at most cl(n) × km−1l(n)m−2 = km−1cl(n)m−1 random bits. Also observe
that L′′ ∈ NP; therefore, the above equations define an Arthur-Merlin protocol. By taking km = kkm−1c,
we prove the induction step:

AM[m] ⊆ AM(kml(n)m−1),

and
MA[m] ⊆ AM(kml(n)m−1).

This completes the proof. 2

Corollary 3.2 For any k > 0, there is a c > 0 such that

AM[logk n] ⊆ AM(2logc n).

Proof Assume that Arthur and Merlin exchange at most l(n) bits during every move of communication.
From Theorem 3.1, we obtain that there is a constant k′ such that AM[logk n] ⊆ AM(k′l(n)logk n−1).
Taking an appropriate c such that 2logc n ≥ k′l(n)logk n−1, we obtain the result.

2

Lemma 3.3 AM(2polylog) ⊆ NP/2polylog.

Proof Let L ∈ AM(2logk n). Consider any input x of length n. There is a constant k and a polynomial-time
predicate R such that:

x ∈ L =⇒ Pr
y

[∃z R(x, y, z)] ≥ 3

4

x /∈ L =⇒ Pr
y

[∃z R(x, y, z)] ≤ 1

4

where |y|, |z| ≤ 2logk n. Note that by repeating the above protocol c1n times for some constant c1, we can
reduce the probability of error to 1

2n+1 . Therefore, for every x ∈ {0, 1}n, we get

x ∈ L =⇒ Pr
y

[∃z R(x, y, z)] ≥ 1− 1

2n+1

x /∈ L =⇒ Pr
y

[∃z R(x, y, z)] ≤ 1

2n+1

7

where |y| ≤ c1n× 2logk n = 2logk n+log c1+logn ≤ 2logc n for some appropriate c > k. There are at most 2n

many strings of length n, and for every y the error probability is at most 1
2n+1 . Therefore any random y will

be correct on every input string with probability at least 1 − (2n × 1
2n+1) > 0. Hence there must be some

ŷ, |ŷ| ≤ 2logc n such that the following holds for every x of length n:

x ∈ L =⇒ ∃z R(x, ŷ, z)

x /∈ L =⇒ ∀z ¬R(x, ŷ, z)

This shows that L ∈ NP/2logc n. 2

Corollary 3.4 For any constant k > 0, there is a constant c > 0 such that

coNP ⊆ AM[logk n] =⇒ coNP ⊆ NP/2logc n.

Proof This follows directly from Corollary 3.2 and Lemma 3.3. 2

4 Quasipolynomial advice for NP
In this section, we study the consequences of the existence of quasipolynomial length (i.e., 2polylog-length)
advice for NP. This question was first studied by Buhrman and Homer [BH92]. They showed that if NP has
2polylog-size family of circuits, then the exponential hierarchy collapses to the second level (i.e. NEXPNP =
coNEXPNP). In Theorem 4.4, we improve this collapse to SEXP

2 . In Theorem 4.1 we obtain an exponential
version of Yap’s theorem [Yap83]. We prove that if NP is contained in coNP/2polylog, then the exponential
hierarchy collapses to Sexp2 ◦ PNP. We use this theorem to obtain the main result of this paper, which is
Theorem 4.2.

We note that Cai et al. [CCHO03] improved Yap’s theorem . They use self-reducibility of a language
in NPA (for any set A) to show that NP ⊆ coNP/poly =⇒ PH = S2 ◦ PNP. Theorem 4.1 is somewhat
similar in form to the result of Cai et al. However, we use a completely different technique from theirs.
Furthermore, in Theorem 4.5 below, we will use our technique to give an independent (and hopefully easier)
proof of their result.

Theorem 4.1 NP ⊆ coNP/2polylog =⇒ NEXPΣP
2 = coNEXPΣP

2 = Sexp2 ◦ PNP.

Proof Since Sexp2 ◦ PNP is closed under complement, it suffices to show under the hypothesis that
NEXPΣP

2 = Sexp2 ◦PNP. Let L ∈ NEXPΣP
2 via some exponential-time nondeterministic oracle machine N

that has some Σp
2 language A as an oracle. For any input x ∈ {0, 1}n, M runs in 2n

k time. Therefore, any
query that N makes to A is also of length 2n

k , and the number of queries is also bounded by 2n
k .

The yes-proof consists of an accepting computation P of N on x, with queries and their answers. Note
that for any query q, q ∈ A ⇔ ∃yq φq,yq /∈ SAT. When |q| = 2n

k , let |φq,yq | be denoted by m (some
exponential in n). By our assumption, SAT is in coNP/2polylog; let us assume that the advice for strings
of length m is w, where |w| = 2polylog(m) = 2n

c for some constant c, and let B ∈ coNP be the witness
language.

For every query q that is answered “Yes” on the path P , the yes-prover also provides y and φq,yq . Note
that the total length of the yes-proof is bounded by some exponential in n. Also, since the verifier is a PNP

machine, it can find out (making one oracle query) whether φq,yq ∈ SAT. Obviously, if some φq,yq provided

8

with an “Yes” query is satisfiable, the verifier rejects x. In the following, therefore, we show how the verifier
can verify whether “No” queries are answered correctly on the path P .

The no-proof consists of the advice w for strings in SAT of length m. Note that there is a set C ∈ coNP
such that for any query q,

q /∈ A ⇔ ∀yq φq,yq ∈ SAT

⇔ ∀yq (φq,yq , w) ∈ B
⇔ (q, w) ∈ C

where C = {(q, w)
∣∣ ∀yq (φq,yq , w) ∈ B}. Therefore, if q /∈ A, and w is the correct advice string, the

verifier can make a query to the NP oracle and determine whether (q, w) ∈ C. If this happens for every
query q answered “No” on P where w is supplied by the no-prover, the verifier accepts x. This does not
automatically imply that w is the correct advice string; however, by the definition of the Sexp2 operator, we
can always assume that one of the provers is correct, and therefore, when they agree (in this case, that x ∈ L)
the consensus decision must be correct.

Otherwise, there must be some q such that (q, w) /∈ C. This may result from the fact that the query is
answered incorrectly on P , or it may happen that the advice string is wrong. (As outlined before, the case
when both the proofs are wrong need not be considered.) In this case, by making prefix search using the NP
oracle, the verifier can construct yq and from that, it can obtain φq,yq . The verifier accepts x if and only if its
NP oracle says that φq,yq ∈ SAT.

If q /∈ A, it must hold that for every yq, φq,yq ∈ SAT. Therefore, in particular, for the yq that is obtained
by the prefix search, φq,yq ∈ SAT as well. On the other hand, if w is the correct advice string, and q ∈ A,
then the prefix search will produce the correct yq for which φq,yq /∈ SAT; therefore, the yes-prover is lying,
and x /∈ L. This completes the proof. 2

Now we prove our main theorem.

Theorem 4.2 For every constant k, if coNP ⊆ AM[logk n], then NEXPΣP
2 = coNEXPΣP

2 = Sexp2 ◦ PNP.

Proof If every language in coNP has an Arthur-Merlin proof system with logk n moves for any k > 0, then
by Corollary 3.4, we obtain that coNP ⊆ NP/2logc n for some constant c > 0. This is equivalent to saying
that NP ⊆ coNP/2logc n. From Theorem 4.1, we get the consequence that NEXPΣP

2 = coNEXPΣP
2 =

Sexp2 ◦ PNP. This completes the proof. 2

We can prove a version of Theorem 4.2 for (log n)log logn-round interactive proof for SAT. Let NEEXP be
the set of languages that can be decided by a nondeterministic Turing machine that takes at most 22n

k

time
on an input of length n, and let coNEEXP = {L

∣∣L ∈ NEEXP}.

Theorem 4.3 If SAT ∈ AM[(log n)log logn], then NEEXPΣP
2 = coNEEXPΣP

2 .

Proof The proof is similar to the proof of Theorem 4.2. We first observe that SAT ∈ AM[(log n)log logn]

implies that SAT ∈ NP/2(logn)O(log logn) . As a consequence, we obtain NEEXPΣP
2 = coNEEXPΣP

2 . The
crucial point to note is that if m = 22n

k

, then 2(logm)O(log logm)
= 22n

c

for some c > k. 2

In the following theorem, we improve the result of Buhrman and Homer [BH92, Theorem 1], who showed
under the same hypothesis that NEXPNP = coNEXPNP.

Theorem 4.4 If NP has 2polylog-size family of circuits, then NEXPNP = coNEXPNP = SEXP
2 .

9

Proof Since SEXP
2 ⊆ NEXPNP∩coNEXPNP (Proposition 2.3), it suffices to show that NEXPNP = SEXP

2 .
Let L ∈ NEXPNP be accepted by a nondeterministic machine N with SAT as an oracle. There is some

k > 0 such that N runs in time 2n
k on any input of length n. Therefore, the formulas queried by N on any

input of length n are of size m ≤ 2n
k , and therefore, have circuit size 2polylog(m) = 2n

c for some c.
On an input x, |x| = n, the yes-proof consists of the following:
• Accepting path P of N on x, including the queries made on that path and their answers

• One satisfying assignment for every query φ that is answered “yes”
The verifier can verify whether the assignments provided with each query that is answered “yes” is satisfy-
ing, and will reject x if any of them is not satisfying. Therefore, in the following, we consider the queries
that are answered “no” on P .

We can assume that any circuit for SAT outputs not only 1 or 0 indicating whether the input formula is
satisfiable or not, but also outputs a satisfying assignment when it claims that the input formula is satisfiable.
This can be done by a polynomial blow-up in the size of the circuit, and therefore, the circuit still remains
of the size 2polylog. The no-proof is such a circuit C for SAT at length m.

Given C, the verifier inputs each query φ that is answered “no” on P . If C outputs 0 on all these
formulas, indicating that they are unsatisfiable, then the verifier accepts x. On the other hand, if C outputs
a satisfying assignment for some φ that is answered “no” on P , then the verifier rejects x.

If x ∈ L, then there must be an accepting path of N on x, and the yes-prover can provide this path with
the queries and their correct answers. No circuit (correct or otherwise) can output a satisfying assignment
on any formula that is answered “no” correctly on this path. On the other hand, if x /∈ L, the path provided
by the yes-prover must be wrong. There are two possible scenarios in this case. First, some query that is
answered “yes” on this path is unsatisfiable and is not satisfied by the assignment that is provided by the yes-
prover, in which case the verifier rejects x. Otherwise, some formula that is answered “no” is unsatisfiable,
and a correct circuit for SAT (provided by the no-prover) can output a satisfying assignment for that formula.
In this case, the verifier rejects x as well. This completes the proof. 2

Now we improve Yap’s theorem.
Theorem 4.5 If NP ⊆ coNP/poly, then PH = S2 ◦ PNP.

Proof Since S2 ◦ PNP is closed under complement, it suffices to show under the hypothesis that NPΣP
2 =

S2 ◦ PNP. Let L ∈ NPΣP
2 via some polynomial-time nondeterministic oracle machine N that has some Σp

2

language A as an oracle. For any input x ∈ {0, 1}n, M runs in nk time. Therefore, any query that N makes
to A is also of length nk, and the number of queries is also bounded by nk.

The yes-proof consists of an accepting computation P of N on x, with queries and their answers. Note
that for any query q, q ∈ A ⇔ ∃yq φq,yq /∈ SAT. When |q| = nk, let |φq,yq | be denoted by m (some
polynomial in n). By our assumption, SAT is in coNP/poly; let us assume that the advice for strings of
length m is w, where |w| = nc for some constant c, and let B ∈ coNP be the witness language.

For every query q that is answered “Yes” on the path P , the yes-prover also provides y and φq,yq .
Also, since the verifier is a PNP machine, it can find out (making one oracle query) whether φq,yq ∈ SAT.
Obviously, if some φq,yq provided with an “Yes” query is satisfiable, the verifier rejects x. In the following,
therefore, we show how the verifier can verify whether “No” queries are answered correctly on the path P .

The no-proof consists of the advice w for strings in SAT of length m. Note that there is a set C ∈ coNP
such that for any query q,

q /∈ A ⇔ ∀yq φq,yq ∈ SAT

⇔ ∀yq (φq,yq , w) ∈ B
⇔ (q, w) ∈ C

10

where C = {(q, w)
∣∣ ∀yq (φq,yq , w) ∈ B}. Therefore, if q /∈ A, and w is the correct advice string, the

verifier can make a query to the NP oracle and determine whether (q, w) ∈ C. If this happens for every
query q answered “No” on P where w is supplied by the no-prover, the verifier accepts x. This does not
automatically imply that w is the correct advice string; however, by the definition of the S2 operator, we can
always assume that one of the provers is correct, and therefore, when they agree (in this case, that x ∈ L)
the consensus decision must be correct.

Otherwise, there must be some q such that (q, w) /∈ C. This may result from the fact that the query is
answered incorrectly on P , or it may happen that the advice string is wrong. (As outlined before, the case
when both the proofs are wrong need not be considered.) In this case, by making prefix search using the NP
oracle, the verifier can construct yq and from that, it can obtain φq,yq . The verifier accepts x if and only if its
NP oracle says that φq,yq ∈ SAT.

If q /∈ A, it must hold that for every yq, φq,yq ∈ SAT. Therefore, in particular, for the yq that is obtained
by the prefix search, φq,yq ∈ SAT as well. On the other hand, if w is the correct advice string, and q ∈ A,
then the prefix search will produce the correct yq for which φq,yq /∈ SAT; therefore, the yes-prover is lying,
and x /∈ L. 2

4.1 Interactive Proof Systems
Let IP[g(n)] denote an interactive proof system with g(n) rounds in the Goldwasser, Micali and Rackoff
[GMR85] formalization. Goldwasser and Sipser [GS89] proved that IP[g(n)] ⊆ AM[2g(n) + 4] as long
as g(n) is bounded by a polynomial. Thus, if L ∈ IP[logk n], then L ∈ AM[logk+1 n]. So the following
corollary follows immediately from Theorem 4.2.

Corollary 4.6 If every set in coNP has a polylogarithmic-round interactive proof system, then NEXPΣP
2 =

coNEXPΣP
2 = Sexp2 ◦ PNP.

5 Conclusions
We have shown that if coNP has polylogarithmic-round interactive proofs then the exponential hierarchy
collapses to the third level. Similarly, the double exponential hierarchy collapses if SAT has a (log n)log logn-
round interactive protocol. An obvious extension would be to obtain consequences of SAT having nε-round
interactive proof systems for some ε < 1.

One longstanding open problem in this area is to show that if SAT has polynomial-sized circuits, then
PH collapses to AM. Since coNP ⊆ AM implies that PH collapses to AM, it suffices to show under this
hypothesis that coNP is included in AM. Moreover, Arvind et al. [AKSS95] have shown that if SAT has a
polynomial-size family of circuits, then MA = AM. Since MA ⊆ SP

2 , this would improve the best-known
version of Karp-Lipton theorem [KL80] (by Sengupta, reported in Cai [Cai01]).

It is not known whether AM is properly included in AM[polylog], but Aiello, Goldwasser and Håstad
[AGH90] have shown that AM is properly included in AM[polylog] in a relativized world.

6 Acknowledgements
The authors thank D. Sivakumar for suggesting the question that we address in this paper.

11

References
[AGH90] W. Aiello, S. Goldwasser, and J. Hastad. On the power of interaction. Combinatorica,

10(1):3–25, 1990.

[AKSS95] V. Arvind, J. Köbler, U. Schöning, and R. Schuler. If NP has polynomial-size circuits, then
MA = AM. Theoretical Computer Science, 137(2):279–282, 1995.

[ALM+92] S. Arora, C. Lund, R. Motwani, M. Sudan, and M. Szegedy. Proof verification and hard-
ness of approximation problems. In Proceedings of the 33rd Annual IEEE Symposium on
Foundations of Computer Science, pages 14–22. IEEE Computer Society Press, 1992.

[AS92] S. Arora and S. Safra. Approximating clique is NP-complete. In Proceedings of the 33rd
Annual IEEE Symposium on Foundations on Computer Science, pages 2–13. IEEE Computer
Society Press, 1992.

[Báb85] L. Bábai. Trading group theory for randomness. In Proceedings of the 17th Symposium on
Theory of Computing, pages 421–429. ACM Press, 1985.

[BFL81] L. Bábai, L. Fortnow, and C. Lund. Nondeterministic exponential time has two-prover inter-
active protocols. Computational Complexity, 1(1):3–40, 1981.

[BFLS91] L. Bábai, L. Fortnow, L. Levin, and M. Szegedy. Checking computations in polylogarithmic
time. In Proceedings of the 23rd Annual ACM Symopsium on Theory of Computing, pages
21–31, 1991.

[BH92] H. Buhrman and S. Homer. Superpolynomial circuits, almost sparse oracles, and the expo-
nential hierarchy. In Foundations of Software Technology and Theoretical Computer Science,
12th Conference, New Delhi, India, December 18-20, 1992, Proceedings, volume 652 of
Lecture Notes in Computer Science, pages 116–127. Springer-Verlag, 1992.

[BHZ87] R. B. Boppana, J. Håstad, and S. Zachos. Does co-NP have short interactive proofs? Infor-
mation Processing Letters, 25(2):127–132, 1987.

[BM88] L. Bábai and S. Moran. Arthur-merlin games : a randomized proof system, and a hierarchy
of complexity classes. Journal of Computer and System Sciences, 36:254–276, 1988.

[BOGKW88] M. Ben-Or, S. Goldwasser, J. Kilian, and A. Wigderson. Multiprover interactive proofs: How
to remove the intractability assumptions. In Proceedings of the 20th Annual ACM Symposium
on Theory of Computing, pages 113–131, 1988.

[Cai01] J-Y. Cai. SP
2 ⊆ ZPPNP. In Proceedings of the 42nd IEEE Conference on Foundations of

Computer Science, pages 620–629, 2001.

[Can96] R. Canetti. On BPP and the polynomial-time hierarchy. Information Processing Letters,
pages 237–241, 1996.

[CCHO03] J-Y. Cai, V. Chakaravarthy, L. Hemaspaandra, and M. Ogihara. Competing provers yield im-
proved karp-lipton collapse results. In Proceedings 20th Symposium on Theoretical Aspects
of Computer Science, pages 535–546, 2003.

12

[FGL+91] U. Feige, S. Goldwasser, L. Lovász, S. Safra, and M. Szegedy. Approximating clique is
almost NP-complete. In Proceedings 32nd Symposium on Foundations of Computer Science,
pages 2–12. IEEE Computer Society Press, 1991.

[GH98] O. Goldreich and J. Hastad. On the complexity of interactive proofs with bounded commu-
nication. Information Processing Letters, 67(4):205–214, 1998.

[GMR85] S. Goldwasser, S. Micali, and C. Rackoff. The knowledge complexity of interactive proofs. In
Proceedings of the 17th Annual ACM Symposium on Theory of Computing, pages 291–304,
1985.

[GS89] S. Goldwasser and M. Sipser. Private coins versus public coins in interactive proof systems.
In S. Micali, editor, Randomness and Computation, volume 5 of Advances in Computing
Research, pages 73–90. JAI Press, 1989.

[GVW01] O. Goldreich, S. Vadhan, and A. Wigderson. On interactive proofs with laconic provers. In
Proceedings of the 28th International Colloquium on Automata, Languages, and Program-
ming, volume 2076 of Lecture Notes in Computer Science, pages 334–345. Springer Verlag,
2001.

[HS01] S. Homer and A. Selman. Computability and Complexity Theory. Springer-Verlag, 2001.

[KL80] R. Karp and R. Lipton. Some connections between nonuniform and uniform complexity
classes. In Proceedings of the 12th ACM Symposium on Theory of Computing, pages 302–
309, 1980.

[LFKN92] C. Lund, L. Fortnow, H. Karloff, and N. Nisan. Algebraic methods for interactive proof
systems. Journal of the Association of Computing Machines, 39(4):859–868, 1992.

[RS98] A. Russell and R. Sundaram. Symmetric alternation captures BPP. Journal of Computational
Complexity, 7(2):152–162, 1998.

[Sha92] A. Shamir. IP = PSPACE. Journal of the Association of Computing Machines, 39(4):869–
877, 1992.

[Tod91] S. Toda. PP is as hard as the polynomial time hierarchy. SIAM Journal on Computing,
20:865–877, 1991.

[Yap83] C. Yap. Some consequences of non-uniform conditions on uniform classes. Theoretical
Computer Science, 26(3):287–300, 1983.

[ZF87] S. Zachos and M. Fürer. Probabilistic quantifiers vs distrustful adversaries. In Foundations
of Software Technology and Theoretical Computer Science, 1987, Proceedings, volume 287
of Lecture Notes in Computer Science, pages 449–455. Springer-Verlag, 1987.

[ZH86] S. Zachos and H. Heller. A decisive characterization of BPP. Information and Control,
69:125–135, 1986.

13

