
Canonical Disjoint NP-Pairs of Propositional Proof Systems

Christian Glaßer ∗ Alan L. Selman† Liyu Zhang‡

November 19, 2004

Abstract

We prove that every disjoint NP-pair is polynomial-time, many-one equivalent to the canon-
ical disjoint NP-pair of some propositional proof system. Therefore, the degree structure of the
class of disjoint NP-pairs and of all canonical pairs is identical. Secondly, we show that this
degree structure is not superficial: Assuming there exist P-inseparable disjoint pairs, there exist
intermediate disjoint NP-pairs. That is, if (A,B) is a P-separable disjoint NP-pair and (C,D) is
a P-inseparable disjoint NP-pair, then there exist P-inseparable, incomparable NP-pairs (E,F)
and (G,H) whose degrees lie strictly between (A,B) and (C,D). Furthermore, between any
two disjoint NP-pairs that are comparable and inequivalent, such a diamond exists.

1 Introduction

One reason it is important to study the class DisjNP of all disjoint NP-pairs is its relationship to
the theory of proof systems for propositional calculus. Specifically, Razborov [Raz94] defined the
canonical disjoint NP-pair, (SAT∗, REFf), for every propositional proof system f , and he showed
that if there exists an optimal propositional proof system f , then its canonical pair is a complete
pair for DisjNP. (We will explain this notation later.) In the same paper he asked for evidence
of existence of a propositional proof system whose canonical disjoint NP-pair is not separable by
a set belonging to the complexity class P, and, relatedly, he asked whether it is possible to reduce
to canonical pairs (SAT∗, REFf), another disjoint NP-pair that we believe to be hard (i.e., not
separable by a set in P). We answer these questions in the strongest possible way. We prove
that every disjoint NP-pair is polynomial-time, many-one equivalent to the canonical disjoint NP-
pair of some propositional proof system. It follows immediately that every disjoint NP-pair we
believe to be P-inseparable (cannot be separated by a set in P) is many-one equivalent to some
pair (SAT∗, REFf) that is also P-inseparable.

∗Lehrstuhl für Informatik IV, Universität Würzburg, Am Hubland, 97074 Würzburg, Germany. Email:
glasser@informatik.uni-wuerzburg.de

†Department of Computer Science and Engineering, University at Buffalo, Buffalo, NY 14260. Research partially
supported by NSF grant CCR-0307077. Email: selman@cse.buffalo.edu

‡Department of Computer Science and Engineering, University at Buffalo, Buffalo, NY 14260. Email:
lzhang7@cse.buffalo.edu

1

This paper does not address the question of whether P-inseparable disjoint NP-pairs exist, but we
mention that there is evidence for their existence, for example, if P �= UP or if P �= NP∩ coNP. On
the other hand, the hypothesis that P �= NP does not seem to be sufficient to obtain P-inseparable
disjoint NP-pairs. Homer and Selman [HS92] constructed an oracle relative to which P �= NP and
all disjoint NP-pairs are P-separable.

It is easy to see that if proof system f simulates proof system g, then the pair (SAT∗, REFg) is
many-one reducible to the pair (SAT∗, REFf). A proof system is optimal if it simulates every other
propositional proof system. Although it is an open question whether optimal proof systems exist,
as we stated above, Razborov showed that if there exists an optimal propositional proof system
f , then its canonical pair is a complete pair for DisjNP. We obtain this result of Razborov as a
corollary of our result above.

Glaßer et al. [GSSZ04] constructed an oracle relative to which the converse of Razborov’s result
does not hold; i.e., relative to this oracle, using our current result, there is a propositional proof
system f whose canonical pair is complete, but f is not optimal. Hence, there is a propositional
proof system g such that the canonical pair of g many-one reduces to the canonical pair of f , but
f does not simulate g. Our theorem presents a tight connection between disjoint NP-pairs and
propositional proof systems. Nevertheless, relative to this oracle, the relationship is not as tight as
we might hope for.

In light of our result above, by examining the degree structure of the class DisjNP, we can under-
stand the degree structure of canonical pairs (SAT∗, REFf). Thus, we should try to understand the
degree structure of DisjNP. We prove that between any two comparable and inequivalent disjoint
NP-pairs (A, B) and (C, D) there exist P-inseparable, incomparable NP-pairs (E, F) and (G, H)
whose degrees lie strictly between (A, B) and (C, D). Our result is an analogue of Ladner’s result
for NP [Lad75], and our proof is based on Schöning’s formulation [Sch82]. Thus, assuming that
P-inseparable disjoint NP-pairs exist, the class DisjNP has a rich, dense, degree structure—and
each of these degrees contains a canonical pair.

2 Preliminaries

A disjoint NP-pair is a pair (A, B) of nonempty sets A and B such that A, B ∈ NP and A∩B = ∅.
Let DisjNP denote the class of all disjoint NP-pairs.

Given a disjoint NP-pair (A, B), a separator is a set S such that A ⊆ S and B ⊆ S; we say that S
separates (A, B). Let Sep(A, B) denote the class of all separators of (A, B). For disjoint NP-pairs
(A, B), the fundamental question is whether Sep(A, B) contains a set belonging to P. In that case
the pair is P-separable; otherwise, the pair is P-inseparable. The following proposition summarizes
known results about P-separability.

2

Proposition 2.1

1. P �= NP ∩ co-NP implies NP contains P-inseparable sets.

2. P �= UP implies NP contains P-inseparable sets [GS88].

3. If NP contains P-inseparable sets, then NP contains NP-complete P-inseparable sets [GS88].

While it is probably the case that NP contains P-inseparable sets, there is an oracle relative to
which P �= NP and P-inseparable sets in NP do not exist [HS92]. So P �= NP probably is not a
sufficiently strong hypothesis to show existence of P-inseparable sets in NP.

We review the natural notions of reducibilities between disjoint pairs. The original notions are
nonuniform [GS88]. Here we state only the known equivalent uniform versions [GS88, GSSZ04].

Definition 2.2 Let (A, B) and (C, D) be disjoint pairs.

1. (A, B) is many-one reducible in polynomial-time to (C, D), (A, B)≤pp
m (C, D), if there exists

a polynomial-time computable function f such that f(A) ⊆ C and f(B) ⊆ D.

2. (A, B) is Turing reducible in polynomial-time to (C, D), (A, B)≤pp
T (C, D), if there exists a

polynomial-time oracle Turing machine M such that for every separator S of (C, D), L(M, S)
is a separator of (A, B).

Since we are interested only in comparing disjoint NP-pairs, it is convenient for us to define the
Turing-degree of a pair (A, B) ∈ DisjNP as follows:

d(A, B) = {(C, D) ∈ DisjNP | (A, B) ≡pp
T (C, D)}.

Let TAUT denote the set of tautologies. Cook and Reckhow [CR79] defined a propositional proof
system (proof system for short) to be a function f : Σ∗ → TAUT such that f is onto and f ∈ PF.
The canonical pair of f [Raz94, Pud01] is the disjoint NP-pair (SAT∗, REFf) where

SAT∗ = {(x, 0n)
∣∣ x ∈ SAT} and

REFf = {(x, 0n)
∣∣¬x ∈ TAUT and ∃y[|y| ≤ n and f(y) = ¬x]}.

Let f and f ′ be two propositional proof systems. We say that f simulates f ′ if there is a polynomial
p and a function h : Σ∗ → Σ∗ such that for every w ∈ Σ∗, f(h(w)) = f ′(w) and |h(w)| ≤ p(|w|). A
proof system is optimal if it simulates every other proof system.

3

3 Canonical Pairs of Proof Systems

Now we state the main result of this paper. We show that for every disjoint NP-pair (A, B) there
exists a proof system f such that (SAT∗, REFf)≡pp

m (A, B). This shows that disjoint NP-pairs and
canonical pairs of proof systems have identical degree structures.

Theorem 3.1 For every disjoint NP-pair (A, B) there exists a proof system f such that
(SAT∗, REFf)≡pp

m (A, B).

Proof. Let 〈·, ·〉 be a polynomial-time computable, polynomial-time invertible pairing function
such that |〈v, w〉| = 2|vw|. Choose g that is polynomial-time computable and polynomial-time
invertible such that A≤p

mSAT via g. Let M be an NP-machine that accepts B in time p. Define
the following function f .

f(z) df=

¬g(x) : if z = 〈x, w〉, |w| = p(|x|), M(x) accepts along path w

¬x : if z = 〈x, w〉, |w| �= p(|x|), |z| ≥ 2|x|, x /∈ SAT

¬false : otherwise

The function is polynomial-time computable, since in the second case, |z| is large enough so that
x ∈ SAT can be decided in deterministic time O(|z|2). In the first case of f ’s definition, x ∈ B and
so g(x) /∈ SAT. It follows that f : Σ∗ → TAUT. The mapping is onto, since for every tautology y,

f(〈¬y, 02|¬y|〉) = y.

Therefore, f is a propositional proof system.

Claim 3.2 (SAT∗, REFf)≤pp
m (A, B).

Choose elements a ∈ A and b ∈ B. The reduction function h is as follows.

1 input (y, 0n)
2 if y = false then output b
3 if n ≥ 2|y| then
4 if y ∈ SAT then output a else output b
5 endif
6 if g−1(y) exists then output g−1(y)
7 output a

The exhaustive search in line 4 is possible in quadratic time in n. So h ∈ PF.

Assume (y, 0n) ∈ SAT∗. So we reach line 3. If we reach line 4, then we output a ∈ A. Otherwise
we reach line 6. If g−1(y) exists, then it belongs to A. Therefore, in either case (output in line 6 or
in line 7) we output an element from A.

4

Assume (y, 0n) ∈ REFf (in particular ¬y ∈ TAUT). So there exists z such that |z| ≤ n and
f(z) = ¬y. If the output is made in line 2, then we are done. If we reach line 4, then we output b.
Otherwise we reach line 6. So far we have y �= false and |z| ≤ n < 2|y|. Therefore, f(z) = ¬y must
be due to line 1 in the definition of f . It follows that g−1(y) exists. So we output g−1(y) which
belongs to B (again by line 1 of f’s definition). This shows Claim 3.2.

Claim 3.3 (A, B)≤pp
m (SAT∗, REFf).

The reduction function is h′(x) df=(g(x), 02(|x|+p(|x|))). If x ∈ A, then g(x) ∈ SAT and therefore,
h′(x) ∈ SAT∗. Otherwise, let x ∈ B. Let w be an accepting path of M(x) and define z

df=〈x, w〉.
So |w| = p(|x|) and |z| = 2(|x| + p(|x|)). By line 1 in f’s definition, f(z) = ¬g(x). Therefore,
h′(x) ∈ REFf . This proves Claim 3.3 and finishes the proof of Theorem 3.1. �

Corollary 3.4 Disjoint NP-pairs and canonical pairs for proof systems have identical degree struc-
tures.

The following easy to prove proposition also states a strong connection between proof systems and
disjoint NP-pairs:

Proposition 3.5 Let f and g be pps. If g simulates f , then (SAT∗, REFf)≤pp
m (SAT∗, REFg).

Proof. By assumption there exists a total function h : Σ∗ → Σ∗ and a polynomial p such that
for all x, g(h(x)) = f(x) and |h(x)| ≤ p(|x|). We claim that (SAT∗, REFf)≤pp

m (SAT∗, REFg) via
reduction r where r(x, 0n) df=(x, 0p(n)). Clearly, if (x, 0n) ∈ SAT∗, then (x, 0p(n)) ∈ SAT∗ as well.
Let (x, 0n) ∈ REFf , i.e., ¬x is a tautology and there exists y such that |y| ≤ n and f(y) = ¬x. So
for y′ df=h(x) it holds that |y′| ≤ p(n) and g(y′) = ¬x which shows (x, 0p(n)) ∈ REFg. �

The following result of Razborov [Raz94] is an immediate consequence of Theorem 3.1 and Propo-
sition 3.5.

Corollary 3.6 (Razborov) If there exists an optimal propositional proof system f , then
(SAT∗, REFf) is a complete NP-pair.

We remind the reader that it is known neither whether there exists an optimal propositional proof
systems nor whether there exist complete NP-pairs. Now it is appropriate to repeat a comment
we stated in the introduction. Glaßer et al. [GSSZ04] constructed an oracle relative to which
the converse of Corollary 3.6 does not hold; i.e., relative to this oracle, by Theorem 3.1, there is
a propositional proof system f whose canonical pair is complete, but f is not optimal. Hence,
there is a propositional proof system g such that the canonical pair of g many-one reduces to the
canonical pair of f , but f does not simulate g. The results of this section present tight connections
between disjoint NP-pairs and propositional proof systems. Nevertheless, relative to this oracle,
the relationship is not as tight as one might hope for.

5

4 Degree Structure of Disjoint NP-Pairs

Let {Mi}i be a standard effective enumeration of Turing machines. We require the following
definition and theorems:

Definition 4.1 We define a class C of nonempty disjoint NP-pairs to be effectively presentable if
there exists a total computable function f : N → N × N such that

1. for all (i, j) ∈ range(f), Mi and Mj halt on all inputs, and

2. C = {(L(Mi), L(Mj)) | (i, j) ∈ range(f)}.

Theorem 4.2 For all (A, B), (C, D) ∈ DisjNP, the following classes are effectively presentable.

C1
df= {(X, Y) ∈ DisjNP

∣∣ (C, D)≤pp
T (X ⊕ A, Y ⊕ B)}

C2
df= {(X, Y) ∈ DisjNP

∣∣ (X, Y)≤pp
T (A, B)}

Proof. Let N1, N2, . . . be an effective enumeration of nondeterministic polynomial-time-bounded
Turing machines such that Nk’s running time on inputs of length n is nk + k. Let T1, T2, . . .
be an effective enumeration of deterministic polynomial-time-bounded Turing machines such that
Tl’s running time on inputs of length n is nl + l. We may assume that A, B, C, and D are
infinite: Otherwise the corresponding pair is p-separable and therefore, if we use any p-separable
pair of infinite sets instead, then we obtain the same classes C1 and C2. Define the predicate
Test1(i, j, k, m, x) to be true if and only if all of the following holds:

1. L(Ni) ∩ L(Nj) ∩ Σ≤|x| = ∅
2. L(Ni) ∩ Σ≤m �= ∅ and L(Nj) ∩ Σ≤m �= ∅
3. for all y such that |y|k + k ≤ |x| and for all S ⊆ Σ≤|x| such that S separates

((L(Ni) ⊕ A) ∩ Σ≤|x|, (L(Nj) ⊕ B) ∩ Σ≤|x|) it holds that (y ∈ C ⇒ TS
k (y) accepts) and

(y ∈ D ⇒ TS
k (y) rejects)

Similarly, define the predicate Test2(i, j, l, m, x) to be true if and only if all of the following holds:

1. L(Ni) ∩ L(Nj) ∩ Σ≤|x| = ∅
2. L(Ni) ∩ Σ≤m �= ∅ and L(Nj) ∩ Σ≤m �= ∅
3. for all y such that |y|l+l ≤ |x| and for all S ⊆ Σ≤|x| such that S separates (A∩Σ≤|x|, B∩Σ≤|x|)

it holds that (y ∈ L(Ni) ⇒ TS
l (y) accepts) and (y ∈ L(Nj) ⇒ TS

l (y) rejects)

The predicates Test1 and Test2 are certainly decidable. Define

f1(〈i, j, k, m〉) df=(c1, d1)

where c1 and d1 are the indices of the machines described below.

6

• Mc1 on input x: If Test1(i, j, k, m, x), then accept if and only if x ∈ L(Ni)−L(Nj). Otherwise,
accept if and only if x ∈ C.

• Md1 on input x: If Test1(i, j, k, m, x), then accept if and only if x ∈ L(Nj)−L(Ni). Otherwise,
accept if and only if x ∈ D.

Similarly, define
f2(〈i, j, l, m〉) df=(c2, d2)

where c2 and d2 are the indices of the machines described below.

• Mc2 on input x: If Test2(i, j, l, m, x), then accept if and only if x ∈ L(Ni)−L(Nj). Otherwise,
accept if and only if x ∈ A.

• Md2 on input x: If Test2(i, j, l, m, x), then accept if and only if x ∈ L(Nj)−L(Ni). Otherwise,
accept if and only if x ∈ B.

We show that C1 is effectively presented by f1, and C2 is effectively presented by f2.

Clearly, f1 and f2 are total and computable. Also, Mc1 , Md1 , Mc2 , and Md2 halt on all inputs
which shows statement 1 in Definition 4.1. Statement 2 is shown by the following claims.

Claim 4.3 For all (c1, d1) ∈ range(f1), (L(Mc1), L(Md1)) ∈ DisjNP and

(C, D)≤pp
T (L(Mc1) ⊕ A, L(Md1) ⊕ B).

Proof. Choose i, j, k, m such that (c1, d1) = f1(〈i, j, k, m〉). By definition of Mc1 and Md1 it holds
that L(Mc1) ∩ L(Md1) = ∅.
Case 1: Assume Test1(i, j, k, m, x) holds for all x. Hence L(Ni) ∩ L(Nj) = ∅, L(Ni) �= ∅, and
L(Nj) �= ∅. This shows L(Mc1) = L(Ni) and L(Md1) = L(Nj), and so (L(Mc1), L(Md1)) ∈ DisjNP.

We show (C, D)≤pp
T (L(Mc1) ⊕ A, L(Md1) ⊕ B) via machine Tk. Let S′ be an arbitrary separator

of (L(Mc1) ⊕ A, L(Md1) ⊕ B). Assume there exists y ∈ C such that TS′
k (y) rejects. So TS

k (y)
rejects where S

df= S′ ∩ Σ≤|y|k+k. Hence statement 3 in the definition of Test1 does not hold for
x = 0|y|k+k. This contradicts our assumption in Case 1. It follows that if y ∈ C, then TS′

k (y)
accepts. Analogously, if y ∈ D, then TS′

k (y) rejects. This shows that L(TS′
k) is a separator of

(C, D) and hence, (C, D)≤pp
T (L(Mc1) ⊕ A, L(Md1) ⊕ B).

Case 2: Assume there exists x such that Test1(i, j, k, m, x) does not hold. Then Test1(i, j, k, m, y)
does not hold for all y such that |y| ≥ |x|. So by definition of Mc1 and Md1 , L(Mc1) is a fi-
nite variation of C, and L(Md1) is a finite variation of D. So both sets are infinite and hence
(L(Mc1)⊕A, L(Md1)⊕B) ∈ DisjNP. Also (C, D)≤pp

T (L(Mc1)⊕A, L(Md1)⊕B). This finishes the
proof of Claim 4.3. �

7

Claim 4.4 For all (c2, d2) ∈ range(f2), (L(Mc2), L(Md2)) ∈ DisjNP and

(L(Mc2), L(Md2))≤pp
T (A, B).

Proof. Choose i, j, l, m such that (c2, d2) = f2(〈i, j, l, m〉). By definition of Mc2 and Md2 it holds
that L(Mc2) ∩ L(Md2) = ∅.
Case 1: Assume Test2(i, j, l, m, x) holds for all x. Hence L(Ni) ∩ L(Nj) = ∅, L(Ni) �= ∅, and
L(Nj) �= ∅. This shows L(Mc2) = L(Ni) and L(Md2) = L(Nj), and so (L(Mc2), L(Md2)) ∈ DisjNP.

We show (L(Mc2), L(Md2))≤pp
T (A, B) via Tl. Let S′ be any separator of (A, B). Assume there exists

y ∈ L(Mc2) such that TS′
l (y) rejects. So TS

l (y) rejects where S
df= S′ ∩ Σ≤|y|l+l. Hence statement 3

in the definition of Test2 does not hold for x = 0|y|l+l. This contradicts our assumption in Case 1.
It follows that if y ∈ L(Mc2), then TS′

l (y) accepts. Analogously, if y ∈ L(Md2), then TS′
l (y) rejects.

This shows that L(TS′
l) is a separator of (L(Mc2), L(Md2)) and hence, (L(Mc2), L(Md2))≤pp

T (A, B).

Case 2: Assume there exists x such that Test2(i, j, l, m, x) does not hold. Then Test2(i, j, l, m, y)
does not hold for all y such that |y| ≥ |x|. So by definition of Mc2 and Md2 , L(Mc2) is a fi-
nite variation of A, and L(Md2) is a finite variation of B. So both sets are infinite and hence
(L(Mc2), L(Md2)) ∈ DisjNP. Also (L(Mc2), L(Md2))≤pp

T (A, B). This finishes the proof of Claim 4.4.
�

Claim 4.5 For all (X, Y) ∈ DisjNP such that (C, D)≤pp
T (X ⊕ A, Y ⊕ B), there exists n such that

f1(n) = (c1, d1), L(Mc1) = X, and L(Md1) = Y .

Proof. Let X and Y be as above and choose indices i, j such that X = L(Ni) and Y = L(Nj).
Moreover, choose k such that (C, D)≤pp

T (X ⊕ A, Y ⊕ B) via Tk. Choose m large enough such that
X ∩ Σ≤m �= ∅ and Y ∩ Σ≤m �= ∅. Define c1 and d1 such that f1(〈i, j, k, m〉) = (c1, d1).

We claim that Test1(i, j, k, m, x) holds for all x. Clearly, statements 1 and 2 in the definition
of Test1 hold for all x. Assume statement 3 does not hold. So there exist x and y such that
|y|k + k ≤ |x| and there exists S ⊆ Σ≤|x| separating ((L(Ni) ⊕ A) ∩ Σ≤|x|, (L(Nj) ⊕ B) ∩ Σ≤|x|)
such that (y ∈ C and TS

k (y) rejects) or (y ∈ D and TS
k (y) accepts). Extend S to a separator S′ of

(L(Ni)⊕A, L(Nj)⊕B) such that S = S′∩Σ≤|x|. The computation TS
k (y) cannot ask strings longer

than |y|k +k ≤ |x|. Therefore, either (y ∈ C and TS′
k (y) rejects) or (y ∈ D and TS′

k (y) accepts). So
TS′

k (y) is not a separator of (C, D) showing that (C, D) does not Turing reduce to (X ⊕A, Y ⊕B)
via machine Tk. This contradicts our assumption and therefore, statement 3 in the definition of
Test1 holds for all x. So we know that Test1(i, j, k, m, x) holds for all x, and L(Ni)∩L(Nj) = ∅. It
follows that L(Mc1) = L(Ni) = X and L(Md1) = L(Nj) = Y . This proves Claim 4.5. �

Claim 4.6 For all (X, Y) ∈ DisjNP such that (X, Y)≤pp
T (A, B), there exists n such that f2(n) =

(c2, d2), L(Mc2) = X, and L(Md2) = Y .

8

Proof. Let X and Y be as above and choose indices i, j such that X = L(Ni) and Y = L(Nj).
Moreover, choose l such that (X, Y)≤pp

T (A, B) via Tl. Choose m large enough such that X∩Σ≤m �= ∅
and Y ∩ Σ≤m �= ∅. Define c2 and d2 such that f2(〈i, j, l, m〉) = (c2, d2).

We claim that Test2(i, j, l, m, x) holds for all x. Clearly, statements 1 and 2 in the definition
of Test2 hold for all x. Assume statement 3 does not hold. So there exist x and y such
that |y|l + l ≤ |x| and there exists S ⊆ Σ≤|x| separating (A ∩ Σ≤|x|, B ∩ Σ≤|x|) such that
(y ∈ X and TS

l (y) rejects) or (y ∈ Y and TS
l (y) accepts). Extend S to a separator S′ of (A, B) such

that S = S′∩Σ≤|x|. The computation TS
l (y) cannot ask strings longer than |y|l+l ≤ |x|. Therefore,

either (y ∈ X and TS′
l (y) rejects) or (y ∈ Y and TS′

l (y) accepts). So TS′
l (y) is not a separator of

(X, Y) showing that (X, Y) does not Turing reduce to (A, B) via machine Tl. This contradicts our
assumption and therefore, statement 3 in the definition of Test2 holds for all x. So we know that
Test2(i, j, l, m, x) holds for all x, and L(Ni)∩L(Nj) = ∅. It follows that L(Mc2) = L(Ni) = X and
L(Md2) = L(Nj) = Y . This proves Claim 4.6. �

This finishes the proof of Theorem 4.2. �

A disjoint pair (A′, B′) is called a finite variation of the pair (A, B) if ‖(A � A′) ∪ (B � B′)‖ is
finite. A class C of disjoint pairs is closed under finite variations if for all disjoint pairs (A, B) and
(A′, B′) it holds that if (A, B) ∈ C, A′ and B′ are nonempty, and (A′, B′) is a finite variation of
(A, B), then (A′, B′) ∈ C.

For any function, define fn(x) to be the n-fold iteration of f on x (f0(x) = x, f1(x) = f(x), and
fn+1(x) = f(fn(x))). For any function f defined on the set of natural numbers, define

G[f] = {x ∈ Σ∗ | fn(0) ≤ |x| < fn+1(0), for even n}.

The following theorem is a version of Schöning’s method [Sch82] for uniform diagonalization, applied
to disjoint NP-pairs.

Theorem 4.7 Let A, B, C, and D be infinite decidable sets such that (A, B) and (C, D) are
disjoint pairs. Let C1 and C2 be classes of disjoint pairs with the following properties:

• (A, B) �∈ C1 and (C, D) �∈ C2;

• C1 and C2 are effectively presentable; and

• C1 and C2 are closed under finite variations.

Then there exists a set T ∈ P such that the disjoint pair (E, F), where E = (T ∩A) ∪ (T ∩C) and
F = (T ∩ B) ∪ (T ∩ D), has the following properties:

• T ∩ A, T ∩ A, T ∩ B, T ∩ B, T ∩ C, T ∩ C, T ∩ D, T ∩ D are infinite,

• (E, F) �∈ C1 ∪ C2, and

• if (A, B) is P-separable, then (E, F)≤pp
m (C, D).

9

Proof. Since C1 and C2 are effectively presentable, there exist total computable functions f1 and
f2 such that

• for all (i, j) ∈ range(f1) ∪ range(f2), Mi and Mj halt on all inputs,

• C1 = {(L(Mi), L(Mj)) | (i, j) ∈ range(f1)}, and

• C2 = {(L(Mi), L(Mj)) | (i, j) ∈ range(f2)}.

Define the following functions:

g1(n) = max{|min{z ∣∣ |z| ≥ n and z ∈ L(Mi) � A ∪ L(Mj) � B and (i, j) = f1(k)}| ∣∣ k ≤ n}
g2(n) = max{|min{z| ∣∣ z| ≥ n and z ∈ L(Mi) � C ∪ L(Mj) � D and (i, j) = f2(k)}| ∣∣ k ≤ n}
g3(n) = min{m ∣∣ m ≥ n and ∃u, v, w, x ∈ Σ≥n ∩ Σ≤m such that u ∈ A, v ∈ B, w ∈ C, x ∈ D}

We prove that g1, g2, and g3 are total computable functions. Since (A, B) �∈ C1, for all (i, j) ∈
range(f1), (A, B) �= (L(Mi), L(Mj)). As C1 is closed under finite variations, L(Mi)�A∪L(Mj)�B
is an infinite set. Thus, for all k, and for all n ≥ k, there is a string z such that |z| ≥ n and
z ∈ L(Mi) � A ∪ L(Mj) � B, where (i, j) = f1(k). Observe that the relation defined by “z ∈
L(Mi)�A∪L(Mj)�B and (i, j) = f1(k)” is decidable, because both A and B are decidable, both
Mi and Mj halt on all inputs and f1 is total computable. Min is a computable operator and taking
the maximum over a finite set is a computable operator, so g1 is computable. Similar arguments
show that g2 and g3 are total and computable (for g3 we need A, B, C, and D to be infinite).

Since max(g1, g2, g3) + 1 is a total computable function, there exists a fast function1 g such that
for all n, g(n) > max(g1(n), g2(n), g3(n)) (We refer to Proposition 7.3 of the text by Homer and
Selman [HS01].) Also, G[g] ∈ P (Lemma 7.1, [HS01]). Now take T = G[f]. We prove that the pair
(E, F), where E = (T ∩ A) ∪ (T ∩ C) and F = (T ∩ B) ∪ (T ∩ D), has the desired properties.

Suppose T ∩ A is finite. Choose an even integer n such that all words in T ∩ A are of length less
than gn(0). Substituting gn(0) for n in the definition of g3 implies that there exists a word u ∈ A
such that gn(0) ≤ |u| ≤ g3(gn(0)) < gn+1(0). So u ∈ A ∩ T which contradicts the choice of n.
Hence T ∩ A must be infinite. Similar arguments show that T ∩ A, T ∩ B, T ∩ B, T ∩ C, T ∩ C,
T ∩ D, T ∩ D are infinite.

We turn to the second consequence. The definition of g1 implies the following:

k ≤ n ⇒ ∃z[n ≤ |z| ≤ g1(n) and z ∈ L(Mi) � A ∪ L(Mj) � B, where f1(k) = (i, j)]. (1)

Suppose (E, F) ∈ C1. Then, there exists k such that (E, F) = (L(Mi), L(Mj)), where f1(k) = (i, j).
Select n to be an even positive integer such that gn(0) ≥ k. Substituting gn(0) for n in Equation (1),
there is a string z such that gn(0) ≤ |z| ≤ g1(gn(0)) < gn+1(0) and z ∈ L(Mi) � A ∪ L(Mj) � B.
Thus, z ∈ T and z ∈ L(Mi) � A ∪ L(Mj) � B, which implies, using the definition of (E, F), that
z ∈ L(Mi) � E ∪ L(Mj) � F . This is a contradiction. We conclude that (E, F) �∈ C1. A similar
argument shows that (E, F) �∈ C2.

1A function g : N → N is called fast if (i) for all n ∈ N, f(n) > n, and (ii) there is a Turing machine M that
computes f in unary notation such that M writes a symbol on its output tape every move of its computation.

10

Now we show that the third consequence holds. Suppose (A, B) is P-separable. Let S be a separator
of (A, B) that belongs to P. Let c and d be fixed words that belong to C and D, respectively.
Consider the following function h:

h(x) =

x if x ∈ T ,
c if x ∈ T and x ∈ S,
d if x ∈ T and x �∈ S.

We claim that (E, F)≤pp
m (C, D) via h. First it is clear that h is polynomial time computable since

both T and S belong to P . Now suppose x ∈ E. If x ∈ T , then x ∈ C. Hence, h(x) = x ∈ C.
Otherwise x ∈ A ⊆ S. Hence, h(x) = c ∈ C. So in either case we have h(x) ∈ C. Therefore,
h(E) ⊆ C. Similarly we can show that h(F) ⊆ D. �

Now we apply Theorem 4.7 to obtain the following result about the degree structure of disjoint NP-
pairs. Observe that the premise of the following theorem is true as long as there exist P-inseparable
disjoint NP-pairs. For under this hypothesis, we can take (A, B) to be P-separable and (C, D) to
be P-inseparable. We obtain the full generality of the theorem, in which we do not assume that
(A, B) is P-separable, by using a technique of Regan [Reg83, Reg88].

Theorem 4.8 Suppose there exist disjoint NP-pairs (A, B) and (C, D) such that A, B, C, and
D are infinite, (A, B)≤pp

T (C, D), and (C, D) �≤pp
T (A, B). Then there exist incomparable, strictly

intermediate disjoint NP-pairs (E, F) and (G, H) between (A, B) and (C, D) such that E, F , G,
and H are infinite. Precisely, the following properties hold:

• (A, B)≤pp
m (E, F)≤pp

T (C, D) and (C, D) �≤pp
T (E, F) �≤pp

T (A, B);

• (A, B)≤pp
m (G, H)≤pp

T (C, D) and (C, D) �≤pp
T (G, H) �≤pp

T (A, B);

• (E, F) �≤pp
T (G, H) and (G, H) �≤pp

T (E, F).

Proof. Define

C1 = {(X, Y) ∈ DisjNP
∣∣ (C, D)≤pp

T (X ⊕ A, Y ⊕ B)} and
C2 = {(X, Y) ∈ DisjNP

∣∣ (X, Y)≤pp
T (A, B)}.

Clearly, (A, B) /∈ C1 and (C, D) �∈ C2. By Theorem 4.2, both C1 and C2 are effectively presentable.
Also, it is obvious that C1 and C2 are closed under finite variations. Thus by Theorem 4.7, there
exists a set T ∈ P such that (E′, F ′) �∈ C1∪C2, where E′ = (T∩A)∪(T∩C) and F ′ = (T∩B)∪(T∩D)
are infinite sets. Clearly, (E′, F ′) ∈ DisjNP, since both (A, B) and (C, D) belong to DisjNP and
T ∈ P. Define E = E′ ⊕ A and F = F ′ ⊕ B. It is straightforward to see that (E, F) also
belongs to DisjNP and (A, B)≤pp

m (E, F). By the definition of C1 and C2, (C, D) �≤pp
T (E, F) and

(E, F) �≤pp
T (A, B). In addition, we have the following claim:

Claim 4.9 (E, F)≤pp
T (C, D).

11

Proof. Let S be a separator of (C, D). Since (A, B)≤pp
T (C, D), there is a separator S1 of (A, B)

such that S1≤p
TS. Then S2 = (S1 ∩ T) ∪ (S ∩ T) is a separator of (E′, F ′) and S2≤p

TS1 ⊕ S≤p
TS.

Thus S3 = S2 ⊕ S1 is a separator of (E, F) and S3≤p
TS. �

The following summarizes the properties we proved so far:

• (A, B)≤pp
m (E, F)≤pp

T (C, D);

• (C, D) �≤pp
T (E, F) �≤pp

T (A, B).

Now we define the pair (G, H). It follows from the proof of Theorem 4.7 that if we take T ′ = T =
G[f], then all the consequences of the theorem are satisfied as well. So we define

G′ = (T ′ ∩ A) ∪ (T ′ ∩ C) = (T ∩ A) ∪ (T ∩ C)

and
H ′ = (T ′ ∩ B) ∪ (T ′ ∩ D) = (T ∩ B) ∪ (T ∩ D).

Then we have (G′, H ′) �∈ C1 ∪ C2. Similarly we define G = G′ ⊕ A and H = H ′ ⊕ B. By the same
arguments as above, the following properties hold for (G, H):

• (A, B)≤pp
m (G, H)≤pp

T (C, D);

• (C, D) �≤pp
T (G, H) �≤pp

T (A, B).

It remains to show (E, F) �≤pp
T (G, H) and (G, H) �≤pp

T (E, F). We show only that (E, F) �≤pp
T (G, H)

since the proof of the latter is identical. The proof follows from the following two claims:

Claim 4.10 (C, D)≤pp
m (E ⊕ G, F ⊕ H).

Proof. We define the reduction f as follows: On input x, if x ∈ T , then f(x) = 10x, and, if x �∈ T ,
then f(x) = 00x. We need to prove that f(C) ⊆ E ⊕ G and f(D) ⊆ F ⊕ H. Suppose that x ∈ C.
Consider the case that x ∈ T . By definition of G′, x ∈ G′. So 0x ∈ G. Hence, f(x) = 10x ∈ E ⊕G.
In the case that x �∈ T , we have x ∈ E′. So 0x ∈ E. Hence, f(x) = 00x ∈ E ⊕ G. Thus,
f(C) ⊆ E ⊕ G. The proof that f(D) ⊆ F ⊕ H is similar. �

Claim 4.11 If (E, F)≤pp
T (G, H) then (E ⊕ G, F ⊕ H)≤pp

T (G, H)

Proof. Let S be a separator of (G, H). By the hypothesis, there is a separator S′ of (E, F) such
that S′≤p

TS. Then S′ ⊕ S is a separator of (E ⊕ G, F ⊕ H) and S′ ⊕ S≤p
TS. �

Now we see that if (E, F)≤pp
T (G, H), then (C, D)≤pp

m (E ⊕G, F ⊕H)≤pp
T (G, H), which is a contra-

diction. �

12

Corollary 4.12 Suppose there exists a P-inseparable disjoint NP-pair (C, D). Let (A, B) be a
P-separable disjoint NP-pair such that A and B are infinite. Then there exist incomparable, P-
inseparable, strictly intermediate disjoint NP-pairs (E, F) and (G, H) between (A, B) and (C, D)
that satisfy all of the consequences of Theorem 4.8, and in addition, satisfy the following conditions:

• (A, B)≤pp
m (E, F)≤pp

m (C, D), and

• (A, B)≤pp
m (G, H)≤pp

m (C, D).

The proof follows readily.

Corollary 4.13 Assuming there exist P-inseparable disjoint NP-pairs, there exist propositional
proof systems f and g so that f does not simulate g and g does not simulate f .

Proof. Follows from Corollary 4.12, Theorem 3.1, and Proposition 3.5. �

Acknowledgements. The authors thank Kenneth W. Regan for informing them of the methods
in his papers [Reg83, Reg88].

References

[CR79] S. Cook and R. Reckhow. The relative efficiency of propositional proof systems. Journal
of Symbolic Logic, 44:36–50, 1979.

[GS88] J. Grollmann and A. Selman. Complexity measures for public-key cryptosystems. SIAM
Journal on Computing, 17(2):309–335, 1988.

[GSSZ04] C. Glaßer, A. Selman, S. Sengupta, and L. Zhang. Disjoint NP-pairs. SIAM Journal on
Computing, 33(6):1369–1416, 2004.

[HS92] S. Homer and A. Selman. Oracles for structural properties: The isomorphism problem
and public-key cryptography. Journal of Computer and System Sciences, 44(2):287–301,
1992.

[HS01] S. Homer and A. Selman. Computability and Complexity Theory. Texts in Computer
Science. Springer, New York, 2001.

[Lad75] R. Ladner. On the structure of polynomial-time reducibility. Journal of the ACM,
22:155–171, 1975.

[Pud01] P. Pudlák. On reducibility and symmetry of disjoint NP-pairs. In Proceedings 26th
International Symposium on Mathematical Foundations of Computer Science, volume
2136 of Lecture Notes in Computer Science, pages 621–632. Springer-Verlag, Berlin,
2001.

13

[Raz94] A. Razborov. On provably disjoint NP-pairs. Technical Report TR94-006, Electronic
Colloquium on Computational Complexity, 1994.

[Reg83] K. Regan. On diagonalization methods and the structure of language classes. In Pro-
ceedings Foundations of Computation Theory, volume 158 of Lecture Notes in Computer
Science, pages 368–380. Springer Verlag, 1983.

[Reg88] K. Regan. The topology of provability in complexity theory. Journal of Computer and
System Sciences, 36:384–432, 1988.

[Sch82] U. Schöning. A uniform approach to obtain diagonal sets in complexity classes. Theo-
retical Computer Science, 18:95–103, 1982.

14

