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Abstract

We say that adistribution L isreasonableif there existsaconstant s > 0 such that u({x| |x| >
n}) = Q(n—ls). We provethefollowing result, which suggeststhat all DistNP-complete problems
have reasonable distributions.

If NP contains a DTIME(2")-bi-immune set, then every DistNP-complete set has a
reasonabl e distribution.

It follows from work of Mayordomo [May94] that the consequent holdsif the p-measure of NP
is hot zero.

Cai and Selman [CS96] defined a modification and extension of Levin's notion of average
polynomial timeto arbitrary time-boundsand proved that if L is P-bi-immune, then L isdistribu-
tionally hard, meaning, that for every polynomial-time computabl e distribution p, the distribu-
tional problem (L, ) isnot polynomial on the p-average. We prove the following results, which
suggest that distributional hardnessis closely related to more traditional notions of hardness.

1. If NP contains adistributionally hard set, then NP contains a P-immune set.

2. There existsalanguage L that is distributionally hard but not P-bi-immuneif and only if
P contains a set that isimmuneto all P-printable sets.

The following corollaries follow readily

1. If the p-measure of NP is not zero, then there exists a language L that is distributionally
hard but not P-bi-immune.

2. If the p,-measure of NP is not zero, then there exists alanguage L in NP that is distribu-
tionally hard but not P-bi-immune.
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1 Introduction

A distributional problemisapair (L,u), where L is alanguage over afinite alphabet £ and u isa
distribution defined on £*. Given adistributional problem, it is an important issue either to find an
expected polynomial-time algorithm that solvesthe problem or to prove that such an algorithm does
not exist. Levin [Lev86] provided two central notions for studying thisissue. One is analogous to
the class P, and provides an easiness notion; the other is analogous to the class of NP-compl ete sets,
and provides a hardness notion. For thefirst, Levin defined arobust notion of what it means for an
algorithm that accepts L to be polynomial on the p-average. Using this notion, Average-P denotes
the set of all distributional problems (L, ) such that u is computable in polynomial time and some
algorithmfor L ispolynomial onthep-average. Let DistNP denotethe collection of all distributional
problems (L, ) such that u is computable in polynomial time and L belongs to NP. For the second
central notion, that of hardness, Levin defined reductions between distributional problems. Using
these reducibilities, in the usual manner, we define a distributional problem (L,t) to be complete
for DistNP if (L,u) belongs to DistNP and every distributional problem in DistNP is reducible to
(L,w). Itisnot known whether DistNP C Average-P. If P= NP, then DistNP C Average-P, and if
DistNP C Average-P, then E= NE[BDCGL92]. Levin showed that distributional tiling with asim-
pledistributioniscompletefor DistNP, and sincethen, several additional DistNP-compl ete problems
have been found [BG95, Gur91, VL 88, VR92, WB95, Wan95]. However, we do not possess a cata-
log of natural DistNP-complete problemsthat isin any way similar to the flood-tide of NP-complete
problems. This distinction is one reason that it is important to analyze distributional problems for
their potential compl eteness.

The standard uniform distribution on £* isgiven by p'(x) = 5|x|22-X. (Given adistribution
u, we let 1’ denote the density function on individual strings.) In general, a polynomial-time com-
putable distribution is uniformif w'(x) = p(|x|)2 ¥, where ¥, p(n) = 1 and thereis a polynomial p
such that for al n, p(n) > 1/p(n). Gurevich [Gur9l] defined a distribution to beflat if there exists
areal number € > 0 such that for all but finitely many x, W/ (x) < 2-*°. Some commonly used dis-
tributions on graphs are flat and indeed all uniform distributions are flat. Gurevich proved that no
distributional problem with aflat distribution is DistNP-complete unless NEXP = EXP. Assuming
that NEXP and EXP are distinct classes, this result asserts that certain natural distributions do not
yield complete problems. Thus, one might ask whether the reason that we know only a handful of
complete distributional problemsis because problems can only be complete when their distributions
are unatural.! The answer is no. Define a distribution to be reasonable if there exists a constant
s> Osuchthat u({x| x| > n}) = Q(Z). Thereason of course s that distributionsthat decrease too
quickly givetoo much weight to small instances, and for this reason are unreasonable. The distribu-
tions of known DistNP-complete problems, while not uniform, are al reasonable. From our results
we will learn that, under generally-accepted compl exity-theoretic hypotheses, all DistNP-complete
problems have reasonabl e distributions.

We prove that if NP contains sets that are DTIME(2")-bi-immune, then al DistNP-complete
problems have reasonable distributions. Therefore, by work of Mayordomo [May94], the conse-
guent follows from the hypothesis that the p-measure of NP is not 0. Thus, we add our resultsto a
growing list of consequences of this hypothesis[May94, LM 96].

1As a consequence of a result of Wang and Belanger [WB95], for many NP-complete problems A, there is some
polynomial-time computable distribution pu so that (A, u) is DistNP-complete, but the distribution p in general isnot con-
sidered to be anatural one for the problem A.



Now wewill explain another reason for wanting to know that all DistNP-completeproblemshave
reasonable distributions. Cai and Selman [CS96] observed that Levin's definition has limitations
when applied to distributional problems with unreasonable distributions and, as extended by Ben
David et al. [BDCGL92], when applied to exponential time-bounds. They modified Levin's defini-
tion to remove these limitations and, as a consequence of their definition, they obtained a hierarchy
theorem for arbitrary average-case time-boundsthat is astight as the Hartmanis-Stearns [HS65] hi-
erarchy theorem for worst-case deterministic time. Consider the class AVP of all distributional prob-
lems (L, ) that are polynomial on the u-average according to the definition of Cai and Selman, and
recall that Average-P denotes Levin's class of distributional problemsthat are polynomial on the -
average. (Wewill provideall formal definitionsinthe next section.) Itisobviousfrom the definitions
that AVP C Average-P. Cai and Selman showed that (L, ) € AVP if and only if (L,u) € Average-P,
for all reasonable distributions ., but the two definitions differ when applied to distributional prob-
lems that have unreasonable distributions. If (L;,u) isreducible to (Lo, u2), both py and p, are
reasonable, and (L, 1) belongsto AVP, then (L;,11;) belongs to Average-P and so, by the equiva-
lence theorem of Cai and Selman, (L1, 1) belongsto AVP also. (We assume throughout that all dis-
tributions are polynomial-time computable.) However, Belanger, Pavan, and Wang [BPW96] have
proved that AVPisnot in general closed under reductions. They constructed alanguage L and distri-
butionsp; and u, such that ., isreasonable, (L, 1) isreducibleto (L, u,) (by theidentity function),
(L,uz2) € AVP, and (L,u1) ¢ AVP. (Observe as a consequence that i, is not reasonable.) One sim-
ple solution isto restrict one's attention to reasonable distributions only. This paper helpsto justify
this approach, for if u isareasonable distribution for every DistNP-complete distributional problem
(L, ), then, for any DistNP-complete problem (L, ), (L,u) € AVPif and only if DistNP C AVP.
Clearly, this property isimportant for ameaningful theory of average-case completeness.

Consider now the fundamental question of what it means for alanguage L to be difficult to rec-
ognize. A language that is not in P may till be easy to recognize on many input strings. In con-
trast, alanguage that is a.e. complex, or equivalently, P-bi-immune, is difficult to recognize on all
but finitely many input strings. Let us say that alanguage is distributionally-hard to recognizeif for
every polynomial-time computable distribution ., the distributional problem (L,u) ¢ AVP; i.e., for
every W, no Turing machine that accepts L has a running-time that is polynomial on the p-average.
Cai and Selman [CS96] proved, asaconseguence of their hierarchy theorem, that every P-bi-immune
language is distributionally-hard to recognize. Here we prove that there exist languagesthat are dis-
tributionally hard but not P-bi-immuneif and only if P containsaset that isimmuneto all P-printable
sets. Also, we show that if NP contains adistributionally hard set, then NP contains a P-immune set.
It follows from results of Mayordomo [May94] that if the p-measure of NP is not zero, then there
existsalanguage L that is distributionally hard but not P-bi-immune, and if the p,-measure of NPis
not zero, then there exists alanguage L in NP that is distributionally hard but not P-bi-immune.

2 Preiminaries

We assume that all languages are subsets of X* = {0, 1}* and we assumethat £* is ordered by stan-
dard lexicographic ordering.

A distribution functionp : {0,1}* — [0, 1] isanondecreasing function from strings to the closed
interval [0, 1] that convergesto one. The corresponding density function " isdefined by ' (0) = p(0)
and ' (x) = pu(x) —u(x—1). Clearly, u(x) = Yy<x W' (y). For any subset of strings S, we will denote
by L(S) = Yyesl' (%), the probability of the event S. Define up = u({x | |x| = n}). For each n, let
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wh(x) be the conditional probability of xin {x| [x| = n}. Thatis, u,(x) = W (X)/un, if u, > 0, and
un(x) =0forxe {x| [x| =n}, if uy=0.

A function p from £* to [0, 1] is computable in polynomial time [Ko83] if there is a polyno-
mial time-bounded transducer M such that for every string x and every positive integer n, |u(x) —
M(x,1")| < 2—1n Consistent with Levin's hypothesisthat natural distributions are computablein poly-
nomial time, werestrict our attention entirely to such distributions. If u iscomputablein polynomial
time, then the density function ' is computable in polynomial time. (The converseis false unless
P=NP[Gur91].) Also, weexplicitly excludefrom consideration distributionsp for which u/(x) =0
for al but afinite number of strings x. Consideration of such distributionswould allow every prob-
lem to be an essentidly finite problem.

Levin[Lev86] definesafunction f from £* to nonnegative realsto be polynomial on p-average
if thereisan integer k > 0 such that

Y wooT M

Average-Pistheclassof distributional problems (L, ), whereL isalanguage and u isapolynomial-
time computabl e distribution, such that L can be decided by some Turing machine M whose running
time Ty is polynomial on p-average.

For any time-constructiblefunction T that is monotonically increasing, and henceinvertible, Cai
and Selman [CS96] define T on the p-average as follows?: Let u be a distribution on £*, and let
Wh = ({x: |x| > n}). A function f isT on the u-averageif foral n> 1,

-1
Y g U0 oy @
|x\2n |X|
Then, AVTIME(T (n)) denotesthe class of distributional problems (L, 1), whereL isalanguage and
u isapolynomial-time computable distribution, such that L can be decided by some Turing machine
M whose running time Ty is T on the u-average.

Define AVP = U1 AVTIME(n¥). Clearly, AVP C Average-P.

A distribution p is reasonable if there exists s > 0 such that Wy = Q (&). We will require the
following results of Cai and Selman [CS96] and Gurevich [Gur91].

Proposition1 1. If uisareasonabledistribution, then (L, ) belongsto Average-P (Levin's def-
inition) if and only if (L, 1) belongsto AVP (Cai and Selman’s definition).

2. If p satisfiesthe stronger condition that there exists s > 0 such that u, = Q (%), then all of the
following are equivalent:

(i) (L,u) belongsto Average-P,
(i) (L,n) belongsto AVP;
(iii) Thereisan integer k > 0 such that for all n > 1,

/k
y u'(x)% <t 3

xj=n

2Cai and Selman restricted their attention to functionsthat belong to Hardy’s[Har24] class of logarithmico-exponential
functions. We do not need to concern ourselves with this for the purpose of this paper.
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Now consider reductions. Levin [Lev86] was the first to define polynomial-time many-one re-
ductions on distributional problems; we will use the following form given by Gurevich [Gur91].

Let u and v be two distributions. Then, u is dominated by v, denoted by u < v, if thereis a
polynomial p such that for all x, W' (x) < p(|x|)v/(x). Let ua and ug be two distributions and let
f:X* — X*. Recal, for every distribution v on X*, that f induces a distribution f(v) on £* that is
defined by f(v)'(y) = Xty V' (X), for al y € range(f). Then, we say that ua is dominated by ug
with respect to f, denoted by pua <+ ug, if there exists adistribution v such that ua < v and for all
y € range(f), ug(y) = f(v)'(y).

Let (A,ua) and (B, ug) be two distributional problems. Then (A, ) is many—one reducible to
(B,ug) in polynomial time, denoted by (A, ua) <h (B,us), if there exists a polynomial-time com-
putable function f : ¥* — ¥£* such that A is many—onereducibleto B via f and pua <t Uug.

Gurevich [Gur91] and Wang [Wan97] provide proofs of the following properties.

Proposition2 1. Let (A,ua) and (B,ug) be two distributional problems such both ua and pg
are polynomial-time computable and such that (A, ua) <h (B,ug). If (B,ug) € Average-P,
then (A, pa) € Average-P.

2. Polynomial-time many-one reductions are transitive.

Itispossibleto require only that the reduction be computablein polynomial time on the average
[Lev86, Gur9l]: u isweakly dominated by v if there is a function g that is polynomial on the -
average (by Levin's definition) such that for all x, ' (x) < g(x)V'(x). (A,ua) is many—onereducible
to (B, ug) in average polynomial time, denoted by (A, ua) <& (B,ug), if thereisafunction f that
is computable in time a polynomial on the ua-average (again, by Levin's definition) such that A is
many—one reducible to B via f and ua is weakly dominated by some distribution v such that for all
X, Wa(f(x) = f(v)'(£(x)).

The analogue of Proposition 2 holds for <g-reductions.

Once again, if (Ly,) isreducible to (Lo, u,), both w; and p, are reasonable, and (Lo, o) be-
longsto AVP, then (L1, 1;) belongsto Average-P and so, by Proposition 1, (L4, ;) belongsto AVP
also. However, Belanger, Pavan, and Wang [BPW96] have proved that AVPishot in general closed
under reductions.

Given any reducibility <, adistributional problem (L, ) is <;-complete for DistNPif (L,u) €
DistNP (i.e., L € NP and p is computablein polynomial time) and every distributional problem that
belongsto DistNPis <, reducibleto (L, ).

Here we have given only the definitions and properties that we need for this paper; we refer the
reader to the recent expositions by Impagliazzo [Imp95] and Wang [Wan97] for deeper understand-
ing of average-case complexity.

2.1 Resource-bounded measure
Let the classes p; = p and p,, both consisting of functions f : ¥* — ¥*, be the classes

pr = {f| fiscomputablein polynomia time}
p. = {f|fiscomputableinni®™? time}.



We refer the reader to the papers of Lutz [Lut92, Lut97] for ageneral introduction to resource-
bounded measure theory. Measures are defined in terms of certain capital-preserving betting strate-
gies called martingales Informally, a martingale succeeds on a language L if the betting strategy
succeeds in winning infinite capital on L. Wewill not construct martingalesin this paper, so we will
not define them here. Resource-bounded measures are defined in terms of resource-bounded mar-
tingales.

The following definitions are based on these notions: A set X of languages has p;-measure O
(i = 1,2) if there is a pj-computable martingal e that succeeds on every language in X. A set X of
languages has p;-measure 1 if the complement of X has p;-measure 0. A set X hasmeasure 0in E if
the p-measureof XNEis0. A set X hasmeasure 1 in E if the p-measure of the complement of X in
EisO.

We caution that not all sets are measurable. We assume the reader is familiar with standard set-
theoretic closure properties of measure theory.

If the p-measure of aclass X is 0, then the p,-measure of X isO. If the p-measure of X isO, then
the measure of X in Eis 0. Lutz has hypothesized that neither the p-measure nor the p,-measure
of NP is0, and from these strong hypotheses he and others have derived several consequences that
do not seem to follow from weaker hypotheses [May94, LM96]. The measure of Ein Eis 1. The
p-measure of Pis 0, and we expect that NP is quantitatively different from P. Thus, results of the
form“If A, then the p;-measure of NP isQ” provide evidencethat A isfalse.

A language L is immune to a complexity class C, or C-immune, if L is infinite and no infinite
subset of L belongsto C. A language L is bi-immune to a complexity class C, or C-bi-immune, if
L isinfinite, no infinite subset of L belongsto ¢, and no infinite subset of L belongsto C. A lan-
guage is DTIME(T (n))-complex if L does not belong to DTIME(T (n)) almost everywhere; that is,
every Turing machine M that accepts L runs in time greater than T(|x|), for al but finitely many
words x. Balcazar and Schoning [BS85] proved that for every time-constructible function T, L is
DTIME(T(n))-complex if and only if L is bi-immuneto DTIME(T (n)).

Mayordomo [May94] proved that the p-measure of the class of DTIME(2")-bi-immune setsis
not 0, and therefore, if the p-measure of NPisnot 0, then NP containsa DTIME(2")-bi-immune set.
Cai and Selman [CS96] proved, for all P-bi-immune sets L and for al polynomial-time computable
distributions i, that (L, ) ¢ AVP. Thus, if NP does not have p-measure 0, then there is alanguage
L such that for every polynomial-time computable distribution ., the distributional problem (L, )
belongsto DistNP but does not belong to AVP. (Independently, Schuler and Yamakami [SY 95] ob-
tained asimilar result.)

Theset {L | 3u,(L,n) € AVP} has has p-measure 0 because it excludes all P-bi-immune sets.
However, theset {L | 3u, (L,u) € Average-P} has has measure 1 in E because E isasubset. (Thisis
easy tosee; for L € E, takep/ (x) = 4-X.) Sincethe p-measure of Pis0, intermsof resource-bounded
measure, AV P is more like afeasible class than Average-P.

3 Complete Distributional Problems

In this section we show that complete distributional problems have reasonable distributions. The
Appendix contains proofs that are not given here. We begin with the following lemma.

Lemmal Letu; bethe standard uniformdistribution, so that wy ({x | |x =n}) =n=2. Let f bea
polynomial-time computabl e reduction from (A, u;) to (B, 1,), where ., isnot reasonable. Then, for



all k > 1, there exist infinitely many strings x, such that | f (x)|% < |x.

Theorem 1 If (A1) <R (B,1,), where B € NP, ;4 isthe standard uniform distribution, and ., is
not reasonable, then A isnot DTIME(2")-bi-immune.

Proof. Let f be a polynomial-time reduction from (A, ;) to (B, ;) and choose| > 1 such that
B e DTIME(2").

For all stringsx, x € Aif and only if f(x) € B. Membership of f (x) in B can be decided in 2/t
steps. By Lemma 1, for infinitely many strings x, | f(x)|' < [x|. Thus, membership in A of these
infinitely many strings can be decided in 2¥ steps. Hence, A is not DTIME(2")-bi-immune. a

The following corollaries follow immediately.

Corollary 1 If NP contains a DTIME(2")-bi-immune set, then every <f-complete distributional
problem for DistNP has a reasonable distribution.

Corollary 2 If the p-measure of NP is not 0, then every <} -complete distributional problem for
DistNP has a reasonable distribution.

We also obtain these results for <gP-reducibility.

Theorem 2 If NP contains a DTIME(2")-bi-immune set, then every <§P-complete distributional
problem for DistNP has a reasonable distribution.

Corollary 3 If the p-measure of NP is not 0, then every <4-complete distributional problem for
DistNP has a reasonabl e distribution.

Since <} is stronger than <&°, Corollaries 1 and 2 also follow from Theorem 2, but Theorem 1
is of independent interest.

4 Distributional Hardness

We definealanguageL to bedistributionally-hard torecognizeif for all polynomial-time computable
distributions , (L,u) ¢ AVP. Aswe have noted, every P-bi-immune language is distributionally-
hard to recognize. We can completely characterize the question of whether there exist any other
languages that are distributionally-hard. Recall that set L is P-printable if there exists k > 1 such
that all the elements of L up to size n can be printed by adeterministic Turing machinein time nK+k
[HY 84, HIS85]. A set Ais P-printable-immuneif no infinite subset of A is P-printable.

Theorem 3 If NP contains a distributionally-hard set, then NP contains a P-immune set.

Theorem 4 There exist distributionally-hard setsthat are not P-bi-immuneif and only if P contains
a P-printable-immune set.



Consider the following assertions:

1. NP contains a P-bi-immune set.

2. NP contains a distributionally-hard set.
3. NP contains a P-immune set.

4. P contains a P-printable immune set.

5. There exist distribtionally-hard sets that are not P-bi-immune.

The following corollary summarizes all known rel ationships among these assertions.
Corollary 4 Each of the following implications holds:

Assertionl = Assertion?2

= Assertion 3
= Assertion4
& Assertion 5.

The first implication is due to Cai and Selman [CS96]. For the third implication, let A be an
immune set in NP. Since every P-printable set belongs to P, no infinite subset of A is P-printable.
Thus, by aresult that Allender and Rubinstein [AR88] attribute D. Russo, thereexistsaset in P with
the same property. The remaining implications follow from Theorems 3 and 4.

Corollary 5 If the p-measure of NP isnot O, then thereisa language L that is distributionally-hard
to recognize but not P-bi-immune.

From the presumably stronger hypothesis that the p,-measure of NP is not 0, we obtain the
stronger result that L belongsto NP:

Corollary 6 Ifthe p,-measure of NPisnot O, thenthereisalanguagel € NPthat isdistributionally-
hard to recognize but not P-bi-immune.

The proof of Theorem 4 from right to left proceeds as follows: Let B be a P-printable-immune
set that belongsto P. Let A be any set that is DTIME(2”3)-compIex. We defineL = AUB. Note
that A and B are not digoint since A is DTIME(2”3)-bi-immune. Since B € P, clearly, L is hot P-
bi-immune. In the Appendix we show that L is distributionally-hard to recognize. The general idea
isto supposethat (L, ) belongsto AVP, for some polynomial-time computable distribution p, and,
from this supposition, demonstrate an infinite P-printable subset of B.

For the proof of Corollary 6, from results of Mayordomo [May94], we know that if the p,-
measure of NP is not 0, then there isa set A in NP that is DTIME(2™)-bi-immune. The same hy-
pothesisimpliesthat the p-measure of NPisnot O, from which we know that NP contains P-immune
sets, so by Corallary 4, there exists P-printable-immune set B that belongsto P. Thus, in this casethe
set L = AUB belongsto NP.

Finally, let us note that Schuler and Yamakami [SY 95] considered anotion that in asenseisthe
opposite of the one we studied here. They examined languages that for all polynomial-time com-
putable distributions are polynomial on the p-average, and showed that such languages exist that are
not in P.
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Appendix
Here we give proofs of resultsthat are not provided in the main body.

Resultsin Section 3

Lemmal Letu; bethe standard uniformdistribution, so that wy ({x | [x =n}) =n=2. Let f bea
polynomial-time computabl e reduction from (A, w1 ) to (B, 12), where i, isnot reasonable. Then, for
all k > 1, there exist infinitely many strings x, such that | f (x)|% < |x.

Proof. The function f many-one reduces Ato B and 11 <; Wp. Thus, there exists a distribution
v such that uy < v and for al y € range(f), p,(y) = f(v)'(y). Itiseasy to seethat v is reasonable
also.

We prove the claim by contradiction. Assumethere exist positiveintegersk and N so that for all
strings x, [x| > N, | f(x)|% > |x|. We will prove from this assumption that ., is reasonable.

Let n> N. Choose ssuch that v({x | |[x| > m}) = Q(m %), Consider the following inequalities:

Y w@ > )Y w@

\Z\an/k ‘Z‘an/k
zef(Z¥)

Y YV

\z\znl/k f(y)=z
ze f(z¥) IYI=n

Y V)

ly/>n

1/rd.

Y

Y

Y

Thus, for all m> NY/K,
Y uh(2) > 1/m,

|Z>m

which provesthat ., isreasonable. O

Theorem 2 If NP contains a DTIME(2")-bi-immune set, then every <§P-complete distributional
problem for DistNP has a reasonable distribution.

Proof. Let (L,u) bean <gP-complete distributional problem for DistNP. Define the distribution
g by wj (0" =n"2,foraln>1,andp}(x) =0, foral x¢ {0}*. Foraln,ui (x| [x| =n}) =n"2, s,
by definition, p; isareasonabledistribution. Let Se NP, choosel > 1 suchthat Se DTIM E(Z(”')).
Let f beafunction that is computablein time a polynomial on the u;-average and that <&P-reduces
(Suy) to(L,u). By Proposition 1, thereis aTuring machine M that computes f whose running-time
Tw, for someinteger j > 1, satisfies the following inequality, for all n> 1:

)y

X|=n

Vi
T (;? wi(x) <n2.
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Thus,

N1/
(07 <n?
n
fromwhichit followsthat Ty (O") < nl, for al n. Thus, therestrictionof f to {0}* ispolynomial-time

computable.

Similar to Lemma 1, our first task is to demonstrate that for all s > 1, there exist infinitely
many n > 1 such that |f(0")|°> < n. Let v weakly dominate u; so that for all stringsy € range(f),
W (y) = f(v)'(y). Thereis afunction g that is polynomial on the u;-average so that for al x,
ui(x) < g(x)v'(x). Asin the previous paragraph, since , is reasonable, there exists j > 1 such
that for al n> 1,

g™

< 72
n M1 (X) =n-,

IX=n

from which, as above, g(0") < nl. Then,

v{{x| X =n}) = Y} V(¥

[X]=n
> HZ_ 1/9(x)
> (nA(n ).

It follows readily that v is reasonable also. Now the proof of our task proceeds exactly as does the

proof of Theorem 1 and we conclude that Sisnot DTIME(2")-bi-immune.
O

Resultsin Section 4
Theorem 3 If NP contains a distributionally-hard set, then NP contains a P-immune set.

Proof. Let L € NP be distributionally hard. We will show that L N {0}* is P-immune.

First we argue that L N {0}* is an infinite set. Let us suppose otherwise. Then, L contains an
infinite subset Sof {0}* that belongsto P. For each string xin S let r(x) be the number of stringsin S
that are lexicographically lessthan x. Defineadistribution u on * asfollows: p' (x) = (r(x)+1) 2,
forxe S and u’ (x) =0, otherwise. A Turing machinethat, oninput x, first determineswhether x € S
acceptsif so, and otherwise simulates an acceptor for L, runsin time a polynomial on the p-average
and accepts L. Thus, (L,u) belongs to AVP, which contradicts our hypothesis. Thus, LN {0}* isan
infinite set.

Similarly, LN {0}* is P-immune, and, of course, LN {0}* € NP. O

Theorem 4 There exist distributionally-hard setsthat are not P-bi-immuneif and only if P contains
a P-printable-immune set.
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Proof. Let L beadistributionally-hard set that is not P-bi-immune. SinceL isnot P-bi-immune,
someinfinite set Sin P either is asubset of L or of L. Consider the case that SC L. Supposing that
Sis not P-printable-immune, let S be an infinite P-printable subset of S Define u as follows: For
each length n for which S contains strings of length n, determine the strings x4, . ... »X(ny Of length n
that belong to S, and define

W) = =0 =
All other strings have weight 0. (It followsthat u(S) = 1 and u(S) = 0.) Define M to be a Turing
machine that first behaves like a P-acceptor for S and then, on words that the P-acceptor does not
accept, behaveslike a Turing machine that acceptsL. Since S C L, M acceptsL, and it iseasy to see
that Ty is polynomial on the u-average.

To provetheconverse, let B € P be P-printable-bi-immune. Let Abeany setthatisDTIM E(2”3)-
complex. WedefineL = AUB. Notethat Aand Barenot disointsinceAisDTIM E(2”3)-bi-immune.
Since B € P, clearly, L isnot P-bi-immune. Now our goal isto prove that L is distributionally-hard
to recognize. Observe that every Turing machine that recognizes L takes more than 2" time on all
but finitely many strings of B. Also, recall, for any distribution , that up = u({x | |[x| = n}). We
require the following lemma.

Lemma 2 Suppose that p is a distribution such that (L,u) isin AVP. Then, there exist infinitely
many n such that u, # 0 and

— nu
m({x|xeB, X =n}) < 2.

Proof. We prove the claim by contradiction. Let X, = {x| x € B,|X| = n}. Let N be a positive
integer such that for all n> N, u, # 0 and

NUn

1(Xn) > o

Wewill provethat (L, ) isnotin AVP. Let M beany Turing machinethat acceptsL, et Ty, denotethe
running time of M, and assumethat N is sufficiently large so that Ty (x) > 21 for all strings x € B,
IX| > N. Let k> 1 be any positive integer.

The following inequalities demonstrate that (L, 1) does not belong to AVP.
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m>N_|x|=m
Un7#0xeB

.y y @M
m>N _|x]=m m
Un#0 xcB

oy @)Mu(Xn)
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Continuing with the proof of Theorem 4, next we show that (L, 1) ¢ AVP, for every polynomial-
time computable distribution 1. Again, by contradiction, suppose that 1t is a polynomial-time com-
putable distribution such that (L,u) € AVP.

Define an interval [x1, ;] to be afinite sequence of stringsin increasing order that begins with
the string x; and ends with the string x,. (If we identify every string with the number it representsin
dyadic notation, then lexicographic order of strings and the natural ordering of the positive integers
coincide.) For example, theset of all stringsof length nistheinterval [0, 1"]. Givenstringsx; and x,
such that x; precedes Xy, let mid(x,Xz) = (X1 +X2) /2. Then, [xg, mid(Xy,Xz)] containsthefirst (x, —
X1+ 1) /2 stringsin [Xg, %], and [mid(Xy, X2) + 1, X;] containsthelast (X, — X3 + 1) /2 stringsin [Xg, Xp] .
Wewill usethe following programming variablesto simplify notation: Givenaninterva | = [Xq, %p],
“Left,” denotestheinterval [x;, mid(xg,%2)], and “Right,” denotesthe interval [mid(xg,X2) + 1,%o].

We defineaset T to contain at most one string of length n by the following al gorithm:

Current := [0",1"];
Fori=1to ndo

if w(Leftcurent) > L(RIgtcyrent)
then Current := Leftcyrent €lse Current := Rightc,rent-

Thefina value of Current contains exactly one string x. Put x into T if and only if x € B.

Next wewill provethat T isan infinite P-printable subset of B, which will complete the proof of
Theorem 4. Obviously, T isasubset of B. Since . is computable in polynomial time, (L eftcyrent)
and p(Rightc,rent) €8N be computed in polynomial time. Thus, T is P-printable.
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We need only to show that T is an infinite set. If x is the final value of Current, |x| = n, then
by the construction, W'(x) > u,/2". However, by Lemma 2, there exist infinitely many n such that
Up # 0 and u(X,) < % Thus, for al such n, W' (x) is greater than p(X,). Hence, for all such n, the
final value of Current belongsto B. Thus, T isan infinite set.

This completes the proof. O
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