
Complete Distributional Problems, Hard Languages, and
Resource-Bounded Measure

A. Pavan†

Alan L. Selman‡

Department of Computer Science
University at Buffalo
Buffalo, NY 14260

October 21, 1997

Abstract

We say that a distribution is reasonable if there exists a constant s 0 such that x x
n 1

ns . We prove the following result, which suggests that all DistNP-complete problems
have reasonable distributions.

If NP contains a DTIME 2n -bi-immune set, then every DistNP-complete set has a
reasonable distribution.

It follows from work of Mayordomo [May94] that the consequent holds if the p-measure of NP
is not zero.

Cai and Selman [CS96] defined a modification and extension of Levin’s notion of average
polynomial time to arbitrary time-bounds and proved that if L is P-bi-immune, then L is distribu-
tionally hard, meaning, that for every polynomial-time computable distribution , the distribu-
tional problem L is not polynomial on the -average. We prove the following results, which
suggest that distributional hardness is closely related to more traditional notions of hardness.

1. If NP contains a distributionally hard set, then NP contains a P-immune set.

2. There exists a language L that is distributionally hard but not P-bi-immune if and only if
P contains a set that is immune to all P-printable sets.

The following corollaries follow readily

1. If the p-measure of NP is not zero, then there exists a language L that is distributionally
hard but not P-bi-immune.

2. If the p2-measure of NP is not zero, then there exists a language L in NP that is distribu-
tionally hard but not P-bi-immune.
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1 Introduction

A distributional problem is a pair L , where L is a language over a finite alphabet and is a
distribution defined on . Given a distributional problem, it is an important issue either to find an
expected polynomial-time algorithm that solves the problem or to prove that such an algorithm does
not exist. Levin [Lev86] provided two central notions for studying this issue. One is analogous to
the class P, and provides an easiness notion; the other is analogous to the class of NP-complete sets,
and provides a hardness notion. For the first, Levin defined a robust notion of what it means for an
algorithm that accepts L to be polynomial on the -average. Using this notion, Average-P denotes
the set of all distributional problems L such that is computable in polynomial time and some
algorithm for L is polynomial on the -average. Let DistNP denote the collection of all distributional
problems L such that is computable in polynomial time and L belongs to NP. For the second
central notion, that of hardness, Levin defined reductions between distributional problems. Using
these reducibilities, in the usual manner, we define a distributional problem L to be complete
for DistNP if L belongs to DistNP and every distributional problem in DistNP is reducible to
L . It is not known whether DistNP Average-P. If P NP, then DistNP Average-P, and if

DistNP Average-P, then E NE [BDCGL92]. Levin showed that distributional tiling with a sim-
ple distribution is complete for DistNP, and since then, several additional DistNP-complete problems
have been found [BG95, Gur91, VL88, VR92, WB95, Wan95]. However, we do not possess a cata-
log of natural DistNP-complete problems that is in any way similar to the flood-tide of NP-complete
problems. This distinction is one reason that it is important to analyze distributional problems for
their potential completeness.

The standard uniform distribution on is given by x 6
2 x 22 x . (Given a distribution

, we let denote the density function on individual strings.) In general, a polynomial-time com-
putable distribution is uniform if x x 2 x , where n n 1 and there is a polynomial p
such that for all n, n 1 p n . Gurevich [Gur91] defined a distribution to be flat if there exists
a real number 0 such that for all but finitely many x, x 2 x . Some commonly used dis-
tributions on graphs are flat and indeed all uniform distributions are flat. Gurevich proved that no
distributional problem with a flat distribution is DistNP-complete unless NEXP EXP. Assuming
that NEXP and EXP are distinct classes, this result asserts that certain natural distributions do not
yield complete problems. Thus, one might ask whether the reason that we know only a handful of
complete distributional problems is because problems can only be complete when their distributions
are unatural.1 The answer is no. Define a distribution to be reasonable if there exists a constant
s 0 such that x x n 1

ns . The reason of course is that distributions that decrease too
quickly give too much weight to small instances, and for this reason are unreasonable. The distribu-
tions of known DistNP-complete problems, while not uniform, are all reasonable. From our results
we will learn that, under generally-accepted complexity-theoretic hypotheses, all DistNP-complete
problems have reasonable distributions.

We prove that if NP contains sets that are DTIME 2n -bi-immune, then all DistNP-complete
problems have reasonable distributions. Therefore, by work of Mayordomo [May94], the conse-
quent follows from the hypothesis that the p-measure of NP is not 0. Thus, we add our results to a
growing list of consequences of this hypothesis [May94, LM96].

1As a consequence of a result of Wang and Belanger [WB95], for many NP-complete problems A, there is some
polynomial-time computable distribution so that A is DistNP-complete, but the distribution in general is not con-
sidered to be a natural one for the problem A.

2



Now we will explain another reason for wanting to know that all DistNP-complete problems have
reasonable distributions. Cai and Selman [CS96] observed that Levin’s definition has limitations
when applied to distributional problems with unreasonable distributions and, as extended by Ben
David et al. [BDCGL92], when applied to exponential time-bounds. They modified Levin’s defini-
tion to remove these limitations and, as a consequence of their definition, they obtained a hierarchy
theorem for arbitrary average-case time-bounds that is as tight as the Hartmanis-Stearns [HS65] hi-
erarchy theorem for worst-case deterministic time. Consider the class AVP of all distributional prob-
lems L that are polynomial on the -average according to the definition of Cai and Selman, and
recall that Average-P denotes Levin’s class of distributional problems that are polynomial on the -
average. (We will provide all formal definitions in the next section.) It is obvious from the definitions
that AVP Average-P. Cai and Selman showed that L AVP if and only if L Average-P,
for all reasonable distributions , but the two definitions differ when applied to distributional prob-
lems that have unreasonable distributions. If L1 1 is reducible to L2 2 , both 1 and 2 are
reasonable, and L2 2 belongs to AVP, then L1 1 belongs to Average-P and so, by the equiva-
lence theorem of Cai and Selman, L1 1 belongs to AVP also. (We assume throughout that all dis-
tributions are polynomial-time computable.) However, Belanger, Pavan, and Wang [BPW96] have
proved that AVP is not in general closed under reductions. They constructed a language L and distri-
butions 1 and 2 such that 2 is reasonable, L 1 is reducible to L 2 (by the identity function),
L 2 AVP, and L 1 AVP. (Observe as a consequence that 1 is not reasonable.) One sim-

ple solution is to restrict one’s attention to reasonable distributions only. This paper helps to justify
this approach, for if is a reasonable distribution for every DistNP-complete distributional problem
L , then, for any DistNP-complete problem L , L AVP if and only if DistNP AVP.

Clearly, this property is important for a meaningful theory of average-case completeness.
Consider now the fundamental question of what it means for a language L to be difficult to rec-

ognize. A language that is not in P may still be easy to recognize on many input strings. In con-
trast, a language that is a.e. complex, or equivalently, P-bi-immune, is difficult to recognize on all
but finitely many input strings. Let us say that a language is distributionally-hard to recognize if for
every polynomial-time computable distribution , the distributional problem L AVP; i.e., for
every , no Turing machine that accepts L has a running-time that is polynomial on the -average.
Cai and Selman [CS96] proved, as a consequence of their hierarchy theorem, that every P-bi-immune
language is distributionally-hard to recognize. Here we prove that there exist languages that are dis-
tributionally hard but not P-bi-immune if and only if P contains a set that is immune to all P-printable
sets. Also, we show that if NP contains a distributionally hard set, then NP contains a P-immune set.
It follows from results of Mayordomo [May94] that if the p-measure of NP is not zero, then there
exists a language L that is distributionally hard but not P-bi-immune, and if the p2-measure of NP is
not zero, then there exists a language L in NP that is distributionally hard but not P-bi-immune.

2 Preliminaries

We assume that all languages are subsets of 0 1 and we assume that is ordered by stan-
dard lexicographic ordering.

A distribution function : 0 1 0 1 is a nondecreasing function from strings to the closed
interval 0 1 that converges to one. The corresponding density function is defined by 0 0
and x x x 1 . Clearly, x y x y . For any subset of strings S, we will denote
by S x S x , the probability of the event S. Define un x x n . For each n, let
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n x be the conditional probability of x in x x n . That is, n x x un, if un 0, and

n x 0 for x x x n , if un 0.
A function from to 0 1 is computable in polynomial time [Ko83] if there is a polyno-

mial time-bounded transducer M such that for every string x and every positive integer n, x
M x 1n 1

2n . Consistent with Levin’s hypothesis that natural distributions are computable in poly-
nomial time, we restrict our attention entirely to such distributions. If is computable in polynomial
time, then the density function is computable in polynomial time. (The converse is false unless
P NP [Gur91].) Also, we explicitly exclude from consideration distributions for which x 0
for all but a finite number of strings x. Consideration of such distributions would allow every prob-
lem to be an essentially finite problem.

Levin [Lev86] defines a function f from to nonnegative reals to be polynomial on -average
if there is an integer k 0 such that

x 1

x
f x 1 k

x
(1)

Average-P is the class of distributional problems L , where L is a language and is a polynomial-
time computable distribution, such that L can be decided by some Turing machine M whose running
time TM is polynomial on -average.

For any time-constructible function T that is monotonically increasing, and hence invertible, Cai
and Selman [CS96] define T on the -average as follows2: Let be a distribution on , and let
Wn x : x n . A function f is T on the -average if for all n 1,

x n

x
T 1 f x

x
Wn (2)

Then, AVTIME T n denotes the class of distributional problems L , where L is a language and
is a polynomial-time computable distribution, such that L can be decided by some Turing machine

M whose running time TM is T on the -average.
Define AVP k 1 AVTIME nk . Clearly, AVP Average-P.
A distribution is reasonable if there exists s 0 such that Wn

1
ns . We will require the

following results of Cai and Selman [CS96] and Gurevich [Gur91].

Proposition 1 1. If is a reasonable distribution, then L belongs to Average-P (Levin’s def-
inition) if and only if L belongs to AVP (Cai and Selman’s definition).

2. If satisfies the stronger condition that there exists s 0 such that un
1
ns , then all of the

following are equivalent:

(i) L belongs to Average-P;

(ii) L belongs to AVP;

(iii) There is an integer k 0 such that for all n 1,

x n

x
f x 1 k

x
un (3)

2Cai and Selman restricted their attention to functions that belong to Hardy’s [Har24] class of logarithmico-exponential
functions. We do not need to concern ourselves with this for the purpose of this paper.
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Now consider reductions. Levin [Lev86] was the first to define polynomial-time many-one re-
ductions on distributional problems; we will use the following form given by Gurevich [Gur91].

Let and be two distributions. Then, is dominated by , denoted by , if there is a
polynomial p such that for all x, x p x x . Let A and B be two distributions and let
f : . Recall, for every distribution on , that f induces a distribution f on that is
defined by f y f x y x , for all y range f . Then, we say that A is dominated by B

with respect to f , denoted by A f B, if there exists a distribution such that A and for all
y range f ), B y f y .

Let A A and B B be two distributional problems. Then A A is many–one reducible to
B B in polynomial time, denoted by A A

p
m B B , if there exists a polynomial-time com-

putable function f : such that A is many–one reducible to B via f and A f B.
Gurevich [Gur91] and Wang [Wan97] provide proofs of the following properties.

Proposition 2 1. Let A A and B B be two distributional problems such both A and B

are polynomial-time computable and such that A A
p
m B B . If B B Average-P,

then A A Average-P.

2. Polynomial-time many-one reductions are transitive.

It is possible to require only that the reduction be computable in polynomial time on the average
[Lev86, Gur91]: is weakly dominated by if there is a function g that is polynomial on the -
average (by Levin’s definition) such that for all x, x g x x . A A is many–one reducible
to B B in average polynomial time, denoted by A A

ap
m B B , if there is a function f that

is computable in time a polynomial on the A-average (again, by Levin’s definition) such that A is
many–one reducible to B via f and A is weakly dominated by some distribution such that for all
x, B f x f f x .

The analogue of Proposition 2 holds for ap
m -reductions.

Once again, if L1 1 is reducible to L2 2 , both 1 and 2 are reasonable, and L2 2 be-
longs to AVP, then L1 1 belongs to Average-P and so, by Proposition 1, L1 1 belongs to AVP
also. However, Belanger, Pavan, and Wang [BPW96] have proved that AVP is not in general closed
under reductions.

Given any reducibility r, a distributional problem L is r-complete for DistNP if L
DistNP (i.e., L NP and is computable in polynomial time) and every distributional problem that
belongs to DistNP is r reducible to L .

Here we have given only the definitions and properties that we need for this paper; we refer the
reader to the recent expositions by Impagliazzo [Imp95] and Wang [Wan97] for deeper understand-
ing of average-case complexity.

2.1 Resource-bounded measure

Let the classes p1 p and p2, both consisting of functions f : , be the classes

p1 f f is computable in polynomial time

p2 f f is computable in nlognO 1
time
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We refer the reader to the papers of Lutz [Lut92, Lut97] for a general introduction to resource-
bounded measure theory. Measures are defined in terms of certain capital-preserving betting strate-
gies called martingales. Informally, a martingale succeeds on a language L if the betting strategy
succeeds in winning infinite capital on L. We will not construct martingales in this paper, so we will
not define them here. Resource-bounded measures are defined in terms of resource-bounded mar-
tingales.

The following definitions are based on these notions: A set X of languages has pi-measure 0
(i 1 2) if there is a pi-computable martingale that succeeds on every language in X . A set X of
languages has pi-measure 1 if the complement of X has pi-measure 0. A set X has measure 0 in E if
the p-measure of X E is 0. A set X has measure 1 in E if the p-measure of the complement of X in
E is 0.

We caution that not all sets are measurable. We assume the reader is familiar with standard set-
theoretic closure properties of measure theory.

If the p-measure of a class X is 0, then the p2-measure of X is 0. If the p-measure of X is 0, then
the measure of X in E is 0. Lutz has hypothesized that neither the p-measure nor the p2-measure
of NP is 0, and from these strong hypotheses he and others have derived several consequences that
do not seem to follow from weaker hypotheses [May94, LM96]. The measure of E in E is 1. The
p-measure of P is 0, and we expect that NP is quantitatively different from P. Thus, results of the
form “If A, then the pi-measure of NP is 0” provide evidence that A is false.

A language L is immune to a complexity class , or -immune, if L is infinite and no infinite
subset of L belongs to . A language L is bi-immune to a complexity class , or -bi-immune, if
L is infinite, no infinite subset of L belongs to , and no infinite subset of L belongs to . A lan-
guage is DTIME(T n )-complex if L does not belong to DTIME(T n ) almost everywhere; that is,
every Turing machine M that accepts L runs in time greater than T x , for all but finitely many
words x. Balcázar and Schöning [BS85] proved that for every time-constructible function T , L is
DTIME(T n )-complex if and only if L is bi-immune to DTIME(T n ).

Mayordomo [May94] proved that the p-measure of the class of DTIME 2n -bi-immune sets is
not 0, and therefore, if the p-measure of NP is not 0, then NP contains a DTIME 2n -bi-immune set.
Cai and Selman [CS96] proved, for all P-bi-immune sets L and for all polynomial-time computable
distributions , that L AVP. Thus, if NP does not have p-measure 0, then there is a language
L such that for every polynomial-time computable distribution , the distributional problem L
belongs to DistNP but does not belong to AVP. (Independently, Schuler and Yamakami [SY95] ob-
tained a similar result.)

The set L L AVP has has p-measure 0 because it excludes all P-bi-immune sets.
However, the set L L Average-P has has measure 1 in E because E is a subset. (This is
easy to see; for L E, take x 4 x .) Since the p-measure of P is 0, in terms of resource-bounded
measure, AVP is more like a feasible class than Average-P.

3 Complete Distributional Problems

In this section we show that complete distributional problems have reasonable distributions. The
Appendix contains proofs that are not given here. We begin with the following lemma.

Lemma 1 Let 1 be the standard uniform distribution, so that 1 x x n n 2. Let f be a
polynomial-time computable reduction from A 1 to B 2 , where 2 is not reasonable. Then, for
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all k 1, there exist infinitely many strings x, such that f x k x .

Theorem 1 If A 1
p
m B 2 , where B NP, 1 is the standard uniform distribution, and 2 is

not reasonable, then A is not DTIME 2n -bi-immune.

Proof. Let f be a polynomial-time reduction from A 1 to B 2 and choose l 1 such that
B DTIME 2nl

.
For all strings x, x A if and only if f x B. Membership of f x in B can be decided in 2 f x l

steps. By Lemma 1, for infinitely many strings x, f x l x . Thus, membership in A of these
infinitely many strings can be decided in 2 x steps. Hence, A is not DTIME 2n -bi-immune.

The following corollaries follow immediately.

Corollary 1 If NP contains a DTIME 2n -bi-immune set, then every p
m-complete distributional

problem for DistNP has a reasonable distribution.

Corollary 2 If the p-measure of NP is not 0, then every p
m-complete distributional problem for

DistNP has a reasonable distribution.

We also obtain these results for ap
m -reducibility.

Theorem 2 If NP contains a DTIME 2n -bi-immune set, then every ap
m -complete distributional

problem for DistNP has a reasonable distribution.

Corollary 3 If the p-measure of NP is not 0, then every ap
m -complete distributional problem for

DistNP has a reasonable distribution.

Since p
m is stronger than ap

m , Corollaries 1 and 2 also follow from Theorem 2, but Theorem 1
is of independent interest.

4 Distributional Hardness

We define a language L to be distributionally-hard to recognize if for all polynomial-time computable
distributions , L AVP. As we have noted, every P-bi-immune language is distributionally-
hard to recognize. We can completely characterize the question of whether there exist any other
languages that are distributionally-hard. Recall that set L is P-printable if there exists k 1 such
that all the elements of L up to size n can be printed by a deterministic Turing machine in time nk k
[HY84, HIS85]. A set A is P-printable-immune if no infinite subset of A is P-printable.

Theorem 3 If NP contains a distributionally-hard set, then NP contains a P-immune set.

Theorem 4 There exist distributionally-hard sets that are not P-bi-immune if and only if P contains
a P-printable-immune set.
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Consider the following assertions:

1. NP contains a P-bi-immune set.

2. NP contains a distributionally-hard set.

3. NP contains a P-immune set.

4. P contains a P-printable immune set.

5. There exist distribtionally-hard sets that are not P-bi-immune.

The following corollary summarizes all known relationships among these assertions.

Corollary 4 Each of the following implications holds:

Assertion 1 Assertion 2

Assertion 3

Assertion 4

Assertion 5

The first implication is due to Cai and Selman [CS96]. For the third implication, let A be an
immune set in NP. Since every P-printable set belongs to P, no infinite subset of A is P-printable.
Thus, by a result that Allender and Rubinstein [AR88] attribute D. Russo, there exists a set in P with
the same property. The remaining implications follow from Theorems 3 and 4.

Corollary 5 If the p-measure of NP is not 0, then there is a language L that is distributionally-hard
to recognize but not P-bi-immune.

From the presumably stronger hypothesis that the p2-measure of NP is not 0, we obtain the
stronger result that L belongs to NP:

Corollary 6 If the p2-measure of NP is not 0, then there is a language L NP that is distributionally-
hard to recognize but not P-bi-immune.

The proof of Theorem 4 from right to left proceeds as follows: Let B be a P-printable-immune
set that belongs to P. Let A be any set that is DTIME 2n3

-complex. We define L A B. Note
that A and B are not disjoint since A is DTIME 2n3

-bi-immune. Since B P, clearly, L is not P-
bi-immune. In the Appendix we show that L is distributionally-hard to recognize. The general idea
is to suppose that L belongs to AVP, for some polynomial-time computable distribution , and,
from this supposition, demonstrate an infinite P-printable subset of B.

For the proof of Corollary 6, from results of Mayordomo [May94], we know that if the p2-
measure of NP is not 0, then there is a set A in NP that is DTIME 2n3

-bi-immune. The same hy-
pothesis implies that the p-measure of NP is not 0, from which we know that NP contains P-immune
sets, so by Corollary 4, there exists P-printable-immune set B that belongs to P. Thus, in this case the
set L A B belongs to NP.

Finally, let us note that Schuler and Yamakami [SY95] considered a notion that in a sense is the
opposite of the one we studied here. They examined languages that for all polynomial-time com-
putable distributions are polynomial on the -average, and showed that such languages exist that are
not in P.
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Appendix

Here we give proofs of results that are not provided in the main body.

Results in Section 3

Lemma 1 Let 1 be the standard uniform distribution, so that 1 x x n n 2. Let f be a
polynomial-time computable reduction from A 1 to B 2 , where 2 is not reasonable. Then, for
all k 1, there exist infinitely many strings x, such that f x k x .

Proof. The function f many-one reduces A to B and 1 f 2. Thus, there exists a distribution
such that 1 and for all y range f , 2 y f y . It is easy to see that is reasonable

also.
We prove the claim by contradiction. Assume there exist positive integers k and N so that for all

strings x, x N, f x k x . We will prove from this assumption that 2 is reasonable.
Let n N. Choose s such that x x m m s , Consider the following inequalities:

z n1 k
2 z

z n1 k

z f

2 z

z n1 k

z f
f y z

y n

y

y n

y

1 ns

Thus, for all m N1 k,

z m
2 z 1 mks

which proves that 2 is reasonable.

Theorem 2 If NP contains a DTIME 2n -bi-immune set, then every ap
m -complete distributional

problem for DistNP has a reasonable distribution.

Proof. Let L be an ap
m -complete distributional problem for DistNP. Define the distribution

1 by 1 0n n 2, for all n 1, and 1 x 0, for all x 0 . For all n, 1 x x n n 2, so,
by definition, 1 is a reasonable distribution. Let S NP; choose l 1 such that S DTIME 2 nl

.
Let f be a function that is computable in time a polynomial on the 1-average and that ap

m -reduces
S 1 to L . By Proposition 1, there is a Turing machine M that computes f whose running-time

TM, for some integer j 1, satisfies the following inequality, for all n 1:

x n

TM x 1 j

n 1 x n 2
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Thus,
TM 0n 1 j

n
n 2 n 2

from which it follows that TM 0n n j, for all n. Thus, the restriction of f to 0 is polynomial-time
computable.

Similar to Lemma 1, our first task is to demonstrate that for all s 1, there exist infinitely
many n 1 such that f 0n s n. Let weakly dominate 1 so that for all strings y range f ,

y f y . There is a function g that is polynomial on the 1-average so that for all x,

1 x g x x . As in the previous paragraph, since 1 is reasonable, there exists j 1 such
that for all n 1,

x n

g x 1 j

n 1 x n 2

from which, as above, g 0n n j. Then,

x x n
x n

x

x n
1 g x

n 2 n j

It follows readily that is reasonable also. Now the proof of our task proceeds exactly as does the
proof of Theorem 1 and we conclude that S is not DTIME 2n -bi-immune.

Results in Section 4

Theorem 3 If NP contains a distributionally-hard set, then NP contains a P-immune set.

Proof. Let L NP be distributionally hard. We will show that L 0 is P-immune.
First we argue that L 0 is an infinite set. Let us suppose otherwise. Then, L contains an

infinite subset S of 0 that belongs to P. For each string x in S, let r x be the number of strings in S
that are lexicographically less than x. Define a distribution on as follows: x r x 1 2,
for x S, and x 0, otherwise. A Turing machine that, on input x, first determines whether x S,
accepts if so, and otherwise simulates an acceptor for L, runs in time a polynomial on the -average
and accepts L. Thus, L belongs to AVP, which contradicts our hypothesis. Thus, L 0 is an
infinite set.

Similarly, L 0 is P-immune, and, of course, L 0 NP.

Theorem 4 There exist distributionally-hard sets that are not P-bi-immune if and only if P contains
a P-printable-immune set.

12



Proof. Let L be a distributionally-hard set that is not P-bi-immune. Since L is not P-bi-immune,
some infinite set S in P either is a subset of L or of L. Consider the case that S L. Supposing that
S is not P-printable-immune, let S be an infinite P-printable subset of S. Define as follows: For
each length n for which S contains strings of length n, determine the strings x1 xk n of length n
that belong to S , and define

x1 xk n
1

k n
1
n2

All other strings have weight 0. (It follows that S 1 and S 0.) Define M to be a Turing
machine that first behaves like a P-acceptor for S and then, on words that the P-acceptor does not
accept, behaves like a Turing machine that accepts L. Since S L, M accepts L, and it is easy to see
that TM is polynomial on the -average.

To prove the converse, let B P be P-printable-bi-immune. Let A be any set that is DTIME 2n3
-

complex. We define L A B. Note that A and B are not disjoint since A is DTIME 2n3
-bi-immune.

Since B P, clearly, L is not P-bi-immune. Now our goal is to prove that L is distributionally-hard
to recognize. Observe that every Turing machine that recognizes L takes more than 2n3

time on all
but finitely many strings of B. Also, recall, for any distribution , that un x x n . We
require the following lemma.

Lemma 2 Suppose that is a distribution such that L is in AVP. Then, there exist infinitely
many n such that un 0 and

x x B x n
nun

2n2

Proof. We prove the claim by contradiction. Let Xn x x B x n . Let N be a positive
integer such that for all n N, un 0 and

Xn
nun

2n2

We will prove that L is not in AVP. Let M be any Turing machine that accepts L, let TM denote the
running time of M, and assume that N is sufficiently large so that TM x 2 x 3

for all strings x B,
x N. Let k 1 be any positive integer.

The following inequalities demonstrate that L does not belong to AVP.

13



x N

T1 k
M x x

x
x N

x B

T1 k
M x x

x

m N
um 0

x m

x B

T1 k
M x x

x

m N
um 0

x m

x B

2m3 1 k x
m

m N
um 0

2m3 1 k Xm

m

m N
um 0

2m3 1 k

m
mum

2m2

m N
um 0

um
m N

um

Continuing with the proof of Theorem 4, next we show that L AVP, for every polynomial-
time computable distribution . Again, by contradiction, suppose that is a polynomial-time com-
putable distribution such that L AVP.

Define an interval x1 x2 to be a finite sequence of strings in increasing order that begins with
the string x1 and ends with the string x2. (If we identify every string with the number it represents in
dyadic notation, then lexicographic order of strings and the natural ordering of the positive integers
coincide.) For example, the set of all strings of length n is the interval 0n 1n . Given strings x1 and x2

such that x1 precedes x2, let mid x1 x2 x1 x2 2. Then, x1 mid x1 x2 contains the first x2

x1 1 2 strings in x1 x2 , and mid x1 x2 1 x2 contains the last x2 x1 1 2 strings in x1 x2 .
We will use the following programming variables to simplify notation: Given an interval I x1 x2 ,
“LeftI” denotes the interval x1 mid x1 x2 , and “RightI” denotes the interval mid x1 x2 1 x2 .

We define a set T to contain at most one string of length n by the following algorithm:

Current : 0n 1n ;
For i 1 to n do

if LeftCurrent RightCurrent
then Current : LeftCurrent else Current : RightCurrent.

The final value of Current contains exactly one string x. Put x into T if and only if x B.
Next we will prove that T is an infinite P-printable subset of B, which will complete the proof of

Theorem 4. Obviously, T is a subset of B. Since is computable in polynomial time, LeftCurrent

and RightCurrent can be computed in polynomial time. Thus, T is P-printable.
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We need only to show that T is an infinite set. If x is the final value of Current, x n, then
by the construction, x un 2n. However, by Lemma 2, there exist infinitely many n such that
un 0 and Xn

unn
2n2 . Thus, for all such n, x is greater than Xn . Hence, for all such n, the

final value of Current belongs to B. Thus, T is an infinite set.
This completes the proof.
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