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Abstract. We prove that if for some € > 0, NP contains a set that is
DTIME(2"")-bi-immune, then NP contains a set that is 2-Turing com-
plete for NP (hence 3-truth-table complete) but not 1-truth-table com-
plete for NP. Thus this hypothesis implies a strong separation of com-
pleteness notions for NP. Lutz and Mayordomo [LM96] and Ambos-Spies
and Bentzien [ASB00] previously obtained the same consequence using
strong hypotheses involving resource-bounded measure and/or category
theory. Our hypothesis is weaker and involves no assumptions about
stochastic properties of NP.

1 Introduction

We obtain a strong separation of polynomial-time completeness notions under
the hypothesis that for some € > 0, NP contains a set that is DTIME(2"")-bi-
immune. We prove under this hypothesis that NP contains a set that is <} .-
complete (hence <% ,,-complete) for NP but not <! ,,-complete for NP. In
addition, we prove that if for some € > 0, NP N co-NP contains a set that is
DTIME(2")-bi-immune, then NP contains a set that is <} _,,-complete for NP
but not <’ ,,-complete for NP. (We review common notation for polynomial-
time reducibilities in the next section.)

The question of whether various completeness notions for NP are distinct
has a very long history [LLS75], and has always been of interest because of
the surprising phenomenon that no natural NP-complete problem has ever been
discovered that requires anything other than many-one reducibility for proving
its completeness. This is in contrast to the situation for NP-hard problems.
There exist natural, combinatorial problems that are hard for NP using Turing
reductions that have not been shown to be hard using nonadaptive reductions
[JK76]. The common belief is that NP-hardness requires Turing reductions, and
this intuition is confirmed by the well-known result that if P # NP, then there
are sets that are hard for NP using Turing reductions that are not hard for NP
using many-one reductions [SG77].

* Work done while the author was at University at Buffalo.



There have been few results comparing reducibilities within NP, and we have
known very little concerning various notions of NP-completeness. The first re-
sult to distinguish reducibilities within NP is an observation of Wilson in one
of Selman’s papers on p-selective sets [Sel82]. It is a corollary of results there
that if NE N co-NE # E, then there exist sets A and B belonging to NP such
that A Sppostt B, B <F A, and BS/l;ostt A, where §Eostt denotes positive truth-
table reducibility. Regarding completeness, Longpré and Young [LY90] proved
that there are gfn—complete sets for NP for which §¥—reductions to these sets
are faster, but they did not prove that the completeness notions differ. Lutz
and Mayordomo [LM96] were the first to give technical evidence that <V- and
<P _completeness for NP differ. They proved that if the p-measure of NP is
not zero, then there exists a <!’ ,-complete language for NP that is not <P -
complete. Ambos-Spies and Bentzien [ASB00] extended this result significantly.
They used an hypothesis of resource-bounded category theory that asserts that
“NP has a p-generic language, ” which is weaker than the hypothesis of Lutz
and Mayordomo, to separate nearly all NP-completeness notions for the bounded
truth-table reducibilities, including the consequence obtained by Lutz and May-
ordomo.

Here we prove that the consequence of Lutz and Mayordomo follows from
the hypothesis that NP contains a DTIME(2"€)—bi—immune language. This hy-
pothesis is weaker than the genericity hypothesis in the sense that the genericity
hypothesis implies the existence of a 2" -bi-immune language in NP. Indeed,
there exists a DTIME(2"")-bi-immune language, in EXP, that is not p-generic
[PS01]. Notably, our hypothesis, unlike either the measure or genericity hypothe-
ses, involves no stochastic assumptions about NP.

Pavan and Selman [PS01] proved that if for some € > 0, NPNco-NP contains
a set that is DTIME(2"")-bi-immune, then there exists a <}-complete set for
NP that is not <P -complete. The results that we present here are significantly
sharper. Also, they introduced an Hypothesis H from which it follows that there
exists a gg—complete set for NP that is not gz—complete. We do not need to
state this hypothesis here. Suffice it to say that if for some ¢ > 0, UP N co-UP
contains a DTIME (2™ )-bi-immune set, then Hypothesis H is true. Thus, we may
partially summarize the results of the two papers as follows:

1. If for some ¢ > 0, NP contains a DTIME(2")-bi-immune set, then NP
contains a set that is <Y r-complete (hence <% ,,-complete) that is not
<P ,,-complete.

2. If for some € > 0, NP N co-NP contains a DTIME(2"")-bi-immune set, then
NP contains a set that is <Y_,,-complete that is not <!_,,-complete.

3. If for some € > 0, UP N co-UP contains a DTIME(2"")-bi-immune set, then
NP contains a set that is gg—complete that is not gg—complete.

2 Preliminaries

We use standard notation for polynomial-time reductions [LLS75] and we as-
sume that readers are familiar with Turing, <%, and many-one, <P | reducibili-



ties. Given any positive integer k > 0, a k- Turing reduction (< ..) is a Turing
reduction that on each input word makes at most k queries to the oracle. A set
A is truth-table reducible to a set B (A <l B) if there exist polynomial-time
computable functions g and h such that on input z, g(x), for some m > 0, is
(an encoding of) a set of queries Q = {q1,42, -, ¢m}, and x € A if and only if
h(z,B(q1), -+, B(gm)) = 1. For a constant k > 0, A is k-truth-table reducible
to B (A <I’,, B) if for all z, ||Q| = k. Given a polynomial-time reducibility
<P recall that a set S is <P-complete for NP if S € NP and every set in NP is
gf—reducible to S.

A language is DTIME(T (n))-complex if L does not belong to DTIME(T'(n))
almost everywhere; that is, every Turing machine M that accepts L runs in time
greater than T'(|z|), for all but finitely many words x. A language L is immune
to a complexity class C, or C-immune, if L is infinite and no infinite subset of
L belongs to C. A language L is bi-immune to a complexity class C, or C-bi-
immune, if both L and L are C-immune. Balcdzar and Schoning [BS85] proved
that for every time-constructible function 7', L is DTIME(T (n))-complex if and
only if L is bi-immune to DTIME(T'(n)). We will use the following property of
bi-immune sets. See Balcdzar et al. [BDGI0] for a proof.

Proposition 1. Let L be a DTIME(T(n))-bi-immune language and A be an
infinite set in DTIME(T(n)). Then both AN L and AN L are infinite.

3 Separation Results

Our first goal is to separate <} .-completeness from <P -completeness under
the assumption that NP contains a DTIME(2%")-bi-immune language.

Theorem 1. If NP contains a DTIME(22")-bi-immune language, then NP con-
tains a <Y _,.-complete set S that is not <E -complete.

Proof. Let L be a DTIME(2%")-bi-immune language in NP. Let k& > 0 be a
positive integer such that L € DTIME(Q”k). Let M decide L in 2" time. Define

t1 = 2%, and, for i > 1,
tit1 = (ti)k2>
and, for each 7 > 1, define
L={z| ;" <|a] <if}.

Observe that {I;};>1 partitions X* — {z | |z| < 2}. Define the following sets:

E =U; evenli,
0 =U; oqali;
L.=LNE,
Ly=LNO,

PadSAT = SATN E.



Since L belongs to NP, L. and L, also belong to NP. We can easily see that
PadSAT is NP-complete.

We now define our <} _.-complete set S. To simplify the notation we use a
three letter alphabet.

S =0(L, UPadSAT) U 1(L. N PadSAT) U 2L,.

It is easy to see that S is SQPfT-complete: To determine whether a string «
belongs to PadSAT, first query whether x € L. If x € L., then x € PadSAT if
and only if x € (L. N PadSAT), and, if & L., then € PadSAT if and only
if x € (L. UPadSAT). The same reduction, since it consists of three distinct
queries, demonstrates also that S is <Y _,,-complete for NP.

The rest of the proof is to show that S is not an—complete for NP. So assume
otherwise and let f be a polynomial-time computable many-one reduction of L,
to S. We will show this contradicts the hypothesis that L is DTIME(2%")-bi-
immune.

We need the following lemmas about L,. Note that L, C O.

Lemma 1. Let A be an infinite subset of O that can be decided in 22" time.
Then both the sets AN L, and AN L, are infinite.

Proof. Since A is a subset of O, a string = in A belongs to L, if and only if it
belongs to L. Thus A N L, is infinite if and only if A N L is infinite. Similarly,
AN L, is infinite if and only if A N L is infinite. Since A can be decided in 22"
time, and L is 22"-bi-immune, by Proposition 1, both the sets AN L and ANL
are infinite. Thus, AN L, and AN L, are infinite.

Lemma 2. Let A belong to DTIME(Z"k), and suppose that g is a <P -reduction
from L, to A. Then the set

T={ze0]|lg(x)| < |z'*}
18 finite.

Proof. 1t is clear that T € P. Recall that M is a deterministic algorithm that
correctly decides L. Let N decide A in 27" time. The following algorithm cor-
rectly decides L and runs in 2" time on all strings belonging to 7: On input
x, if  does not belong to T, then run M on z. If x € T, then z € L if and
only if z € L,, so run N on g(z) and accept if and only if N accepts g(x). N
takes 219" steps on g(x). Since |g(z)| < |=|*/*, N runs in 21! time. Thus, the
algorithm runs in 2™ steps on all strings belonging to 7. Unless T is finite, this
contradicts the fact that L is DTIME(22")-bi-immune.

Next we show that the reduction should map almost all the strings of O to
strings of form by, where y € E and b € {0,1,2}.

Lemma 3. Let
A={x|z€O0,f(z)=by, and y € O}.
Then A is finite.



Proof. It is easy to see that A belongs to P. Both PadSAT and L. are subsets
of E. Thus if a string by belongs to S, where b € {0,1,2}, then y € E. For every
string z in A, f(z) = by and y € O. Thus by ¢ S, which implies, since f is a
many-one reduction from L, to S, that © ¢ L,. Thus AN L, is empty. Since
A C O, if A were infinite, then this would contradict Lemma 1, so A is finite. |

Thus, for all but finitely many x, if x € O and f(z) = by, then y € E. Now
we consider the following set B,

B={z||zx| =t; and 7 is odd}.

Observe that B € P and that B is an infinite subset of O. Thus, by Lemma 1,
BN L, is an infinite set. Since, for all strings z, z € L, < f(x) € S, it follows
that f maps infinitely many of the strings in B into S. The rest of the proof is
dedicated to showing a contradiction to this fact. Exactly, we define the sets

Bo={ze B f(z) =0y},
B, ={x € B| f(x) =1y}, and
By ={zeB| f(z) =2y},

and we prove that each of these sets is finite.
Lemma 4. By is finite.
Proof. Assume By is infinite. Let
C={reBy| f(r) =0y and y € E}.

Since By is a subset of O, by Lemma 3, for all but finitely strings in By, if
f(z) = 0y, then y € E. Thus By is infinite if and only if C' is infinite.
Consider the following partition of C.

Cy={zeC| f(x) =0y, lyl < |z|'/*},
Co={z € C| f(x) =0y, [z|'/* < |y| < |=|*},
Cs={z € C| f(x) =0y,ly| > |2|"}.

We will show that each of the sets Cy, Cs, and Cj3 is finite.
Claim 1 C] is finite.

Proof. Since S € DTIl\/IE(2"k)7 the claim follows from Lemma 2. i

Claim 2 C is the empty set.

Proof. Assume that © € Cs. Since Co C C C B, |x| = t;, for some odd . So,
|z[/% < |y| < |a|* implies that t./* < |y| < t*, which implies y € I;. Since i is
odd, y € O. However, by definition of C, y € E. Thus, Cy = (). |



Claim 3 Cj is finite.

Proof. Observe that C3 € P. Suppose (3 is infinite. Define Cy = C3 — L,. We
first show, under the assumption Cj3 is infinite, that C} is infinite. Suppose Cy
is finite. Then the set C5 = C3 N L, differs from C3 by a finite set. Thus, since
C3 € P, C5 € P also. At this point, we know that Cj is an infinite subset of O
that belongs to P, and that Cj is a subset of L,. Thus, Cs N L, is empty, which
contradicts Lemma 1. Thus, Cy is an infinite subset of Cs.

Let

F={yeE|3x[re0,x¢ Lo f(x) =0y, and |y| > [a["]}.
The following implications show that F' is infinite:

Cj is infinite
=
3%z [z € 0,2 ¢ Lo, f(x) = Oy, ly| > |z[*,y € E]
=
3%y c E[Brx € O,z ¢ L, f(x) = 0y, |y| > |z|*].

For each string y in F, there exists a string € O — L,, such that f(x) = 0y.
Since f is a many-one reduction from L, to S, f(z) = Oy ¢ S. Thus y ¢
L. UPadSAT, and so y ¢ L.. However, since y € E, we conclude that y ¢ L.
Thus, F is an infinite subset of L.

Now we contradict the fact that L is DTIME(22")-bi-immune by showing that
F is decidable in time 22". Let y be an input string. First decide, in polynomial
time, whether y belongs to E. If y ¢ E, then y ¢ F. If y € E, compute the set
of all z such that |z| < |y|'/*, 2 € O, and f(z) = Oy. Run M on every string =
in this set until M rejects one of them. Since x € O, M rejects a string = only if
x ¢ L,. If such a string is found, then y € F, and otherwise y ¢ F. There are at
most 2 x 219" many z’s such that lz| < |y|** and f(z) = Oy. The time taken
to run M on each such x is at most 9l < 21yl Thus, the total time to decide
whether y € F is at most 2/¥! x ol x 9 < 22l9l, Thus, F is decidable in time
22n,

We conclude that F' must be a finite set. Therefore, Cy is finite, from which
it follows that Cj is finite.

Each of the claims is established. Thus, C' = Cy U C5y U Cs is a finite set, and
this proves that By is a finite set. |

Lemma 5. B is a finite set.

Proof. Much of the proof is similar to the proof of Lemma 4. Assume that By
is infinite. This time, define

C={xeB;| f(x) =1y and y € E}.



By Lemma 3, C is infinite if and only if B; is infinite. Thus, by our assumption,
C is infinite. Partition C' as follows.

Cr={zeC| f(z) =1y ly| < |z|"*}
Co={z € C| fx) =1y, |z[/* < |y < |z|*}
Oy ={zeC| f(x) =1y |yl > |=|"}

As in the proof of Lemma 4, we can show that C7 is a finite set and Cs is
empty. Now we proceed to show that C5 is also a finite set.

Claim 4 Cj is finite.

Proof. Assume Cj is infinite and observe that C3 € P. Define Cy = C3 N L,.
Now we show that Cj is infinite. If Cy is finite, then Cs = C3 — L, contains all
but finitely many strings of C's. Thus, since C5 belongs to P, C5 also belongs to
P. Thus Cj5 is an infinite subset of O that belongs to P, for which C5 N L, is
empty. That contradicts Lemma 1. Thus, Cj is infinite.

Consider the following set:

F={yeE |3z € Ly, f(x) =1y, |y| > |2}
The following implications show that F' is infinite.

Cy is infinite
=
3%z [z € Lo, f(x) = 1y, |y| > |z[*,y € E]
=
3y[Fz f(z) = 1y, |y| > |z, 2 € Lo,y € E].

For each string y € F, there exists a string € L, such that f(z) = 1y.
Since f is a <P -reduction from L, to S, f(x) = 1y € S, so y € L. N PadSAT.
In particular, y € L. C L. Therefore, F' is an infinite subset of L. However,
as in the proof of Claim 3, we can decide whether y € F in 22/%! steps, which
contradicts the fact that L is DTIME(22")-bi-immune: Let y be an input string.
First decide whether y € F, and if not, then reject. If y € E, then search all
strings  such that |z| < |y|'/*, 2 € O, and f(z) = 1y. For each such x, run M
on z to determine whether x € LN O = L,. If an = € L, is found, then y € F,
and otherwise y & F. The proof that this algorithm runs in 22" steps is identical
to the argument in the proof of Claim 3.

Therefore, F' is finite, from which it follows that Cj is finite, and so C's must
be finite.

Now we know that C' is finite. This proves that Bj is finite, which completes
the proof of Lemma 5.

Lemma 6. B is a finite set.



Proof. Assume B, is infinite. Then
C={xeB| f(z)=2y, andy € E}
is infinite. We partition C' into

Cr={z e C| f(z) =2y, Iyl <|z|"*}
Co={zeC| f(x) =2y [a|"/" <yl < |2|*}
O3 ={zeC| flz)=2ylyl = |2}

The proofs that C7, Co, and C3 are finite are identical to the arguments in
the proof of Lemma 5. (In particular, it suffices to define F' as in the proof of

Lemma 5.) |

Now we have achieved our contradiction, for we have shown that the each of
the sets By, Bs, and Bj are finite. Therefore, f cannot map infinitely many of
the strings in B into S, which proves that f cannot be a <P -reduction from L,
to S. Therefore, S is not <F -complete. |

Next we show that NP has a DTIME(2")-bi-immune set if and only if NP
has a DTIME(Q"k )-bi-immune set using a reverse padding trick [ASTZ97].

Theorem 2. Let0 < € < 1 and k be any positive integer. NP has a DTIME(2™)-
bi-immune set if and only if NP has a DTIME(Z”k)-bi-immune set.

Proof. The implication from right to left is obvious. Let L € NP be a DTIME(2"")-
bi-immune set. Define

L'={z| 0" zeL |z|=n}

and observe that L’ € NP. We claim that L’ is DTIME(Q”k )-bi-immune. Suppose

k
otherwise. Then there exists an algorithm M that decides L’ and M runs in 2"
steps on infinitely many strings. Consider the following algorithm for L:

input y;
if y =0 2 (|z] = n)
then run M on z
and accept y if and only if M accepts x
else run a machine that decides L;

Since M runs in 2" time on infinitely many x, the above algorithm runs in
time 2/eI" steps on infinitely many strings of the form y = 0l#"”“ 2. Observe that
ly| > \x|”k/ Thus, the above algorithm runs in 2%/ steps on infinitely many .
This contradicts the DTIME(2™ )-bi-immunity of L.

Corollary 1. If NP contains a 2" -bi-immune language, then NP contains a
<& r-complete set S that is not <F -complete.



The proof of the next theorem shows that we can extend the proof of The-
orem 1 to show that the set S defined there is not <}_,,-complete. Thus, we
arrive at our main result.

Theorem 3. If NP contains a 2™ -bi-immune language, then NP contains a
<8 r-complete set S that is not <¥'_,,-complete.

Proof. The proof is a variation of the proof of Theorem 1, and we demonstrate
the interesting case only. Assume that the set S defined there is <!'_,,-complete
and let (g,h) be a l-truth-table reduction from L, to S. Recall that, for each
string x, g(x) is a query to S and that

x € L, < h(z,S(g(x))) =1.

The function h on input x implicitly defines four possible truth-tables. Let us
define the sets

T={z]|h(z,1) =1 and h(z,0) =1},
F={z | h(z,1) =0 and h(z,0) = 0},
Y ={x | h(z,1) =1 and h(z,0) = 0},
N ={z | h(z,1) =0 and h(z,0) = 1}.

Each of the sets T, F, Y, and N belongs to P. Also, T C L,, F C L,, for all
strings x € Y,
r€Ll,exeS,

and for all strings € N, B
relL, s xeSs.

It follows immediately that T" and F' are finite sets. Now, as we did in the
proof of Theorem 1, we consider the set B = {x | || =t; and 7 is odd}. Recall
that B € P and that B is an infinite subset of O. For all but finitely many
strings x € B, either z € Y or z € N. In order to illustrate the interesting case,
let us assume that BY = BN N is infinite. Note that BY € P and that BY
is an infinite subset of O. By Lemma 1, BY N L, is infinite. For all 2 € BV,
r € L, & x € S. Thus, g maps infinitely many of the strings in BY into S.
Similar to our earlier analysis, we contradict this by showing that each of the
following sets is finite:

By = {z € BY | g(x) = Oy},
By ={z e BY | g(x) = 1y},
By ={z € BY | g(z) = 2y}.
Here we will demonstrate that By is finite. The other cases will follow similarly.

Define A = {z € By | g(x) = by, and y € O}. Again we need to show that A
is a finite set, but we need a slightly different proof from that for Lemma 3. Note



that A€ P. If g(z) =0y € S, then y € E. Thus, z € A= g(x) € S = x € L,.
Thus A C L,, from which it follows that A is finite. Hence, the set

C={zxeBy|glx)=0yandyc E}
is an infinite set. As earlier, we partition C' into the sets

Cr={z e C|f(x)=0ylyl <|z"*},
Co={z € C | f(x) =0y, |z['/* < |y| < |2|"},
Oy ={zeC| f(x)=0ylyl > |z|*},

and we show that each of these sets is finite. To show that C is finite, we show
more generally, as in the proof of Lemma 2, that V = {z € BY | |g(z)| < |=|*/*}
is a finite set. (The critical fact is that forx € V,z € S € L, &z ¢ L,
because V C 0.) Also, it is easy to see that Cy = ().

We need to show that Cj5 is finite. Assume that Cj is infinite. Noting that
C3 € P, the proof of Claim 4 (not Claim 3!) shows that the set Cy = C3N L, is

infinite. Then,

I*zfx € Cy,g(x) = 0y, |y| < |=|/*]
=
3%z[z € BN,2 € Lo,y € E, g(x) = 0y, |y| < |z|'/*]
=
3°yIax[z € BN,z € L,y € E,g(z) = 0y, |y| < |=|"/*].

Thus, the set
U={y|3u[ze B,z € LoyecE,g(x)=0y,lyl < |z['/*]}

is infinite. For each string y € U, there exists 2 € BN N L, such that g(z) = 0y.
For each such z, g(x) = Oy € S. Thus, y ¢ L. U PadSAT, so, in particular,
y & L. However, y € E, so y € L. Thus, U is an infinite subset of L.

Now we know that C is finite, from which it follows that By is a finite set. In
a similar manner we can prove that B; and By are finite, which completes the
proof of the case that BY is infinite. The other possibility, that BY = BNY is
infinite can be handled similarly.

There is no previous work that indicates a separation of <, -completeness
from <}_,,-completeness. Our next result accomplishes this, but with a stronger
hypothesis.

Theorem 4. If NP Nco-NP contains a 2" -bi-immune set, then NP contains a
<P ,.-complete set that is not <V_,,-complete.

Proof. The hypothesis implies the existence of a 27" bi-immune language L in
NP N co-NP. Let

S = 0(L. N PadSAT) U 1((E — L.) N PadSAT).



Since L belongs to NP N co-NP, S belongs to NP. Since both PadSAT and L,
are subsets of F, for any string x

x € PadSAT & (x € L. NPadSAT) V (z € (F — L) N PadSAT).

Thus S is 2-tt-complete for NP. The rest of the proof is similar to the proof
of Theorem 3. |
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