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Abstract. We prove that if for some ε > 0, NP contains a set that is
DTIME(2n

ε

)-bi-immune, then NP contains a set that is 2-Turing com-
plete for NP (hence 3-truth-table complete) but not 1-truth-table com-
plete for NP. Thus this hypothesis implies a strong separation of com-
pleteness notions for NP. Lutz and Mayordomo [LM96] and Ambos-Spies
and Bentzien [ASB00] previously obtained the same consequence using
strong hypotheses involving resource-bounded measure and/or category
theory. Our hypothesis is weaker and involves no assumptions about
stochastic properties of NP.

1 Introduction

We obtain a strong separation of polynomial-time completeness notions under
the hypothesis that for some ε > 0, NP contains a set that is DTIME(2n

ε

)-bi-
immune. We prove under this hypothesis that NP contains a set that is ≤P

2−T -
complete (hence ≤P

3−tt-complete) for NP but not ≤P
1−tt-complete for NP. In

addition, we prove that if for some ε > 0, NP ∩ co-NP contains a set that is
DTIME(2n

ε

)-bi-immune, then NP contains a set that is ≤P
2−tt-complete for NP

but not ≤P
1−tt-complete for NP. (We review common notation for polynomial-

time reducibilities in the next section.)
The question of whether various completeness notions for NP are distinct

has a very long history [LLS75], and has always been of interest because of
the surprising phenomenon that no natural NP-complete problem has ever been
discovered that requires anything other than many-one reducibility for proving
its completeness. This is in contrast to the situation for NP-hard problems.
There exist natural, combinatorial problems that are hard for NP using Turing
reductions that have not been shown to be hard using nonadaptive reductions
[JK76]. The common belief is that NP-hardness requires Turing reductions, and
this intuition is confirmed by the well-known result that if P 6= NP, then there
are sets that are hard for NP using Turing reductions that are not hard for NP
using many-one reductions [SG77].

? Work done while the author was at University at Buffalo.



         

There have been few results comparing reducibilities within NP, and we have
known very little concerning various notions of NP-completeness. The first re-
sult to distinguish reducibilities within NP is an observation of Wilson in one
of Selman’s papers on p-selective sets [Sel82]. It is a corollary of results there
that if NE ∩ co-NE 6= E, then there exist sets A and B belonging to NP such
that A ≤P

postt B, B ≤P
tt A, and B 6≤P

postt A, where ≤P
postt denotes positive truth-

table reducibility. Regarding completeness, Longpré and Young [LY90] proved
that there are ≤P

m-complete sets for NP for which ≤P
T -reductions to these sets

are faster, but they did not prove that the completeness notions differ. Lutz
and Mayordomo [LM96] were the first to give technical evidence that ≤P

T - and
≤P
m-completeness for NP differ. They proved that if the p-measure of NP is

not zero, then there exists a ≤P
2−T -complete language for NP that is not ≤P

m-
complete. Ambos-Spies and Bentzien [ASB00] extended this result significantly.
They used an hypothesis of resource-bounded category theory that asserts that
“NP has a p-generic language, ” which is weaker than the hypothesis of Lutz
and Mayordomo, to separate nearly all NP-completeness notions for the bounded
truth-table reducibilities, including the consequence obtained by Lutz and May-
ordomo.

Here we prove that the consequence of Lutz and Mayordomo follows from
the hypothesis that NP contains a DTIME(2n

ε

)-bi-immune language. This hy-
pothesis is weaker than the genericity hypothesis in the sense that the genericity
hypothesis implies the existence of a 2n

ε

-bi-immune language in NP. Indeed,
there exists a DTIME(2n

ε

)-bi-immune language, in EXP, that is not p-generic
[PS01]. Notably, our hypothesis, unlike either the measure or genericity hypothe-
ses, involves no stochastic assumptions about NP.

Pavan and Selman [PS01] proved that if for some ε > 0, NP∩co-NP contains
a set that is DTIME(2n

ε

)-bi-immune, then there exists a ≤P
T -complete set for

NP that is not ≤P
m-complete. The results that we present here are significantly

sharper. Also, they introduced an Hypothesis H from which it follows that there
exists a ≤P

T -complete set for NP that is not ≤P
tt-complete. We do not need to

state this hypothesis here. Suffice it to say that if for some ε > 0, UP ∩ co-UP
contains a DTIME(2n

ε

)-bi-immune set, then Hypothesis H is true. Thus, we may
partially summarize the results of the two papers as follows:

1. If for some ε > 0, NP contains a DTIME(2n
ε

)-bi-immune set, then NP
contains a set that is ≤P

2−T -complete (hence ≤P
3−tt-complete) that is not

≤P
1−tt-complete.

2. If for some ε > 0, NP ∩ co-NP contains a DTIME(2n
ε

)-bi-immune set, then
NP contains a set that is ≤P

2−tt-complete that is not ≤P
1−tt-complete.

3. If for some ε > 0, UP ∩ co-UP contains a DTIME(2n
ε

)-bi-immune set, then
NP contains a set that is ≤P

T -complete that is not ≤P
tt-complete.

2 Preliminaries

We use standard notation for polynomial-time reductions [LLS75] and we as-
sume that readers are familiar with Turing, ≤P

T , and many-one, ≤P
m, reducibili-



           

ties. Given any positive integer k > 0, a k-Turing reduction (≤Pk-T ) is a Turing
reduction that on each input word makes at most k queries to the oracle. A set
A is truth-table reducible to a set B (A ≤P

tt B) if there exist polynomial-time
computable functions g and h such that on input x, g(x), for some m ≥ 0, is
(an encoding of) a set of queries Q = {q1, q2, · · · , qm}, and x ∈ A if and only if
h(x,B(q1), · · · , B(qm)) = 1. For a constant k > 0, A is k-truth-table reducible
to B (A ≤Pk-tt B) if for all x, ‖Q‖ = k. Given a polynomial-time reducibility
≤P
r , recall that a set S is ≤P

r -complete for NP if S ∈ NP and every set in NP is
≤P
r -reducible to S.

A language is DTIME(T (n))-complex if L does not belong to DTIME(T (n))
almost everywhere; that is, every Turing machine M that accepts L runs in time
greater than T (|x|), for all but finitely many words x. A language L is immune
to a complexity class C, or C-immune, if L is infinite and no infinite subset of
L belongs to C. A language L is bi-immune to a complexity class C, or C-bi-
immune, if both L and L are C-immune. Balcázar and Schöning [BS85] proved
that for every time-constructible function T , L is DTIME(T (n))-complex if and
only if L is bi-immune to DTIME(T (n)). We will use the following property of
bi-immune sets. See Balcázar et al. [BDG90] for a proof.

Proposition 1. Let L be a DTIME(T (n))-bi-immune language and A be an
infinite set in DTIME(T (n)). Then both A ∩ L and A ∩ L are infinite.

3 Separation Results

Our first goal is to separate ≤P
2−T -completeness from ≤P

m-completeness under
the assumption that NP contains a DTIME(22n)-bi-immune language.

Theorem 1. If NP contains a DTIME(22n)-bi-immune language, then NP con-
tains a ≤P

2−T -complete set S that is not ≤P
m-complete.

Proof. Let L be a DTIME(22n)-bi-immune language in NP. Let k > 0 be a

positive integer such that L ∈ DTIME(2n
k

). Let M decide L in 2n
k

time. Define

t1 = 2k, and, for i ≥ 1,

ti+1 = (ti)
k2

,

and, for each i ≥ 1, define

Ii = {x | t1/ki ≤ |x| < tki }.

Observe that {Ii}i≥1 partitions Σ∗ − {x | |x| < 2}. Define the following sets:

E = ∪i evenIi,

O = ∪i oddIi,

Le = L ∩ E,
Lo = L ∩O,

PadSAT = SAT ∩ E.



         

Since L belongs to NP, Le and Lo also belong to NP. We can easily see that
PadSAT is NP-complete.

We now define our ≤P
2−T -complete set S. To simplify the notation we use a

three letter alphabet.

S = 0(Le ∪ PadSAT) ∪ 1(Le ∩ PadSAT) ∪ 2Le.

It is easy to see that S is ≤P
2−T -complete: To determine whether a string x

belongs to PadSAT, first query whether x ∈ Le. If x ∈ Le, then x ∈ PadSAT if
and only if x ∈ (Le ∩ PadSAT), and, if x 6∈ Le, then x ∈ PadSAT if and only
if x ∈ (Le ∪ PadSAT). The same reduction, since it consists of three distinct
queries, demonstrates also that S is ≤P

3−tt-complete for NP.
The rest of the proof is to show that S is not ≤P

m-complete for NP. So assume
otherwise and let f be a polynomial-time computable many-one reduction of Lo
to S. We will show this contradicts the hypothesis that L is DTIME(22n)-bi-
immune.

We need the following lemmas about Lo. Note that Lo ⊆ O.

Lemma 1. Let A be an infinite subset of O that can be decided in 22n time.
Then both the sets A ∩ Lo and A ∩ Lo are infinite.

Proof. Since A is a subset of O, a string x in A belongs to Lo if and only if it
belongs to L. Thus A ∩ Lo is infinite if and only if A ∩ L is infinite. Similarly,
A ∩ Lo is infinite if and only if A ∩ L is infinite. Since A can be decided in 22n

time, and L is 22n-bi-immune, by Proposition 1, both the sets A ∩ L and A ∩ L
are infinite. Thus, A ∩ Lo and A ∩ Lo are infinite.

Lemma 2. Let A belong to DTIME(2n
k

), and suppose that g is a ≤P
m-reduction

from Lo to A. Then the set

T = {x ∈ O | |g(x)| < |x|1/k}
is finite.

Proof. It is clear that T ∈ P. Recall that M is a deterministic algorithm that

correctly decides L. Let N decide A in 2n
k

time. The following algorithm cor-
rectly decides L and runs in 2n time on all strings belonging to T : On input
x, if x does not belong to T , then run M on x. If x ∈ T , then x ∈ L if and
only if x ∈ Lo, so run N on g(x) and accept if and only if N accepts g(x). N

takes 2|g(x)|k steps on g(x). Since |g(x)| < |x|1/k, N runs in 2|x| time. Thus, the
algorithm runs in 2n steps on all strings belonging to T . Unless T is finite, this
contradicts the fact that L is DTIME(22n)-bi-immune.

Next we show that the reduction should map almost all the strings of O to
strings of form by, where y ∈ E and b ∈ {0, 1, 2}.
Lemma 3. Let

A = {x | x ∈ O, f(x) = by, and y ∈ O}.
Then A is finite.



        

Proof. It is easy to see that A belongs to P. Both PadSAT and Le are subsets
of E. Thus if a string by belongs to S, where b ∈ {0, 1, 2}, then y ∈ E. For every
string x in A, f(x) = by and y ∈ O. Thus by /∈ S, which implies, since f is a
many-one reduction from Lo to S, that x /∈ Lo. Thus A ∩ Lo is empty. Since
A ⊆ O, if A were infinite, then this would contradict Lemma 1, so A is finite.

Thus, for all but finitely many x, if x ∈ O and f(x) = by, then y ∈ E. Now
we consider the following set B,

B = {x | |x| = ti and i is odd}.

Observe that B ∈ P and that B is an infinite subset of O. Thus, by Lemma 1,
B ∩ Lo is an infinite set. Since, for all strings x, x ∈ Lo ⇔ f(x) ∈ S, it follows
that f maps infinitely many of the strings in B into S. The rest of the proof is
dedicated to showing a contradiction to this fact. Exactly, we define the sets

B0 = {x ∈ B | f(x) = 0y},
B1 = {x ∈ B | f(x) = 1y}, and

B2 = {x ∈ B | f(x) = 2y},

and we prove that each of these sets is finite.

Lemma 4. B0 is finite.

Proof. Assume B0 is infinite. Let

C = {x ∈ B0 | f(x) = 0y and y ∈ E}.

Since B0 is a subset of O, by Lemma 3, for all but finitely strings in B0, if
f(x) = 0y, then y ∈ E. Thus B0 is infinite if and only if C is infinite.

Consider the following partition of C.

C1 = {x ∈ C | f(x) = 0y, |y| < |x|1/k},
C2 = {x ∈ C | f(x) = 0y, |x|1/k ≤ |y| < |x|k},
C3 = {x ∈ C | f(x) = 0y, |y| ≥ |x|k}.

We will show that each of the sets C1, C2, and C3 is finite.

Claim 1 C1 is finite.

Proof. Since S ∈ DTIME(2n
k

), the claim follows from Lemma 2.

Claim 2 C2 is the empty set.

Proof. Assume that x ∈ C2. Since C2 ⊆ C ⊆ B, |x| = ti, for some odd i. So,

|x|1/k ≤ |y| < |x|k implies that t
1/k
i ≤ |y| < tki , which implies y ∈ Ii. Since i is

odd, y ∈ O. However, by definition of C, y ∈ E. Thus, C2 = ∅.



          

Claim 3 C3 is finite.

Proof. Observe that C3 ∈ P. Suppose C3 is infinite. Define C4 = C3 − Lo. We
first show, under the assumption C3 is infinite, that C4 is infinite. Suppose C4

is finite. Then the set C5 = C3 ∩ Lo differs from C3 by a finite set. Thus, since
C3 ∈ P, C5 ∈ P also. At this point, we know that C5 is an infinite subset of O
that belongs to P, and that C5 is a subset of Lo. Thus, C5 ∩Lo is empty, which
contradicts Lemma 1. Thus, C4 is an infinite subset of C3.

Let

F = {y ∈ E | ∃x [x ∈ O, x /∈ Lo, f(x) = 0y, and |y| ≥ |x|k]}.

The following implications show that F is infinite:

C4 is infinite

⇒
∃∞x [x ∈ O, x /∈ Lo, f(x) = 0y, |y| ≥ |x|k, y ∈ E]

⇒
∃∞y ∈ E [∃x x ∈ O, x /∈ Lo, f(x) = 0y, |y| ≥ |x|k].

For each string y in F , there exists a string x ∈ O−Lo such that f(x) = 0y.
Since f is a many-one reduction from Lo to S, f(x) = 0y /∈ S. Thus y /∈
Le ∪ PadSAT, and so y /∈ Le. However, since y ∈ E, we conclude that y /∈ L.
Thus, F is an infinite subset of L.

Now we contradict the fact that L is DTIME(22n)-bi-immune by showing that
F is decidable in time 22n. Let y be an input string. First decide, in polynomial
time, whether y belongs to E. If y /∈ E, then y /∈ F . If y ∈ E, compute the set
of all x such that |x| ≤ |y|1/k, x ∈ O, and f(x) = 0y. Run M on every string x
in this set until M rejects one of them. Since x ∈ O, M rejects a string x only if
x /∈ Lo. If such a string is found, then y ∈ F , and otherwise y /∈ F . There are at

most 2× 2|y|
1/k

many x’s such that |x| ≤ |y|1/k and f(x) = 0y. The time taken

to run M on each such x is at most 2|x|
k ≤ 2|y|. Thus, the total time to decide

whether y ∈ F is at most 2|y| × 2|y|
1/k × 2 ≤ 22|y|. Thus, F is decidable in time

22n.
We conclude that F must be a finite set. Therefore, C4 is finite, from which

it follows that C3 is finite.

Each of the claims is established. Thus, C = C1 ∪C2 ∪C3 is a finite set, and
this proves that B0 is a finite set.

Lemma 5. B1 is a finite set.

Proof. Much of the proof is similar to the proof of Lemma 4. Assume that B1

is infinite. This time, define

C = {x ∈ B1 | f(x) = 1y and y ∈ E}.



        

By Lemma 3, C is infinite if and only if B1 is infinite. Thus, by our assumption,
C is infinite. Partition C as follows.

C1 = {x ∈ C | f(x) = 1y, |y| < |x|1/k}
C2 = {x ∈ C | f(x) = 1y, |x|1/k ≤ |y| < |x|k}
C3 = {x ∈ C | f(x) = 1y, |y| ≥ |x|k}

As in the proof of Lemma 4, we can show that C1 is a finite set and C2 is
empty. Now we proceed to show that C3 is also a finite set.

Claim 4 C3 is finite.

Proof. Assume C3 is infinite and observe that C3 ∈ P. Define C4 = C3 ∩ Lo.
Now we show that C4 is infinite. If C4 is finite, then C5 = C3 − Lo contains all
but finitely many strings of C3. Thus, since C3 belongs to P, C5 also belongs to
P. Thus C5 is an infinite subset of O that belongs to P, for which C5 ∩ Lo is
empty. That contradicts Lemma 1. Thus, C4 is infinite.

Consider the following set:

F = {y ∈ E | ∃x[x ∈ Lo, f(x) = 1y, |y| ≥ |x|k]}

The following implications show that F is infinite.

C4 is infinite

⇒
∃∞x [x ∈ Lo, f(x) = 1y, |y| ≥ |x|k, y ∈ E]

⇒
∃∞y[∃x f(x) = 1y, |y| ≥ |x|k, x ∈ Lo, y ∈ E].

For each string y ∈ F , there exists a string x ∈ Lo such that f(x) = 1y.
Since f is a ≤P

m-reduction from Lo to S, f(x) = 1y ∈ S, so y ∈ Le ∩ PadSAT.
In particular, y ∈ Le ⊆ L. Therefore, F is an infinite subset of L. However,
as in the proof of Claim 3, we can decide whether y ∈ F in 22|y| steps, which
contradicts the fact that L is DTIME(22n)-bi-immune: Let y be an input string.
First decide whether y ∈ E, and if not, then reject. If y ∈ E, then search all
strings x such that |x| ≤ |y|1/k, x ∈ O, and f(x) = 1y. For each such x, run M
on x to determine whether x ∈ L ∩ O = Lo. If an x ∈ Lo is found, then y ∈ F ,
and otherwise y 6∈ F . The proof that this algorithm runs in 22n steps is identical
to the argument in the proof of Claim 3.

Therefore, F is finite, from which it follows that C4 is finite, and so C3 must
be finite.

Now we know that C is finite. This proves that B1 is finite, which completes
the proof of Lemma 5.

Lemma 6. B2 is a finite set.



         

Proof. Assume B2 is infinite. Then

C = {x ∈ B | f(x) = 2y, and y ∈ E}

is infinite. We partition C into

C1 = {x ∈ C | f(x) = 2y, |y| < |x|1/k}
C2 = {x ∈ C | f(x) = 2y, |x|1/k ≤ |y| < |x|k}
C3 = {x ∈ C | f(x) = 2y, |y| ≥ |x|k}

The proofs that C1, C2, and C3 are finite are identical to the arguments in
the proof of Lemma 5. (In particular, it suffices to define F as in the proof of

Lemma 5.)

Now we have achieved our contradiction, for we have shown that the each of
the sets B1, B2, and B3 are finite. Therefore, f cannot map infinitely many of
the strings in B into S, which proves that f cannot be a ≤P

m-reduction from Lo
to S. Therefore, S is not ≤P

m-complete.

Next we show that NP has a DTIME(2n
ε

)-bi-immune set if and only if NP

has a DTIME(2n
k

)-bi-immune set using a reverse padding trick [ASTZ97].

Theorem 2. Let 0 < ε < 1 and k be any positive integer. NP has a DTIME(2n
ε

)-

bi-immune set if and only if NP has a DTIME(2n
k

)-bi-immune set.

Proof. The implication from right to left is obvious. Let L ∈ NP be a DTIME(2n
ε

)-
bi-immune set. Define

L′ = {x | 0n
k/ε

x ∈ L, |x| = n}

and observe that L′ ∈ NP. We claim that L′ is DTIME(2n
k

)-bi-immune. Suppose

otherwise. Then there exists an algorithm M that decides L′ and M runs in 2n
k

steps on infinitely many strings. Consider the following algorithm for L:

input y;

if y = 0n
k/ε

x (|x| = n)
then run M on x

and accept y if and only if M accepts x
else run a machine that decides L;

Since M runs in 2n
k

time on infinitely many x, the above algorithm runs in

time 2|x|
k

steps on infinitely many strings of the form y = 0|x|
k/ε

x. Observe that

|y| ≥ |x|nk/ε . Thus, the above algorithm runs in 2|y|
ε

steps on infinitely many y.

This contradicts the DTIME(2n
ε

)-bi-immunity of L.

Corollary 1. If NP contains a 2n
ε

-bi-immune language, then NP contains a
≤P

2−T -complete set S that is not ≤P
m-complete.



         

The proof of the next theorem shows that we can extend the proof of The-
orem 1 to show that the set S defined there is not ≤P

1−tt-complete. Thus, we
arrive at our main result.

Theorem 3. If NP contains a 2n
ε

-bi-immune language, then NP contains a
≤P

2−T -complete set S that is not ≤P
1−tt-complete.

Proof. The proof is a variation of the proof of Theorem 1, and we demonstrate
the interesting case only. Assume that the set S defined there is ≤P

1−tt-complete
and let (g, h) be a 1-truth-table reduction from Lo to S. Recall that, for each
string x, g(x) is a query to S and that

x ∈ Lo ⇔ h(x, S(g(x))) = 1.

The function h on input x implicitly defines four possible truth-tables. Let us
define the sets

T = {x | h(x, 1) = 1 and h(x, 0) = 1},
F = {x | h(x, 1) = 0 and h(x, 0) = 0},
Y = {x | h(x, 1) = 1 and h(x, 0) = 0},
N = {x | h(x, 1) = 0 and h(x, 0) = 1}.

Each of the sets T , F , Y , and N belongs to P. Also, T ⊆ Lo, F ⊆ Lo, for all
strings x ∈ Y ,

x ∈ Lo ⇔ x ∈ S,
and for all strings x ∈ N ,

x ∈ Lo ⇔ x ∈ S.
It follows immediately that T and F are finite sets. Now, as we did in the

proof of Theorem 1, we consider the set B = {x | |x| = ti and i is odd}. Recall
that B ∈ P and that B is an infinite subset of O. For all but finitely many
strings x ∈ B, either x ∈ Y or x ∈ N . In order to illustrate the interesting case,
let us assume that BN = B ∩ N is infinite. Note that BN ∈ P and that BN

is an infinite subset of O. By Lemma 1, BN ∩ Lo is infinite. For all x ∈ BN ,
x ∈ Lo ⇔ x ∈ S. Thus, g maps infinitely many of the strings in BN into S.
Similar to our earlier analysis, we contradict this by showing that each of the
following sets is finite:

B0 = {x ∈ BN | g(x) = 0y},
B1 = {x ∈ BN | g(x) = 1y},
B2 = {x ∈ BN | g(x) = 2y}.

Here we will demonstrate that B0 is finite. The other cases will follow similarly.
Define A = {x ∈ B0 | g(x) = by, and y ∈ O}. Again we need to show that A

is a finite set, but we need a slightly different proof from that for Lemma 3. Note



         

that A ∈ P. If g(x) = 0y ∈ S, then y ∈ E. Thus, x ∈ A ⇒ g(x) 6∈ S ⇒ x ∈ Lo.
Thus A ⊆ Lo, from which it follows that A is finite. Hence, the set

C = {x ∈ B0 | g(x) = 0y and y ∈ E}

is an infinite set. As earlier, we partition C into the sets

C1 = {x ∈ C | f(x) = 0y, |y| < |x|1/k},
C2 = {x ∈ C | f(x) = 0y, |x|1/k ≤ |y| < |x|k},
C3 = {x ∈ C | f(x) = 0y, |y| ≥ |x|k},

and we show that each of these sets is finite. To show that C1 is finite, we show
more generally, as in the proof of Lemma 2, that V = {x ∈ BN | |g(x)| < |x|1/k}
is a finite set. (The critical fact is that for x ∈ V , x ∈ S ⇔ x ∈ Lo ⇔ x 6∈ L,
because V ⊆ O.) Also, it is easy to see that C2 = ∅.

We need to show that C3 is finite. Assume that C3 is infinite. Noting that
C3 ∈ P, the proof of Claim 4 (not Claim 3!) shows that the set C4 = C3 ∩ Lo is
infinite. Then,

∃∞x[x ∈ C4, g(x) = 0y, |y| < |x|1/k]

⇒
∃∞x[x ∈ BN , x ∈ Lo, y ∈ E, g(x) = 0y, |y| < |x|1/k]

⇒
∃∞y∃x[x ∈ BN , x ∈ Lo, y ∈ E, g(x) = 0y, |y| < |x|1/k].

Thus, the set

U = {y | ∃x[x ∈ BN , x ∈ Lo, y ∈ E, g(x) = 0y, |y| < |x|1/k]}

is infinite. For each string y ∈ U , there exists x ∈ BN ∩Lo such that g(x) = 0y.
For each such x, g(x) = 0y ∈ S. Thus, y 6∈ Le ∪ PadSAT, so, in particular,
y 6∈ Le. However, y ∈ E, so y ∈ L. Thus, U is an infinite subset of L.

Now we know that C is finite, from which it follows that B0 is a finite set. In
a similar manner we can prove that B1 and B2 are finite, which completes the
proof of the case that BN is infinite. The other possibility, that BY = B ∩ Y is
infinite can be handled similarly.

There is no previous work that indicates a separation of ≤P
2−tt-completeness

from ≤P
1−tt-completeness. Our next result accomplishes this, but with a stronger

hypothesis.

Theorem 4. If NP∩ co-NP contains a 2n
ε

-bi-immune set, then NP contains a
≤P

2−tt-complete set that is not ≤P
1−tt-complete.

Proof. The hypothesis implies the existence of a 2n
k

-bi-immune language L in
NP ∩ co-NP. Let

S = 0(Le ∩ PadSAT) ∪ 1((E − Le) ∩ PadSAT).



        

Since L belongs to NP ∩ co-NP, S belongs to NP. Since both PadSAT and Le
are subsets of E, for any string x

x ∈ PadSAT⇔ (x ∈ Le ∩ PadSAT) ∨ (x ∈ (E − Le) ∩ PadSAT).

Thus S is 2-tt-complete for NP. The rest of the proof is similar to the proof
of Theorem 3.
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[LY90] L. Longpré and P. Young. Cook reducibility is faster than Karp reducibility.
Journal of Computer and System Sciences, 41:389–401, 1990.

[PS01] A. Pavan and A. Selman. Separation of NP-completeness notions. In 16th
Annual IEEE Conference on Computational Complexity, pages 78–89, 2001.

[Sel82] A. Selman. Reductions on NP and P-selective sets. Theoretical Computer
Science, 19:287–304, 1982.

[SG77] I. Simon and J. Gill. Polynomial reducibilities and upward diagonalizations.
Proceedings of the Ninth Annual ACM Symposium on Theory of Computing,
pages 186–194, 1977.


