
Much Ado about Functions

Alan L. Selman
Department of Computer Science

State University of New York at Buffalo
Buffalo, NY 14260

Abstract

This paper surveys basic results on complexity classes
of partial multivalued functions. We stress basic inclusion
relations, interesting hierarchies, and results that demon-
strate that hierarchies are extant.

1 Introduction

The fundamental data type that a nondeterministic pro-
cess computes is a partial multivalued function, partial be-
cause nondeterministic computations do not necessarily ac-
cept every input, and multivalued because nondeterminis-
tic computations may output different values on different
accepting paths. As understanding the power of nondeter-
minism is one of the fundamental goals of complexity the-
ory, surely, we must study the computational complexity of
partial multivalued functions.

The problems that we traditionally think of as set recog-
nition problems are more naturally thought of as functional
computational problems. For example, we do not care to
know only whether a graph has a hamiltonian, but we want
a hamiltonian to be output, if one exists.

It is certainly the case that partial functions are the fun-
damental objects studied in recursive function theory. So, it
is somewhat surprising that complexity theory has largely
developed as a study of classification of decision prob-
lems, and has somewhat ignored classification of function
classes. One reason might be that showing that a problem
is complete or hard for a class has in practice been suffi-
cient for showing that no efficient algorithm exists for com-
puting witnesses to the problem. This is because typical
combinatorial problems are self-reducible. However, it is
not known whether all NP-complete problems in NP are
self-reducible. Consequently, it is not known whether the
familiar approach works in all cases. By studying com-
plexity classes of partial multivalued functions we address

E-mail: selman@cs.buffalo.edu. Funding for this research was pro-
vided by the National Science Foundation under grant CCR-9400229.

questions about NP search problems and about the diffi-
culty of inverting polynomial-time computable functions.
Most importantly, by studying complexity classes of par-
tial multivalued functions, we directly illuminate interest-
ing questions that otherwise would not surface. We will see
that properties of complexity classes of partial multivalued
functions may be identical to or may differ from those of
their corresponding well-known complexity classes of lan-
guages. There are several hierarchies of function classes: a
query hierarchy that closely reflects the query hierarchy of
language classes, a difference hierarchy that only superfi-
cially resembles the difference hierarchy for languages, and
at least one new hierarchy that seems not to correspond to
any collection of language classes. We will see that sev-
eral of the interesting questions remain open. In brief, we
will see that studying the complexity of partial multivalued
functions is not much ado about nothing.

2 Function Classes

To date, most researchers have concentrated on par-
tial multivalued functions that are computed in polynomial
time. Notable exceptions are Mocas [Moc93], who has
studied partial multivalued functions that are computable
in exponential time, and Àlvarez and Jenner [ÀJ93], who
have considered functions that are computable by logspace
transducers that access oracles in NP. Cai et al. [CLL 95]
and Ogihara and Regan [OR93] have studied partial multi-
valued functions that are computed by probabilistic trans-
ducers in polynomial time. In this paper, we will con-
fine our attention to questions concerning nondeterministic
polynomial time computations.

The definitions to follow origininate for the most part in
a paper of Book, Long, and Selman [BLS84]. Results in
this section for which we do not give an explicit citation,
appear first in a paper by Selman [Sel94].

Fix to be the finite alphabet 0 1 . Let f :
be a partial multivalued function. We write f x y, if
y is a value of f on input string x. Define graph f

x y f x y , dom f x y f x y , and



range f y x f x y . If x dom f , we say that
f is undefined at x or that f x is undefined.

A transducer T is a nondeterministic Turing machine
with a read-only input tape, a write-only output tape, and
accepting states in the usual manner. T computes a value y
on an input string x if there is an accepting computation of
T on x for which y is the final contents of T’s output tape. In
this case, we will write T x y. Such transducers com-
pute partial, multivalued functions.

NPMV is the set of all partial, multivalued func-
tions computed by nondeterministic polynomial time-
bounded transducers;

NPSV is the set of all f NPMV that are single-
valued;

PF is the set of all partial functions that are computed
by deterministic polynomial time-bounded transduc-
ers.

Let SAT denote the NP-complete satisfiability problem.
The function sat, defined by sat x y if and only if x
SAT and y is a satisfying assignment of x, is the ubiquitous
example of a partial multivalued function; sat belongs to
NPMV and dom sat SAT.

Example 1 The following interesting partial functions be-
long to NPSV.

(prime factorization) Let pi be the sequence of prime
numbers in increasing order. Define f n , for each
positive integer n, to be the finite sequence pi ai ,
i 0, such that n pai

i . f is single-valued and to-
tal because every positive integer has a unique prime
factorization. f NPSV because the set of primes be-
longs to UP coUP [FK92].

(discrete logarithm) Define h so that

dom h p g x p is prime, g is a

primitive root mod p,

and 1 x p 1

and for each p g x dom h ,

h p g x the unique c, 1 c p 1,

such that gc x mod p

The computation has two components, (1) testing for
membership in the domain and (2) the computation.
Testing for membership in the domain is single-valued
because the set of primes (and primitive roots) belongs
to UP coUP [FK92]. The discrete logarithm has a
unique value when applied to tuples that belong to the
domain.

Given a partial multivalued function f , for all x, we de-
fine

set- f x y f x y

FewPF is the set of all functions f in NPMV such that
for some polynomial p and all x, set- f x p x .

We take the point of view that a partial multivalued func-
tion is easy to compute if for each input string in the do-
main of the function, some value of the function is easy to
compute. (We cannot compute all the values.) For this rea-
son, we define the following technical notions. Given par-
tial multivalued functions f and g, define g to be a refine-
ment of f if dom g dom f and for all x dom g and
all y, if y is a value of g x , then y is a value of f x (i.e.,
set-g x set- f x ). Let and be classes of partial mul-
tivalued functions. If f is a partial multivalued function, we
define f c if contains a refinement g of f , and we de-
fine c if for every f , f c . This notation is
consistent with our intuition that c should entail that
the complexity of is not greater than the complexity of .
Thus, “NPMV c PF” would mean that every partial mul-
tivalued function in NPMV can be computed efficiently by
some deterministic polynomial time transducer. It is known
[SXB83, Sel92, Sel94] that each of the following hypothe-
ses are equivalent:

1. The function sat has a refinement in PF;

2. NPMV c PF;

3. NPSV PF;

4. P NP.

When f FewPF, then it makes sense to seek all the val-
ues of f x . For a finite set y1 yn , where the elements
are listed in lexicographic order,

c y1 yn %y1 %yn%

where % is a symbol not in . If set- f x is finite for each
x, then the function c set- f is defined by c set- f x
c set- f x . c set- f is a single-valued total function.
Given f FewPF and a class of single-valued functions ,
define f c to mean that c set- f .

The class of partial functions that are computable in
polynomial time with oracles in NP, PFNP, has been well-
studied [Kre88, Bei88], as have been the corresponding
class of partial functions that can be computed nonadap-
tively with oracles in NP [Sel94], PFNP

tt , and the classes
of partial functions that are obtained by limiting the num-
ber of queries to some value k 1, namely, PFNP k and
PFNP k

tt [Bei91]. A rich body of results is known about these
classes. (A partial function f is in PFNP

tt if there is an oracle



Turing machine transducer T such that f PFNP via T with
an oracle L in NP and a polynomial time computable func-
tion f : 0 1 % 0 1 such that, for each input x to
T , T only makes queries to L from the list f x .)

Let PFNP O log n denote the class of functions com-
puted in polynomial time with at most O log n queries to
an oracle in NP. Krentel [Kre88] demonstrated that

PFNP PFNP O log n implies P NP

Several of these classes seem to capture the complex-
ity of computing NP-optimization problems [CT91, Kre88,
War92, VW95, BKT94], but we will not explicity pursue
this connection.

2.1 Inclusions

We know the following relations between these classes:

PF NPSV FewPF NPMV c PFNP.

PF NPSV FewPF c PFNP
tt PFNP.

PF PFNP O log n PFNP
tt PFNP.

Most of these inclusions are obvious. The proof for
language classes [Hem89, Wag90, BH91], shows that
PFNP O log n PFNP

tt . To see that FewPF c PFNP
tt ,

we make the following definition. For each multivalued
function f , define code f to contain all tuples i j 0 x k ,
where j i, such that there are at least i distinct values of
f on x such that the j-th value in lexicographic order has a
k-th bit, and to contain all tuples i j 1 x k , where j i,
such that there are at least i distinct values of f on x such
that the k-th bit of the j-th value in lexicographic order is
one. Then, for f FewPF, it is easy to see that code f
belongs to NP and that all the values of f on input x can be
computed nonadaptively in polynomial time from code f .

2.2 NP-search functions

Let R x y be an arbitrary relation in P (This is usually
called an NP-relation.) and let p be a polynomial, so that
the set

A x y y p x R x y

belongs to NP. Define

fR p x y if y p x R x y

The partial multivalued function fR p is an “NP-search
function.”

Following Valiant [Val76], given a class of partial multi-
valued functions , let g denote the class of all f such
that graph f P. Valiant noticed that ordinary search

problems associated with NP decision problems are partial
multivalued functions in NPMVg That is, the naturally oc-
curring partial multivalued functions fR p are in NPMVg,
and the function sat is a typical example. The converse is
true as well. Every partial multivalued function in NPMVg

is the NP-search function of its graph.

Unless P NP, not every function in NPMV belongs
to NPMVg. To see this, let L NP P and define the
partial function SL by SL x 1 if x L. (SL x is unde-
fined for all x L.) Observe that the partial function SL be-
longs to NPSV and that dom SL L. It is easy to see that
graph SL P implies L P. Thus, SL does not belong to
NPMVg. The same argument proves that NPSV NPSVg

if and only if P NP.

An interesting question is whether there are naturally
occurring candidates for partial multivalued functions in
NPMV that are not in NPMVg, or in NPSV but not NPSVg.
The functions in Example 1 are in NPSVg if primality test-
ing is in P. Perhaps the reader knows whether these are
likely candidates.

For any NP-search function fR p, let max fR p denote the
partial function that on input x, outputs the lexicographi-
cally largest value of fR p x , if one exists. For every NP-
relation R and polynomial p, max fR p belongs to the class
PFNP. The function maxsat is complete for PFNP [Kre88].
Precisely, given single-valued partial functions f and g, de-
fine f P

m g if there are partial functions h1 h2 PF such
that for all x dom f , f x h2 x g h1 x , and de-
fine f P

tt g if there are partial functions h1 h2 PF such
that for all x dom f , h1 x q1 qk , and f x
h2 x g q1 g qk . Krentel called the former metric
reducibility and Watanabe and Toda [WT93] called the lat-
ter functional reducibility. In both cases, it is understood
that f x is defined only if every computation on the right
side of the equation is defined. With these definitions in
hand, maxsat is P

m-complete for PFNP. Watanabe and
Toda raised the question of whether every single-valued re-
finement of sat is complete for PFNP. They proved that if
NP coNP, then there is a single-valued refinement g of
sat such that maxsat is not P

tt-reducible to g. Thus, g is a
single-valued refinement of sat that is not P

tt-complete for
PFNP. We do not know whether their result holds for more
general Turing reductions between partial functions.

Recall that a single-valued refinement of sat is a partial
function f whose domain is the set of all satisfiable formu-
las such that for all x SAT, f x is a satisfying assignment.
Much of the research on function classes has been moti-
vated by the question of whether sat has a single-valued re-
finement in a smaller class than PFNP [WT93, HNOS94].
We will address this question as we proceed.

Observe that if A belongs to the class UP of problems
that have unique solution [Val76], then for each x, there is



at most one y such that y p x R x y . Thus, for A
in UP, fR p belongs to NPSVg. Again, the converse is true;
every partial function in NPSVg is the search function for a
language in UP. Note however, by the argument above, that
NPSV differs from NPSVg unless P NP.

Jenner and Toran [JT96] provide an excellent survey of
the subject from the point of view of examining the com-
plexity of NP-search functions.

Given a class of partial multivalued functions , Valiant
[Val76] defined t to denote the class of all f that are
defined on all input strings; i.e. f t if and only if f
and dom f . Beame et al. [BCE 95] study combi-
natorial properties of the class NPMVtg. Let us say that
an NP-acceptor N for SAT is natural if there is a function
f PF so that if x SAT, and y is an accepting computa-
tion of N on input x, then f x y is a satisfying assignment
of x. Fenner et al. [FFNR96] prove that NPMVt c PF if
and only if every NP-acceptor for SAT is natural.

2.3 The complexity of inverting functions in PF

A function f PF is honest if there is a polynomial q
such that for every y in range f there exists x in dom f
such that f x y and x q y . The inverse of ev-
ery honest function f PF belongs to NPMVg, and the in-
verse of every honest one-one function f PF belongs to
NPSVg. (For any function f , the inverse f 1 is defined by
f 1 x y if and only if f y x.) The difficulty of in-
verting f is the complexity of the single-valued refinements
of f 1. A function f is invertible in class , where is a
class of functions, if f 1 has a single-valued refinement in

. For example, f is invertible in polynomial time if f 1

has a single-valued refinement in PF. Every honest func-
tion in PF is invertible in PFNP. Every honest single-valued
function f in PF is invertible in PFNP

tt . To see this, simply
observe that for such a function f , f 1 is in NPSVg, which
is included in PFNP

tt .
We are interested in knowing whether every honest

(one-one, few-one) function is invertible in some class that
is smaller than PFNP. The following proposition [Sel94]
addresses this question for several of the interesting cases.
Let denote a polynomial time computable pairing
function with polynomial time computable inverses 1 and

2.

Proposition 1 ([Sel94]) Let be any class of single-
valued functions such that f implies 2 f .
Then, every honest (one-one, few-one) polynomial time
computable function is invertible in class if and only if
NPMVg (NPSVg , FewPFg , respectively).

All of the following are in part applications of this
proposition.

Example 2 1. Every honest
polynomial time computable function is invertible in
the class PF

NPMVg c PF

NPMV c PF

P NP

2. [GS88] Every honest one-one polynomial time com-
putable function is invertible in the class PF

NPSVg c PF

P UP

3. Every honest few-one polynomial time computable
function is invertible in the class PF

FewPFg c PF

P FewP

4. Every honest polynomial time computable function is
invertible in the class PFNP

tt

NPMVg c PFNP
tt

NPMV c PFNP
tt

5. Every honest polynomial time computable function is
invertible in the class NPSV

NPMVg c NPSV

NPMV c NPSV

We will examine items 4 and 5 further as we proceed.
For now, let us observe that these questions are especially
interesting because NPMV c PFNP

tt if and only if every
NP-search problem has a single-valued refinement in PFNP

tt
if and only if sat has a single-valued refinement in PFNP

tt ,
and NPMV c NPSV if and only if every NP-search prob-
lem has a single-valued refinement in NPSV if and only if
sat has a single-valued refinement in NPSV. This remark
follows by noting that Cook’s proof [Coo71] demonstrates
that sat is complete for the functions in NPMV [Sel94].

2.4 Some interesting questions

2.4.1 PFNP PFNP
tt ?

For any single-valued function f , we define code f
[Sel78] to be the set of all triples x k , where 0 1 ,
such that the following properties hold: 0 x k code f



if and only if f x has a k-th bit (i.e. x dom f and
f x has length k), and 1 x k code f if and only
if the k-th bit of f x is 1. We say that a function f is
polynomial-bounded if there is a polynomial p such that
for all x dom f , f x p x . For any single-valued
polynomial-bounded function f , f can be nonadaptively
computed in polynomial time using code f as an oracle.
The following proposition and theorem follow readily.

Proposition 2 ([Sel94]) (i) f PFNP if and only if f is
polynomial-bounded and
code f PNP.

(ii) f PFNP
tt if and only if f is polynomial-bounded and

code f PNP
tt .

Theorem 1 ([Sel94]) PNP PNP
tt if and only if PFNP

PFNP
tt .

Beigel, Hemachandra, and Wechsung [BHW91] showed
that PNP

tt PP. Thus, PFNP PFNP
tt implies PNP PP,

which suggests that the classes PFNPand PFNP
tt are not iden-

tical. (There is an oracle relative to which PNP is not a sub-
set of PP [Bei94].)

Recall that PNP
tt PNP O log n [Hem89, Wag90,

BH91]. Indeed, PNP O log n is a natural and robust
complexity classes that has natural complete sets [Kre88,
KSW87, Kad89, Wag90].

Since maxsat is complete for PFNP, the question of
whether PFNP PFNP

tt is equivalent to the question of
whether maxsat belongs to the class PFNP

tt . We learn from
Proposition 2 that maxsat belongs to PFNP

tt if and only if
for each satisfiable formula x, each bit of the maximum
satisfying assignment can be computed independently and
nonadaptively relative to NP. Then, from the result of
Hemachandra, Wagner, and Buss and Hay, we learn that
maxsat belongs to PFNP

tt if and only if each bit of the
maximum satisfying assignment can be computed inde-
pendently and without making more than O log n many
queries to SAT.

2.4.2 NPMV c PFNP
tt ?

As we have seen already, whereas the previous question
is equivalent to asking whether optimal solutions to NP-
search problems can be computed nonadaptively using an
oracle in NP, this question asks whether any single-valued
refinement of NP-search problems can be computed in this
manner. Also, recall (Example 2, item 4) that this ques-
tion is equivalent to asking whether honest polynomial time
computable functions are invertible in PFNP

tt .
We turn first to a result of Buhrman, Kadin, and Thier-

auf [BKT94] that offers some insight into the question.
Define the partial multivalued function max zero sat by

max zero sat x y if and only if y is a satisfying assign-
ment of x having the maximum number of 0’s. Whereas
the number of single-valued refinements of sat is large,
these researchers prove that sat has a single-valued refine-
ment in PFNP

tt if and only if max zero sat does. Further-
more, they prove that PFNP

tt is the class of all partial func-
tions that are P

m-reducible to some single-valued refine-
ment of max zero sat. Of course, it is not known whether
max zero sat is complete for PFNP

tt , because it is not known
whether any refinement of sat belongs to PFNP

tt . It follows
easily from these results that PFNP PFNP

tt if and only if
maxsat is P

m-reducible to some single-valued refinement
of max zero sat.

Watanabe and Toda [WT93] prove that NPMV c PFNP
tt

relative to a random oracle. In contrast, Burhman and
Thierauf [BT96] have obtained the following results.

Theorem 2 ([BT96]) If E NE and sat c PFNP
tt , then ev-

ery exponential-type search problem is solvable in E, where
an “exponential-type search problem” denotes a search
problem of a language in NE.

Impagliazzo and Tardos [IT91] constructed an oracle A
such that EA NEA but, relative to which, there exists an
exponential-type search problem that cannot be solved in
exponential time. Thus, as an immediate corollary, relative
to this oracle A, satA

c PFA NPA

tt . So, there is an oracle rel-
ative to which NPMV does not have refinements in PFNP

tt .
One might anticipate that the answer to this question is

false, But as with most hypotheses that are known to rela-
tivize in both directions, the answer seems not to be forth-
coming.

We have had better success with the question of whether
NPMV c NPSV (Example 2, item 5), for Hemaspaandra
et al. [HNOS94] have shown that NPMV c NPSV im-
plies a collapse of the polynomial hierarchy. Recall that
NPMV c NPSV if and only if some single-valued refine-
ment of sat belongs to NPSV, and if and only if every hon-
est polynomial time computable function is invertible in
NPSV. We will sketch the proof of this result and of sub-
sequent recent developments in a later section. For now,
the following comments are in order. The proof of Hemas-
paandra et al. relativizes to all oracles. If the proof were to
extend to show that NPMV c PFNP

tt implies a collapse of
the polynomial hierarchy, and if the extension were to hold
in all oracles, then, by the result of Watanabe and Toda that
NPMV c PFNP

tt holds relative to a random oracle, it would
follow that the polynomial hierarchy collapses relative to
a random oracle. However, the polynomial hierarchy col-
lapses relative to a random oracle only if the polynomial hi-
erarchy collapses [Boo94]. Thus, such an extension of the
proof of Hemaspaandra et al. would collapse the polyno-
mial hierarchy as a corollary—an unlikely scenario.



2.4.3 PFNP
tt PFNP O log n ?

This is an especially intriguing question because much ev-
idence indicates that that PFNP O log n is properly in-
cluded in PFNP

tt . Thus, since PNP
tt PNP O log n , this

question provides an excellent example for which relations
between two function classes are different from for their
corresponding language classes.

First we demonstrate that

PFNP
tt PFNP O log n implies P FewP

Proposition 3 ([Sel94]) The following statements are
equivalent:

1. P FewP

2. FewPFg c PF

3. FewPFg c PFNP O log n

Proof. First we show that the first two statements are
equivalent. The proof that FewPFg c PF implies P
FewP is straightforward. Assume FewP P. Let f
FewPFg, let M be a nondeterministic transducer that com-
putes f in time q, and let p bound set- f .

Consider the language

L x c F u F is a finite set and

there exists w F such that

u is a prefix of w and f x w

We claim that L FewP: Given x, F, and u, guess a
string w and check whether w F, u is a prefix of w, and
x w graph f . The number of correct guesses is at

most p x .
Since FewP P is assumed, L P. For each x, the fol-

lowing algorithm uses L to compute c set- f x in poly-
nomial time. The basic idea is to maintain F as a subset
of c set- f x . Use L to determine whether there exists a
value of f x that does not belong to L; if so, use L to find
such a value w by implementing a typical prefix search, and
then increment F to contain w.

begin
input x;
F : /0;
while x c F L do

begin F is a proper subset of set- f x
u : ;
while x u graph f u F do

if x c F u0 L
then u : u0
else if x c F u1 L

then u : u1;

f x u u F
F : F u ;
end

halt in an accepting state with c F
on the output tape;
end.

When execution of the outer while-loop terminates, F
= set- f x . To see this, note that the inner while-loop is
reached only if there is a string y set- f x that has not
yet been found and that the inner while-loop preserves this
property. In particular, the inner while-loop terminates only
when a string u is found such that f x u and u F. This
condition ensures that if f x w1 and f x w2, where
w1 is a prefix of w2, then both w1 and w2 are eventually
placed into F.

Let us observe that the procedure runs in polynomial
time. Since L P and graph f P, each test takes polyno-
mial time. The outer while-loop is executed at most p x
times, and, for each execution of the outer loop, the inner
while-loop executes at most q x times. Thus, we con-
clude that c set- f PF.

Thus, the first two statements are equivalent. To see
that statement 3 is equivalent to the other assertions, as-
sume that FewPFg c PFNP O log n and let f FewPFg.
Then, there is a PFSAT machine M that computes f and that
makes at most O log n queries. Simulate M on input x
for all possible oracle answers. This gives a polynomial
number of possible output values. A value y belongs to set-
f x if and only if x y graph f . Since graph f P,
c set- f PF.

Theorem 3 ([Sel94]) PFNP
tt PFNP O log n implies

P FewP.

The proof follows from Proposition 3. Recall that
FewPF c PFNP

tt . Thus, the hypothesis implies that
FewPFg FewPF c PFNP

tt PFNP O log n , which, by
the Proposition, implies P FewP.

Next we demonstrate that

PFNP
tt PFNP O log n implies R NP

The proof is an easy application of a result of Valiant and
Vazirani [VV86]. Let SAT1 denote the set of formulas
of propositional logic that have at most one satisfying as-
signment. Valiant and Vazirani showed that R = NP if the
promise problem SAT1 SAT has a solution in P. By def-
inition, a solution to the promise problem SAT1 SAT is
any language L such that, for all x, if x SAT1, then x
L x SAT.



Theorem 4 ([Sel94]) PFNP
tt PFNP O log n implies

R NP.

Proof. Define

SAT i has n variables, n i, and

there is a satisfying assignment w of

in which the i-th variable is true

Clearly, SAT NP.
Define

cand

SAT 1 SAT 2 SAT n

(One might think of cand as a candidate for a satisfy-
ing assignment of . Of course, in general it is unlikely.)
Clearly, cand PFNP

tt . Thus, by hypothesis, cand
PFNP O log n . Let M be a PFSAT machine that computes
cand and that makes at most O log n queries.

Define M to be a deterministic transducer that on an in-
put simulates M for all possible oracle answers. As in the
final part of the proof of Proposition 3, M ’s output is a poly-
nomial size list of values, and M runs in polynomial time.
Let

L some output value of M on input

is a satisfying assignment

Then, L P and L is a solution of SAT1 SAT . Thus, NP
= R follows from the result of Valiant and Vazirani.

This proof is similar to earlier applications of the re-
sult of Valiant and Vazirani by Beigel [Bei88] and Toda
[Tod91].

Finally, we note that Jenner and Toran [JT95] proved
that PFNP

tt PFNP O log n implies that for all k 0,
SAT DTIME 2n logk n . Their argument connects the hy-
pothesis with a lowering of the amount of nondeterminism
that is needed in a nondeterministic computation.

Although all of these results provide strong evidence
that the two function classes PFNP

tt and PFNP O log n
are not the same, it is not yet known whether PFNP

tt
PFNP O log n implies P NP. New work by Naik and
Selman [NS96] reports modest progress on this question.

3 Reducibilities and Hierarchies

The purpose of this section is to define polynomial time-
bounded Turing reducibility between partial multivalued

functions and to explain the hierarchies that follow natu-
rally. A hierarchy is conclusive demonstration that changes
in computing resources impart changes in computing po-
wer. Thus, our philosophy is that a hierarchy is its own re-
ward. That which here we merely sketch is developed fully
by Fenner et al. [FHOS93].

Now we describe oracle Turing machines with oracles
that compute partial functions. For the moment, we assume
that the oracle g is a single-valued partial function. Let be
a symbol not belonging to the finite alphabet . In order for
a machine M to access a partial function oracle, M contains
a write-only input oracle tape, a separate read-only output
oracle tape, and a special oracle call state q. When M en-
ters state q, if the string currently on the oracle input tape
belongs to the domain of the oracle partial function, then
the result of applying the oracle appears on the oracle out-
put tape, and if the string currently on the oracle input tape
does not belong to the domain of the oracle partial function,
then the symbol appears on the oracle output tape. Thus,
given an input x to the oracle, the oracle, if called, returns
a value of g x if one exists, and returns otherwise. (It
is possible that M may read only a portion of the oracle’s
output if the oracle’s output is too long to read with the re-
sources of M.) We shall assume, without loss of generality,
that M never makes the same oracle query more than once,
i.e., all of M’s queries (on any possible computation path)
are distinct.

If g is a single-valued partial function and M is a de-
terministic oracle transducer as just described, then we let
M g denote the single-valued partial function computed by
M with oracle g.

Definition 1 Let f and g be partial multivalued functions.
We say that f is polynomial-time Turing reducible to g, de-
noted by f P

T g, if there is a deterministic oracle Turing
machine M such that for every single-valued refinement g
of g, M g is a single-valued refinement of f .

The definition insists that the oracle g responds with a
value of g x whenever possible, which value does not mat-
ter; with this condition, M will compute some value of f on
input x. This reducibility is reflexive and transitive over the
class of all partial functions.

We can define nondeterministic reductions between par-
tial functions with identical oracle access mechanism. In
the case that g is a single-valued partial function and N is a
polynomial time nondeterministic oracle Turing machine,
then N g denotes a partial multivalued function computed
by N with oracle g in accordance with the prescription that
when N asks about a value y dom g , then g returns g y ,
and when N asks about a value y dom g , then g returns

. Observe that the function f N g is multivalued be-
cause N is nondeterministic. In the case that g is multival-
ued, the definition follows.



Definition 2 Let f and g be partial multivalued functions.
We say that f is nondeterministic polynomial-time Turing
reducible to g, denoted by f NP

T g, if there is a polynomial
time nondeterministic Turing machine N such that for every
single-valued refinement g of g, N g is a refinement of f .

Let be a class of partial multivalued functions.
NPMV denotes the class of partial multivalued functions
that are NP

T -reducible to some g .
For k 1, define MVk inductively so that

MVk NPMV
NPMV

k

These classes form a function analogue of the polynomial
hierarchy, and unless the polynomial hierarchy collapses,
they form a proper hierarchy. Observe that a partial mul-
tivalued function f belongs to NPMV if and only if f is
polynomial-bounded and graph f NP. It is not hard
to prove for k 1, that f MVk if and only if f has a
polynomial-bounded refinement g such that graph g P

k .
From this fact, the following theorem is straightforward.

Theorem 5 ([FHOS93]) For every k 1,

MVk 1 MVk
P
k 1

P
k

Now we return to consider the deterministic reduction.
Let be a class of partial multivalued functions. Then,
PF denotes the class of partial multivalued functions f
that are P

T-reducible to some g . PFtt denotes the
class of partial functions f that are P

T-reducible to some
g via an oracle Turing machine that queries its ora-
cle nonadaptively. PF k and PF k

tt indicate that the num-
ber of queries is bounded by k, but we retain the nota-
tion PF O log n for the class of functions that are com-
putable with oracles in by making O log n adaptive
queries.

Identifying a language with its characteristic function,
for any class of sets , the classes PF , PFtt , and so on, are
defined. Thus, we define such classes as PFNP and PFNP

tt as
classes of partial multivalued functions. To see that PFNP

contains partial functions that are not single-valued under
this new definition, observe that maxsat PFNP and that
sat P

T maxsat. Thus, sat PFNP. Nevertheless, this exten-
sion and confusion of notation will not cause us problems.
We will not go into the technical details here, but the inclu-
sion relations that held before are exactly the ones that hold
under the new interpretation of these class names.

Theorem 6 ([FHOS93]) PFNPMV PFNP.

Proof. Obviously PFNP PFNPMV. Conversely, for ev-
ery function f NPMV, max f is a single-valued refine-
ment of f that belongs to PFNP. So NPMV PFNPMV. This

implies that PFNPMV PFPFNPMV
PFNPMV since P

T is
transitive.

It is unlikely that PFNPMV
tt is the same as PFNP

tt . Recall
from Section 2.4.2 the centrality of the question of whether
PFNP

tt contains a refinement of max zero sat. In contrast,
max zero sat belongs to the class PFNPMV

tt . Let f be a func-
tion that maps a pair x n to y if and only if y is a sat-
isfying assignment of x with n 0’s. Since the number of
variables in a formula is bounded by its length, it holds
that max zero sat x f x nx , where nx is the largest n,
1 n x , such that x n dom f . This implies that
max zero sat PFNPMV

tt .

3.1 Bounded query hierarchy

The bounded adaptive and nonadaptive query hierar-
chies over NPMV are mostly analogous to those over NP.
The reason seems to be that arguments that are reminiscent
of the “mind-change” technique [Bei91, WW85] apply in
this new setting. The basic results are the following:

Theorem 7 ([FHOS93]) For every k 1,

PFNPMV k PFNPMV 2k 1
tt

We do not know whether PFNPMV k PFNP k , but for
reduction classes of sets, this is true.

Theorem 8 ([FHOS93]) For every k 1,

PNPMV k PNP k

and
PNPMV k

tt PNP k
tt

For every k 1, PFNPMV k PFNPMV k 1 . The next re-
sults show that these classes form hierarchies.

Proposition 4 ([FHOS93]) Let k 1.

1. If PFNPMV k 1 PFNPMV k , then for every k,
PFNPMV PFNPMV k .

2. If PFNPMV k 1
tt PFNPMV k

tt , then for every k,

PFNPMV
tt PFNPMV k

tt .

The bounded adaptive and nonadaptive query hierar-
chies over NPMV collapse only if the Boolean hierarchy
over NP collapses. The Boolean hierarchy over NP was
defined by Wechsung and Wagner [WW85] and has been
studied extensively [CGH 88, CGH 89, CH86, Kad88].
We denote the k-th level of the Boolean hierarchy as NP k .
Recall that



1. NP 1 NP, and

2. for every k 2, NP k NP NP k 1 .

The Boolean hierarchy over NP, denoted by BH is the
union of all NP k , k 1. Kadin [Kad88] proved that the
Boolean hierarchy collapses only if the polynomial-time hi-
erarchy collapses.

Theorem 9 ([FHOS93]) Let k 1.

1. If PFNPMV k 1
tt PFNPMV k

tt , then BH collapses to its
k 1 -st level.

2. If PFNPMV k 1 PFNPMV k , then BH collapses to its
2k-th level.

Proof. We prove the first statement. If

PFNPMV k 1
tt PFNPMV k

tt

then by Proposition 4, for every m k,

PFNPMV m
tt PFNPMV k

tt

So, by Theorem 8, the query hierarchy over NP collapses:
for every m k, PNP m

tt PNP k
tt . Thus by results of Köbler,

Schöning, and Wagner [KSW87] that show that levels of
the nonadaptive query hierarchy over NP and levels of the
Boolean hierarchy interleave, for every m k,

PNP m
tt PNP k

tt NP k 1

Thus, BH NP k 1 .

Finally, because the mind-change argument works using
NPMV as the oracle class, we have the following result.
This result stands in strong contrast to the results of Sec-
tion 2.4.3.

Theorem 10 ([FHOS93])

PFNPMV log PFNPMV
tt

3.2 Single-valued oracles

Most of the results that we stated in the previous sec-
tion for reductions to NPMV hold as well if the oracle is
NPSV. However, comparison of the adaptive and nonadap-
tive query hierarchies is problematical. The following sum-
marize the known results.

Theorem 11 ([FHOS93]) The following statements hold.

1. PFNPSV PFNP.

2. PNPSV PNP.

3. PNPSV
tt PNP

tt .

4. For all k 1, PNPSV k PNP k and

PNPSV O logn PNP O logn

5. For all k 1, PNPSV k
tt PNP k

tt .

Both the adaptive and nonadaptive NPSV query hierar-
chies are proper unless the Boolean and polynomial hierar-
chies collapse.

Theorem 12 ([FHOS93]) Let k 1.

1. If PFNPSV k 1
tt PFNPSV k

tt , then BH collapses to its
k 1 -st level.

2. If PFNPSV k 1 PFNPSV k , then BH collapses to its
2k-th level.

As a consequence, because maxsat is complete for
PFNPMV, for any k 1, if maxsat PFNPSV k , then the
Boolean and polynomial hierarchies collapse. In the next
section we will learn that the polynomial hierarchy col-
lapses if for any k 1, any refinement of sat belongs to
PFNPSV k [Ogi95].

Comparing adaptive with nonadaptive classes, we know
only the following:

Theorem 13 ([FHOS93]) The following inclusions hold.

1. PFNPSV k PFNPSV 2k 1
tt .

2. PFNPSV O logn PFNPSV
tt .

It is an open question whether

PFNPSV O logn PFNPSV
tt

In this regard, is NPSV more like NPMV or more like NP?
Whereas PFNPSV

tt PFNP
tt , apparently, PFNPSV O logn

and PFNP O logn are not equal.

NPSV PFNPSV 1 PFNPSV O logn

and NPSV PFNP O logn implies P UP. The im-
plication follows from the fact that P UP if and only if
NPSVg PFNP O logn , the proof of which is similar to
the proof of Proposition 3. Thus,

PFNPSV O logn PFNP O logn P UP

Similarly,

PFNPMV 1 PFNP O logn P NP



3.3 Difference hierarchy

In analogy to the Boolean hierarchy of languages, we
define a difference hierarcy of partial multivalued func-
tions. This hierarchy is defined by Fenner et al. [FHOS93]
and further developed in the new paper of Fenner et al.
[FGH 96]. The difference hierarchy is defined so that for
each k 1, f NPMV k if and only if f is polynomial-
bounded and graph f NP k . As a consequence, for
every k 1, NPMV k 1 NPMV k if and only if
NP k 1 NP k . However the contour of the differ-
ence hierarchy over NPMV is astonishingly different from
the Boolean hierarchy over NP. For example, whereas the
levels of the Boolean hierarchy interleave with those of the
bounded query hierarchy over NP, and sit properly within
PFNP, the function maxsat, which recall is complete for
PFNP, belongs to NPMV 2 . We leave it to the paper of
Fenner et al. [FGH 96] to explain the reason for this.

4 Number of output values

Define the NPkV hierarchy as follows. For all k 1, a
partial multivalued function f NPkV if some refinement
of f can be computed by a polynomial time-bounded trans-
ducer that has at most k distinct values on any input. Thus,
in particular, NP1V NPSV. In his Ph.D. dissertation,
Naik [Nai94] raised the question of whether the NPkV hier-
archy is proper, that is, whether for all k 1, NP k 1 V
NPkV. As supporting evidence of that possibility he proved
that this hierarchy is proper relative to a random oracle.

Hemaspaandra et al. [HNOS94] effectively settled the
question of whether every function in NPMV has a single-
valued refinement in NPSV (Recall the discussion in Sec-
tion 2.4.2.) by showing that this hypothesis collapses
the polynomial hierarchy. Precisely, Hemaspaandra et al.
proved the following theorem.

Theorem 14 ([HNOS94]) If NP2V c NPSV, then PH
P
2 .

Recently Ogihara [Ogi95] has extended the result of
Hemaspaandra et al. to show the following.

Theorem 15 ([Ogi95]) Let c 1 be a constant. If ev-
ery multivalued function in NPMV has a refinement in
PFNPSV c log n , then PH P

2 .

NPMV c PFNPSV c log n if and only if sat c

PFNPSV c log n . As a consequence, if for some constant
k 1, sat has a refinement in PFNPSV k , then the polyno-
mial hierarchy collapses.

Naik [Nai95] has observed that Ogihara’s proof can be
modified to show that Theorem 14 holds for all k 1. That
is, the following theorem holds.

Theorem 16 ([Nai95]) Let k 1. If

NPkV c NP k 1 V

then PH P
2 .

Now we will describe the proof of Theorem 16, Naik’s
version of Ogihara’s theorem. To begin, we want a partial
multivalued function f that obviously belongs to the class
NPkV but that intuitively has no refinement in NP k 1 V.
This consideration leads us into the world of selectivity. Let
us say that a set A is k-selective if there is a partial multival-
ued function f (We call f a k-selector of A.) such that

1. input to f is a set Y such that Y k,

2. every output value of f Y is a set Z such that Z Y
and Z k 1, and

3. if at least k 1 of the strings in Y belong to A, then
set- f Y /0 and

Z set- f Y Z A

Example 3 Let k = 2. Then A is 2-selective if there is a par-
tial multivalued function f defined on ordered pairs such
that

set- f x y x y

and such that if x A or y A, then

set- f x y /0 and set- f x y A

For those familiar with previous discources on selectiv-
ity, we note that a set A is p-selective [Sel79] if A has a 2-
selector that belongs to PFt and that A is NPMV-selective
if A has a 2-selector that belongs to NPMV [HNOS94].

Let k 1. We claim that every set A NP has a k-
selector that belongs to NPkV. Define f on input Y , where
Y k so that f nondeterministically guesses a subset Z of

k 1 strings. Then, f nondeterministically tries to discover
whether Z A. If this test is successful, then f outputs the
set Z. Since Y has k distinct subsets of size k 1, we see
that f NPkV.

The reader can easily see that if f is a k-selector for A and
g is a refinement of f , then g is a k-selector for A. Assume
as hypothesis that NPkV c NP k 1 V. Then, A has a k-
selector g that belongs to NP k 1 V. We will infer from
this assumption that P

2
P
2 .

Example 3, continued Let A be SAT and let f be a
2-selector for SAT that belongs to NPMV. A
single-valued refinement of f is a single-valued partial
function g such that if either x SAT or y SAT, then
g x y is defined and g x y SAT.



Intuitively, one does not expect a single-valued function
to be able to determine which of two formulas is satisfiable.
This intuition is borne out by the result of Selman [Sel79]
that SAT is p-selective if and only if SAT P and by the re-
sult of Hemaspaandra et al. [HNOS94] that SAT is NPSV-
selective only if NP NP coNP poly.

Continuing with the proof, let L P
2 . There exists a

polynomial p and a set A NP such that

x L y p x x y A

We may assume that there is a polynomial q such that for
all strings x of length n and all strings y of length p n ,

x y q n . Let A q n A q n . We are assum-
ing that A has a k-selector g that belongs to NP k 1 V.
Given a string x q n and a set Z A q n such that

Z k 1, we say that x loses to Z if every output value
of g Z x contains x.

If x loses to Z, then x A: Since Z A q n , set-g Z
x /0. Furthermore, for every output value Y , Y A.

Thus, for each such Y , x Y A.

Example 3, continued For z SAT n, a string x loses to
z if g x z x. By definition of a selector, x SAT follows.

Lemma 1 For every n 1, there is a
set Sq n Z1 Zm , m q n , such that for every i,

1 i m, Zi A q n , Zi k 1, and for all x q n ,
x A q n if and only if there exists i, 1 i m, such that
x loses to Zi.

Example 3, concluded Lemma 1 asserts the existence of
a set of strings Sq n z1 zm , m q n , such that

Sq n SAT q n , and for all x SAT q n , there exists i,
1 i m, such that g x z x.

We will not give the proof of Lemma 1. The proof is
similar to the proof of Ko [Ko83] and of later researchers
[LS93, HNOS94] that dealt essentially with the scenario of
Example 3. The combinatorics of Ogihara’s argument is
necessarily more involved. The key idea of the proof is to
note that some set Z is a winner to more than the average
number of strings x (meaning that x loses to Z). Put such a
Z into Sq n , delete from consideration all strings that lose
to Z, and continue the process.

Define a string u to be correct for length q n if u en-
codes a tuple S WIT such that S Z1 Zm and
WIT W1 Wm , m q n , that satisfy the following
conditions:

(i) for all i, 1 i m, Zi k 1,

(ii) for all i, 1 i m, Zi A q n and Wi is a set of wit-
nesses proving that Zi A q n , and

(iii) for all x A q n there exists i, 1 i m, such that x
loses to Zi.

If u is correct for length q n , we write Loses x u to mean
x loses to some Zi.

Then,

x L u (u is correct for q x ) and

y Loses x y u

The implication from left to right follows from Lemma 1.
The implication from right to left is straightforward.

To complete the argument that L P
2 , we merely have

to prove that the predicates

1. “u is correct for q x ,” and

2. Loses x y u

are in coNP.
To prove that “u is correct for q x ” belongs to coNP,

we give an NP-algorithm for the complement “u is not cor-
rect for q x .” If u does not encode a tuple S WIT that
satisfies the defining conditions (i) and (ii), then accept.
Otherwise, S Z1 Zm and for each i, Zi A q n .
Thus, and this is the important observation, for each x

q n and each Zi, g Zi x is defined. Nondeterministi-
cally select x A q n . For each i, compute an output value
Y of g Zi x and verify that x Y . If each of these tests
is successful, then accept.

The proof that the second predicate belongs to coNP is
similar.

This completes the proof of Theorem 16.

5 Open problems

1. Let k 1. Does NP k 1 V c NPkV imply for all
m k, NPmV c NPkV?

2. Clearly, NP coNP implies NPMV NPSV. But, in
general, does a collapse of the polynomial hierarchy
imply a collapse of the NPkV hierarchy? If so, then,
since the NPkV hierarchy is infinite relative to a ran-
dom oracle, it would follow that the polynomial hier-
archy is infinite relative to a random oracle.

3. Define UPk to be the class of all languages in NP that
are acceptable by an NP-machine that has at most k
accepting computations on every input. One can as-
sociate each language L UPk with the partial func-
tion in NPkVg that maps each x L to the accepting
computations of the UPk-acceptor for L. For k 1,
does UPk 1 UPk imply that the polynomial hierar-
chy collapses? Does UP NP imply that the polyno-
mial hierarchy collapses? The results about function



classes seem not to imply anything about the corre-
sponding language classes. The problem is that some
strange unambiguous Turing machine might accept
SAT whose accepting paths have no connection with
the problem of computing satisfying assignments. If,
however, every machine that accepts SAT is natural
(as defined in Section 2.2), then UP NP implies that
NPMV c NPSV. Hence, under the hypothesis that
every machine that accepts SAT is natural, UP NP
implies that the polynomial hierarchy collapses.

In this regard we mention that the proof technique that
yields a random oracle relative to which the NPkV hi-
erarchy is infinite also demonstrates that UP NP rel-
ative to a random oracle, but does not seem to suffice
to separate the classes UPk 1 and UPk.

4. Another related open question is whether a conjecture
raised by Even, Selman, and Yacobi [ESY84] holds
relative to a random oracle. The conjecture states that
for all disjoint Turing-complete sets A and B in NP,
there exists a set C such that C separates A and B and C
is not Turing-hard for NP. It is known [ESY84, GS88,
Sel94] that this conjecture implies (i) NP coNP, (ii)
NP UP, and (iii) NPMV c NPSV. Each of the
these consequences holds relative to a random oracle
[BG81, Roy94, Nai94]. In fact, relative to a random
oracle, the same language separates the classes in (i)
and (ii), and a search function of this language sepa-
rates (iii).

References

[ÀJ93] C. Àlvarez and B. Jenner. A very hard log-
space counting class. Theoret. Comput. Sci.,
107:3–30, 1993.

[BCE 95] P. Beame, S. Cook, J. Edmonds, R. Impagli-
azzo, and T. Pitassi. The relative complexity
of NP search problems. In Proc. 27th ACM
Symp. on Theory of Computing, pages 303–
314, 1995.

[Bei88] R. Beigel. NP-hard sets are P-superterse unless
R = NP. Technical Report 88-04, Department
of Computer Science, The Johns Hopkins Uni-
versity, 1988.

[Bei91] R. Beigel. Bounded queries to SAT and the
Boolean hierarchy. Theor. Computer Sci.,
84(2):199–223, 1991.

[Bei94] R. Beigel. Perceptrons, PP, and the polynomial
hierarchy. Computational Complexity, 4:339–
349, 1994.

[BG81] C. Bennett and J. Gill. Relative to a random or-
acle A, PA NPA Co-NPA with probability
1. SIAM J. Comput., 10(1):96–113, February
1981.

[BH91] S. Buss and L. Hay. On truth table reducibil-
ity to SAT. Information and Computation,
91(1):86–102, 1991.

[BHW91] R. Beigel, L. Hemachandra, and G. Wechsung.
Probabilistic polynomial time is closed under
parity reductions. Information Processing Let-
ters, 37(2):91–94, 1991.

[BKT94] H. Buhrman, J. Kadin, and T. Thier-
auf. On functions computable with nonadap-
tive queries to NP. In Proc. 9th IEEE Confer-
ence on Structure in Complexity Theory, pages
43–52, 1994.

[BLS84] R. Book, T. Long, and A. Selman. Quantitative
relativizations of complexity classes. SIAM J.
Comput., 13(3):461–487, August 1984.

[Boo94] R. Book. On collapsing the polynomial-time
hierarchy. Information Processing Letters,
52:235–237, 1994.

[BT96] H. Buhrman and T. Thierauf. The complex-
ity of generating and checking proofs of mem-
bership. In Proc. 13th Symp. on Theoretical
Aspects of Computer Science, Lecture Notes in
Computer Science. Springer-Verlag, 1996.

[CGH 88] J. Cai,
T. Gundermann, J. Hartmanis, L. Hemachan-
dra, V. Sewelson, K. Wagner, and G. Wech-
sung. The boolean hierarchy I: Structural prop-
erties. SIAM J. Comput., 17(6):1232–1252,
1988.

[CGH 89] J. Cai, T. Gundermann, J. Hart-
manis, L. Hemachandra, V. Sewelson, K. Wag-
ner, and G. Wechsung. The boolean hierarchy
II: Applications. SIAM J. Comput., 18(1):95–
111, 1989.

[CH86] J. Cai and L. Hemachandra. The Boolean
hierarchy: Hardware over NP. In Struc-
ture in Complexity Theory, Lecture Notes in
Computer Science 223, pages 105–124, Berlin,
1986. Springer-Verlag.

[CLL 95] J. Cai, R. Lipton, L. Longpré, M. Ogihara,
K. Regan, and D. Sivakumar. Communica-
tion complexity of key agreement on limited



ranges. In Proc. 12th Symp. on Theoretical
Aspects of Computer Science, Lecture Notes
in Computer Science, pages 38–49. Springer-
Verlag, 1995.

[Coo71] S. Cook. The complexity of theorem-proving
procedures. In Proc. 3rd ACM Symp. on The-
ory of Computing, pages 151–158, 1971.

[CT91] Z. Chen and S. Toda. On the complexity of
computing optimal solutions. International J.
of Foundations of Computer Science, 2:207–
220, 1991.

[ESY84] S. Even, A. Selman, and Y. Yacobi. The com-
plexity of promise problems with applications
to public-key cryptography. Information and
Control, 61(2):159–173, May 1984.

[FFNR96] S. Fenner, L. Fortnow, A. Naik, and J. Rogers.
On inverting onto functions. In Proc. 11th
IEEE Conference on Computational Complex-
ity, 1996.

[FGH 96] S. Fenner, F. Green, S. Homer, A. Selman,
T. Thierauf, and H. Vollmer. Complements
of multivalued functions. In Proc. 11th
IEEE Conference on Computational Complex-
ity, 1996.

[FHOS93] S. Fenner, S. Homer, M. Ogihara, and A. Sel-
man. On using oracles that compute values.
In Proc. 10th Symp. on Theoretical Aspects
of Computer Science, Lecture Notes in Com-
puter Science, volume 665, pages 398–407.
Springer-Verlag, 1993.

[FK92] M. Fellows and N. Koblitz. Self-witnessing
polynomial-time complexity and prime factor-
ization. In Proc. 7th IEEE Conference on
Structure in Complexity Theory, pages 107–
110, 1992.

[GS88] J. Grollmann and A. Selman. Complexity mea-
sures for public-key cryptosystems. SIAM J.
Comput., 17(2):309–355, April 1988.

[Hem89] L. Hemachandra. The strong exponential hi-
erarchy collapses. J. of Computer and System
Sciences, 39(3):299–322, 1989.

[HNOS94] L. Hemaspaandra, A. Naik, M. Ogihara, and
A. Selman. Computing unique solutions col-
lapses the polynomial hierarchy. In D. Du
and X. Zhang, editors, Proc. 5th International

Symp. on Algorithms and Computation, Lec-
ture Notes in Computer Science, pages 56–64.
Springer-Verlag, 1994.

[IT91] R. Impagliazzo and G. Tardos. Search versus
decision in super-polynomial time. In Proc.
32nd IEEE Foundations of Computer Science,
pages 222–227, 1991.

[JT95] B. Jenner and J. Torán. Computing functions
with parallel queries to NP. Theoret. Comput.
Sci., 141, 1995.

[JT96] B. Jenner and J. Torán. The complexity
of obtaining solutions for problems in NP.
In L. Hemaspaandra and A. Selman, editors,
Complexity Theory Retrospective II. Springer-
Verlag, New York, 1996.

[Kad88] J. Kadin. The polynomial time hierarchy
collapses if the Boolean hierarchy collapses.
SIAM J. Comput., 17(6):1263–1282, Decem-
ber 1988.

[Kad89] J. Kadin. PNP log n and sparse Turing-
complete sets for NP. J. of Computer and Sys-
tem Sciences, 39(3):282–298, 1989.

[Ko83] K. Ko. On self-reducibility and weak P- se-
lectivity. J. of Computer and System Sciences,
26:209–211, 1983.

[Kre88] M. Krentel. The complexity of optimization
problems. J. of Computer and System Sciences,
36:490–509, 1988.

[KSW87] J. Köbler, U. Schöning, and K. Wagner. The
difference and truth-table hierarchies for
NP. Theoretical Informatics and Applications
(RAIRO), 21:419–435, 1987.

[LS93] L. Longpré and A. Selman. Hard promise
problems and nonuniform complexity. Theor.
Comput. Sci., 115(3):277–290, 1993.

[Moc93] S. Mocas. Separating exponential time classes
from polynomial time classes. PhD thesis,
Northeastern University, Boston, MA, 1993.

[Nai94] A. Naik. The structural complexity of in-
tractable search functions. PhD thesis, State
University of New York at Buffalo, Buffalo,
NY, 1994.

[Nai95] A. Naik. Personal communication. 1995.



[NS96] A. Naik and A. Selman. A note on p-
selective sets and on adaptive versus nonadap-
tive queries to np. In Proc. 11th IEEE Confer-
ence on Computational Complexity. 1996.

[Ogi95] M. Ogihara. Functions computable with mul-
tiple access to NP. Technical Report TR-583,
Department of Computer Science, University
of Rochester, Rochester, NY, 1995.

[OR93] M. Ogihara and K. Regan. Random polyno-
mial time computable functions. manuscript,
1993.

[Roy94] J. Royer. Personal communication. 1994.

[Sel78] A. Selman. Polynomial time enumeration re-
ducibility. SIAM J. Comput., 7(4):440–457,
November 1978.

[Sel79] A. Selman. P-selective sets, tally languages,
and the behavior of polynomial time reducibil-
ities on NP. Math. Systems Theory, 13:55–65,
1979.

[Sel92] A. Selman. A survey of one-way functions
in complexity theory. Math. Systems Theory,
25:203–221, 1992.

[Sel94] A. Selman. A taxonomy of complexity classes
of functions. J. of Computer and System Sci-
ences, 48(2):357–381, 1994.

[SXB83] A. Selman, Xu M.-R., and R. Book. Positive
relativizations of complexity classes. SIAM J.
Comput., 12:465–479, 1983.

[Tod91] S. Toda. On polynomial-time truth-table re-
ducibilities of intractable sets to P-selective
sets. Math. Systems Theory, 24(2):69–82,
1991.

[Val76] L. Valiant. Relative complexity of checking
and evaluating. Information Processing Let-
ters, 5(1):20–23, May 1976.

[VV86] L. Valiant and V. Vazirani. NP is as easy as
detecting unique solutions. Theoret. Comput.
Sci., 47:85–93, 1986.

[VW95] H. Vollmer and K. Wagner. Complexity classes
of optimization functions. Information and
Computation, 120:198–219, 1995.

[Wag90] K. Wagner. Bounded query classes. SIAM J.
Comput., 19:833–846, 1990.

[War92] H. Wareham. On the comptutational com-
plexity of inferring evolutionary trees. Mas-
ter’s thesis, Department of Computer Science,
Memorial University of Newfoundland, 1992.

[WT93] O. Watanabe and S. Toda. Structural analysis
of the complexity of inverse functions. Math.
Systems Theory, 26:203–214, 1993.

[WW85] G. Wechsung and K. Wagner. On the boolean
closure of NP. In Proc. International Conf. on
Fundamentals of Computation Theory, Lecture
Notes in Computer Science 199, pages 485–
493. Springer-Verlag, Berlin, 1985.


