
A Note on P-selective sets and on Adaptive versus
Nonadaptive Queries to NP

Ashish V. Naik Alan L. Selman†

Abstract

We study two properties of a complexity class —whether there exists a truth-
table hard p-selective language for , and whether polynomially-many nonadap-
tive queries to can be answered by making O logn -many adaptive queries to

(in symbols, is PFtt PF O logn). We show that if there exists a NP-hard
p-selective set under truth-table reductions, then PFNP

tt PFNP O logn . As a
consequence, it follows that if there exists a tt-hard p-selective set for NP, then for
all k 0 SAT DTIME 2n logk n . We show that if ZPPNP, then these two
properties are equivalent. Also, we show that if there exists a truth-table complete
standard-left cut in NP, then the polynomial hierarchy collapses to PNP.

We prove that P = NP follows if for some k 0, the class PFNP
tt is effectively

included in PFNP k logn 1 .

1 Introduction

As NP-hard problems continue to resist polynomial time solutions, researchers in
computational complexity have investigated sets for which some partial informa-
tion can be extracted in polynomial time. The class of p-selective sets, introduced

Computer Science Department, University of Chicago, Chicago, IL 60637. Research con-
ducted in part at State University New York at Buffalo and supported in part by NSF grant CCR
92-53582. Email: naik@cs.uchicago.edu

† Department of Computer Science, State University of New York at Buffalo, Buffalo, NY
14260. Research supported in part by the NSF under grant NSF-INT-9123551 and NSF-CCR-
9400229. Email: selman@cs.buffalo.edu

by Selman [Sel79], is one such example. A set A is p-selective if there is a poly-
nomial time computable function that, given two strings x and y as input, selects
one of the two strings such that if any of the input strings is in A, then the selected
string is in A.

One important line of research on p-selective sets has been to determine the
strongest consequence of NP sets reducing to a p-selective set under various reduc-
tions [LLS75]. Selman [Sel82] showed that if there exists a p-selective set that is
NP-hard under positive truth-table reductions, then P NP. Buhrman, Torenvliet
and van Emde Boas [BTvEB94] generalized this to show that if there exists a p-
selective that is NP -hard under positive Turing reductions, then P NP. Thierauf,
Toda and Watanabe [TTW94] showed that if every set in NP is bounded truth-table

reducible to a p- selective set, then NP DTIME 2nO 1 logn
. Agrawal and Arvind

[AA94], Beigel, Kummer and Stephan [BKS94], and Ogihara [Ogi94] indepen-
dently have proved that the existence of a btt-hard p-selective set for NP implies
P NP. Toda [Tod91] proved that if there is a p-selective set that is truth-table
hard for NP, then P FewP and RP NP. Let hypothesis A denote the assertion
that some p-selective set is truth-table hard for NP.

Hypothesis A. There exists a tt-hard p-selective set for NP.

It is not yet known whether hypothesis A implies P NP. We study the con-
nection of hypothesis A with the following question about function classes [Sel94]:
Is the class of functions computable in polynomial time by nonadaptive access to
NP included in the class of functions computable by at most O logn queries to
some set X as an oracle? Selman [Sel94] showed that if PFNP

tt PFNP O logn ,
then P FewP and RP NP. Let hypothesis B denote the assertion that PFNP

tt
PFNP O logn

Hypothesis B. PFNP
tt PFNP O logn .

It is not yet known whether hypothesis B implies P NP. Observe that the
known consequences, P FewP and RP NP, of hypotheses A and B are identi-
cal. This is not a coincidence, for we prove the following assertion:

Theorem. Hypothesis A implies hypothesis B1.

1This result has been obtained independently by T. Thierauf [Thi94]. Also, this assertion can
be obtained by strengthening results of Beigel [Bei87, Bei88].

2

Using a result of Jenner and Toran [JT93] and the above theorem, it follows
that if every set in NP truth-table reduces to a p-selective set, then for all k 0,
SAT DTIME 2n logk n .

We do not know whether Hypothesis B implies Hypothesis A. It is not known,
for example, whether assuming both hypotheses implies that P = NP. However, we
show that the following assumption, which is presumably stronger than hypothesis
B, implies P = NP.

Theorem. If hypothesis B is true and there exists a truth-table com-
plete tally set in NP, then P NP.

Next, we strengthen hypothesis A to obtain a stronger collapse of the polynomial
hierarchy than the collapse known by Toda’s theorem [Tod91]. That is, recall that
RP NP implies a collapse of the polynomial hierarchy to ZPPNP because RP has
polynomial size circuits [Adl78, KL80, KW94]. In the following theorem we ob-
tain a collapse of the polynomial hierarchy to PNP.

A standard left-cut is a special kind of a p-selective set and is defined in the
next section.

Theorem. If there exists a standard left-cut L in NP such that SAT P
tt

L, then the polynomial hierarchy collapses to PNP.

Hypotheses A and B are equivalent for higher complexity classes—and equiv-
alent to NP P.

Theorem. The following are equivalent.

(i) There exists a p-selective that is tt-hard for ZPPNP.

(ii) For all L ZPPNP, there exists a set X such that PFL
tt c PFX O logn .

(iii) P NP

Our final result reports progress on the question of whether hypothesis B im-
plies that P NP. Krentel showed that if c 1 is an arbitrary constant and if
PFNP m n PFNP m n 1 , for all functions m such that m n c logn, then
P NP. Beigel, Kummer, and Stephan [BKS94], and Ogihara [Ogi94] indepen-
dently improved this result by showing that the collapse P NP can be obtained
by assuming the weaker hypothesis of PFNP

m n -tt PFNP m n 1 for all m n
c logn for some c 1. We obtain this consequence for a more general class of func-
tions, albeit with a stronger hypothesis. Namely, we assume that the class of partial

3

functions PFNP

nk-tt
is “effectively” included in the class PFNP k logn 1 for some

fixed k 0, and from this assumption we conclude that P = NP. Informally, our
assumption stipulates existence of a polynomial time-bounded functional that for
every witness to a function belonging to the class on the left-hand side produces a
witness to the fact that the function belongs to the class on the right-hand side.

One significance of this result is the novel proof technique that we introduce.
The proof techniques of Beigel, Kummer, and Stephan, and Ogihara involve two
main steps. First, they use the hypothesis to construct a transducer T that can be
used to eliminate possible characteristic vectors for a given set. However this trans-
ducer has the restriction that the number of vectors that it outputs is sublinear (that
is, nc for c 1). Then, the transducer T is used to prune the disjunctive self-
reducibility tree of SAT in polynomial time. The obvious generalization of their
technique to remove the restriction that c 1 causes the tree-pruning algorithm to
be exponential due to an increase in the input size at each stage of the pruning. In
our result, we use a uniformity argument that handles this issue by pruning the self-
reduction tree without letting the input to each stage grow in size. The effective-
ness that we impose is crucial for controlling the uniformity argument. We believe
that such a uniformity argument will be essential in proving that either hypothesis
A or B implies that P NP.

2 Preliminaries and Notation

All languages are defined over the finite alphabet 0 1 . We denote by n the
set of all binary strings of length n. We consider and # to be special symbols, and
assume that there is a polynomial time computable encoding of 0 1 # into .
We denote by any standard pairing function that is computable and invertible in
polynomial time, and by the concatenation operator. Suppose S x1 x2 xk
is an ordered finite set, and A is any language. Then, A S is an abbreviation for
the binary string A x1 A x2 A xk .

We assume that the reader is familiar with the complexity classes P and NP
and with the standard polynomial time reductions among classes [LLS75]. All re-
ducibilities in this paper are assumed to be polynomial time reducibilities. Recall
that a language A is truth-table reducible to a set B in polynomial time (A P

tt B) if
there exist polynomial time computable functions g and e such that on input x, g x
is a set of queries Q q1 q2 qk , and x A e x B q1 B qk 1.

4

Definition 1 A set L is p-selective [Sel79] if there exists a polynomial time com-
putable function f : such that

(i) f x y x y , and

(ii) if f x y y, then x L y L.

The function f is called a p-selector for L.
Standard left-cuts are perhaps the most natural examples of p-selective sets

[Sel79, HNOS93]. Given a real number r in dyadic notation (that is, as an infinite
binary string, r r1r2 is interpreted as r 0 r1 r2), the standard left-cut L r
of r is defined as the set,

L r x x r

where denotes the standard dictionary ordering. It is easy to see that L r is p-
selective, since a function that, given strings x and y, outputs the smaller string in
x y according to the dictionary ordering is a selector function for L r .

We will be referring to the following classes of functions [Sel94, Bei88].

Definition 2 Suppose m : N N and f : are functions.

(i) We say that f PFNP m n if there exist a polynomial time transducer T and
a set A NP such that for all strings x, T x computes f x by making at
most m x queries to A. We say that f PFNP O logn if there exists a
function m such that m n O logn and f PFNP m n .

(ii) We say that f PFNP
m n -tt , if there exist polynomial time computable func-

tions g and e and a set A NP such that for all x, g x is a set of queries
Q q1 q2 qm x , and f x e x A q1 A q2 A qm x . We

say that f PFNP
tt if there exists a polynomially bounded function m such

that f PFNP
m n -tt .

3 On tt-hard p-selective sets

In this section, we will prove our theorems on the consequence of the existence
of truth-table hard p-selective sets. We will utilize the following properties of p-
selective sets.

5

If L is a p-selective language with p-selector f , and Q is a finite set, we use f
to define a total order f on strings in Q as follows. For all x y Q:

x f y z1 z2 zm Q

f x z1 x f z1 z2 z1

f zm 1 zm zm 1 f zm y zm

Let be a special symbol such that f x, for all x .
Given any p-selector f (for some p-selective set), every finite set Q can be or-

dered by f in time a polynomial in the sum of the lengths of the strings in Q. The
following lemma was proved by Toda [Tod91]:

Lemma 1 Let L be a p-selective set with p-selector f , and let Q be a finite
set. Then, there exists a string z Q such that Q L y Q y f z and
Q L y Q y f z . The string z is called the “pivot” string.

The following lemma is a consequence of Lemma 1.

Lemma 2 Suppose A P
tt L, L is p-selective and S x1 x2 xk is a finite

ordered set of strings. Then, there exists a set G k such that G can be computed
in polynomial time in x S x and A S G.

Proof See Appendix.

Theorem 3 If there exists a p-selective set A that is tt-hard for NP, then

PFNP
tt PFNP O logn

Proof Let L be a p-selective set such that for all X NP, X P
tt L. Let h PFNP

tt and
let g and e be polynomial time computable functions such that for each x, g x
q1 q2 qr is a set of queries and h x e x A q1 A q2 A qr . It suf-

fices to show the existence of a polynomial time transducer M and a set B in NP
such that M computes h by making at most O logn queries to B.

Since A NP, A P
tt L. Let g x denote q1 q2 qr . By Lemma 2,

there exists a set G x r such that G x is computable in polynomial time in
g x and A g x G x . Order G x and for each string v in G x , let id v de-

note the index of v in G x . We say that a string v v1v2 vr in G x is valid if
for all i 1 i r

vi 1 qi A

6

We are now ready to define B, which is in NP since A is in NP:

B x g x G x i v G x

id v iand v is valid

Next, we describe M. On input x, M computes g x , G x and orders the strings
in G x lexicographically. Next, M performs a binary search procedure by query-
ing to B the strings x g x G x i for 1 i r. The binary search procedure
outputs the largest index such that for some v G x , id v and v is a
valid string. M now computes e x v and outputs this value.

We now show that M computes h by making at most O logn many queries to
B. By Lemma 2 and the fact that g is a polynomial time nonadaptive oracle trans-
ducer, there exists a polynomial p such that G x p x . Since M performs
binary search over the range 1 i p x , M asks at most log p x O logn
queries to B. The fact that M computes h follows by the following claim:

Claim 1 For all x, A g x v .

Proof of Claim Suppose v A g x and that v v v1v2 vk . By Lemma 2,
v G x . We have the following two cases: Firstly, suppose that v v . Since
v is a valid string, the binary search procedure will output v instead of v , which
is a contradiction. Now suppose that v v . Then, there exists an index i such
that vi A qi , that is, vi 1 and qi A. This implies that v is not a valid string,
which is a contradiction.

This completes the proof of the theorem.

Jenner and Toran [JT93] proved that PFNP
tt PFNP O logn implies that for

all k 0, SAT DTIME 2n logk n .

Corollary 4 If there exists a p-selective set that is truth-table hard for NP, then
for all k 0, SAT DTIME 2n logk n .

Next, we show that a somewhat stronger hypothesis than B implies a collapse
of NP to P.

Theorem 5 If there exists a tt-complete tally set in NP and PFNP
tt PFNP O logn ,

then P NP.

7

Proof Let T NP be a tally set such that SAT P
tt T via a reduction f that runs in

time p n . Consider the function h defined as follows: h 0n T 0 T 02 T 0p n .
h PFNP

tt and hence there exists a polynomial-time oracle TM M such that M com-
putes h by making at-most O logn adaptive queries to an NP oracle. The set
set-M x v v is output along some computation path of M is computable in
polynomial time.

A polynomial-time algorithm A for SAT works as follows: On input x, A com-
putes set-M x . Then, for all y set-M x , A assumes that h x y and simulates
the reduction from SAT to T on input x. Since the correct value of h x must ap-
pear at least once in the simulation, at least one of the simulations will be correct.
The algorithm A uses the self-reducibility of SAT to check the correct simulation.
For each y set-M x , A will use y to traverse the self-reducibility tree for x. If,
at the end of the traversal, A obtains a satisfying assignment of x, then x SAT.
Else, either x SAT or y is the incorrect value of h 0n . On repeating this process
for every y and accepting x if and only if at least one of the simulations generates
a satisfying assignment of x, it follows that A accepts x if and only if x SAT.

What if we strengthen hypothesis A to assume that the tt-hard p-selective set
is in NP? In this case, we get an improved collapse of the polynomial hierarchy.

Theorem 6 If there exists a tt-complete standard left-cut in NP, then the polyno-
mial hierarchy collapses to PNP.

Proof Let L NP be such that L is a standard left-cut and SAT P
tt L. Let L be

the left-cut of the real number r r0 r1 . Now, define the tally set T as: for all
i, 0i T ri 1. It is easy to see that L P

tt T and T P
T L, hence T PNP.

It follows by a result of Kadin [Kad87] that if there exists an NP-hard tally set in
PNP, then PH PNP, thus the theorem follows.

Next, we consider hypotheses A and B for higher complexity classes in the
polynomial hierarchy. If we consider classes that contain ZPPNP, then the hypothe-
ses are equivalent, and, using Toda’s theorem [Tod91], equivalent to NP P.

Theorem 7 The following are equivalent.

(i) For all languages L ZPPNP, there exists a set X such that PFL
tt PFX O logn .

(ii) There exists a p-selective set that is tt-hard for ZPPNP.

8

(iii) P NP.

Proof Toda showed [Tod91] that (ii) and (iii) are equivalent. Also, it is easy to see
that (iii) implies (i). It remains to be seen that (i) implies (ii).

Let us assume that (i) holds. Then, it follows by [Sel94] that NP RP, hence
NP P poly, and every set in NP truth-table reduces to some tally set T [KL80]. It
is implicit in the Karp and Lipton [KL80] proof that T P

2 . Köbler and Watanabe
[KW94] showed that if NP P poly, then PH ZPPNP, hence T ZPPNP. Let
SAT P

tt T via a reduction f that runs in time p n . Consider the function h defined
as follows: for all n, h 0n T 0 T 02 T 0p n . Note that h PFZPPNP

tt , so
by hypothesis, there exists a poly-time oracle TM M and a set X such that h can be
computed by M making at-most O logn queries to X as an oracle.

As before, all elements in set-M x , defined as

v v is output along some computation path of M

are computable in polynomial time.
We will use Selman’s construction [Sel79] of a standard left-cut L r such that

T P
T L r . Consider the real number r T 0 T 02 and the left cut L r as-

sociated with r, L r x x r , where denotes the standard dictionary order.
We now describe a truth-table reduction g from SAT to L r . On input x of

length n, the reduction g first computes set-M x . Then it queries all the elements
in set-M x to L r . Let y set-M x be the lexicographically largest string in L r .
Then g simulates the reduction of SAT to T using the string y to answer the queries
to T (that is, it assumes that h 0n y) and accepts x if and only if the reduction
accepts x. We claim that x SAT if and only if g accepts x. Ths claim follows by the
fact that set-M x contains the correct value of h 0n . More importantly, observe
by definition of L r that the value of h 0n is the lexicographically largest string
of length p n in L r . Hence, y is the correct value of h x , and the simulation is
correct. Hence SAT P

tt L r .

4 On m Nonadaptive versus logm 1 Adaptive Queries
to NP

The question of whether PFNP
tt PFNP O logn implies P NP is still open. In

this section, we report progress on this question by showing that if for some con-

9

stant k 0, PFNP

nk-tt
is “effectively” included in PFNP k logn 1 , then P NP.

Let us consider what this statement means. Let f PFNP
nk tt . The hypothesis PFNP

nk-tt
PFNP k logn 1 asserts that for every oracle Turing machine M that witnesses
f PFNP

nk-tt
there is another oracle Turing machine N that witnesses the fact that

f PFNP k logn 1 . Informally, our assertion is that there is a polynomial time
computable effective process T that on input M produces N. More exactly, T is a
Turing transducer. Input to T is a pair consisting of code M for an oracle Tur-
ing machine M and an input string x. M comprises a query generator g and evalua-
tor e. It suffices however to assume that M , the input to T , is code for the gen-
erator only. For, recall that once M knows the correct value of SAT q1 SAT qnk ,
where g x q1 qnk , it can then compute f x in polynomial time without
further use of its oracle.

The machine N that makes k logn 1 adaptive queries can output at most nk 2
values over all computation paths. One might think of each of these paths as an
attempt to compute the correct value of f x . However, as we just recalled it suf-
fices to think of each of these paths as an attempt to compute the correct value of
the sequence SAT q1 SAT qnk . Thus, instead of defining T to output N (or all
possible output values of N on x) it suffice to define T so that output of T is a set
of strings S such that S nk 2 and such that SAT q1 SAT qnk S.

Finally, we want T to be computable in polynomial time. That is, there is a
fixed polynomial p so that for each pair of input strings x and M , the running
time of T is TM x p x TM x , where TM is the running time of M. It is
necessary to include TM x in order to give T the opportunity to run M once on
input x in order to compute the sequence q1 qn.

Thus, we arrive at the following formulation of our theorem.

Theorem 8 Suppose there exists a constant k and a deterministic transducer T
that, given a string x and an encoding M of a Turing machine as input, runs
in time p x M qM x , where p is an arbitrary fixed polynomial, and
qM x is the running time of M on input x. The transducer T outputs a set S of
strings, such that S x M k 2 and the characteristic vector of the output
of M x in SAT is in S. Then, P NP.

Proof Sketch Let k and T be as described in the hypothesis. We will show that
there exists a polynomial time algorithm GENSAT that accepts SAT . On input x,

10

GENSAT generates a satisfying assignment for x (if one exists) by pruning the self-
reducibility tree of x. Before presenting the algorithm, we describe the following
essential preliminaries.

Let pre f ixSAT denote the following set in NP:

pre f ixSAT x#v x SAT and v is a prefix

of a satisfying assignment of x

For every string x (that encodes a satisfiable formula), we will assume without loss
of generality that the length of each satisfying assignment of x is x .

We define the function next for all strings x and v such that v x by

next x v

0 if x#v0 pre f ixSAT ;
1 if x#v1 pre f ixSAT

and x#v0 pre f ixSAT ;
if x#v pre f ixSAT .

Suppose x and S v1 v2 v S is an ordered finite set such that for
all v S, v x . We define the function H by

H x S next x v1 next x v2 next x v S

At this point we will sketch the pruning algorithm that is at the heart of our
proof. The formal proof is given in the appendix. To simplify this informal de-
scription, we assume that x is a power of 2 so that log x is an integer. Let a
k log x 1, and let S1

a. Clearly, if x is satisfiable, then S1 contains a pre-
fix of a satisfying assignment of x. Observe that S1 x k 2 and that H x S1
can be computed by making x k nonadaptive queries to NP. Using the hypoth-
esis, on simulating T on inputs x and an encoding of a TM that outputs the set
Y x#vb b 0 1 v S1 , T outputs a set of strings S1 such that S1 x k 2
such that S1 contains the characteristic vector of Y . Each string in S1 is a candidate
value of H x S1 .

Consider the following procedure PRUNE that takes as input a finite set S and
a set of strings S such that S and S 0 1 S , and outputs a finite set
S such that S S . Assuming that S and S are ordered, let vi denote
the ith element of S, r j denote the jth element of S , and r j

i denote the ith bit of r j.

begin PRUNE(S S)

11

S : /0;
for j 1 to S do

if r j then
begin
find the smallest index such that r j ;
S : S v r j

end
end PRUNE

Run PRUNE S1 S1 and let S2 be the finite set that is output. Then, S2
S1 nk 2. We claim that S2 contains a prefix of a satisfying assignment of x,

if x is satisfiable. To see this, assume that x is satisfiable, let H x S1 r, and
note that r S1. Let be the smallest index such that v S1 is a prefix of a sat-
isfiable assignment of x. Then, r , is the least index such that r , and
x#v r pre f ixSAT . The procedure PRUNE places x#v r into S2. Thus, indeed,
S2 contains a prefix of a satisfying assignment, and this prefix is one bit longer than
the strings in S1. Since S2 nk 2, we use the hypothesis again, this time on in-
puts x and an encoding of a Turing machine that outputs S2, and continue in this
manner iteratively until we have obtained a set of strings of length x , which we
then accept if and only if the final set contains a satisfying assignment.

Thus, we see that GENSAT makes iterative calls to PRUNE and then to the
transducer T . At each iteration, the input to T is a description of a Turing machine
M whose output is the result of the last call to PRUNE. The danger is that the size of
the sets Si grow in size. Therefore, these machines might grow in size, and there-
fore, so might their descriptions. If this were so, then, even though T runs in time
polynomial in the length of its input, T would not run in time polynomial in x. We
now show that we can control the size of the descriptions of the Turing machines
that are the successive inputs to T . From this it follows that our algorithm for ac-
cepting SAT runs in polynomial time.

On input x M , let T run in time p x M qM x , where p is a
polynomial and qM x denotes the running time of M on input x. Let M denote
a description of a transducer M.

We will use the following sequence Mi of transducers as inputs to T . We
define the sequence Mi by induction. M0 is a transducer that on input a string
y, outputs the finite set S1

a, where a k log y 1. Now we define Mi for
i 1.

begin description of Mi

12

input y;
Si : T y Mi 1 ;
Si 1 : PRUNE Mi 1 y Si ;
output Si 1

end description

Of course, the finite control of Mi does not store Mi 1. Rather, as with the im-
plementation of any recursive procedure, the finite control of Mi only needs to store
the depth of recursion i and the calling procedure. For the latter, the finite control
of Mi needs to be able to simulate the procedure PRUNE and the transducer T .

Claim 2 For all i, Mi O 1 log i .

Proof of Claim Clearly, the machine M0 executes an algorithm whose descrip-
tion is of length O 1 ; that is, M1 O 1 .

For i 1, observe that other than the number of recursive calls, the compu-
tations performed by Mi and Mi 1 are identical. Thus, a description of Mi only
contains the number i and a code of fixed length. Since i in binary uses O log i
bits, the claim follows.

Let b x 1 k log x . It follows immediately from Claim 2 that for
all i, 0 i b, Mi O log x (the constant term in the above expression is
independent of i). Now, we are ready to describe the polynomial time algorithm
GENSAT for SAT . Input to GENSAT is a string x. If for some integer m, 2m

x 2m 1, then assume that x is replaced with a logically equivalent string x so
that x 2m 1. Clearly x is satisfiable if and only if x is satisfiable. Furthermore,
by padding machines with “no operation” instructions and by Claim 2, we assume
that x M0 x M1 x Mb 2 x . Thus, for all i 0 i b,

x Mi is a power of 2.

begin GENSAT
input x;
b : x k log x 1 ;
Compute M1 M2 Mb such that

x M0 x Mb 2 x ;
S : Mb x ;
for all strings v S do

13

if v is a satisfying assignment of x then
ACCEPT;

else REJECT
end GENSAT

We claim that GENSAT runs in polynomial time and that GENSAT accepts x
if and only if x is satisfiable.

Claim 3 For all i such that 0 i x k log x 1, Mi x runs in time bounded
by a polynomial in x and i.

Proof of Claim Since M0 on input x prints all strings of length k log x 1, it is
easy to see that M1 runs in O x 2k steps.

Let ti denote the running time of Mi, and recall that T on input x Mi 1
runs in time p x Mi 1 ti 1 x . Recall that x Mi 2 x . Also, it is
easy to see that PRUNE runs in time O v S v u S u on input S S . It
follows by the definition of Mi that

ti x O x p 2 x ti 1 x

O
v Si

v
u Si

u

where Si Mi 1 x and Si is the output of T on input x Mi 1 . (The O x
term in the expression is the time taken to compute Mi 1 .) To estimate the above
inequality, we need to obtain upper bounds on v Si 1

v and u Si
u .

Recalling that b x k log x 1, we compute Si and Si for all i such
that 1 i b. First, for the special case i 1, it holds that S1 x k 2. Now
consider the case that i 2. By Claim 2, it follows that the length of the input to T
is 2 x , which is a power of 2, hence T x Mi 1 outputs at-most 2 x k 2 many
candidates. Thus,

Si 2 x k 2 (1)

But Si 1 Si, hence for all i, 1 i b,

Si 2 x k 2 (2)

Next, we bound the lengths of strings in Si and Si. Note that the length of each
string in Si 1 is less than the number of strings in Si. By definition of T , the number

14

of strings in Si is bounded by x Mi
k 2 2 x k 2. Finally, we observe that

for all u in Si, u i k log x 1.
By substituting from Equations 1 and 2, we have

v Si

v 2 x k 2 i k log x 1

O i k log x x k (3)

u Si

u 2 x k 2 2 x k 2

O x 2k (4)

We now substitute for ti 1 ti 2 t1 and p in the relation for ti.

ti x i 1 p 2 x t1 x O i x

O
i

j 2 v S j 1

v
i

j 2 u S j

u

On substituting the bound for t1, and from Equations 3, 4, and noting that i
x , we have:

ti x x i 1 p 2 x O x 2k

O x k 2 O x 2k 1 O x 2

x 2k p x 2

Thus for all 1 i b, tb x is bound by a polynomial in x .

Next, we prove the correctness of GENSAT. The proof is identical to that given
in the earlier informal description. Before proceeding, observe that by Claim 2
(and by use of padding), it follows for all strings x and for all i that the input x Mi
is not infeasible.

Claim 4 If x SAT and x is a power of 2, then for all i, 1 i x k log x 2
there exists a string v in Si such that x#v pre f ixSAT.

15

Proof of Claim The proof is by induction on i. For i 1, since S1 contains
all strings of length k log x 1, the claim follows trivially. Assume as induc-
tion hypothesis that the claim holds for some i 1, Si v1 v2 vt , and let
H x Si r. It follows that r set-T x Mi . Let be the smallest index such
that x#v pre f ixSAT . Then, r , is the least index such that r , and x#v
r pre f ixSAT . To complete the proof, observe that the procedure PRUNE places
x#v r into Si 1.

Observe that S x 2 k log x
x . By combining Claim 4 with this observation,

it follows that if x SAT, then GENSAT accepts x. If x SAT, then a satisfying
assignment for x does not exist, and hence the algorithm GENSAT will reject x.

This completes the proof of the theorem.

5 Acknowledgments

The authors thank Richard Beigel, Mitsunori Ogihara and Ken Regan for helpful
discussions and comments. We especially acknowledge Jin-Yi Cai, who suggested
using a uniformity argument to obtain a correct proof of Theorem 8.

References

[AA94] M. Agrawal and V. Arvind. Polynomial time truth-table reductions to P-
selective sets. In Proceedings of 9th Annual IEEE Conference on Structure in
Complexity Theory, pages 24–30, 1994.

[Adl78] L. Adleman. Two theorems on random polynomial time. In Proceedings
of 19th IEEE Symposium on Foundations of Computer Science, pages 75–83,
1978.

[Bei87] R. Beigel. A structural theorem that depends quantitavely on the com-
plexity of sat. In Proceedings of 2nd Annual IEEE Structure in Complexity
Theory Conference, pages 28–34, 1987.

[Bei88] R. Beigel. NP-hard sets are P-superterse unless R = NP. Technical Re-
port 88-04, Department of Computer Science, The Johns Hopkins University,
1988.

16

[BKS94] R. Beigel, M. Kummer, and F. Stephan. Approximable sets. In Pro-
ceedings of 9th Annual IEEE Conference on Structure in Complexity Theory,
pages 12–23, 1994.

[BTvEB94] H. Buhrman, L. Torenvliet, and P. van Emde Boas. Twenty Questions
to a P-selector. Information Processing Letters, 48(4), 1994.

[HNOS93] E. Hemaspaandra, A. Naik, M Ogiwara, and A. Selman. P-selective
sets, and reducing search to decision versus self-reducibility. Technical Report
93-21, SUNY at Buffalo, Buffalo, NY 14260, 1993. To appear in JCSS.

[JT93] B. Jenner and J. Toran. Computing functions with parallel queries to NP.
In Proceedings of 8th Annual Conference on Structure in Complexity Theory,
pages 280–291, 1993.

[Kad87] J. Kadin. pnp logn and sparse Turing-complete sets for NP. In Proceed-
ings of Struct. in Complexity Second Annual Conference, pages 33–40, 1987.

[KL80] R. Karp and R. Lipton. Some connections between nonuniform and uni-
form complexity classes. In Proceedings of 12th ACM Symposium on Theory
of Computing, pages 302–309, 1980. An extended version has also appeared
as: Turing machines that take advice, L’Enseignement Mathématique, 2nd se-
ries 28, 1982, pages 191–209.

[KW94] J. Köbler and O. Watanabe. New collapse consequences of NP having
small circuits. Technical Report 94-11, Universität Ulm, November 1994. To
appear in ICALP 95.

[LLS75] R. Ladner, N. Lynch, and A. Selman. A comparison of polynomial time
reducibilities. Theoretical Computer Science, 1:103–123, 1975.

[Ogi94] M. Ogihara. Polynomial-time membership comparable sets. In Proceed-
ings of 9th Annual IEEE Conference on Structure in Complexity Theory, pages
2–11, 1994.

[Sel79] A. Selman. P-selective sets, tally languages, and the behavior of poly-
nomial time reducibilities on NP. Mathematical Systems Theory, 13:55–65,
1979.

17

[Sel82] A. Selman. Analogues of semirecursive sets and effecitve reducibilities
to the study of NP complexity. Information and Control, 52(1):36–51, 1982.

[Sel94] A. Selman. A taxonomy of complexity classes of functions. Journal of
Computer and System Sciences, 48(2):357–381, 1994.

[Thi94] T. Thierauf. Private Communication, 1994.

[Tod91] S. Toda. On polynomial-time truth-table reducibilities of intractable sets
to P-selective sets. Mathematical Systems Theory, 24:69–82, 1991.

[TTW94] T. Thierauf, S. Toda, and O. Watanabe. On sets bounded truth-table
reducible to p-selective sets. In Proceedings of 11th Annual Symposium on
Theoretical Aspects of Computer Science, pages 427–438, 1994.

Appendix
Here we present a proof of Lemma 2.

Lemma 2 Suppose A P
tt L, L is p-selective and S x1 x2 xk is a finite

ordered set of strings. Then, there exists a set G k such that G can be computed
in polynomial time in x S x and A S G.

Proof Suppose f is a p-selector for L and A P
tt L via a truth-table reduction g e ,

where g is a condition generator and e is a condition evaluator. For all strings x,
g x outputs a set B x of queries to L. Construct the set B x SB x b1 b2 br ,
where for each 1 i j r, bi f b j. Let B b0 b1 b2 br , where b0 .

The idea is very simple. There are r 1 possible pivot strings. Each choice of
pivot string determines a possible value of A S ; we define G to be the set of these
values. The following algorithm provides the details.

begin
G : /0.
for i 0 to r do

begin
Assume that bi is the pivot string

for j 0 to r do
begin
if j i then v j : TRUE;

else v j : FALSE;

18

end
for 1 to k do

begin
u e x v1 v2 vr .
end

G : G u1 u2 uk .
end;

Output G.
end

The above algorithm simulates the condition evaluator e on some of the possi-
ble truth table values, and by Lemma 1, exactly one of these simulations will pro-
duce the correct value of A S . The elements of G are the result of these simulations
on elements in S, and hence, A S G. Since g is polynomial-time bounded, the
number q B b is polynomial in x S x , and hence the above algorithm runs in
polynomial time.

19

