A Note on P-selective sets and on Adaptive ver sus
Nonadaptive Queriesto NP

Ashish V. Naik* Alan L. Selman'

Abstract

We study two properties of a complexity class C—whether there exists a truth-
table hard p-selective language for ¢, and whether polynomially-many nonadap-
tive queries to C can be answered by making O(logn)-many adaptive queries to
C (in symbols, is PF§ C PFC[O(logn)]). We show that if there exists a NP-hard
p-selective set under truth-table reductions, then PFYF € PFNP[O(logn)]. As a
consequence, it followsthat if there exists a tt-hard p-sel ective set for NP, then for
all k> 0, SAT € DTIME[2"!99"]. We show that if ¢ > ZPPNP, then these two
propertiesare equivalent. Also, we show that if there exists a truth-table complete
standard-left cut in NP, then the polynomial hierarchy collapses to PN,

We prove that P = NP followsiif for some k > 0, the class PFYF is effectively
included in PFNP[k[logn] — 1].

1 Introduction

As NP-hard problems continue to resist polynomial time solutions, researchersin
computational complexity have investigated sets for which some partial informa-
tion can be extracted in polynomial time. The class of p-selective sets, introduced

*Computer Science Department, University of Chicago, Chicago, IL 60637. Research con-
ducted in part at State University New York at Buffalo and supported in part by NSF grant CCR
92-53582. Email: nai k@s. uchi cago. edu

T Department of Computer Science, State University of New York at Buffalo, Buffalo, NY
14260. Research supported in part by the NSF under grant NSF-INT-9123551 and NSF-CCR-
9400229. Email: sel man@s. buf f al 0. edu

by Selman [Sel 79], is one such example. A set A is p-selectiveif thereis apoly-
nomial time computable function that, given two strings x and y as input, selects
one of the two strings such that if any of the input stringsisin A, then the selected
stringisin A.

One important line of research on p-selective sets has been to determine the
strongest consequence of NP setsreducing to ap-sel ective set under variousreduc-
tions[LLS75]. Selman [Sel82] showed that if there exists a p-selective set that is
NP-hard under positive truth-table reductions, then P= NP. Buhrman, Torenvliet
and van Emde Boas [BTVEB94] generalized this to show that if there exists a p-
selectivethat is NP -hard under positive Turing reductions, then P= NP. Thierauf,
Todaand Watanabe [TTW94] showedthat if every setin NPisbounded truth-table

reducibleto ap- selectiveset, thenNPC DTI ME[Z”O(WW)]. Agrawal and Arvind
[AA94], Beigel, Kummer and Stephan [BKS94], and Ogihara [Ogi94] indepen-
dently have proved that the existence of a btt-hard p-selective set for NP implies
P = NP. Toda[Tod91] proved that if there is a p-selective set that is truth-table
hard for NP, then P = FewP and RP = NP. Let hypothesis A denote the assertion
that some p-selective set is truth-table hard for NP,

HypothesisA. There exists att-hard p-selective set for NP.

It isnot yet known whether hypothesis A implies P= NP. We study the con-
nection of hypothesisA with thefollowing question about function classes[Sel 94]:
Isthe class of functions computable in polynomial time by nonadaptive access to
NP included in the class of functions computable by at most O(logn) queries to
some set X as an oracle? Selman [Sel94] showed that if PFYP € PFNP[O(logn)],
then P = FewP and RP = NP. Let hypothesis B denote the assertion that PFy" C
PFNP[O(logn)]

Hypothesis B. PFYP ¢ PFNP[O(logn)].

It is not yet known whether hypothesis B implies P = NP. Observe that the
known consequences, P = FewP and RP = NP, of hypotheses A and B are identi-
cal. Thisisnot acoincidence, for we prove the following assertion:

Theorem. Hypothesis A implies hypothesis BL.

1This result has been obtained independently by T. Thierauf [Thi94]. Also, this assertion can
be obtained by strengthening results of Beigel [Bei87, Beigg].

Using a result of Jenner and Toran [JT93] and the above theorem, it follows
that if every set in NP truth-table reduces to a p-selective set, then for all k > 0,
SAT C DTIME[2/logn,

We do not know whether Hypothesis B implies HypothesisA. It isnot known,
for example, whether assuming both hypothesesimpliesthat P = NP. However, we
show that the following assumption, which is presumably stronger than hypothesis
B, impliesP= NP,

Theorem. If hypothesis B is true and there exists a truth-table com-
pletetaly set in NP, then P= NP.

Next, we strengthen hypothesis A to obtain a stronger collapse of the polynomial
hierarchy than the collapse known by Toda'stheorem [Tod91]. That is, recall that
RP= NPimpliesacollapse of the polynomial hierarchy to ZPPNP because RP has
polynomial size circuits[AdI 78, KL80, KW94]. In the following theorem we ob-
tain a collapse of the polynomial hierarchy to PNP.

A standard left-cut is a special kind of a p-selective set and is defined in the
next section.

Theorem. If there existsastandard left-cut L in NP such that SAT <f;
L, then the polynomial hierarchy collapsesto PNP,

Hypotheses A and B are equivalent for higher complexity classes—and equiv-
denttoNP=P.

Theorem. The following are equivalent.

(i) Thereexistsap-selectivethat istt-hard for ZPPNP,
(ii) Forall L € ZPPNP, thereexistsaset X suchthat PF; Cc PFX[O(logn)].
(iii) P=NP

Our final result reports progress on the question of whether hypothesis B im-
plies that P = NP. Krentel showed that if ¢ < 1 is an arbitrary constant and if
PFNPIm(n)] € PFNP[m(n) — 1], for all functions m such that m(n) < clogn, then
P = NP. Beigel, Kummer, and Stephan [BKS94], and Ogihara [Ogi94] indepen-
dently improved this result by showing that the collapse P = NP can be obtained
by assuming the weaker hypothesis of PFr’\T']E’n)_tt C PFNPm(n) — 1] for all m(n) <
clognfor somec < 1. We obtain thisconsequencefor amoregeneral classof func-
tions, albeit with astronger hypothesis. Namely, we assumethat the class of partial

3

functions PFNIE’_t is“effectively” included in the class PFNP[k[logn] — 1] for some

fixed k > 0, rr!\nd from this assumption we conclude that P = NP. Informally, our
assumption stipul ates existence of a polynomial time-bounded functional that for
every witness to afunction belonging to the class on the left-hand side produces a
witness to the fact that the function belongs to the class on the right-hand side.

One significance of thisresult is the novel proof technique that we introduce.
The proof techniques of Beigel, Kummer, and Stephan, and Ogihara involve two
main steps. First, they use the hypothesis to construct a transducer T that can be
used to eliminate possible characteristic vectorsfor agiven set. However thistrans-
ducer hastherestriction that the number of vectorsthat it outputsis sublinear (that
is, < n°for c < 1). Then, the transducer T is used to prune the digunctive self-
reducibility tree of SAT in polynomial time. The obvious generalization of their
technique to remove therestriction that ¢ < 1 causesthe tree-pruning algorithm to
be exponential due to an increasein the input size at each stage of the pruning. In
our result, we use auniformity argument that handlesthisissue by pruning the self-
reduction tree without letting the input to each stage grow in size. The effective-
nessthat weimposeiscrucial for controlling the uniformity argument. We believe
that such auniformity argument will be essential in proving that either hypothesis
A or B impliesthat P= NP.

2 Preiminariesand Notation

All languages are defined over thefinite alphabet X = {0,1}. We denote by X" the
set of al binary strings of length n. We consider 1 and # to be special symbols, and
assumethat thereisapolynomial time computable encoding of {0, 1, 1, #} intoX*.
Wedenoteby (,) any standard pairing function that is computableand invertiblein
polynomial time, and by - the concatenation operator. Suppose S= {x1,Xo, ..., X}
is an ordered finite set, and A is any language. Then, A(S) is an abbreviation for
the binary string A(x1) - A(X2) - - - A(X) -

We assume that the reader is familiar with the complexity classes P and NP
and with the standard polynomial time reductions among classes[LLS75]. All re-
ducibilitiesin this paper are assumed to be polynomial time reducibilities. Recall
that alanguage A istruth-tablereducibleto aset B in polynomial time (A <f B) if
there exist polynomial time computable functionsg and e such that oninput X, g(x)
isaset of queriesQ = {Q,d,--.,0«}, and X € A<+ e(x,B(qy),...,B(dk)) = 1.

Definition 1 A set L isp-selective [Sal79] if there exists a polynomial time com-
putable function f : X* x £* — X* such that

(i) f(xy) e {xy} and
(ii) if f(x,y)=y,thenxeL—-yeL.

The function f is called a p-selector for L.

Sandard left-cuts are perhaps the most natural examples of p-selective sets
[Sel 79, HNOS93]. Given areal number r in dyadic notation (that is, as an infinite
binary string, r =rqr,---isinterpretedasr = 0.ry-r,- - -), the standard | eft-cut L(r)
of r is defined as the set,

L(r) ={x|x<r},

where < denotes the standard dictionary ordering. It is easy to seethat L(r) is p-
selective, since afunction that, given strings x and y, outputs the smaller string in
{x,y} according to the dictionary ordering is a selector function for L(r).

We will be referring to the following classes of functions [Sel94, Bei88].

Definition 2 Supposem: N+— N and f : ¥* — ¥£* are functions.

(i) We say that f € PFNP[m(n)] if there exist a polynomial time transducer T and
a set A € NP such that for all strings x, T(x) computes f(x) by making at
most m(|x|) queriesto A. We say that f € PFNP[O(logn)] if there exists a
function msuch that m(n) = O(logn) and f € PFNP[m(n)].

(i) We say that f € PFr’:'q(Pn)_tt, if there exist polynomial time computable func-
tions g and e and a set A € NP such that for all x, g(x) is a set of queries
Q= {qla .-, qm(|x|)}a and f(X) = e(X, A(ql)aA(qZ)a e ,A(qm(|x|))) We
say that f € PFP if there exists a polynomially bounded function m such

that f € PRYV .

3 Ontt-hard p-selective sets

In this section, we will prove our theorems on the consequence of the existence
of truth-table hard p-selective sets. We will utilize the following properties of p-
Selective sets.

If L is ap-selective language with p-selector f, and Q is afinite set, we use f
to define atotal order <; onstringsin Q asfollows. For al x,y € Q:

X<ty ¢ 37,2, Zm€Q,
f(x,z0) =X, f(z1,20) = 74, ...,
f(Zn-1,Zm) = Zm-1, f(Zm,y) = Zm-

Let 1 beaspecial symbol suchthat L <; X, for al x € Z*.

Given any p-selector f (for some p-selective set), every finite set Q can be or-
dered by <; intimeapolynomial in the sum of thelengths of the stringsin Q. The
following lemmawas proved by Toda [Tod91]:

Lemmal Let L be a p-selective set with p-selector f, and let Q C X* be afinite
set. Then, thereexistsastringze QU{L} suchthat QNL={ye Q|y < z} and
QNL={yeQ|y%¢ z}. Thestring zis called the “ pivot” string.

The following lemma s a consequence of Lemma 1.

Lemma?2 Suppose A < L, L isp-selective and S= {xq,%o,..., X} isa finite
ordered set of strings. Then, thereexistsa set G C XX such that G can be computed
in polynomial timein Y, .s|x and A(S) € G.

Proof See Appendix. O

Theorem 3 If there exists a p-selective set A that istt-hard for NP, then
PFNP € PFNPIO(logn)].

Proof LetL beap-selectiveset suchthatforall X € NP, X <f L. Lethe PFP and
let g and e be polynomial time computable functions such that for each x, g(x) =
{qlana SRR ql’} isaset of querlesand h(X) = e(X, A(ql)aA(qZ)a e aA(ql’)) It suf-
fices to show the existence of a polynomial time transducer M and aset B in NP
such that M computes h by making at most O(logn) queriesto B.

SinceAe NP, A <f L. Let |g(x)| denote ||+ [gp| +---|ar|. By Lemma?2,
there exists a set G(x) C X' such that G(x) is computable in polynomial timein
|9(x)| and A(g(x)) € G(x). Order G(x) and for each string v in G(x), let id(v) de-
note the index of vin G(x). We say that astring v = viV,...v; in G(x) isvalid if
fordli,1<i<r

vi=1l—0q €A

6

We are now ready to define B, whichisin NP since Aisin NP:

B= { (*9(x),G(x),i)[3veG(x)
[id(v) >iandvisvalid] }

Next, we describe M. Oninput X, M computesg(x), G(x) and ordersthe strings
in G(x) lexicographically. Next, M performs a binary search procedure by query-
ing to B the strings (x, g(x), G(x),i) for 1 <i <r. The binary search procedure
outputs the largest index ¢ such that for some v* € G(x), id(v*) = £ and v* isa
valid string. M now computes e(x, v*) and outputs this value.

We now show that M computes h by making at most O(logn) many queriesto
B. By Lemma 2 and the fact that g is a polynomial time nonadaptive oracle trans-
ducer, there exists a polynomial p such that ||G(x)|| < p(|x|). Since M performs
binary search over therange 1 <i < p(|x|), M asksat most log(p(|x|)) = O(logn)
gueriesto B. The fact that M computes h follows by the following claim:

Claim 1 For all x, A(g(x)) = v*.

Proof of Claim SupposeV = A(g(x)) andthat V' # v* = V;jV5 - - - vi.. By Lemma2,
V € G(x). We have the following two cases: Firstly, supposethat vV > v*. Since
V isavalid string, the binary search procedure will output V' instead of v*, which
is a contradiction. Now suppose that V¥ > V. Then, there exists an index i such
that vi' > A(qi), that is, vi' = Land o ¢ A. Thisimpliesthat v* isnot avalid string,
which is a contradiction. |

This completes the proof of the theorem. 1

Jenner and Toran [JT93] proved that PFYF € PFNP[O(logn)] implies that for
al k> 0, SAT C DTIME[2V lod“n).

Corollary 4 If there exists a p-selective set that is truth-table hard for NP, then
for all k> 0, SAT C DTIME[2Vlog“n].

Next, we show that a somewhat stronger hypothesis than B implies a collapse
of NPto P.

Theorem 5 Ifthereexistsatt-completetally setinNPand PFYF € PFNP[O(logn)],
then P= NP.

Proof Let T € NP beataly set such that SAT gft’ T viaareduction f that runsin
time p(n). Consider thefunction h defined asfollows: h(0") — T(0)-T(0?)--- T(0PMM).
h € PFYP and hence there exists a polynomial-time oracle TM M such that M com-
putes h by making at-most O(logn) adaptive queries to an NP oracle. The set
set-M(x) = {v | visoutput along some computation path of M} is computable in
polynomial time.

A polynomial-timealgorithm A for SAT worksasfollows. Oninput x, A com-
putes set-M(x). Then, for all y eset-M(x), A assumesthat h(x) = y and simulates
the reduction from SAT to T on input X. Since the correct value of h(x) must ap-
pear at least once in the simulation, at least one of the ssmulations will be correct.
The algorithm A usesthe self-reducibility of SAT to check the correct simulation.
For eachy € set-M(x), A will usey to traverse the self-reducibility tree for x. If,
at the end of the traversal, A obtains a satisfying assignment of x, then x € SAT.
Else, either x ¢ SAT or y isthe incorrect value of h(Q"). On repeating this process
for every y and accepting x if and only if at least one of the simulations generates
asatisfying assignment of x, it followsthat A acceptsxif andonly if xe SAT. [

What if we strengthen hypothesis A to assume that the tt-hard p-selective set
isin NP? In this case, we get an improved collapse of the polynomial hierarchy.

Theorem 6 If there exists a tt-compl ete standard | eft-cut in NP, then the polyno-
mial hierarchy collapsesto PNP.

Proof Let L € NP be such that L is a standard left-cut and SAT <f L. Let L be
the left-cut of the real number r =rg-rq---. Now, definethetaly set T as: for all
i,0 €T < ri=1 Itiseasytoseethat L <} Tand T <P L, hence T € P\,
It follows by aresult of Kadin [Kad87] that if there exists an NP-hard tally set in
PNP then PH = PNP, thus the theorem follows. 1

Next, we consider hypotheses A and B for higher complexity classes in the
polynomial hierarchy. If we consider classesthat contain ZPPNP, then the hypothe-
ses are equivalent, and, using Toda's theorem [Tod91], equivalent to NP= P.

Theorem 7 The following are equivalent.
(i) For all languagesL € ZPPNP, thereexistsa set X such that PF; € PF¥[O(logn)].

(i) There exists a p-selective set that is tt-hard for ZPP\P,

8

(i) P=NP.

Proof Todashowed [Tod91] that (ii) and (iii) are equivalent. Also, itiseasy to see
that (iii) implies (i). It remains to be seen that (i) implies (ii).

Let us assume that (i) holds. Then, it follows by [Sel94] that NP = RP, hence
NP C P/ poly, and every setin NPtruth-tablereducesto sometally set T [KL80Q]. It
isimplicitinthe Karp and Lipton [KL80] proof that T):5’. K obler and Watanabe
[KW94] showed that if NP C P/ poly, then PH = ZPPNP, hence T € ZPP\P. Let
SAT <F T viaareduction f that runsintime p(n). Consider the function h defined
asfollows: for al n, h(O") s T(0) - T(02)---T(0P). Notethat h € PFZP", so
by hypothesis, there existsa poly-time oracle TM M and a set X such that h can be
computed by M making at-most O(logn) queriesto X as an oracle.

Asbefore, al elementsin set-M(x), defined as

{v| visoutput along some computation path of M}

are computable in polynomial time.

We will use Selman’s construction [Sel 79] of a standard left-cut L(r) such that
T =P L(r). Consider the real number r = T(0) - T(02)--- and the left cut L(r) as-
sociated withr, L(r) = {x | x < r}, where < denotes the standard dictionary order.

We now describe a truth-table reduction g from SAT to L(r). On input x of
length n, the reduction g first computes set-M(x). Then it queries all the elements
inset-M(x) toL(r). Lety € set-M(x) bethelexicographically largest stringin L(r).
Then g simulatesthe reduction of SAT to T using the string y to answer the queries
to T (that is, it assumesthat h(0") = y) and accepts x if and only if the reduction
acceptsx. Weclaimthat x € SAT if and only if g acceptsx. Thsclaimfollowsby the
fact that set-M (x) contains the correct value of h(0"). More importantly, observe
by definition of L(r) that the value of h(0") is the lexicographically largest string
of length p(n) in L(r). Hence, y isthe correct value of h(x), and the simulation is
correct. Hence SAT <F L(r). O

4 OnmNonadaptiveversuslogm— 1 AdaptiveQueries
to NP

The question of whether PFYP C PFNP[O(logn)] implies P = NP is still open. In
this section, we report progress on this question by showing that if for some con-

9

stant k > 0, PFP\E-tt is “effectively” included in PFNP[k[logn] — 1], then P= NP.
L et us consider what thisstatement means. Let f € PR . Thehypothe&eisPF?],'f_tt C
PFNPk[logn] — 1] asserts that for every oracle Turing machine M that witnesses
fe PFEE-tt there is another oracle Turing machine N that witnesses the fact that

f € PFNP[k[logn] — 1]. Informally, our assertion isthat thereis apolynomial time
computable effective process T that on input M produces N. More exactly, T isa
Turing transducer. Inputto T isapair consisting of code < M > for an oracle Tur-
ing machine M and an input string x. M comprisesaquery generator g and evalua-
tor e. It sufficeshowever to assumethat < M >, theinput to T, iscodefor the gen-
erator only. For, recall that once M knowsthecorrect valueof SAT(qy) - - - SAT (Q),
where g(x) = {qy, - .., 0}, it can then compute f(x) in polynomial time without
further use of its oracle.

The machine N that makes klogn— 1 adaptive queries can output at most nk /2
values over all computation paths. One might think of each of these paths as an
attempt to compute the correct value of f(x). However, aswejust recalled it suf-
fices to think of each of these paths as an attempt to compute the correct value of
the sequence SAT (1) - - - SAT (q,«). Thus, instead of defining T to output N (or all
possible output values of N on X) it suffice to define T so that output of T is a set
of strings Ssuch that ||S| < n*/2 and such that SAT () ---SAT () € S

Finally, we want T to be computable in polynomial time. That is, thereis a
fixed polynomial p so that for each pair of input stringsx and < M >, the running
time of T is Tu(X) + p(|X| + |Tm(X)|), where Ty is the running time of M. It is
necessary to include Ty (X) in order to give T the opportunity to run M once on
input X in order to compute the sequence g, . - -, dn.

Thus, we arrive at the following formulation of our theorem.

Theorem 8 Suppose there exists a constant k and a deterministic transducer T
that, given a string x and an encoding (M) of a Turing machine as input, runs
intime p(|x| + [(M}]) 4+ awm(|x|), where p(-) is an arbitrary fixed polynomial, and
am(|x|) isthe running time of M on input x. The transducer T outputs a set S of
strings, suchthat ||S|| < (|x|+[{M)|)¥/2 and the characteristic vector of the output
of M(x) in SAT isin S Then, P= NP.

Proof Sketch Let k and T be as described in the hypothesis. We will show that
there exists a polynomial time algorithm GENSAT that accepts SAT. On input X,

10

GENSAT generatesasatisfying assignment for x (if one exists) by pruning the self-
reducibility tree of x. Before presenting the algorithm, we describe the following
essential preliminaries.

Let prefixSAT denote the following set in NP:

prefixSAT = {x#v|x € SAT andvisaprefix
of a satisfying assignment of x}

For every string x (that encodes a satisfiable formula), we will assumewithout loss
of generality that the length of each satisfying assignment of x is < |x|.
We define the function next for all strings x and v such that |v| < |x| by

0, if x#v0 € prefixSAT,
1 if x#vl € prefixSAT

and x#v0 & prefixSAT; -
T if x#v ¢ prefixSAT.

next(x,v) =

Suppose x € £* and S= {vy, Vo, .. ,VH} is an ordered finite set such that for
dlve s |v| <|x|. We define the function H by

H(x,S) = next(x,vy) - next(x, vz) - - - next(x, Vg)-

At this point we will sketch the pruning algorithm that is at the heart of our
proof. The formal proof is given in the appendix. To simplify thisinformal de-
scription, we assume that || is a power of 2 so that log|x| isan integer. Let a=
klog|x| — 1, and let S; = X2. Clearly, if x is satisfiable, then S; contains a pre-
fix of a satisfying assignment of x. Observe that ||S,|| = |x|¥/2 and that H(x,S;)
can be computed by making |x|* nonadaptive queries to NP. Using the hypoth-
esis, on simulating T on inputs x and an encoding of a TM that outputs the set
Y ={x#vb|be {0,1},ve S}, T outputsaset of strings S, suchthat ||S || < |x|¥/2
such that S; containsthe characteristic vector of Y. Each stringin S, isacandidate
valueof H(x,S).

Consider the following procedure PRUNE that takes as input afinite set Sand
aset of strings S such that SC =* and S C {0, 1,1}, and outputs a finite set
S’ C £* such that ||S'|| < ||S]|. Assuming that Sand S are ordered, let v; denote
the i element of S r/ denotethe jt element of S, and r! denote the it™ bit of 1.

begin PRUNE(S S)

11

S =0
for j=1to||S]| do
if rl ¢ {1}* then
begin
find the smallest index ¢ such that r) #1;
S :=8'U{v-r)}
end
end PRUNE

Run PRUNE(S;,S)) and let S, be the finite set that is output. Then, ||S|| <
IS,]| < nk/2. We claim that S, contains a prefix of a satisfying assignment of x,
if x is satisfiable. To see this, assume that X is satisfiable, let H(x,S;) = r, and
notethat r € S;. Let ¢ be the smallest index such that v, € S, is a prefix of a sat-
isfiable assignment of x. Then, r, #1, £ is the least index such that r, #1, and
x#v, -1, € prefixSAT. Theprocedure PRUNE placesx#v, -1, into S,. Thus, indeed,
S, containsaprefix of asatisfying assignment, and this prefix isonebit longer than
thestringsin S;. Since ||S|| < n*/2, we use the hypothesis again, thistime on in-
puts x and an encoding of a Turing machine that outputs S,, and continue in this
manner iteratively until we have obtained a set of strings of length |x|, which we
then accept if and only if the final set contains a satisfying assignment.

Thus, we see that GENSAT makes iterative calls to PRUNE and then to the
transducer T. At each iteration, theinput to T isadescription of a Turing machine
M whose output istheresult of thelast call to PRUNE. Thedanger isthat the size of
the sets § grow in size. Therefore, these machines might grow in size, and there-
fore, so might their descriptions. If thiswere so, then, even though T runsin time
polynomial in the length of itsinput, T would not run in time polynomial in x. We
now show that we can control the size of the descriptions of the Turing machines
that are the successive inputsto T. From thisit follows that our algorithm for ac-
cepting SAT runs in polynomial time.

On input (x,(M)), let T run in time p(|(x, (M))|) + au(|x|), where p(-) is a
polynomial and gy (|x|) denotes the running time of M on input x. Let (M) denote
adescription of atransducer M.

We will use the following sequence {M;} of transducers as inputsto T. We
define the sequence {M;} by induction. Mg is a transducer that on input a string
y, outputs the finite set S; = X2, wherea = k|log|y|| — 1. Now we define M; for
i>1.

begin description of M;

12

input y;
=Ty (Mi_1));
S+1:= PRUNE(Mi_1(y), §);
output S-i-l
end description

Of course, the finite control of M; does not store M;_;. Rather, aswith theim-
plementation of any recursive procedure, thefinite control of M; only needsto store
the depth of recursion i and the calling procedure. For the latter, the finite control
of M; needsto be able to simulate the procedure PRUNE and the transducer T.

Claim 2 For all i, [(M;)| = O(1+logi).

Proof of Claim Clearly, the machine Mg executes an algorithm whose descrip-
tionisof length O(1); that is, [(M1)| = O(1).

For i > 1, observe that other than the number of recursive calls, the compu-
tations performed by M; and M;_; areidentical. Thus, a description of M; only
contains the number i and a code of fixed length. Sincei in binary uses O(logi)
bits, the claim follows. |

Let b= |x| +1— (k[log|x|]). It followsimmediately from Claim 2 that for
ali,0<i<hb, |(Mj)|=0(log|x|) (the constant term in the above expression is
independent of i). Now, we are ready to describe the polynomial time algorithm
GENSAT for SAT. Input to GENSAT isastring x. If for some integer m, 2™ <
x| < 2™, then assume that x is replaced with alogically equivalent string X' so
that [x'| = 2™, Clearly x is satisfiableif and only if X’ is satisfiable. Furthermore,
by padding machines with “no operation” instructions and by Claim 2, we assume
that [(x, (Mg))| = [{X, (M))| = --- = [{X,(Mp))| = 2|x|. Thus, for al i, 0<i <b,
|(X, (Mj))| isapower of 2.

begin GENSAT

input x;

b:= |x| — (klog|x| —1);

Compute (M1), (My), ..., (My) such that
(%, (Mo))| = -+ = [(X, (Mp))| = 2|X];

S:= Mp(X);

for al stringsv € Sdo

13

if visasatisfying assignment of x then
ACCEPT;
else REJECT
end GENSAT

We claim that GENSAT runsin polynomial time and that GENSAT accepts x
if and only if x is satisfiable.

Claim 3 For all i suchthat 0 <i < |x| —klog|x| + 1, M;(x) runsin time bounded
by a polynomial in |x| and i.

Proof of Claim Since Mg oninput x printsall strings of length klog x| — 1, itis
easy to see that My runsin O(|x|%) steps.

Let tj(-) denote the running time of M;, and recall that T on input (X, (M;_1))
runsin time p([(x,(Mi_1)}|) +ti_1(|x|). Recall that |{x,(M;))| = 2|x|. Also, itis
easy to see that PRUNE runs in time O(Ycs|V| + Yueg Jul) oninput (S S). It
follows by the definition of M; that

(X)) < O(x)+ p(2/x]) +ti—1(|x]) +

O(Y v+) [ul),

ves ues

where § = M;_1(x) and § is the output of T on input (x,(M;_1)). (The O(|x|)
termintheexpressionisthetimetakentocompute (M; 1).) Toestimatetheabove
inequality, we need to obtain upper boundson s, |v| and Zueq ul.

Recalling that b = |x| — klog|x| + 1, we compute ||S|| and ||| for all i such
that 1 < i < b. First, for the special casei = 1, it holds that ||S;|| = [x/¥/2. Now
consider thecasethati > 2. By Claim 2, it followsthat the length of theinputto T
is2|x|, which is a power of 2, hence T(x, (M;_1)) outputs at-most (2|x|)*/2 many
candidates. Thus,

ISl < @x)*/2 €

But ||S+1]| < ||S. henceforali, 1<i<h,

ISl < (2Ix))*/2. 2

Next, we bound the lengths of stringsin § and §. Notethat the length of each
stringin § ;1 islessthan the number of stringsin §. By definitionof T, the number

14

of stringsin § is bounded by |(x, (M;))|¥/2 < (2|x|)¥/2. Finally, we observe that
foraluin§, |u/=i+klog|x| —1.
By substituting from Equations 1 and 2, we have

Y IV < (2x)</2x (i+klog|x - 1)
Ve

= O((i+klog|x|) - [x") 3

23|u| < (2x)%/2x (2Jx))%/2
= O(x 4)

We now substitute for ti_1,ti_»,...,t; and p in the relation for t;.

G(x) < (i=1)-p(2/x]) +ta(lx]) + O - [x]) +

O(ZI:) M+Zi: Zu)

j=2veS_; szueSj

On substituting the bound for t;, and from Equations 3, 4, and noting that i <
x|, we have:

ti(x) < x| (i—1)-p(2x) +O(x*) +

O(Ix[“*?) +O(|x/***) +O(|x?)
< |xp(/x))?

Thusfor al 1 <i <b, ty(x) isbound by a polynomia in |x|. O

Next, we provethe correctness of GENSAT. The proof isidentical to that given
in the earlier informal description. Before proceeding, observe that by Clam 2
(and by useof padding), it followsfor al stringsx and for all i that theinput (x, (M;))
isnot infeasible.

Claim 4 If x € SAT and |x| isa power of 2, thenfor all i, 1 <i < |x| —klog|x| +2
thereexistsa string vin § such that x#v € prefixSAT.

15

Proof of Claim The proof is by induction oni. For i = 1, since §; contains
all strings of length klog|x| — 1, the claim follows trivialy. Assume as induc-
tion hypothesis that the claim holds for somei > 1, § = {v;,vo,..., %}, and let
H(x,S) =r. It followsthat r € set-T(x,(M;)). Let £ be the smallest index such
that x#v, € prefixSAT. Then, r, #1, £ istheleast index such that r, #7, and x#v, -
rp € prefixSAT. To completethe proof, observethat the procedure PRUNE places

X#Vy 1o iNt0 § 1. O

Observethat Sy, »_kiog|x € £X!. By combining Claim 4 with this observation,
it followsthat if x € SAT, then GENSAT accepts x. If x ¢ SAT, then a satisfying
assignment for x does not exist, and hence the algorithm GENSAT will rgject x.

This compl etes the proof of the theorem. O

5 Acknowledgments

The authors thank Richard Beigel, Mitsunori Ogihara and Ken Regan for helpful
discussionsand comments. We especially acknowledge Jin-Yi Cai, who suggested
using a uniformity argument to obtain a correct proof of Theorem 8.

References

[AA94] M. Agrawal and V. Arvind. Polynomial time truth-table reductionsto P-
selective sets. In Proceedings of 9th Annual |EEE Conference on Structurein
Complexity Theory, pages 24-30, 1994.

[AdI78] L.Ademan. Two theoremson random polynomial time. In Proceedings
of 19th IEEE Symposium on Foundations of Computer Science, pages 75-83,
1978.

[Bei87] R. Beigel. A structural theorem that depends quantitavely on the com-
plexity of sat. In Proceedings of 2nd Annual |EEE Sructure in Complexity
Theory Conference, pages 2834, 1987.

[Bei88] R. Beigel. NP-hard sets are P-superterse unless R = NP. Technical Re-
port 88-04, Department of Computer Science, The Johns Hopkins University,
1988.

16

[BKS94] R. Beigel, M. Kummer, and F. Stephan. Approximable sets. In Pro-
ceedings of 9th Annual |EEE Conference on Sructure in Complexity Theory,
pages 1223, 1994.

[BTVEB94] H.Buhrman, L. Torenvliet, and P. van Emde Boas. Twenty Questions
to a P-selector. Information Processing Letters, 48(4), 1994.

[HNOS93] E. Hemaspaandra, A. Naik, M Ogiwara, and A. Selman. P-selective
sets, and reducing search to decision versus self-reducibility. Technical Report
93-21, SUNY at Buffalo, Buffalo, NY 14260, 1993. To appear in JCSS.

[JT93] B. Jenner and J. Toran. Computing functions with parallel queriesto NP.
In Proceedings of 8th Annual Conference on Sructure in Complexity Theory,
pages 280291, 1993.

[Kad87] J. Kadin. p™[logn| and sparse Turing-complete setsfor NP. In Proceed-
ings of Struct. in Complexity Second Annual Conference, pages 33—40, 1987.

[KL80] R. Karpand R. Lipton. Some connections between nonuniform and uni-
form complexity classes. In Proceedings of 12th ACM Symposium on Theory
of Computing, pages 302—309, 1980. An extended version has also appeared
as. Turing machinesthat take advice, L’ Enseignement Mathématique, 2nd se-
ries 28, 1982, pages 191-209.

[KW94] J. Kdbler and O. Watanabe. New collapse consequences of NP having
small circuits. Technical Report 94-11, Universitat Ulm, November 1994. To
appear in ICALP 95.

[LLS75] R.Ladner, N.Lynch, and A. Selman. A comparison of polynomial time
reducibilities. Theoretical Computer Science, 1:103-123, 1975.

[Ogi94] M. Ogihara. Polynomial-time membership comparable sets. In Proceed-
ingsof 9th Annual | EEE Conference on Structurein Complexity Theory, pages
2-11, 1994.

[Sel79] A. Selman. P-selective sets, tally languages, and the behavior of poly-
nomial time reducibilities on NP. Mathematical Systems Theory, 13:55-65,
1979.

17

[Sel82] A. Selman. Analogues of semirecursive sets and effecitve reducibilities
to the study of NP complexity. Information and Control, 52(1):36-51, 1982.

[Sel94] A. Selman. A taxonomy of complexity classes of functions. Journal of
Computer and System Sciences, 48(2):357-381, 1994.

[Thi94] T. Thierauf. Private Communication, 1994.

[Tod91] S. Toda. On polynomial-timetruth-table reducibilities of intractabl e sets
to P-selective sets. Mathematical Systems Theory, 24:69-82, 1991.

[TTW9] T. Thierauf, S. Toda, and O. Watanabe. On sets bounded truth-table
reducible to p-selective sets. In Proceedings of 11th Annual Symposium on
Theoretical Aspects of Computer Science, pages 427-438, 1994.

Appendix

Here we present a proof of Lemma 2.

Lemma2 Suppose A <f L, Lisp-sdectiveand S= {xq,X%,...,X} is a finite
ordered set of strings. Then, thereexistsa set G C TX such that G can be computed
in polynomial timein Y, s|x| and A(S) € G.

Proof Suppose f isap-selector for Land A <f L viaatruth-tablereduction (g, e),

where g is a condition generator and e is a condition evaluator. For all strings x,

g(x) outputsaset B(x) of queriesto L. Constructtheset B= UysB(X) = {b1, b, ...,br},

whereforeach1<i< j<r, bj <¢bj. LetB'={bg,b1,bp,---,br}, wherebg= L.
Theideaisvery smple. Therearer + 1 possible pivot strings. Each choice of

pivot string determines a possible value of A(S); we define G to be the set of these

values. The following algorithm provides the details.

begin

G:=0.

fori=0tor do
begin
{ Assumethat b; is the pivot string}
for j =0tor do

begin
if] <ithenv;:=TRUE;
elsev; .= FALSE;

18

end
for /=1tokdo
begin
Up = €(Xp, V1, Vo, ..., Vr).
end
G:=GU{uz-Up---Ug}.
end,;
Output G.
end

The above algorithm simul ates the condition eval uator e on some of the possi-
ble truth table values, and by Lemma 1, exactly one of these simulationswill pro-
ducethecorrect valueof A(S). Theelementsof G aretheresult of thesesimulations
on elementsin S and hence, A(S) € G. Since g is polynomial-time bounded, the
number Y qcg |b| is polynomial in ¥,cs|X|, and hence the above algorithm runsin
polynomial time. O

19

