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Abstract

The class NPkV consists of those partial, multivalued functions that can be

computed by a nondeterministic, polynomial time-bounded transducer that has

at most k distinct values on any input. We define the output-multiplicity hierar-

chy to consist of the collection of classes NPkV, for all positive integers k 1.

In this paper we investigate the strictness of the output-multiplicity hierarchy

and establish three main results pertaining to this:

1. If for any k 1, the class NPkV collapses into the class NP k 1 V, then

the polynomial hierarchy collapses to P
2 .

2. If the converse of the above result is true, then any proof of this converse

cannot relativize. We exhibit an oracle relative to which the polynomial

hierarchy collapses to PNP, but the output-multiplicity hierarchy is strict.

3. Relative to a random oracle, the output-multiplicity hierarchy is strict.

This result is in contrast to the still open problem of the strictness of the

polynomial hierarchy relative to a random oracle.

In introducing the technique for the third result we prove a related result of

interest: relative to a random oracle UP NP.
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1 Introduction

One of the central questions about any complexity-theoretic measure is that of fine

hierarchies, that is, how small a change in computing resources need one make to

bring about a change in computing power. Here we investigate a hierarchy based

on the number of distinct output values of members of the class NPMV, the class of

partial multivalued functions that are computed by polynomial time-bounded non-

deterministic transducers.

Nondeterministic transducers compute partial multivalued functions, partial be-

cause nondeterministic computations do not necessarily accept every input, and mul-

tivalued because nondeterministic computations may output different values on dif-

ferent accepting paths. The study of polynomial-time computable classes of partial

multivalued functions has become an increasingly active area of research [BLS84,

GS88, Sel92, Sel94, FHOS97, HNOS96, Nai94, Ogi96, FGH 96, FFNR96, JT95,

Sel96]. The motivations for this study involve questions about NP search problems,

the difficulty of inverting polynomial-time computable functions, and more gener-

ally, the power of nondeterminism. For detailed discussion of these motivations we

refer the reader to the expository papers of Jenner and Toran [JT95] and Selman

[Sel96].

A key notion in this area is that of a refinement of a function. We introduce this

idea through an important example. Let PF denote the set of all partial functions

that are computed by deterministic polynomial time-bounded transducers. A fun-

damental question is whether for each f NPMV, there is a g PF, so that g x

is always some value of f x . Indeed, this problem is equivalent to the question of

whether P NP [Sel92]. The relation between f and g is an instance of what we

mean by one function, g, refining another, f . Formally, given partial multivalued

functions f and g, we say that g is a refinement of f if dom g dom f and, for

all x dom g and all y, if y is a value of g x , then y is also a value of f x . Let

and be classes of partial multivalued functions. We define f c to mean that

contains a refinement of f , and we write c if, for each f , f c . This

notation is consistent with the intuition that c should entail that the complex-

ity of is no greater than the complexity of . Thus, “NPMV c PF” means that

every partial multivalued function in NPMV can be computed by some determin-

istic polynomial-time transducer. Using this notation, the assertion we made above
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states that NPMV c PF if and only if P NP.

Hemaspaandra et al. [HNOS96] addressed the question (raised by Selman [Sel94])

of whether every function in NPMV has a refinement in NPSV, where NPSV is the

set of all partial single-valued functions f NPMV. They proved that this is so only

if the polynomial hierarchy collapses to P
2. Their proof actually shows more: that

some 2-valued partial function in NPMV has no single-valued refinement unless the

polynomial hierarchy collapses to P
2. This result suggests that the number of output

values of an NP-transducer is a computing resource.

We define the output-multiplicity hierarchy to be the collection of all classes NPkV,

k 1, where these classes are defined as follows. For each k 1, a partial multi-

valued function f NPkV if and only if some refinement of f can be computed by

a nondeterministic, polynomial time-bounded transducer that has at most k distinct

values on any input. Thus, in particular, NP1V NPSV. Once again, Hemaspaan-

dra et al. [HNOS96] proved that if NP2V c NPSV, then the polynomial hierarchy

collapses to its second level.

In this paper we investigate the strictness of the output-multiplicity hierarchy and

establish three main results pertaining to this:

1. We show, in Section 2, an extension of the result of Hemaspaandra et al.: If for

some k 1, NPkV c NP k 1 V, then the polynomial hierarchy collapses

to P
2.

2. In Section 3, we show that if the converse of the above result is true, then any

proof of this converse cannot relativize. We exhibit an oracle relative to which

the polynomial hierarchy collapses to PNP but the output-multiplicity hierar-

chy is strict.

3. We show, in Section 5, that the output-multiplicity hierarchy is strict relative

to a random oracle. This result is in contrast to the still open problem of the

strictness of the polynomial hierarchy relative to a random oracle.

In introducing the technique for the third result we prove in Section 4 a related result

of interest: that relative to a random oracle UP NP.
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1.1 Notation

Below 0 1 . For each natural number k and set X , k X denotes the collec-

tion of all k-element subsets of X . For each natural number k and A , A k

A k. For any two languages A and B, A B 0A 1B 0x x A 1x x B .

Let denote a standard polynomial-time computable pairing function with

associated polynomial-time computable projections 1 and 2.

Recall that PH i 0
P
i i 0

P
i . For any partial multivalued function f , we

write f x y if y is an output value of f on input x, and define

set- f x y f x y

For partial multivalued functions f and g, observe that g is a refinement of f if and

only if dom g dom f and for all x dom g , set-g x set- f x . For any class

of partial multivalued functions, we let t denote the set of all total functions (i.e.,

the domain of f is ) that belong to .

Fenner et al. [FHOS97] studied polynomial-time reductions to NPSV (and NPMV)

and introduced the classes PFNPSV and PFNPSV b n which we define just below.

First, let us make the convention that when a query y to a function oracle g NPSV

is made, then either (a) the value of g w is returned, if g w is defined, or else (b)

a unique flag is returned, indicating that g is undefined on w. Now, we say that f

is in PFNPSV if f is computed by a deterministic, polynomial time-bounded oracle

Turing machine transducer that accesses an oracle g belonging to NPSV; we say that

f is in PFNPSV b n if f PFNPSV and, for some transducer and g that witness this,

the number of queries made by the transducer on any input x is no more than b x .
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2 If the Output-Multiplicity Hierarchy Collapses, So

Does the Polynomial Hierarchy

Once it was known that NP2V c NPSV implies PH P
2 [HNOS96], one natu-

ral question to raise was whether every partial multivalued function in NPMV has

a refinement in some reduction class to NPSV. Would such an hypothesis still col-

lapse the polynomial hierarchy? The only significant work on this question is due to

Ogihara who proved the following result:

Theorem 1 (Ogihara [Ogi96]) Let c 1 be a constant. If every multivalued func-

tion in NPMV has a refinement in PFNPSV c log n , then PH P
2.

The proof of the following theorem will not involve reductions to NPSV but will

rely on ideas and techniques of Ogihara’s proof.

Theorem 2 Let k 1. If NPkV c NP k 1 V, then PH P
2 .

The rest of this section is devoted to the proof of this theorem. To begin, we want

a partial multivalued function f that obviously belongs to the class NPkV but that

intuitively has no refinement g in NP k 1 V. This leads us to the property of se-

lectivity. We say that a set A is k-selective (for k 0) if there is a partial multivalued

function f from k to k 1 such that, for each k-element set Y ,

1. every member of set- f Y is a subset of Y , and

2. if at least k 1 of the strings in Y belong to A, then set- f Y is nonempty and

every member of it is a subset of A (i.e., Z set- f Y Z A).

We call f as above a k-selector of A. By an abuse of notation, we will treat 2-selectors

as if they were partial, multivalued functions from to .

We introduce the following running example to help illustrate our notions.

Example 3 A is 2-selective if there is a partial multivalued function f defined on

ordered pairs such that

set- f x y x y

and such that if x A or y A, then

/0 set- f x y A
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For those familiar with prior work on selectivity, we note that a set A is p-selective

[Sel79] if and only if A has a 2-selector that belongs to PFt and that A is NPMV-

selective [HNOS96] if and only if A has a 2-selector that belongs to NPMV.

Claim: For each k 0, every A NP has a k-selector that belongs to NPkV.

Proof: Fix k. Define a nondeterministic transducer M that, on input Y k ,

does the following. First, M nondeterministically guesses a k 1 element subset Z

of Y . Next, M nondeterministically tries to discover whether Z A and, if this test

is successful, then M outputs the set Z. Since Y has k distinct subsets of size k 1,

we see that M computes a element of NPkV. Hence, the claim follows.

Henceforth in the proof, we take as a hypothesis that NPkV c NP k 1 V. The

reader can easily see that if f is a k-selector for A and g is a refinement of f , then g

is a k-selector for A. Hence from the hypothesis and the above claim it follows that

every A in NP has a k-selector that belongs to NP k 1 V. We will show that this

implies that P
2

P
2 .

Example 3, continued Let us fix A to be SAT and let f be a 2-selector for SAT that

belongs to NPMV. A single-valued refinement of f is a single-valued partial func-

tion g such that if either x SAT or y SAT, then g x y is defined and a member

of SAT.

Intuitively, one does not expect a single-valued function, such as the g above, to

be able to determine which of two formulas is satisfiable. This intuition is borne out

by the result of Selman [Sel79] that SAT is p-selective if and only if SAT P and

by the result of Hemaspaandra et al. [HNOS96] that SAT is NPSV-selective only if

NP NP coNP poly.

Continuing with the proof, let L P
2 . Then, there exist a polynomial p and a

set A NP such that, for all x,

x L y p x x y A (1)

We may assume of our pairing function that there is a polynomial q such that for all

strings x of length n and all strings y of length p n , x y q n . Hence, the right-

hand side of (1) is equivalent to: y p x x y A q x . As argued above, it

follows from our hypothesis that A has a k-selector g that belongs to NP k 1 V.

Given a string x q n and a k 1 -element set Z A q n , we say that x loses

to Z if every output value of g Z x contains x.
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Claim: If x loses to Z, then x A.

Proof: Since Z A q n , set-g Z x /0. Furthermore, for every output

value Y , Y A. Thus, for each such Y , x Y A. Hence, the claim follows.

Example 3, continued For z SAT n, a string x loses to z if g x z x. So, by

definition of a selector, we must have x SAT.

The following lemma is due to Ogihara [Ogi96].

Lemma 4 For each n 1, there is a set Sn Z1 Zm , m q n , such that for

every i, 1 i m, Zi A q n , Zi k 1, and for all x q n , x A q n if and

only if for some i with 1 i m, x loses to Zi.

Example 3, concluded Lemma 4 asserts the existence of a set of strings Sn z1 zm ,

m q n , such that Sn SAT q n , and for each x SAT q n , there is a zi such that

g x zi x.

We will not give the proof of Lemma 4. The argument is similar to proofs of Ko

[Ko83] and of later researchers [LS93, HNOS96] that dealt essentially with the sce-

nario of Example 3. The combinatorics of Ogihara’s argument is necessarily more

involved. The key idea of the proof is to note that some set Z is a winner to more than

the average number of strings x (meaning that x loses to Z). So to construct Sn, start

with Sn /0, place such a Z into Sn, delete from consideration all strings that lose

to Z, and continue this process until all remaining strings have been deleted from

consideration.

Define a string u to be correct for length q n if u encodes a pair S WIT such

that S Z1 Zm and WIT W1 Wm , m q n , that satisfy the following

three conditions.

(i) For all i, 1 i m, Zi k 1.

(ii) For all i, 1 i m, Zi A q n and Wi is a set of witnesses proving that

Zi A q n .

(iii) For all x A q n there exists i, 1 i m, such that x loses to Zi.
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If u is correct for length q n , we write Loses x u to mean x loses to some Zi.

Claim: For all x,

x L u
(u is correct for length q x )

and yLoses x y u
(2)

Proof: The implication from left to right follows from Lemma 4. The implica-

tion from right to left is straightforward. Hence the claim follows.

Note that by the definitions of “correct for length q x ” and “Loses ,” it

follows that we can replace the “ u” and “ y” in the right-hand side of (2) with

“ u p0 x ” and “ y p1 x ” for some appropriate polynomials p0 and p1.

To complete the argument that L P
2, we merely have to prove that the predi-

cates

1. “u is correct for length q x ,” and

2. Loses x y u

are in coNP.

To prove that “u is correct for length q x ” belongs to coNP, we give the fol-

lowing NP-algorithm for the complement “u is not correct for length q x ”: If u

does not encode a pair S WIT that satisfies the defining conditions (i) and (ii), then

accept. Otherwise, we have S Z1 Zm and for each i, Zi A q n . Thus,

and this is the important observation, for each x q n and each Zi, g Zi x is

defined. Nondeterministically select an x A q n . For each i, compute an output

value Y of g Zi x and verify that x Y . If each of these tests is successful, then

accept.

The proof that the second predicate belongs to coNP is similar.

This completes the proof of Theorem 2.
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3 Collapsing the Polynomial Hierarchy while Leav-

ing the Output-Multiplicity Hierarchy Strict

In the previous section we showed that if the output-multiplicity hierarchy collapses

at any level, then the polynomial hierarchy collapses to P
2 . In this section we demon-

strate an oracle relative to which the converse of this result is false. Specifically, we

exhibit an oracle relative to which the polynomial hierarchy collapses to P
2 while the

output-multiplicity hierarchy is proper. The oracle we use is a generic oracle derived

from conditions with certain restrictions placed on them. Generic oracles based on

restricted conditions have been investigated and applied by a number of researchers,

notably by Fenner et al. [FFKL93], Fortnow [FR94], and Rogers [Rog97].

It is easy to find an oracle relative to which both hierarchies collapse. Because the

proof of the previous section relativizes, any oracle making the polynomial hierar-

chy proper [Has86, Yao85] will also make the output-multiplicity hierarchy proper.

Thus, oracles exist for all possible scenarios concerning the relationships between a

collapse of the polynomial hierarchy and a collapse of the output-multiplicity hier-

archy.

3.1 Generic oracles

A condition is a partial function from to 0 1 . A condition extends another

condition if for all x domain , x x . Two conditions and are com-

patible if for all x domain domain , x x . They conflict otherwise.

In this paper, we only consider conditions having finite domains. We assume that

if a condition is defined on a string of some length n, then it is defined on all strings

of length no greater than n.

A condition is gappy if, whenever x 1, the length of x is acceptable. An

acceptable length is an integer in the range of the tower function, which has the re-

cursive definition tower 0 2 and tower n 1 2tower n . That is, tower n is

an exponential tower of 2’s with height n 1. A related function is log , which

has the recursive definition log 0 log 1 log 2 0 and log n 1

log log n (n 2). For values in the range of tower, log computes tower 1.

Let n n0 n1 . An output-multiplicity condition (a.k.a. om-condition) is a

gappy condition with a finite domain such that, at every acceptable length tower n0 n1 ,
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there are at most n1 strings x for which x 1.

For any condition , we define the total function : 0 1 0 1 as fol-

lows:

x i
1 if x dom and t x i,

0 otherwise.

A set of conditions is definable if the set S is a 1
1 class.

A set S of om-conditions is dense if, for every om-condition , there is an om-

condition in S such that extends . A language (oracle) A is om-generic if, for

every definable dense set S of om-conditions, A extends some in S.

As in earlier papers [FFK96, FFKL93, FR94], it is easy to show that every om-

condition is extended by some om-generic language A. In particular, om-generic

languages exist.

For every n 1 and k 1, the set S n k of all om-conditions that are defined at

length tower n k is dense and definable. Thus, for every n 1 and k 1, every

om-generic oracle is defined at length tower n k . In particular, if G is an om-

generic oracle, then, for every k 1, there are infinitely many acceptable lengths at

which G contains no more than k strings. Moreover, G is a sparse set and has census

function O log n .

3.2 Oracle Construction

Theorem 5 There is an oracle C relative to which the polynomial hierarchy col-

lapses to PNP but the output-multiplicity hierarchy is proper; that is, for all k 1,

there is a function f c NP k 1 VC that has no refinement in NPkVC.

Proof. Let H be an oracle for which PH PSPACEH. Relative to H, the polyno-

mial hierarchy collapses to P and, for this reason, the output-multiplicity hierarchy

collapses to PF. (Recall that NPMV c PF if and only if P NP.)

Let G be an om-generic oracle. Let C H G. Recall that P
2 PNP. Long and

Selman [LS86] proved that P
2

P
2 if and only if P S

2
P S
2 for all sparse sets S.

Since their proof relativizes, recalling that G is sparse, it follows that P C
2

P C
2 .

Thus, relative to C, the polynomial hierarchy collapses to PNP.

Now our goal is to show that the output-multiplicity hierarchy is proper relative

to C. For each oracle X , k 1, and x , we define the partial multivalued function
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f X
k by

f X
k x y if y x for some n 1 x tower n k and y 1X

Fix a k 1. To see that fC
k belongs to the class NPkVC, let M be a nondeterministic

oracle transducer that, on input x, nondeterministically guesses a string y, verifies

that y x and that x tower n k for some n, and then outputs y if y G.

Since G contains no more than k strings at any acceptable length tower n k , it

follows that fC
k x has no more than k output values. Next, we will show, for each

k 1, that fC
k c NP k 1 VC.

Let Mi i 1 be a standard indexing of noneterministic polynomial-time oracle

Turing transducers, where the running time of each Mi on an input x is bounded by

x 2 i, and where the run times are independent of their oracle. For each oracle

X , we define the assertion RX
i as follows:

Either there is a string y such that the computation of MH X
i y outputs

more than k 1 values or there is an n N such that the output of the

computation of MH X
i 0n does not equal set- f H X

k 0n .

We argue that each Ri is true relative to every om-generic oracle, from which it fol-

lows immediately that fC
k c NP k 1 VC.

Now we will view Ri as a requirement: We say that an om-condition satisfies

requirement Ri if, for every oracle X extending , there is a string y such that either

the computation of MH X
i y outputs more than k 1 values or its output is not equal

to set- f H X
k y . We will show that the set of om-conditions satisfying each Ri is

definable and dense. Thus, each Ri will be true relative to every om-generic oracle.

The set of om-conditions satisfying Ri is certainly definable (including the fact

that P PSPACE relative to H). To show that it is dense, we demonstrate how, given

any om-condition , we can extend it to an om-condition that satisfies Ri.

If there is an om-condition extending and a string y such that MH
i y outputs

more than k 1 values, then MH X
i y outputs more than k 1 values for every X

that extends . In this case satisfies the first disjunct of requirement Ri, so we are

done. If there is no such om-condition , then for every om-generic oracle G that

extends and every input string y, MH G
i y outputs k 1 or fewer values. We say

in this case that forces Mi to be an NP k 1 V machine. This is the case that we

need to consider.
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Let n tower n0 k be an acceptable length on which is not defined such that

2n k 1 n 2 2i. Let denote an om-condition that extends . Setting x 0

for all x of length n is called leaving the length empty. If there is a way to do this and

have MH
i 0n accept, then we are done because set- f H

k 0n /0 set-MH
i 0n .

If we cannot do this, leaving the acceptable length empty forces MH
i to reject

0n. This can happen only if along every accepting path of Mi (on input 0n, keeping H

fixed, and varying over om-conditions that extend ), at least one string of length

n in the oracle is positively queried. Positively querying a string x means that x is a

query on the path that is found to belong to the oracle. Similarly, negatively querying

a string means that it is queried and does not belong to the oracle. By setting x 1

for exactly one string x of length n, we need not consider computation paths that

positively query two or more strings.

If there are computation paths that positively query exactly one string x and that

accept and output a string y x, then we can set x 1 and z 0 for all strings

z of length n other than x. It follows that set- f H
k 0n x but y set-MH

i 0n .

We are left with the case that if a computation path positively queries exactly one

string x, then it outputs x. Now we will show that there exists a string z of length

n that is not positively queried by any accepting path. Setting z 1 and set-

ting y 0 for all other strings y of length n yields set- f H
k 0n z /0

set-MH
i 0n , which will complete the proof.

To prove that z exists, we will describe a process that, at the beginning of each

step j 1 ( j 0), is given a set S j of strings and a set A j of accepting paths of Mi 0n

that positively query exactly one string. When step j 1 is finished, it will yield a

set S j 1 S j and a set A j 1 A j. The process iterates through n 2 i steps. At its

conclusion, we show that S n 2 i is not empty but that A n 2 i is. We can then choose

z from S n 2 i .

Step 0: Let S0 be the set of all length n strings and let A0 be the set of accepting

paths of Mi 0n that positively query exactly one string.

Step j+1: Select from A j a set Pj of compatible accepting paths that maximizes

the number of different values output on these paths. Because Mi is forced by

to be an NP k 1 V machine, these paths positively query and collectively output

a set of strings X j x1 xk with k k 1. Divide Pj into k -many subsets

Pj x1
Pj xk

where each Pj xi contains the paths that positively query xi.

Let B j A j Pj. Every accepting path in B j must conflict with some path in Pj.
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Divide B j into the sets B j neg, the set of paths that conflict because they negatively

query one of the xi, and B j pos, the set of paths that conflict because they positively

query some string that is negatively queried by a path in Pj.

Let p be a path in B j pos that positively queries some y. There must be some xi

such that p conflicts with every path in Pj xi . If this were not true, the set Pj would not

have been selected so as to contain paths outputting the maximum number of strings.

All of the paths in Pj xi conflict with p because each of them negatively queries y.

Because the length of each accepting path is no greater than n 2 i and because

there are k ( k 1) many of the Pj xi’s, there can be at most k 1 n 2 i 1

such y. Let Yj denote the set of these y.

Let S j 1 be S j X j Yj . By the argument above, the cardinality of X j Yj is

at most k 1 n 2 i. Also, the set S j 1 is such that, if we set z 1 for some

z S j 1 and z 0 for all other length n strings z , the only computation paths that

could be accepting paths are those in B j neg. This is so because S j 1 does not contain

any string in X j, so the computation paths in Pj cannot be accepting. Also, S j 1 does

not contain any string in Yj, so the computation paths in B j pos cannot be accepting.

Furthermore, every path in B j neg negatively queries some string in S j S j 1. Thus,

A j 1 and B j 1 are as required.

End of step j 1.

Let m n 2 i. After step m 1, we have the sets Sm and Bm neg. The process

guarantees that Sm is nonempty. To see this, recall that the cardinality of S0 is 2n,

where n was chosen so that 2n m k 1 n 2 2i. At each step j, S j 1 is formed

from S j by removing at most k 1 n 2 i strings. So the cardinality of Sm is at

least 2n m k 1 n 2 2i, which is greater than 0.

The process also guarantees that Bm neg is empty. To see this, recall that at the end

of each step j, B j neg only contains computation paths that negatively query some

string xi X j. In the previous step j 1, these paths were in B j 1 neg, and so nega-

tively queried some string xk X j 1 such that xi xk. Carrying this back to B0 neg,

it must be true that every path in B j neg negatively queries j different strings. For

a path p to be in Bm neg, it would have to query negatively m different strings. But

because a computation path can negatively query at most m 1 strings, p cannot

exist.

This means that there is some string z not queried by any computation path. Set-

ting z 1 and z 0 for all other z of length n guarantees that set- f H
k 0n

14



z /0 set-MH
i 0n .

The class NPkVt is the set of all total k-valued functions that belong to NPkV.

We can use the om-generic oracles to obtain the following result.

Corollary 6 There is an oracle relative to which the output-multiplicity hierarchy

is proper, but, for all k 1, NPkVt c PF.

Proof Sketch. An om-generic oracle is sparse and possesses the subset property de-

fined by Fortnow and Rogers [FR94]. As Fortnow and Rogers ([FR94]) showed,

proposition Q holds. Fenner, et al. ([FFNR96]) showed, in a proof that relativizes,

that Q implies that, for all k 1, NPkVt c PF.
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4 Random Oracles and UP NP

In the next section we show that the output-multiplicity hierarchy is strict relative

to a random oracle. This section introduces some of the tools and techniques for

the output-multiplicity hierarchy theorem by showing a simpler, related result: that

UP NP relative to a random oracle. The technique for both the UP NP and the

output-multiplicy hierarchy is derived from Bennett and Gill’s proof that NP coNP

relative to a random oracle [BG81]. For a more detailed introduction to random or-

acle arguments and results, we refer the reader to Bennett and Gill’s original paper

[BG81] or either of Kurtz, Mahaney, and Royer’s papers [KMR95, KMR92]. In par-

ticular, we will refer the reader to these papers on the ticklish matter of justifying the

standard interpretation of random oracle separations. This standard interpretation is

this: If two relativized classes separate relative to a random oracle and if neither of

these classes is probabilistic, then this is evidence that the existence of strong one-

way functions or pseudo-random generators may imply that the unrelativized ver-

sions of these classes separate.

4.1 Preliminaries

We identify the elements of N and in the standard way: n N the n 1 st string

in the lexicographical ordering on . Recall that N is the collection of all total

functions from N to 0 1 , or, equivalently, the collection of all infinite sequences

of 0’s and 1’s. There is also a one-one correspondence between N and the collection

of all languages over given by: R N w : R w 1 . We shall pun freely

among these views of N.

To do probability over N, we adopt yet another view of N as the collection of all

possible infinite sequences of independent tosses of a fair coin. Let N be the

standard probability space on N, where is the collection of events or measurable

sets and is the probability measure or simply measure on this space that assigns

each , a real number 0 1 (see, [Dud89, Oxt80, Rud66]). All of the
N considered below are first-order definable (i.e., Borel) and standard results

show that all such are in .

A tail set is a N that is closed under finite variants, i.e., if X and Y N

are such that X Y is finite, then X Y . Kolmogorov’s zero-one law

[Oxt80, Theorem 21.3] states that a measurable tail set must have measure 0 or 1. If
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P is a predicate over N with R : P R 1, then we say P holds relative to a

random oracle. Structural properties such as R : PR NPR are first-order defin-

able tail sets, and so have measure 0 or 1 by Kolmogorov’s zero-one law. Informally,

this means that there is a well-defined “measure 1” theory.

Our next goal is to state Lemma 7, a result by Stuart Kurtz [Kur83] that improves

on a technical lemma of Bennett & Gill [BG81, Lemma 1]. Lemma 7 is a key tool

in obtaining sufficient conditions for certain sets to be measure 1. Lemma 8 below

gives a sample such application. We provide some preliminary definitions and con-

ventions before stating this lemma. Suppose and are partial functions and n N.

Define:

x
x if x ;

x otherwise.

n x
x if x n;

x otherwise.

In Lemma 7, read A i R B as “machine i with oracle R accepts language B,” where

the indexing of machines is over some restricted class of machines and “accepts”

might mean something like “UP-accepts” or “BPP-accepts.” For example, we could

have A i R B [the ith nondeterministic, relativized, polynomial time Turing ma-

chine with oracle R UP-accepts the set B]. Let D range over oracle dependent lan-

guages, where an oracle dependent language is simply a relativized language in the

sense that it has a characteristic function of type N 0 1 . We say that D

is uniformly recursive if there is an oracle Turing machine M such that, for all R, MR

decides DR.

Lemma 7 Suppose that 1 through 5 hold.

1. B is a uniformly recursive oracle dependent language and A is an arithmetic

relation on N N N.

2. A is finitely patchable with respect to oracles. That is, there is a (not nec-

essarily computable) function f , such that for each i, , D, and R, A i

R D R A f i R D R .

3. A is finitely patchable with respect to initial segments of uniformly R-recursive

languages. That is, for each uniformly recursive oracle dependent language
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C, there is a (not necessarily computable) function gC such that such that for

each i, n, D, and R, A i R DR A gC i n R CR
n DR .

4. Each bit of R affects only finitely many bits of BR. That is, for each , there is

an n such that, for all R, max B R BR n .

5. There is an a 0 such that for each i, R : A i R BR a.

Then, R : i A i R BR 1.

The proof of this lemma is a simple density argument similar to Bennett and

Gill’s [BG81] proof of their Lemma 1.

4.2 UP NP Relative to a Random Oracle

We say that M, a polynomial time, nondeterministic Turing machine, UP-accepts a

language A (written: LUP M A) if A L M and, for each a A, there is exactly

one accepting computation of M on input a. For each R N and x N define

R x R x1 R x10 R x10 x 1

LR 0 range R and

LR 0 LR

The function is from Bennett and Gill’s proof that NP coNP relative to a random

oracle. If it were the case that NP coNP relative to a random oracle, then by an

application of Lemma 7 it follows that there would be a polynomial time, nondeter-

ministic M for which, for most R, L MR LR. Bennett and Gill showed that this is

not the case, and, hence, that NP coNP relative to a random oracle. Here we ex-

tend the techniques of the Bennett and Gill argument to show that UP NP relative

to a random oracle. Our strategy parallels Bennett and Gill’s: we apply Lemma 7

to show that if it were the case that UP NP relative to a random oracle, then there

would be an MR that UP-accepts LR for most R; then we show that, for an arbitrarily

chosen M, M fails to UPR accept LR for most R.

Let M range over nondeterministic oracle Turing machines that have polynom-

ial-bounded run times that are independent of their oracle. That is, for each M there

is a polynomial p such that for all x and R, M on input x and oracle R runs within
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p x time. Let M range over polynomial-time, nondeterministic oracle Turing ma-

chines, so that the M’s may have run times that depend on their oracles.

Lemma 8 Suppose that there is an a 0 such that, for all M, R : MR fails to UP-accept LR

a. Then, R : LR UPR has measure 1.

Proof. Clearly, R : LR UPR R : M LR LUP M . Let p range over

polynomials and let Mp denote a version of M whose run time is clocked by p. An

easy argument shows that

R : M LR LUP MR R : p M LR LUP MR
p

Hence, R : LR UPR R : M LR LUP MR .

Let Mi i 1 be a standard indexing of nondeterministic oracle Turing machines

that have polynomial-bounded run times that are independent of their oracle. It is

straightforward to check that, when A i R D D LUP MR
i and B L, hy-

potheses 1 through 4 of Lemma 7 are satisfied. The hypothesis of the present lemma

implies hypothesis 5 of Lemma 7. Thus, by Lemma 7, R : M MR fails to UP-accept LR

1. Therefore, R : LR UPR also has measure 1. Lemma 8

We now need to understand the difficulties encountered by an M that “tries” to

UP-accept LR for most R. The nature of these difficulties is that success on a signif-

icant part of N entails failure on other significant parts of N. To understand this

balance between successes and failures, we need to understand the structure that R

imposes on R and computations over N N (Definition 9 and Lemma 10) and to

understand the measure-theoretic relation between regions of N where R has dif-

ferent behaviors (Lemma 11).

Variants and Interrogation

Definition 9 Suppose R and S N, x x0 x y n, and that M is a nondeter-

ministic relativized machine.

(a) R and S are x0 x -variants (written R x0 x S) if R S xi10k : i

& k xi , i.e., R and S are identical except perhaps on the strings that determine

the value of on arguments x0 x .

(b) Define

R x0 x R xi10k : i & k n
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In other words, R x0 x is the x0 x -variant of R that makes map each of

x0 x to 0n.

(c) A particular computation of M on R y examines x if in the course of the

computation the oracle R is queried about some string of the form x10k for k x ;

intuitively, the computation learns some information about the value of R x .

(d) M on R y interrogates x if every computation of M on R y examines x.

(e) M on R y depends on x if there is an S x R such that MR y MS y .

The notion of “examines” is a direct lift from Bennett and Gill. We note the fol-

lowing without proof.

Lemma 10 Suppose that M is a nondeterministic relativized machine that on R y

runs in time t and accepts.

(a) If M on R y depends on x, then M on R y interrogates x.

(b) The number of x’s that M interrogates on R y is t.

Measure Scaling Maps

Terminology: Suppose T is a map from one probability space X0 0 0 to another

X1 1 1 . Suppose a 0. T is an a-measure scaling map if T :X0 X1 is onto

and, for all 1, we have T 1
0 and a 0 T 1

1 . T is a

measure preserving map if T is a 1-measure scaling map.

We are interested in a family of measure scaling maps involving particular re-

gions of N defined by the behavior of R. For each k and n N, define

n k R : x : R x 0n k

R : there are exactly k witnesses to 0n LR and

wn k n k

For each k 2n, it follows from some basic probability that

wn k
2n

k
1
2n

k

1
1
2n

2n k

(3)

and by some basic analysis that

lim
n

wn k
1

k! e
(4)
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By (3) we have that, for each n and k 2n,

wn k an k wn 0 where an k
2n

k
1

2n 1
k 1

k! O 1
2n

Let Pn k x0 x1 xk 1
n k : the xi’s are all pairwise distinct . Clearly,

Pn k 2n 2n 1 2n k 1 . We view Pn k as a measure space under the

uniform, normalized counting measure, i.e., each x Pn k has weight Pn k
1.

Thus, n 0 Pn k is a measure space under the product of the induced Lebesgue

measure on n 0 and the normalized counting measure on Pn k. Let n k be this

product measure. By convention, let R x0 xk 1 range over the elements of

n 0 Pn k (where n is understood).

For each n and for each k 2n, let Tn k be the map from n 0 Pn k to n k

defined by the equation

Tn k R x0 xk 1 R x0 xk 1

Lemma 11 For each n and each k 2n, Tn k is an an k-measure scaling map.

Thus, if the two measure spaces n 0 Pn k and n k where normalized,

then Tn k would be measure preserving.

Proof. Fix n and k. Fix an arbitrary R0 n k and let x0 xk 1
R0 1 0n .

Then

T 1
n k R0 R x0 xk 1 :

R x0 xk 1 R0 and

0n R x0 xk 1 and

x0 xk 1 x0 xk 1

This set is easily seen to have cardinality k! 2n 1 k. Hence, Tn k is onto and k! 2n

1 k to 1.

For the moment let us pretend that there are only m many elements in N. (In fact,

take m 2n2n
.) Thus, each R N has weight m 1. Then, each point R0 n k

of mass m 1 is mapped to by k! 2n 1 k many points in n 0 Pn k, each of mass

2n 2n 1 2n k 1 1. Hence, each point of m 1 mass is mapped to by

a 1
n k m 1 much mass. Therefore, Tn k is an k-measure scaling.

We can justify the reasoning in the above paragraph as follows. Factor N into
n2n N, where each R N corresponds to r R and where r n2n

is the sub-

sequence of n2n bits of R that determine R on n and R N is the sequence that
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results from omitting the initial subsequence r from R. Since all the bits concerned

with R on n and with Tn k are among the r’s and since

N n2n
1 r R drdR

N
r n2n

1 r R
2n2n dR

we can reduce measure computations to simple counting as in the above paragraph.

The Main Argument

We now have all the tools at hand to prove:

Theorem 12 Relative to a random oracle R, UPR NPR.

Proof. Let M range over nondeterministic oracle Turing machines that have polynomial-

bounded run times that are independent of their oracle. By Lemma 8, to establish

the theorem it suffices to prove that there is an a 0 such that for all M, we have

R : MR fails to UP-accept LR a. So fix an M and let p be a polynomial

that bounds its run-time on all oracles. For each n and k, define

n R : MR 0n LR 0n

n k n n k

n k n k n k and

n k R n k :
MR on input 0n has at least k

accepting computations

(“ ” for agree, “ ” for disagree, and “ ” for multiple.)

The heart of the argument is the following curious looking lemma.

Lemma 13 For all n,

n 0 n 1 n 2
wn 0

2
p n

2n 1
O 1

2n
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Before proving the lemma, we show how to use it to establish the theorem. Since

wn 0 2 p n 2n 1 1 2 e as n it follows from the lemma that

liminf
n

n 0 n 1 n 2
1

2 e

Since n 0 , n 1 , and n 2 are pairwise disjoint and M fails to UP-accept

LR on each of these set, we have that

R : MR fails to UP-accept LR 1
2 e

Since the choice of M was arbitrary, by Lemma 8 this inequality implies the theorem.

It remains to show Lemma 13.

The Proof of Lemma 13

Fix n. We obtain our lower bound on n 2 n 0 n 1 by find-

ing bounds on the measures of a number of other sets. The idea is to gather enough

information about the behavior of M on n 0 and n 1 to be able to deduce

something of the behavior of M on n 2 . All of these “behaviors” manifest them-

selves as the measure of various sets.

In what follows we often use the following simple version of the principle of

inclusion-exclusion: if 0, 1, and are measurable sets with 0 1 , then

0 1 0 1 .

Step 1: Estimating n 1 . Define

R x : 0n LR, MR 0n rejects, and MR x 0n accepts

We claim

n 1 wn 0 n 0 n 1 O 1
2n (5)

To show this claim we first observe that n 0 n T 1
n 1 n 1 . Since

n 0 n and T 1
n 1 n 1 are both subsets of n 0 n, we have

n 1 n 1 n 0 n
n 1 T 1

n 1 n 1 n 1 n 0 n
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We also observe the following:

n 1 n 0 n n 0 wn 0 n 0

n 1 T 1
n 1 n 1 a 1

n 1 n 1

a 1
n 1 wn 1 n 1

wn 0 a 1
n 1 n 1

wn 0 n 1 O 1
2n

n 1 n 0 n n 0 wn 0

Hence,

wn 0 n 0 wn 0 n 1 O 1
2n wn 0

wn 0 n 0 n 1 O 1
2n

as claimed.

Step 2: Estimating n 2 . Define

R x y : R x & R y

R x y :
0n LR, MR 0n rejects, & both

MR x 0n and MR y 0n accept

Since n 0 Pn k, we have

n 2 n 2 R x y : R x

n 2 R x y : R y

n 2 n 0 Pn k

n 1 n 1 wn 0

wn 0 2 n 0 2 n 1 O 1
2n (by Eqn. 5).

Step 3: Estimating n 2 . Define

0 R x y : M on R x 0n interrogates y

24



1 R x y : M on R y 0n interrogates x and

0 1

R x y :

(i) 0n LR, MR 0n rejects, & both MR x 0n

and MR y 0n accept,

(ii) M on R x 0n does not interrogate y, and

(iii) M on R y 0n does not interrogate x

To obtain a lower bound on , we find upper bounds on the n 2 i ’s. We con-

sider 0 first. For each R n 0 and x n, if MR x 0n accepts, then by Lemma

10(b), y n : M on R x 0n interrogates y p n . Hence, for each R

n 0 ,

x y Pn k :
MR x 0n accepts & M on

R x 0n interrogates y
p n 2n

Thus, we obtain

n 2 0
p n 2n

2n 2n 1
p n

2n 1

Similarly, n 2 1 p n 2n 1 . Therefore, by the lower bound on and the

upper bounds on n 2 0 and n 2 1 we have

n 2 wn 0 2 n 0 2 n 1
2 p n
2n 1

O 1
2n

Last Step: Estimating n 2 . It is easy to check that T 1
n 2 Tn 2 .

Hence,

Tn 2

an 2 n 2 T 1
n 2 Tn 2

an 2 n 2

an 2 wn 0 2 n 0 2 n 1
2 p n
2n 1

O 1
2n

1
2 O 1

2n wn 0 2 n 0 2 n 1
2 p n
2n 1

O 1
2n

1
2wn 0 n 0 n 1

p n
2n 1

O 1
2n
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Also, it follows from the definitions of n 2 , , and Tn 2 that Tn 2 n 2 .

Therefore, the lemma follows. Lemma 13

The proof of Theorem 12 is thus complete.
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5 Random Oracles and the Output-Multiplicity Hier-

archy

We now show that the output-multiplicity hierarchy is infinite relative to a random

oracle.

Theorem 14 Relative to a random oracle, for all k 1, NPkV c NP k 1 V.

Since the intersection of countably many sets of measure 1 is itself a set of mea-

sure 1, it suffices to prove:

Theorem 15 For all k 1, relative to a random oracle, NPkV c NP k 1 V.

The rest of the section is devoted to proving Theorem 15. The proof proceeds as

follows. Fix k. In place of the R function of the last section, we introduce a partial

function f R:0 as follows. Let si be the i 1 st binary string of length logk ,

and for each i k and y , let tagi y be the string ysi1. Then, for each R, i, and

n, we define

f R 0n i if i k and, for some y n, tagi y 0 j R for each j n.

Clearly, for each oracle R, f R can be computed by a k-valued NPR transducer. We

will show that the collection of all R for which there is a k 1 -valued NPR trans-

ducer that computes a refinement of f R is a set of measure 0. We first note the fol-

lowing lemma. Let M range over relativized, nondeterministic TM transducers that

have polynomial bounded run times which are independent of their oracle.

Lemma 16 Suppose that there is an a 0 such that, for all M, R : MR fails to

be k 1 -valued transducer that computes a refinement of f R a. Then, R :

NPkVR
c NP k 1 VR has measure 1.

Proof Sketch: First adjust Lemma 7 so that the oracle-dependent languages B, C,

and D are respectively replaced by oracle-dependent, multivalued functions gB, gC,

and gD and change “max B R BR n ” in item 4 to “max x : set-g R
B x

set-gR
B x n .” Minor changes in the proof of Lemma 7 suffice to obtain the

revised version of the lemma. Now note the hypotheses of the revised Lemma 7 are
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satisfied when gR
B f R and A i R gR nondeterministic transducer i is k 1 -

valued and computes a refinement of gR. Thus, a simple argument analogous to the

one given for Lemma 8 suffices to obtain the present lemma.

So, by this lemma, it suffices to understand the difficulties encountered by an

M that “tries” to be a k 1 -valued transducer computing a refinement of f R. The

nature of these difficulties is that success in accurately computing f R on a significant

part of N entails that MR is k-valued on another significant part of N. To understand

this balance between successes and failures, we need to understand the structure that

f R imposes on N and computations over N N. Towards this end, we introduce

the following definitions.

For each n and i and oracle R, define

witnesses n i R y n : for each j n, tagi y 0 j R

y n : y witnesses f R 0n i

For each a, i, and n, define

n a i R : witnesses n i R a

The measure of n a i is equal to the probability that a set R has exactly a-many

witnesses to f R 0n i. The probability that a given string y n is such a witness

is 2 n. So, by counting the number of ways in which there can be exactly a-many

witnesses in n, we obtain

n a i
2n

a
1
2n

a

1
1
2n

2n a

(6)

Observe that the right-hand side of the above equation has no dependence on i. For

each a k, we let wn a denote the right-hand side of equation 6. We note that for

each n, wn 0 wn 1 and, for each i k and each a k,

lim
n

wn a
1

a! e
(7)

Now, from the n a i ’s we build the following sets:

n R : f R 0n

j k n 0 j
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n R
f R 0n is k-valued and there is a unique

witness for each output value

j k n 1 j

i n R
f R 0n has just i as its value and there

is a unique witness to this

j i n 0 j n 1 i j i n 0 j

where i k. Since for all a1, a2, i, and j with i and j distinct, the events n a1 i

and n a2 j are independent, we conclude that

n wk
n 0 and (8)

i n wn 1 wk 1
n 0 wk

n 0 for each i k (9)

Recall that set-M x is the set of output values of M on input x. Given a trans-

ducer M, a multivalued function f , and a string x, if set-M x set- f x , then we

write M x c f x .

As we noted before, to prove the theorem is suffices to show that there is an a 0

such that, for all M, R : MR fails to be a k 1 -valued transducer that computes

a refinement of f R a. So, fix an M and let p be a polynomial function that

bounds M’s run-time on all oracles. We define the following sets for each n N.

n R : MR 0n
c f R 0n

n n n

i n n i n

n R n : set-MR 0n k

Intuitively, n is the set of oracles where M correctly computes f ; n is the sub-

set of n in which f R 0n is undefined; i n is the subset of n in which f R 0n

has the unique value i and has a unique witness for this; and n is the subset of

n where MR 0n happens to be k-valued too. The following key lemma gives

a lower bound on n in terms of n and the i n ’s.

Lemma 17 For each n, we have that

n k n i k i n k 1 wn 0 k2 p n 2 n
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Before proving the lemma, we show how to use it to establish Theorem 15.

For each n and i k, define n n n and i n i n i n .

(“ ” for incorrect.) By Lemma 17, we have

n k n i k i n k 1 wk
n 0 k2 p n 2 n

k n n i k i n i n

k 1 wk
n 0 k2 p n 2 n

By some algebra we obtain

n n i k i n

k n i k i n k 1 wk
n 0 k2 p n 2 n

k 1 wk
n 0 k2 p n 2 n (by Equations 8 and 9).

Thus, by Equation 7,

liminf
n

n n i k i n k 1 e k

Since n , 0 n k 1 n , and n are pairwise disjoint and since M behaves

“incorrectly” on each of them, we have by the above inequality that R : MR fails

to be k 1 -valued transducer that computes a refinement of f R k 1 e k.

Since the choice of M was arbitrary, by Lemma 16, we have Theorem 15.

It remains to show Lemma 17.

The Proof of Lemma 17

Fix n. We establish our lower bound on n by obtaining some information

about how M behaves on certain other sets. For the remainder of this proof, we as-

sume that each free occurrence of i is implicitly quantified as “for each i k”.

For each oracle R and z n, define

R z R z0r : r n

Observe that f R tagi x 0n i. Also, for each R, and x0 x1 xk 1
n, define

R x0 x1 xk 1 R tagi xi 0r : i k and r n

Observe that set- f R x0 xk 1 0n 0 k 1 .
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Step 1: Estimating the i ’s. We view n as a measure space under the uni-

form, normalized counting measure 0. Thus, for all x n, 0 x 2 n. n
n is thus a measure space under the product measure 1 0. (Where in

0 is understood as the measure restricted to the subspace n .) For each

i, define

i R x : R n and R tagi x i n

R x :
(i) MR 0n

c f R 0n and

(ii) MR tagi x 0n
c f R tagi x 0n i

Our goal in this step is to establish

1 i n i n wn 0 (10)

To help prove this, we introduce the map Ti: n n
i n defined by the

equation Ti R x R tagi x .

Claim: Tn k is 2n 2n 1 k-measure scaling. Proof: Ti is onto and 2n 1 to 1.

For the moment let us pretend, as in the proof of Lemma 11, that there only m many

elements in N. Then each R N has mass m 1. Then each point R0 i n

of mass m 1 is mapped to by 2n 1 many points in n n each of mass

m 2n 1. Hence, each point of m 1 mass is mapped to by 2n 1 2n m 1 much

mass. Therefore, Tn k is 2n 2n 1 k-measure scaling. (We can justify this reason-

ing exactly as we did in the proof of Lemma 11.) Thus the claim follows.

Now, by definition of i , we have

i n n T 1
i i n

Since the sets n n and T 1
i i n are both subsets of n n, it

follows by the principle of inclusion and exclusion that,

1 i 1 n n
1 T 1

i i n 1 i n n (11)

Since, for each i, Ti is measure preserving, we have

1 n n n

1 T 1
i i n 2n

2n 1 i n i n and

1 n n n wn 0

Using the above and Equation 11, we obtain Equation 10 as desired.
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Step 2: Estimating . Convention: We write x for x0 xk 1. The set n k

can be viewed as a measure space under the uniform, normalized counting measure

such that, for each x n k, x 2 k n. n n k is a measure space

under 2 . We define

i R x : R xi i and

R x for all i, R xi i i k i

R x :
(i) set-MR 0n set- f R 0n /0, and

(ii) for all i, MR tagi x 0n
c f R tagi x 0n i

Clearly, for each i, i n n k and 2 i 1 i . Using the principle

of inclusion and exclusion once more, we obtain

2 i k 1 i n

On substituting from Equation 10, we have the following estimate:

2 k n i k i n k wk
n 0 wk

n 0 (12)

Step 3: Estimating . As in Definition 9(d), we say that MR on y interrogates

z if, in every computation of M with oracle R and input y, the machine queries R about

some string of the form z0 j with j k. So, if MR on 0n interrogates tagi x , then

every computation of MR on 0n knows something about whether f R 0n i. We

are interested in , a subset of obtained by removing from those R x where

an interrogation of some tagi x occurs. That is, j k i, where each i k,

i R x
MR tagi x on 0n accepts and interrogates some

tag j x j with j k and j i

So, j k i

R x :

(i) MR 0n
c f R 0n ,

(ii) For all i, MR tagi x 0n
c f R tagi x 0n i, and

(iii) For all i, MR tagi x 0n does not interrogate any

tag j x j with j k and j i

To establish a lower bound on the measure of , we first obtain upper bounds on

the measure of the i’s. For each x n and R n , if MR tagi x 0n accepts,
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then Lemma 10(b) yields y n MR tagi x 0n interrogates y p n . So, for

each R n and each i, a simple counting argument shows

x n k MR tagi x on 0n accepts & interrogates

some tag j x j with j k and j i

k 1 p n 2 k 1 n

Thus, for all i,

2 i
k 1 p n 2 k 1 n

2k n k p n 2 n

Since i k i, by the lower bound of Equation 12 and the above upper

bounds on the i ’s, we obtain

2 k n i k i n k 1 wn 0 i k 2 i

k n i k i n k 1 wn 0 k2 p n 2 n

Last Step: Estimating n . Let G: n n k n be the map

defined by G R x R x It is easy to see that G is onto and 2n 1 k to 1. By an

argument similar to the one for Ti above, we can establish that G is 2n 2n 1 k-

measure scaling. Hence,

G

2n

2n 1

k

2 G 1 G

2n

2n 1

k

2 (since G 1 G )

2

k n j k j n k 1 wn 0 k2 p n 2 n

Since MR is k-valued on all oracles in G and G n , it follows that

G n , and so Lemma 16 follows.

The proof of Theorem 15 thus is complete.
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6 Remarks and Open Questions

Define UPk to be the class of all languages in NP that are acceptable by an NP-

machine that has at most k accepting computations on every input. One can associate

each language L UPk with the partial function in NPkVg that maps each x L to the

accepting computations of the UPk-acceptor for L. For k 1, does UPk 1 UPk im-

ply that the polynomial hierarchy collapses? Does UP NP imply that the polyno-

mial hierarchy collapses? The results about function classes seem not to imply any-

thing about the corresponding language classes. The problem is that some strange

unambiguous Turing machine might accept SAT whose accepting paths have no con-

nection with the problem of computing satisfying assignments.

Similarly, we have not been able to separate the classes UPk by a random oracle.

The reason why the obvious application of the proof of Theorem 15 fails is that the

domain of the k-valued function f R is not necessarily in UPR
k It seems difficult to

construct an oracle-dependent language that, for almost all oracles, has k witnesses

but not k 1 withnesses. A Turing machine that, on input x, randomly decides on a

subspace of the witness space and then searches for witnesses only in this subspace

will frustrate any language that is defined using the function f R.

In light of the result of Section 3, existence of an oracle relative to which the poly-

nomial hierarchy collapses to PNP while the output-multiplicity hierarchy is strict,

is it possible that the result of Section 2 can be improved? Does a collapse of the

output-multiplicity hierarchy imply a collapse of the polynomial hierarchy lower

than P
2 . With regard to this question, let us note that Hemaspaandra et al. [HNOS96]

showed that NPMV c NPSV implies the polynomial hierarchy collapses to ZPPNP,

and our techniques do not seem to obtain even this.

Another related open question is whether a conjecture raised by Even, Selman,

and Yacobi [ESY84] holds relative to a random oracle. The conjecture states that

every disjoint pair of Turing-complete sets in NP is separable by a set that is not

Turing-hard for NP. It is known [ESY84, GS88, Sel94] that this conjecture implies

(i) NP co-NP, (ii) NP UP, and NPMV c NPSV. It has been known that NP

co-NP holds relative to random oracle [BG81] and this paper demonstrates that the

second and third consequences hold relative to a random oracle.

Finally we raise the following technical question:

Let k 1. Does NP k 1 V c NPkV imply for all m k, that NPmV c
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NPkV?
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