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Abstract

We prove that all of the following assertions are equivalent: There is a many-one complete
disjoint NP-pair; there is a strongly many-one complete disjoint NP-pair; there is a Turing com-
plete disjoint NP-pair such that all reductions are smart reductions; there is a complete disjoint
NP-pair for one-to-one, invertible reductions; the class of all disjoint NP-pairs is uniformly
enumerable.

Let A, B, C, and D be nonempty sets belonging to NP. A smart reduction between the
disjoint NP-pairs (A,B) and (C,D) is a Turing reduction with the additional property that if
the input belongs to A ∪ B, then all queries belong to C ∪D. We prove under the reasonable
assumption UP ∩ co-UP has a P-bi-immune set that there exist disjoint NP-pairs (A,B) and
(C,D) such that (A,B) is truth-table reducible to (C,D), but there is no smart reduction be-
tween them. This paper contains several additional separations of reductions between disjoint
NP-pairs.

We exhibit an oracle relative to which DisjNP has a truth-table-complete disjoint NP-pair,
but has no many-one-complete disjoint NP-pair.
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1 Introduction
Disjoint NP-pairs relate naturally to the existence of public-key cryptography [GS88] and relate
closely to the theory of proof systems for propositional calculus [Raz94, Pud01]. In both areas,
reductions between disjoint NP-pairs arise naturally. In particular, Razborov [Raz94] proved that
existence of an optimal proof system implies existence of a many-one complete disjoint NP-pair.
Köbler, Messner, and Torán [KMT03] defined a stronger form of many-one reduction. They state
“The reduction considered (by Razborov) is a weak form of many-one reducibility . . . we can
improve the mentioned result showing that under assumption that TAUT has an optimal proof
system, the class of disjoint NP-pairs has a complete pair with respect to the following stronger
notion of many-one reducibility.” In this paper, we prove that there exists a complete pair with
respect to the “stronger notion” of many-one reducibility if and only if there exists a complete pair
with respect to the “weak form”. Thus, the results of Razborov and of Köbler, Messner, and Torán
are equivalent. Nevertheless, it is apparently true that the “stronger notion” really is stronger. This
is easy to see if we permit disjoint NP-pairs of the form (A,B) where either A or B can be finite
sets. However, for disjoint NP-pairs whose components are infinite and coinfinite, we prove that
the “stronger notion” is identical to the “weak form” if and only if P = NP.

We prove under reasonable hypothesis existence of two disjoint NP-pairs (A,B) and (C,D)
such that there is no smart reduction from (A,B) to (C,D), even though (A,B) is truth-table
reducible to (C,D). A smart reduction is a Turing reduction with the additional property that if
the input belongs to A ∪ B, then all queries belong to C ∪ D. Grollmann and Selman [GS88]
defined smart reductions in order to analyze a conjecture of Even et al. [ESY84]. In addition to
these separations, we prove under reasonable hypothesis that truth-table reductions differ from
bounded-truth-table reductions and that Turing reductions differ from truth-table reductions.

Now let us return to the discussion in the first paragraph, for we prove much more than the two
equivalent assertions we discussed there. Namely, we prove that all of the following assertions are
equivalent:

• There is a many-one complete disjoint NP-pair.

• There is a many-one complete disjoint NP-pair using the “stronger notion.”

• There is a Turing complete disjoint NP-pair such that all reductions are smart reductions.

• There is a complete disjoint NP-pair for one-to-one, invertible reductions.

• The class of all disjoint NP-pairs is uniformly enumerable.

There is a long history of equating having complete sets with uniform enumerations. Hartmanis
and Hemachandra, for example, proved this for the class UP, and it holds as well for NP ∩ co-NP
and BPP. More recently, Sadowski [Sad02] proved that there exists an optimal propositional proof
system if and only if the class of all easy subsets of TAUT is uniformly enumerable.

It follows from the previous paragraph that the following open questions are equivalent:

1. Does existence of a Turing-complete disjoint NP-pair imply existence of a many-complete
disjoint NP-pair?
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2. Does existence of a Turing-complete disjoint NP-pair imply existence of a smart Turing-
complete disjoint NP-pair?

We address these open questions to the extent that we construct an oracle relative to which there
exists a truth-table complete disjoint NP-pair while no disjoint NP-pair is many-one complete.
Therefore, if the open question has a positive answer, no proof can relativize to all oracles.

2 Preliminaries
We fix the alphabet Σ = {0, 1} and we denote the length of a word w by |w|. The set of all words
is denoted by Σ∗. For a set of words X , let X<n df=X∩Σ<n, and define X≤n, X=n, X≥n, and X>n

analogously. For sets of words we take the complement with respect to Σ∗. The set of (nonzero)
natural numbers is denoted by N (by N+, respectively). We use polynomial-time-computable and
polynomial-time invertible pairing functions 〈·, ·〉 : N+× N+→ N+.

We fix the following enumerations: {Ni}i is an effective enumeration of nondeterministic,
polynomial-time-bounded Turing machines, {Mi}i is an effective enumeration of determinis-
tic, polynomial-time-bounded oracle Turing machines, and {fi}i is an effective enumeration of
polynomial-time-computable functions. Moreover, ni + i is the running time for Mi (for any ora-
cle), Ni, and fi on inputs of length n. We can assume that given the code of a machine N , we can
determine the index i such that N = Ni in polynomial time in the length of the code. Furthermore,
given i, we can determine the code of the machine in time polynomial in |i|.

Definition 2.1 A disjoint NP-pair is a pair of nonempty sets A and B such that A,B ∈ NP and
A ∩ B = ∅. Let DisjNP denote the class of all disjoint NP-pairs.

Definition 2.2 DisjNP is uniformly enumerable if there is a total computable function f : Σ∗ →
Σ∗ × Σ∗ such that

1. ∀(i, j) ∈ range(f)[(L(Mi), L(Mj)) ∈ DisjNP].

2. ∀(C,D) ∈ DisjNP ∃(i, j)[(i, j) ∈ range(f) ∧ C = L(Mi) ∧D = L(Mj)].

Given a disjoint NP-pair (A,B), a separator is a set S such that A ⊆ S and B ⊆ S; we say
that S separates (A,B). Let Sep(A,B) denote the class of all separators of (A,B). For disjoint
NP-pairs (A,B), a fundamental question is whether Sep(A,B) contains a set belonging to P. In
that case the pair is P-separable; otherwise, the pair is P-inseparable.

Definition 2.3 Let (A,B) be a disjoint NP-pair. X≤pp
T (A,B) if for every separator S of (A,B),

X≤p
TS.

We define the standard reductions between disjoint pairs. Here we give the uniform versions. See
Grollmann and Selman [GS88] and Glaßer et. al [GSSZ03] for the equivalences with the non-
uniform versions.
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Definition 2.4

1. (C,D) is many-one reducible to (A,B) in polynomial time, (C,D)≤pp
m (A,B), if there is a

polynomial-time computable total function f such that f(C) ⊆ A and f(D) ⊆ C. We also
say that (C,D)≤pp

m (A,B) via f .

2. (C,D) is Turing reducible to (A,B) in polynomial time, (C,D)≤pp
T (A,B), if there exists a

polynomial-time oracle Turing machine M such that for every separator T ∈ Sep(A,B),
there exists a separator S ∈ Sep(C,D) such that S≤p

TT via M .

3. (C,D) is truth-table reducible to (A,B) in polynomial time, (C,D)≤pp
tt (A,B), if there exists

a polynomial-time oracle Turing machine M such that for every separator T ∈ Sep(A,B),
there exists a separator S ∈ Sep(C,D) such that S≤p

ttT via M .

4. (C,D) is bounded-truth-table reducible to (A,B) in polynomial time, (C,D)≤pp
btt(A,B),

if there exists a polynomial-time oracle Turing machine M such that for every separator
T ∈ Sep(A,B), there exists a separator S ∈ Sep(C,D) such that S≤p

bttT via M .

For pairs in DisjNP, we define the following version of invertible reductions.

Definition 2.5 (C,D) is many-one reducible to (A,B) in polynomial time via invertible reduc-
tions, (C,D) ≤pp1-i (A,B), if there are polynomial-time-computable total functions f and g such
that f is one-to-one, (C,D)≤pp

m (A,B) via f , and for every x, g(f(x)) = x.

Strongly many-one reductions are defined by Köbler et al. [KMT03].

Definition 2.6 ([KMT03]) (C,D) strongly many-one reduces to (A,B) in polynomial time,
(C,D)≤pp

sm(A,B), if there is a polynomial-time-computable total function f such that f(C) ⊆ A,
f(D) ⊆ B, and f(C ∪D) ⊆ A ∪B. We also say that (C,D)≤pp

sm(A,B) via f .

It is easy to see that if (C,D)≤pp
sm(A,B) via f , then C≤p

mA via f , and D≤p
mB via f .

Smart reductions are defined by Grollmann and Selman [GS88] and Goldreich and Goldwasser
[GG98].

Definition 2.7 ([GS88, GG98]) A smart reduction from (C,D) to (A,B) is a Turing reduction
from (C,D) to (A,B) such that if the input belongs to C ∪D, then all queries belong to A ∪ B.

A disjoint pair (A,B) ∈ DisjNP is smart ≤pp
T -complete for DisjNP if for every (C,D) in DisjNP

there is a smart reduction from (C,D) to (A,B). Note that if (A,B) is ≤pp
m -complete for DisjNP,

then (A,B) is smart ≤pp
T -complete for DisjNP as well.

A language L is immune to a complexity class C, or C-immune, if L is infinite and no infinite
subset of L belongs to C. A language L is bi-immune to a complexity class C, or C-bi-immune, if
both L and L are C-immune.

A nondeterministic transducer T computes a value y on an input x if there is an accepting
computation of T on x for which y is the final contents of the output tape of T . Such transducers
compute partial multivalued functions.
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Definition 2.8 ([BLS84, Sel94])

1. NPMV is the set of all partial, multivalued functions computed by nondeterministic
polynomial-time-bounded transducers.

2. NPSV is the set of all f ∈ NPMV that are single-valued.

Following Köbler and Messner [KM00], we denote the class of all 0,1-valued functions in NPSV
by NPSV{0,1}.

Given partial multivalued functions f and g, define g to be a refinement of f if domain(g) =
domain(f) and for all x ∈ domain(g) and all y, if g(x) 7→ y, then f(x) 7→ y. Let F and G be
classes of partial multivalued functions. If f is a partial multivalued function, we define f ∈c G if
G contains a refinement g of f , and we define F ⊆c G if for every f ∈ F , f ∈c G.

Let sat be the multivalued function defined by sat(x) 7→ y if and only if x encodes a proposi-
tional formula and y encodes a satisfying assignment of x.

Let f and g be partial, multivalued functions. Then g≤p
mf [FGH+96, Kre88] if there exist

polynomial-time-computable total functions h and h′ such that the partial, multivalued function
defined by

g1(x) = h′(x, f(h(x)))

is a refinement of g. A function f ∈ F is ≤p
m-complete for the class F if for every g ∈ F , g≤p

mf .

3 Existence of Complete Disjoint NP-Pairs
The following theorem is the main result of this section.

Theorem 3.1 The following are equivalent.

1. There is a ≤pp
m -complete disjoint NP-pair.

2. There is a smart ≤pp
T -complete disjoint NP-pair.

3. DisjNP is uniformly enumerable.

4. There is a ≤pp
sm-complete disjoint NP-pair.

5. There is a ≤pp1-i-complete disjoint NP-pair.

6. NPSV{0,1} has a ≤p
m-complete function.

7. NPSV has a ≤p
m-complete function.

Proof Köbler and Messner [KM00] have shown that items 4, 6, and 7 are equivalent. Therefore,
it suffices to show that items 1 through 5 are equivalent.

Trivially, item 5 implies item 1 and item 1 implies item 2. To prove that item 2 implies item 3,
let (A,B) be a smart ≤pp

T -complete NP-pair. Assume that A = L(NA) and B = L(NB). In the
following, we define a function f whose inputs are of the form 〈i, j, k〉. Given 〈i, j, k〉, define
NP-machines N ′1 and N ′2 as follows.
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• N ′1 on input x simulates Mi on x. When Mi makes a query q, N ′1 guesses a path of NA

on q, and a path of NB on q. Since A ∩ B = ∅, at most one of these paths will accept
q. N ′1 continues the simulation of Mi with a “yes” answer if the guessed path of NA is an
accepting path on q, and with a “no” answer if the guessed path of NB is an accepting path
of q. N ′1 accepts x if and only the simulation of Mi successfully ends with acceptance of x
and x ∈ L(Nj).

• N ′2 on input x simulates Mi on x identically to N ′1. However, N ′2 accepts x if and only if the
simulation of Mi successfully ends with rejection of x and x ∈ L(Nk).

We note that for an arbitrary separator S of (A,B), L(N ′1) is not necessarily identical to L(MS
i ):

some x ∈ L(MS
i ) belongs to L(N ′1) only if all the negative queries made by Mi on input x belong

to B. Similarly, L(N ′2) is not necessarily L(MS
i ).

Let a and b be the indices of the NP machines N ′1 and N ′2 in the effective enumeration {Ni}i.
Define f(〈i, j, k〉) = (a, b). Note that f is total. Assume for some 〈i, j, k〉 that f(〈i, j, k〉) = (a, b)
such that L(Na) ∩ L(Nb) 6= ∅. Then there exists some x such that the simulation of Mi on x
has both a path where the simulation successfully ends with acceptance of x and a path where the
simulation successfully ends with rejection of x. Hence, during the simulation there must be a
query q such that q ∈ L(Na) and q ∈ L(Nb). This cannot happen. Hence L(Na) and L(Nb) are
disjoint. So, for every i, j, and k, (L(Na), L(Nb)) ∈ DisjNP, where (a, b) = f(〈i, j, k〉).

Let (C,D) ∈ DisjNP. Then ∃j, k such thatC = L(Nj) andD = L(Nk). Since (A,B) is smart
≤pp

T -complete, there is some i such that (C,D) is smart reducible to (A,B) viaMi, i.e., if the input
belongs to C ∪ D, then the queries of Mi must belong to A ∪ B. Let f(〈i, j, k〉) = (a, b). We
claim that C = L(Na) and D = L(Nb): If x ∈ C, then Mi on x accepts and every query is either
in A or in B. Thus, the simulation of Mi on x by Na will successfully end with acceptance of x.
Since x ∈ C = L(Nj), x ∈ L(Na) by definition. Conversely, if x ∈ L(Na), then x ∈ L(Nj) = C
by definition. So C = L(Na). Similarly, D = L(Nb). This shows that DisjNP is uniformly
enumerable.

Now we show that item 3 implies item 4. Assume that DisjNP is uniformly enumerable via
some computable function f , and let Mf be a Turing machine that computes f . Let us define

A = {0n10t1x
∣∣Mf (n) = (i, j) within t steps, and Ni(x) accepts within t steps} (1)

and

B = {0n10t1x
∣∣Mf (n) = (i, j) within t steps, and Nj(x) accepts within t steps}. (2)

Then A ∈ NP and B ∈ NP. If A ∩ B 6= ∅, then ∃n, t such that 0n10t1x ∈ A ∩ B. So,
Mf (n) = (i, j) and x ∈ L(Ni) ∩ L(Nj). This is impossible because by item (1) of Definition 2.2,
L(Ni) ∩ L(Nj) = ∅. So (A,B) ∈ DisjNP. We claim that (A,B) is ≤pp

sm-complete.
Let (C,D) ∈ DisjNP. For some n, f(n) = (i, j), such that C = L(Ni) and D = L(Nj).

Hence there exists l such that Mf (n) outputs (i, j) within l steps. Let p(·) be the polynomial that
bounds the running time of both Ni and Nj . Define g(x) df= 0n10max{l,p(|x|)}1x. By the definition of
A, x ∈ C ⇔ g(x) ∈ A; similarly, x ∈ D ⇔ g(x) ∈ B. Hence g is a ≤pp

sm reduction from (C,D)
to (A,B).
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Finally, we show that item 4 implies item 5. Let (A,B) be a ≤pp
sm-complete pair. Define:

A′ = {〈x, i, 0t, a〉
∣∣ fi(x) = a within t steps and a ∈ A} (3)

and

B′ = {〈x, i, 0t, b〉
∣∣ fi(x) = b within t steps and b ∈ B} (4)

It is easy to see that (A′, B′) is in DisjNP; otherwise, if 〈x, i, 0t, w〉 ∈ A′ ∩ B′, then w ∈ A ∩ B,
contradicting A ∩ B = ∅.

Let us assume that (C,D) ∈ DisjNP. Therefore, (C,D)≤pp
sm(A,B) via fk for some k. Let us

define a polynomial-time-computable total function

g(x) = 〈x, k, 0|x|k+k, fk(x)〉.

We claim that (C,D) ≤pp1-i (A′, B′) via g. If x ∈ C, then fk(x) ∈ A, and therefore, g(x) =
〈x, k, 0|x|k+k, fk(x)〉 ∈ A′. Similarly, if x ∈ D, then g(x) ∈ B′. Clearly, g is an invertible
reduction; h(〈x, k, 0|x|k+k, fk(x)〉) = x satisfies that for every x, h(g(x)) = x. 2

By Theorem 3.1, the following open questions are equivalent:

1. Does existence of a Turing-complete disjoint NP-pair imply existence of a many-complete
disjoint NP-pair?

2. Does existence of a Turing-complete disjoint NP-pair imply existence of a smart Turing-
complete disjoint NP-pair?

Note that if NPMV ⊆c NPSV, then sat ∈c NPSV. It is easy to see that this refinement of sat
is ≤p

m-complete for NPSV. Therefore, we obtain the following corollary of Theorem 3.1.

Corollary 3.2 If NPMV ⊆c NPSV, then DisjNP has a ≤pp
m -complete pair.

We do not expect that NPMV ⊆c NPSV, because the assertion implies that the polynomial-
time hierarchy collapses [HNOS96b]. We do not expect the assertions of Theorem 3.1 to be true
either, but a proof would prove that NPMV ⊆c NPSV is false also.

4 Smart Reductions
All the reductions in Theorem 3.1 are smart reductions. In the following theorem, we show under a
reasonable complexity-theoretic hypothesis that there exist truth-table reductions that are not smart
reductions.

Theorem 4.1 If UP ∩ co-UP has a P-bi-immune set, then DisjNP contains disjoint pairs (A,B)
and (C,D) such that (A,B)≤pp

tt (C,D) but there is no smart reduction from (A,B) to (C,D).
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Proof Let us define the following function:

dt(i) =

{
1 if i = 0

22dt(i−1) otherwise.

Let L be the set in UP ∩ co-UP that is P-bi-immune. Consider

X = L ∩ {0n
∣∣n = dt(i) for some i}.

We claim that X is infinite: Otherwise, if 0l is the longest string in X , then Tl = {0n
∣∣n >

l and n = dt(i) for some i} is an infinite subset of L that is in P. This contradicts P-bi-immunity
of L. Similarly,

X ′ = L ∩ {0n
∣∣n = dt(i) for some i}

is also an infinite set. Both X and X ′ are in UP. Let us assume that L(M) = X , and L(M ′) = X ′,
where M and M ′ are UP machines, and the running time of both M and M ′ is bounded by some
polynomial p(·).

We define the following machine N . If the input is not of the form 0n, n = dt(i) for some i,
then N rejects. Otherwise N guesses a bit. If the guessed bit is 0, N simulates M on 0n, and
accepts if and only if M accepts. If the guessed bit is 1, N simulates M ′ on 0n, and accepts if
and only if M ′ accepts. Every string of the form 0n, n = dt(i) for some i, is either accepted by
M or by M ′, but not by both machines. Therefore, N is a UP machine. Also, given an accepting
computation ofN , it is easy to determine whether the input belongs to L(M) or to L(M ′). Clearly,
L(N) = {0n

∣∣n = dt(i) for some i}. For every such 0n, let an be the accepting computation of N
on 0n.

Consider the following sets:

A = {〈0n, z〉
∣∣n = dt(i) for some i ∧ z ≤ an},

B = {〈0n, z〉
∣∣n = dt(i) for some i ∧ z > an},

C1 = {〈0n, k〉
∣∣n = dt(i) for some i ∧ 0n ∈ L(M) ∧ the k-th bit of the accepting

computation of M on 0n is 0},
D1 = {〈0n, k〉

∣∣n = dt(i) for some i ∧ 0n ∈ L(M) ∧ the k-th bit of the accepting
computation of M on 0n is 1},

C2 = {〈1n, k〉
∣∣n = dt(i) for some i ∧ 0n ∈ L(M ′) ∧ the k-th bit of the accepting

computation of M ′ on 0n is 0},
D2 = {〈1n, k〉

∣∣n = dt(i) for some i ∧ 0n ∈ L(M ′) ∧ the k-th bit of the accepting
computation of M ′ on 0n is 1}.

Let us define
C = C1 ∪ C2 and D = D1 ∪D2.

It is easy to see that (A,B) and (C,D) are disjoint NP-pairs.
We show first that (A,B)≤pp

tt (C,D). On input 〈0n, z〉, where n = dt(i) for some i, the reduc-
tion machine asks for all possible bits of the accepting computations of M and M ′ on 0n (i.e., the
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machine asks the following queries to (C,D): 〈0n, 1〉, . . . , 〈0n, p(n)〉 and 〈1n, 1〉, . . . , 〈1n, p(n)〉).
Only one computation (of eitherM orM ′) is accepting. In polynomial time, the reduction machine
can construct an, the accepting computation of N , and accepts if and only if z ≤ an.

We now show that if (A,B)≤pp
T (C,D) via a smart reduction, then X ∈ P, contradicting the

P-bi-immunity of L. Let MS denote the machine that computes the smart reduction. Note that
trivially X≤pp

T (A,B); on input 0n, where n = dt(i) for some i, the reduction machine uses binary
search to produce an, and accepts the input if and only if the first bit of an is 0. Let MT denote the
machine that computes this reduction.

To show that X ∈ P, we will simulate MT on input 0n. If n 6= dt(i) for some i, we reject 0n.
Otherwise, we will try to simulate the binary search algorithm of MT . It is easy to see that if we
can complete the binary search, then we can decide whether 0n ∈ X . However, it is possible that
we may not be able to complete this binary search; in that case, we will show that we can accept
or reject the input without obtaining an.

During simulation of MT , when MT makes a query q = 〈0n, z〉, we simulate the smart re-
duction machine MS on q until MS makes a query to (C,D). Since n = dt(i), 0n ∈ L(N) and
therefore, an is defined and q belongs to A∪B. Since MS is a smart reduction machine, any query
of MS must belong to C ∪D. Let us assume that the first query that MS makes is u.

We consider the following cases. If u = 〈0n, k〉, then u ∈ C1 ∪D1, and therefore, 0n ∈ L(M),
and therefore, 0n ∈ X . In this case, we accept the input and halt immediately. Similarly, if
u = 〈1n, k〉, then 0n ∈ L(M ′), and we halt and reject the input.

Assume that u = 〈0m, k〉, where m 6= n. We claim that m < n. Otherwise, since u ∈ C ∪D,
m = dt(j) for some j > i. However, in that case, m ≥ 22n , and MT cannot write down u in
polynomial time in n. Therefore, m < n. Again, this implies that m = dt(j) for some j < i.
Therefore, n ≥ 22m . In this case, we search for the accepting computation of M on 0m in a
brute-force manner. If there is an accepting computation, and the k-th bit of that computation is
0, the query is answered “yes”; otherwise, the query is answered “no”. In either case, the query
is answered correctly, and we continue the simulation of MS on q. The case when u = 〈1m, k〉 is
handled similarly; in this case, we search for an accepting computation of M ′.

Since m ≤ log log n, the brute-force search of the accepting computation of M or M ′ takes
time O(2p(m)), which is sublinear in n. Therefore, our simulation still takes polynomial time in n.
We continue our simulation of MS(q), and each query is handled as above. If we do not accept or
reject 0n because of a halt, then we obtain correct answers to the queries, and at the end, we have
answered the query q of MT . In this way, we can continue the simulation. If the binary search
is completed, we obtain the accepting path of N on 0n, from which we can decide whether 0n

belongs to X . Note that in case of a halt we neither produce nor demand an accepting computation
of N on 0n.

Since our simulation takes polynomial-time in n, X ∈ P. This completes the proof. 2

5 Separation of many-one Reductions
Although existence of ≤pp

m -complete pairs is equivalent to existence of ≤pp
sm-complete and ≤pp1-i-

complete pairs (Theorem 3.1), we show that these reductions are different. With trivial sets, this
can be achieved easily. Consider A = {0}, B = {1}, C = {0}, and D = C. Obviously
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(A,B)≤pp
m (C,D). However, (A,B) 6≤pp

sm(C,D), since C ∪D = ∅, and thus there is no space for
strings in A ∪ B to map to. Also, (C,D)≤pp

m (A,B) but (C,D) 6≤pp1-i (A,B), since B is finite and
D is infinite. Both these separations use finiteness in a crucial way. In the following, however, we
achieve separations with infinite sets.
Theorem 5.1 There exist disjoint NP-pairs (A,B) and (C,D) such that A, B, C, D, A ∪ B, and
C ∪D are infinite, and (A,B)≤pp

m (C,D) but (A,B) 6≤pp1-i (C,D).
Proof Let us define the following sets:

A df= {00x
∣∣ x ∈ Σ∗},

B df= {11x
∣∣ x ∈ Σ∗},

C df= {0n
∣∣n ≥ 0},

D df= {1n
∣∣n ≥ 0}.

Clearly, (A,B)≤pp
m (C,D) via f(x) = 0|x| if x ∈ A, and f(x) = 1|x| if x ∈ B, and f(x) = 01

otherwise. (Note that f is actually a ≤pp
sm-reduction.) We claim that (A,B) 6≤pp1-i (C,D) via any

polynomial-time-computable total function g. Otherwise, let g be a function that is computable in
time nk. Then, any string of length n in A can be mapped to a string of length at most nk in C.
There are nk + 1 strings in C of length at most nk, but there are 2n−2 strings of length n in A.
Therefore, g cannot be one-to-one, and hence, cannot be inverted. 2

Theorem 5.2 The following are equivalent:
1. P 6= NP.

2. There are disjoint NP-pairs (A,B) and (C,D) such that A, B, C, D, A ∪ B, and C ∪D
are infinite, and (A,B)≤pp

m (C,D) but (A,B) 6≤pp
sm(C,D).

Proof If P = NP, then given disjoint NP-pairs (A,B) and (C,D), A,B,C, and D are all in P.
Given any string x, it can be determined whether x ∈ A, x ∈ B, or x ∈ A ∪ B, and x can be
mapped appropriately to some fixed string in C, D, or C ∪D. Therefore, (A,B)≤pp

sm(C,D).
For the other direction, consider the clique-coloring pair. This is a disjoint NP-pair, and is

known to be P-separable [Lov79, Pud01]:
C1 = {〈G, k〉

∣∣G has a clique of size k}, (5)
and

C2 = {〈G, k〉
∣∣G has a coloring with k − 1 colors}. (6)

Let S be the separator that is in P. Note that (C1, C2)≤pp
m (S, S) via the identity function. (Note that

this reduction is also invertible.) Let
C = {〈G, 3〉

∣∣G is a cycle of odd length with at least 5 vertices}.
Let S1 = S − C and S2 = S − C. Both S1 and S2 are in P. Since any odd cycle with at least 5
vertices is not 2-colorable, and does not contain any clique of size 3, C ∩C1 = ∅, and C ∩C2 = ∅.
Therefore, (C1, C2)≤pp

m (S1, S2) via the identity function. Assume that (C1, C2)≤pp
sm(S1, S2). Then

C1≤p
mS1, and C2≤p

mS2. Hence C1 and C2 are in P. This is impossible, since NP 6= P, and C1 and
C2 are NP-complete. Thus, (C1, C2) 6≤pp

sm(S1, S2). 2
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6 Separating Adaptive and Nonadaptive Reductions
Glaßer et. al [GSSZ03] provided evidence showing that ≤pp

m reductions between disjoint NP-pairs
are not the same as ≤pp

1-tt reductions between disjoint NP-pairs. In the following theorems, we
separate ≤pp

btt from ≤pp
tt and ≤pp

tt from ≤pp
T using reasonable complexity-theoretic hypotheses. Our

separations are obtained easily from existing techniques to separate reductions between NP sets
[PS01].

A set L is p-selective if there is a polynomial-time-bounded function g such that for every
x, y ∈ Σ∗, g(x, y) ∈ {x, y}, and {x, y} ∩ L 6= ∅ ⇒ g(x, y) ∈ L [Sel79]. The function g is called
the selector function for L.

Given a finite alphabet, let Σω denote the set of all strings of infinite length of order type ω.
For r ∈ Σ∗ ∪ Σω, the standard left cut of r [Sel79, Sel82] is the set

L(r) = {x
∣∣ x < r},

where < is the ordinary dictionary ordering of strings with 0 less than 1. It is obvious that every
standard left cut is p-selective with selector g(x, y) = min (x, y).

For any A ∈ NP, there is a polynomial p(·), and a polynomial-time predicate R such that

x ∈ A⇔ ∃y[|y| ≤ p(|x|) ∧R(x, y)].

We say that R and p define A, and a string y that satisfies the above equation is called a witness for
x. For any A ∈ NP, and R and p that define A, we define the partial multivalued function fR,p that
maps input strings to witnesses as follows:

fR,p(x) 7→ y, if |y| ≤ p(|x|) and R(x, y).

Definition 6.1 ([HNOS96a]) If fR,p≤p
ttA, then search nonadaptively reduces to decision for A.

Hemaspaandra et. al [HNOS96a] credit Thierauf for the following proposition.

Proposition 6.2 (Thierauf [HNOS96a]) If L ∈ NP is ≤p
tt -reducible to a p-selective set and

search nonadaptively reduces to decision for L, then L ∈ P.

We also need the following easy proposition.

Proposition 6.3 For µ ∈ {m, btt, tt, T}, it holds that (A,A)≤pp
µ (B,B) if and only if A≤p

µB.

Theorem 6.4 If UE ∩ co-UE 6= E, then there are pairs (A,B) and (C,D) in DisjNP such that
(A,B)≤pp

tt (C,D), but (A,B) 6≤pp
btt(C,D).

Proof Since UE ∩ co-UE 6= E, there must be a tally set T ∈ (UP ∩ co-UP) − P. Let R and R′
be the polynomial-time-decidable predicates associated with T and T respectively. We define the
following languages:

L1 = {(0n, z)
∣∣ ∃yR(0n, y) and z ≤ y}, (7)

and

L2 = {(0n, i)
∣∣ ∃yR(0n, y) and i-th bit of y is 1}. (8)
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It is easy to see that both L1 and L2 are in UP. To see that they are also in co-UP, note that

L1 = {(0n, z)
∣∣ (∃yR′(0n, y)) or (∃yR(0n, y) and z > y)}.

For any 0n, either there exists y such thatR(0n, y) holds, or there exists y such thatR′(0n, y) holds,
but both cannot hold simultaneously. Therefore, L1 belongs to UP. Similarly, since

L2 = {(0n, i)
∣∣ (∃yR′(0n, y)) or (∃yR(0n, y) and i-th bit of y is 0)},

L2 is also in co-UP. Therefore, (L1, L1), and (L2, L2) are both in DisjNP.
It is clear that L1≤p

ttL2. Observe that L2 is a sparse set. Ogihara and Watanabe [OW91] call
L1 the left set of T , and they and Homer and Longpré [HL94] proved for every T in NP that if the
left set of T is ≤p

btt -reducible to a sparse set, then T is in P. Therefore, L1 6≤p
bttL2.

By Proposition 6.3, we have that (L1, L1)≤pp
tt (L2, L2), but (L1, L1) 6≤pp

btt(L2, L2). 2

Theorem 6.5 If UE ∩ co-UE 6= E, then there are pairs (A,B) and (C,D) in DisjNP such that
(A,B)≤pp

T (C,D), but (A,B) 6≤pp
tt (C,D).

Proof Since UE ∩ co-UE 6= E, there must be a tally set T ∈ (UP ∩ co-UP) − P. Let us assume
that T = L(M), and T = L(M ′), where both M and M ′ are UP machines. For every n, 0n is
either accepted by M or by M ′, but not by both. Let an be the accepting computation of M or M ′

on 0n. Note that this is well-defined. We define the following infinite string a = a1a2 · · · , and let

L(a) = {x
∣∣ x < a}

be the standard left cut of a. Note that L(a) ∈ UP ∩ co-UP and is p-selective. We define

L = {0〈n,i〉
∣∣ ∃y, y = an and i-th bit of y is 0 }.

Note that L ∈ UP∩ co-UP. Also observe that L /∈ P; otherwise, T ∈ P as well, contradicting our
assumption.

It is easy to see that L≤p
TL(a): On input 0〈n,i〉, the reduction machine can use binary search

with L(a) as the oracle and can determine an, and accept the input if and only if the i-th bit of an
is 0.

We claim that L 6 ≤p
ttL(a). It is clear that search nonadaptively reduces to decision for L,

since on input 0〈n,i〉, an can be obtained by nonadaptive queries to L. Then by Proposition 6.2,
L≤p

ttL(a) would imply that L ∈ P, which is a contradiction. By Proposition 6.3, we have that
(L,L)≤pp

T (L(a), L(a)), but (L,L) 6≤pp
tt (L(a), L(a)). 2

7 Oracle Construction
To study further the open question of whether existence of a Turing-complete disjoint NP-pair
implies existence of a many-one-complete disjoint NP-pair, in this section we construct an oracle
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relative to which DisjNP has a truth-table-complete disjoint NP-pair, but does not have any many-
one-complete disjoint NP-pair. Hemaspaandra et al. [HHH98] asked whether there are natural
complexity classes for which the existence of many-one and Turing-complete sets can be distin-
guished, that is, classes that in some relativized world simultaneously have Turing-complete sets
and lack many-one-complete sets. By Theorem 7.3 below, DisjNP is such a class.

Define UP ∨ UP df={L0 ∪ L1

∣∣L0, L1 ∈ UP}. For a finite Y ⊆ Σ∗, let `(Y ) df=
∑

w∈Y |w|. For
a path P of some nondeterministic computation, P yes (resp., P no) denotes the set of oracle queries
that are answered positively (resp., negatively) along P . Let |P | denote the length of P .

Theorem 7.1 If NP = UP ∨ UP, then there exists a disjoint NP-pair that is ≤pp
tt -hard for NP.

Proof By assumption, SAT = L0 ∪ L1 for L0, L1 ∈ UP. Let M0 and M1 be UP-machines for L0

and L1. Let L df= 0L0 ∪ 1L1. Note that L ∈ UP via the following UP-machine M : On input x, M
extracts the first bit b from x. The remaining string is denoted by x′. If b = 0, then M simulates
M0(x′). Otherwise M simulates M1(x′). Let p denote the running time of M .

A0
df= {0k1w

∣∣w ∈ L and the k-th bit of the accepting path of M(w) is 0}
A1

df= {0k1w
∣∣w ∈ L and the k-th bit of the accepting path of M(w) is 1}

Observe that (A0, A1) ∈ DisjNP. We show SAT≤pp
tt (A0, A1) via the following reduction: On

input x, the machine asks all queries 0k10x and 0k11x for 1 ≤ k ≤ p(|x|). Let a0 and a1 denote
the corresponding vectors of answers. The reduction machine accepts if either a0 is an accepting
path of M0(x), or a1 is an accepting path of M1(x).

If the reduction machine accepts x, then either x ∈ L0 or x ∈ L1, and therefore, x ∈ SAT.
On the other hand, if x ∈ SAT, then x is either in L0 or in L1. Without loss of generality assume
x ∈ L0. It follows that 0x ∈ L and therefore, a0 gives us the accepting path of M(0x). By
construction of M , this is also the accepting path of M0(x). Therefore, the reduction machine
accepts. 2

Corollary 7.2 If NP = UP ∨ UP, then DisjNP has ≤pp
tt -complete pairs.

Even et al. [ESY84] conjectured that there do not exist disjoint NP-pairs that are ≤pp
T -hard for

NP. Therefore, if NP = UP ∨ UP, then this conjecture does not hold.

Theorem 7.3 There exists an oracle X relative to which DisjNP has ≤pp
tt -complete pairs, but no

≤pp
m -complete pairs.

Proof We construct the oracle such that NPX = UPX ∨ UPX and there do not exist ≤pp,X
m -

complete disjoint NPX-pairs. Define

Ai,j
df= {0n

∣∣ ∃y such that |000i10j1y| = n and 000i10j1y ∈ X}
Bi,j

df= {0n
∣∣ ∃y such that |010i10j1y| = n and 010i10j1y ∈ X}

Note that Ai,j and Bi,j depend only on oracle words that start with letter 0. We will seek either
to make the pair (L(MX

i ), L(MX
j )) not disjoint (in this case Ai,j ∩ Bi,j may not be empty), or to
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show that (L(MX
i ), L(MX

j )) is not a many-one complete pair (in this case (Ai,j, Bi,j) will be a
disjoint NPX-pair). Define the canonical NPX-complete set as

C = {〈0n, 0t, x〉
∣∣MX

n (x) accepts within t steps}.

We construct X such that it satisfies two conditions.

C1: 〈0n, 0t, x〉 ∈ C ⇔ ∃y0, |y0| = |100n10t1x|[100n10t1xy0 ∈ X] or
∃y1, |y1| = |110n10t1x|[110n10t1xy1 ∈ X]

C2: ∀n, t, x there exists at most one y0 and at most one y1

These two conditions describe the coding part of the oracle X . Words of the forms 100n10t1xy0

and 110n10t1xy1 are called codewords. Codewords always start with 1. Since these codewords
correspond to the computation of Mn(x) restricted to t steps, we call Mn(x) also the computation
that corresponds to these codewords. If we say that C1 or C2 hold for a finite oracle Z ′ ⊆ Σ≤m,
then we mean that these conditions (this time with Z ′ instead of X) hold for all words up to length
m.

If both C1 and C2 hold, then NPX = UPX ∨ UPX . In the remaining proof we show that we
can diagonalize against every potential≤pp,X

m -complete pair (L(MX
i ), L(MX

j )) and every possible
reduction function f while maintaining C1 and C2. This shows that≤pp,X

m -complete disjoint NPX-
pairs do not exist, yet NPX = UPX ∨ UPX . From Corollary 7.2 it follows that there exist ≤pp,X

tt -
complete disjoint NPX-pairs.

Let Z be the finite oracle constructed so far, say up to words of length ≤ k − 1. Our con-
struction ensures that k is large enough such that the membership of words of length ≥ k does not
affect diagonalizations made in previous steps. Let i and j be given indices of nondeterministic
polynomial-time oracle Turing machines, and let f be a given polynomial-time oracle function.
Assume that the running time of f(x), Mi(x), Mj(x), Mi(f(x)), and Mj(f(x)) is bounded by the
polynomial r (independent of the oracle). Starting from Z we construct a finite extension Z ′ that
forces that either

L(MX
i ) ∩ L(MX

j ) 6= ∅, (9)

or

(Ai,j, Bi,j) 6≤pp,X
m (L(MX

i ), L(MX
j )) via reduction function fX . (10)

We can assume that k is large enough such that (5 · r(k))2 ≤ 2k/2. Otherwise we continue the
construction while doing coding for C1 and C2 until we reach a stage k that is large enough.

We define the notion of reservations for computations. A reservation consists of disjoint sets Y
andN where Y contains words that are reserved for the oracle (i.e., yes answers) whileN contains
words that are reserved for the complement of the oracle (i.e., no answers).

Call a pair (Y,N) a reservation if Y and N are subsets of Σ≥k, Y ∩ N = ∅, `(Y ∪ N) ≤
5 · r(k), condition C2 holds for Y , and if w ∈ Y is a codeword for some computation Mn(x), then
MZ∪Y

n (x) has an accepting path P such that P yes ∩ Σ≥k ⊆ Y and P no ∩ Σ≥k ⊆ N .

Claim 7.4 For every reservation (Y,N) there exists an extension Z ′ of Z such that Z ′ is defined
up to length r(k), Z ′ satisfies C1 and C2, Y ⊆ Z ′ and N ⊆ Z ′.
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Proof The extension Z ′ is constructed as follows. We start with oracle Z and add codewords in
order to achieve C1. If a codeword with prefix 100n10t1x or 110n10t1x needs to be added to Z ′,
and if a word with such a prefix is already in Y , then we add that codeword. Otherwise, we choose
an appropriate codeword that is not in N . This can be done since for any length l ≥ k, the number
of possible y0 and y1 (as required by C1) is 2l/2 ≥ 2k/2, while ‖N‖ ≤ 5 · r(k). Moreover, in
our construction, we add all words from Y to the oracle. This is possible since by definition of
reservations, whenever some w is in Y , the computation corresponding to w is forced to accept
(since we fixed the queries of an accepting path). Therefore, we can add every w ∈ Y to the oracle
without violating C1. Finally, Z ′ satisfies C2, since Y does so and we add at most one codeword
for every 100n10t1x and for every 110n10t1x. 2

Let Nf be the set of words in Σ≥k that are queried by the computation f(0k) using oracle
Z. Words in Nf are reserved for the complement of X . We restrict the notion of reservations as
follows. Call a reservation (Y,N) a reservation for Mi(f(0k)) if `(Y ∪N) ≤ 2 ·r(k), Y ∩Nf = ∅,
all codewords in Y start with 10, andMZ∪Y

i (f(0k)) has an accepting path P such that P yes∩Σ≥k ⊆
Y and P no ∩Σ≥k ⊆ N . Analogously we define reservations for Mj(f(0k)); here all codewords in
Y have to start with 11, and Y (resp., N ) contains positive (resp., negative) queries made on some
accepting path of MZ∪Y

j (f(0k)).

Claim 7.5 Let Z ′ be an extension of Z such that Z ′ ∩ Nf = ∅ and Z ′ is defined up to words of
length ≤ r(k). If Z ′ satisfies C1 and C2, all codewords in Z ′≥k start with 10, and MZ′

i (f(0k))
accepts, then there exists a reservation (Y ′, N ′) for Mi(f(0k)) such that Y ′ ⊆ Z ′ and N ′ ⊆ Z ′.

The analogous claim holds for codewords starting with 11 and for computation Mj(f(0k)).

Proof For every Y ⊆ Z ′≥k define the set of dependencies as

D(Y ) df={q
∣∣Y contains a codeword that corresponds to the computa-
tion MZ′

n (x) restricted to t steps and q ∈ P all
n,t,x },

where Pn,t,x is the lexicographically smallest path among all paths of MZ′
n (x) that are accepting

and that are of length ≤ t. The path Pn,t,x exists, since C1 holds for Z ′.
If w is a codeword for the computation Mn(x) restricted to t steps, then |Pn,t,x| ≤ t < |w|/2.

Therefore, the sum of lengths of q’s that are induced by some codeword w in Y is at most |w|/2.
This shows for all Y ⊆ Z ′≥k that

`(D(Y )) ≤ `(Y )/2. (11)

Let P be an accepting path ofMZ′
i (f(0k)). The procedure below computes the reservation (Y ′, N ′)

for Mi(f(0k)).

1 Y′ := Pyes ∩ Σ≥k

2 N′ := Pno ∩ Σ≥k

3 c := 0

4 repeat
5 c := c + 1
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6 Yc := D(Yc−1) ∩ Z′≥k
7 Nc := D(Yc−1) ∩ Z′≥k
8 Y′ = Y′ ∪ Yc
9 N′ = N′ ∪ Nc
10 until Yc = Nc = ∅

Clearly, Y ′ ⊆ Z ′ and N ′ ⊆ Z ′. Therefore, Y ′ ∩ N ′ = ∅. By lines 6 and 7, and by Equation (11),
the following holds for 1 ≤ i ≤ c.

`(Yi ∪Ni) ≤ `(D(Yi−1)) ≤ `(Yi−1)/2

Hence the procedure terminates and

`(Y ′ ∪N ′) ≤ 2 · `(Y0 ∪N0) ≤ 2 · r(k).

Condition C2 holds for Y ′, since it holds for Z ′. Assume w ∈ Y ′ is a codeword for some compu-
tation Mn(x) restricted to t steps. Hence w ∈ Yc for some c. MZ′

n (x) accepts within t steps, since
C1 holds for Z ′. Therefore, P all

n,t,x ⊆ D(Yc). It follows that

P yes
n,t,x ∩ Σ≥k ⊆ Yc+1 ⊆ Y ′

and
P no
n,t,x ∩ Σ≥k ⊆ Nc+1 ⊆ N ′.

This shows that (Y ′, N ′) is a reservation.
It remains to show that (Y ′, N ′) is a reservation for Mi(f(0k)). Since Y ′ ⊆ Z ′≥k, Y ′ ∩Nf = ∅

and all codewords in Y ′ start with 10. Since Y0 ⊆ Y ′ and N0 ⊆ N ′, P is an accepting path of
MZ∪Y ′

i (f(0k)) such that P yes ∩ Σ≥k ⊆ Y ′ and P no ∩ Σ≥k ⊆ N ′. 2

We define sets of reservations.

• R0 is the set of all reservations for Mi(f(0k)).

• R1 is the set of all reservations for Mj(f(0k)).

Every codeword in a reservation that belongs to R0 starts with 10, and every codeword in a reser-
vation that belongs to R1 start with 11. If we could do the construction using only one type of
reservation (either those in R0 or those in R1), then this would give NP = UP. However, we will
see that sometimes we have to combine a reservation from R0 with a reservation from R1. For this
reason we obtain only NP = UP ∨ UP.

We say that a reservation (Y0, N0) ∈ R0 conflicts with a reservation (Y1, N1) ∈ R1 if either
Y0 ∩N1 6= ∅ or Y1 ∩N0 6= ∅.

Assume that there exist (Y0, N0) ∈ R0 and (Y1, N1) ∈ R1 that do not conflict. Let Y = Y0∪Y1

and N = N0 ∪ N1 ∪ Nf . Observe that (Y,N) is a reservation. By Claim 7.4, there exists an
extensionZ ′ ofZ such thatZ ′ is defined up to length r(k), Z ′ satisfies C1 and C2, Y ⊆ Z ′ andN ⊆
Z ′. This ensures that both MZ′

i (f(0k)) and MZ′
j (f(0k)) accept. Therefore, (L(MX

i ), L(MX
j )) is
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not in DisjNPX , and Equation (9) holds. So in this case we have successfully diagonalized against
the pair (L(MX

i ), L(MX
j )), and we can proceed to the next stage of the construction.

For the rest of the proof, we assume that every reservation inR0 conflicts with every reservation
in R1. We will prove under this assumption that Equation (10) holds. The idea is as follows. In
Claim 7.6, we construct a small set of words N such that any extension Z ′ of Z that does not
contain any word in N ∪ Nf will force either MZ′

i (f(0k)) or MZ′
j (f(0k)) to reject. Putting an

appropriate word of the form 000i10j1y (resp., 010i10j1y) in Z ′ will ensure that 0k is in Ai,j
(resp., in Bi,j), thereby ensuring that Equation (10) is true. The details follow.
Assumption: Every reservation in R0 conflicts with every reservation in R1.

Claim 7.6 There exists an N ⊆ Σ≤r(k) such that ‖N‖ ≤ (2 · r(k))2 and

• either for all (Y0, N0) ∈ R0, Y0 ∩N 6= ∅

• or for all (Y1, N1) ∈ R1, Y1 ∩N 6= ∅.

Proof We create N as follows.

1 N = ∅
2 while (R0 6= ∅ and R1 6= ∅)
3 Choose some (Y∗, N∗) ∈ R0
4 N = N ∪ Y∗ ∪ N∗
5 For every (Y0, N0) ∈ R0
6 if Y0 ∩ (Y∗ ∪ N∗) 6= ∅ then remove (Y0, N0)
7 For every (Y1, N1) ∈ R1
8 if Y1 ∩ (Y∗ ∪ N∗) 6= ∅ then remove (Y1, N1)
9 end while

We claim that after n iterations of the while loop, for every (Y1, N1) ∈ R1, ‖N1‖ ≥ n. If this is
true, then the while loop iterates at most 2·r(k) times, since for any (Y1, N1) ∈ R1, ‖N1‖ ≤ 2·r(k).
On the other hand, during each iteration, N is increased by at most 2 · r(k) strings, since for any
(Y0, N0) ∈ R0, ‖Y0∪N0‖ ≤ 2 ·r(k). Therefore, when the algorithm terminates, ‖N‖ ≤ (2 ·r(k))2.
Also, if R0 is empty, then for every (Y0, N0) that has been removed from R0, Y0 ∩ N 6= ∅; and if
R1 is empty, then for every (Y1, N1) that has been removed from R1, Y1 ∩N 6= ∅.

It remains to prove that after the n-th iteration of the while loop, for every (Y1, N1) ∈ R1,
‖N1‖ ≥ n.

For every n, let (Y n, Nn) be the reservation that is chosen during the n-th iteration in step 3.
For every (Y1, N1) that is in R1 at the beginning of this iteration, (Y n, Nn) conflicts with (Y1, N1)
(by assumption). Therefore, there is a word in (Nn ∩ Y1) ∪ (Y n ∩N1). If this word is in Nn ∩ Y1,
then (Y1, N1) will be removed from R1 in step 8. Otherwise, i.e., if Y n ∩N1 6= ∅, then let w be the
lexicographically smallest word in Y n ∩ N1. In this case, (Y1, N1) will not be removed from R1.
We say that (Y1, N1) survives the n-th iteration due to w. Note that (Y1, N1) can survive only due
to a word that is in N1. We will use this fact to prove that ‖N1‖ ≥ n after n iterations.

We show that any reservation that is left in R1 after n iterations survives each iteration due to
a different word. Assume that (Y1, N1) survives iteration n due to w ∈ Y n ∩ N1. If (Y1, N1) had
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survived an earlier iteration l < n due to the same word, then w is also in Y l ∩ N1. Therefore,
Y l ∩ Y n 6= ∅. So (Y n, Nn) should have been removed in step 6 during iteration l, and cannot
be chosen at the beginning of iteration n. Hence, w cannot be the query by which (Y1, N1) had
survived iteration l. 2

Let N be as in Claim 7.6. Without loss of generality, we assume that for all (Y0, N0) ∈ R0,
Y0 ∩N 6= ∅. Add all words from Nf to N . Now ‖N‖ ≤ (3 · r(k))2. We consider the words in N
to be reserved for the complement of X .

Claim 7.7 Let Z ′ be any extension of Z such that Z ′ is defined up to length r(k). If Z ′ satisfies C1
and C2, all codewords in Z ′≥k start with 10, and Z ′ ∩N = ∅, then MZ′

i (f(0k)) rejects.

The analogous claim holds for codewords starting with 11 and for computation MZ′
j (f(0k)).

Proof Assume that MZ′
i (f(0k)) accepts. Note that Z ′ ∩ Nf = ∅. By Claim 7.5, there exists

a reservation (Y ′, N ′) for Mi(f(0k)) such that Y ′ ⊆ Z ′ and N ′ ⊆ Z ′. By definition, (Y ′, N ′)
belongs to R0. Therefore, by assumption, Y ′ ∩N 6= ∅. Hence Z ′ ∩N 6= ∅, a contradiction. 2

Choose a word w ∈ Σk − N that is of the form w = 000i10j1y. Add w to the oracle Z. We
continue the construction by making only coding for C1 and C2. For this we use only codewords
that start with 10 while we reserve words in N for the complement of the oracle. This is possible
since the number of words in N is small. Let Z ′ be the resulting oracle that is now defined up to
oracle stage r(k). Note that 0k ∈ Ai,j is witnessed by w ∈ Z ′ ⊆ X . By Claim 7.7, MZ′

i (f(0k))
rejects. This computation cannot ask queries longer than r(k): For any X that is an extension
of Z ′, MX

i (f(0k)) rejects as well. Therefore, relative to X , (Ai,j, Bi,j) does not ≤pp
m -reduce to

(L(MX
i ), L(MX

j )) via reduction function f . This completes the proof of Theorem 7.3. 2
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