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Abstract

We briefly review some of the major accomplishements of theoret-
ical computer science. Results from theoretical computer science have
had enormous impact on the developement of programming languages
and other areas of computer science. The impact of reseach in theoret-
ical computer science is now being felt in the areas of Cryptography,



Communication Networks, Multimedia and Graphical Systems, Paral-
lel Computation, VLSI, Learning as well as Programming Langauges
and Software. Theoretical computer science has also had influenced
in Biology, Mathematics, Manufacturing and Astronomy.
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1 Introduction

For more than fifty years, as computing systems have diminished in size and
grown in complexity, theoretical computer scientists have built the founda-
tions of their discipline by developing models of computation and related
methods of analysis. After the early recognition of the relevance of the the-
ory of formal languages to the practice of compiler construction, theoretical
computer science became a cornerstone of virtually every computer science
undergraduate degree program.

In the early days of computer science a great deal of time and energy
was devoted to the development of basic concepts, design of fundamental
algorithms, identification and development of major subdisciplines, and the
classification of problems by their difficulty, activities that actively engaged
many theoretical computer scientists. Today the emphasis is primarily on
the design and implementation of very large computer systems. The role of
theoretical computer scientists today is to examine fundamental problems
of the field through modeling, analysis, and experimentation. General com-
puter science research has also changed very significantly as well. Because
modern computer systems are often too large to be studied solely through
experimentation, even “practical” computer scientists find themselves using
models and analysis, the tools of theoretical computer science, to study these
systems.

Below we provide a brief history of theoretical computer science followed
by a review of its contributions to the practice of computer science as well
as other scientific and engineering disciplines.

2 A Brief History

Theoretical computer science is a cornerstone for computer science. It “un-
derlies many aspects of the construction, explanation, and understanding of
computers” [Revolution]. “Many...theoretical concepts from different sources
have now become so embedded in computing and communications that they
pervade the thinking of all computer scientists.” [Revolution]

What is theoretical computer science? “Theoretical computer scientists
seek to understand computational phenomena, the expressibility of languages,
the design and performance of algorithms, and general limits on computa-



tion. Thus, they ask what is computation, what can be computed, how it can
be done, and at what cost. In this quest, they use formal models, methods
of analysis, and some experimentation. They learn from and contribute to
practice. Finally, they seek to expand the core activities of the field to better
address hard computational problems.” [Loui]

2.1 Historical Highlights

Theoretical concepts can take decades to be assimilated into the mainstream
of computing, but when they are assimilated they can have a profound prac-
tical impact. The stored-program computer, a concept central to computer
science, owes its origins to Alan Turing, who studied the fundamental na-
ture of computation in the 1930s. The practice of programming computers
was significantly advanced by the development of the theory of automata
and languages by Chomsky and others in the 1950s. Building on the foun-
dations of context free grammars, Knuth and others introduced algorithms
and data structures for the efficient and practical parsing of high-level lan-
guages, leading to tools such YACC, thereby enabling the software revolution
of the 1960’s. In the 1970s theoreticians, exploring the intrinsic complexity of
computational problems, identified the large class of NP-complete problems,
everyday problems that appear to be so difficult to solve that no foreseeable
increase in computing power would enable their exact solution. Theoreticians
interested in studying computational complexity were led to the discovery of
hard problems that serve as the underpinnings for modern computer-security
systems, notably the RSA public-key cryptosystem. Also, they have demon-
strated the utility of mathematical logic and automata theory to the verifi-
cation of complex computer systems; for example model-checking technology
is now widely used by hardware vendors.

Research innovations in the last ten to fifteen years have resulted in new
formulations and results that promise a big impact in the future. We now
have fast (polynomial-time) algorithms that provide approximate answers,
with fixed performance bounds, to many NP-complete problems. We now
use randomized algorithms that provide fast solutions to hard problems with
high probability. We also employ interactive proof systems (the goal is to
convince one player of the truth of a statement known to a second player)
to verify electronic exchanges. These are but a few examples of recent and
current successes.



The explanatory value of theoretical computer science is illustrated by the
modern Web browser (originally developed at CERN and the National Center
for Supercomputing Applications at Illinois scientific computing centers). It
embodies the concept of the abstract machine developed in the 1970s. When
a user follows a link to data, a browser invokes the appropriate interpreter
(an abstract machine) to process the data, for example to view an image or
run a Java program.

2.2 Prospects for the Future

In concert with the PITAC committee [PITAC], we believe that future com-
puter systems will be large and complex, exhibiting complex interactions.
Understanding such systems will be an enormous intellectual challenge that
requires the efforts of both theoretical and experimental computer scientists.
We must develop scalable hardware and software system models capable of
handling the high emergent complexity of such systems and subject them to
analysis before making large investments in their implementation. Empha-
sizing these challenge, George Strawn, of the office of the Assistant Director
for CISE, said “we don’t understand at a scientific level many of the things
that we are building.” [Strawn, G.]

To summarize, “We need more basic research — the kind of groundbreak-
ing, high-risk/high-return research that will provide the ideas and methods
for new disciplinary paradigms a decade or more in the future. We must make
wise investments that will bear fruit over the next forty years.” [PITAC]

3 Theory in the Practice of Computing

We now give some examples that demonstrate the important role that the-
oretical computer science has played in understanding practical computer
science problems.

3.1 Cryptography and Secure Computation

The field of cryptography continues to flourish, with contributions to both
theory and practice. New techniques for cryptanalysis (differential and lin-
ear cryptanalysis) have greatly enhanced our ability to assess the strength of



conventional cryptosystems, while the development of factorization and dis-
crete logarithm techniques based on the number field sieve provides a deeper
understanding of the foundations of public-key cryptography. New protocols
have been devised for applications such as electronic cash and key escrow
that may impact practice. the practice of electronic commerce. Relation-
ships between cryptography and other fields, such as machine learning and
approximation, have been greatly expanded. Techniques for proving security
of cryptographic primitives and protocols have been significantly improved.

3.2 Communication Networks

On-line algorithms and multicommodity flow algorithms have proven use-
ful for admission control and for routing of virtual circuits in asynchronous
transfer mode (ATM) networks. Theoretically optimal algorithms led to the
development of a new, practical admission control and routing algorithm. Ex-
tensive simulation of this algorithm showed that it significantly out-performs
the standard approaches. Variants of this algorithm will be implemented in
ATM switches manufactured by AT&T. Research in load balancing and web
caching by theoretical computer scientists led to the creation of Akamai, a
highly visible new web caching company.

3.3 Computational Geometry

Techniques from computational geometry have been used in a wide variety of
other areas of computing. For example, algorithms for generating Delaunay
triangulations and triangulations with various local properties have been ap-
plied to mesh generation in computational fluid dynamics. Voronoi diagrams
and data structures for nearest neighbor searching are used in clustering al-
gorithms, which in turn are central to the speech and image compression
required for multimedia systems to run on personal computers. Techniques
developed in computational geometry for computing triangulations, line seg-
ment intersections, and terrain visibility are used in geographic information
systems. Visibility graphs and the visibility complex have been used in sys-
tems for computer vision and computer graphics. Graph drawing algorithms
are used in advanced graphic user interfaces and visualization systems.



3.4 Parallel Computer Architecture

Algorithm development and the analysis of parallel architectural models such
as mesh-connected processors, hypercubes, cube-connected cycles, and but-
terfly networks has informed and shaped the design of many parallel mul-
tiple processor machines in use today. Research on algorithms for routing
in networks, including (multi-phase) randomized routing, has also influenced
parallel machine design.

3.5 Software Systems

Many software systems have incorporated ideas and algorithms first devel-
oped in a theoretical framework. For example, evolving algebras have been
used to specify languages (e.g., C, Prolog, and VHDL), to define real and
virtual architectures (e.g., APE, PVM, and Transputer), to validate stan-
dard language implementations (e.g., Prolog and Occam), and to validate
distributed protocols. Versions of epistemic logic are widely used for the de-
sign and analysis of existing and new authentication protocols. Interactive
theorem provers like ProofPower, a commercial prover based on an academic
prototype (HOL), are used to verify properties of critical systems. Coordi-
nating Communicating Systems (CCS) has been found to be an invaluable
aid in the modeling, analysis, and design of safety-critical systems. Compo-
nents of real systems involved in land and air transport, process control, and
computer operating systems have been analyzed using CCS. Process cal-
culi and related modal logics have also been used, for example, to formally
specify and analyze a cache coherence protocol for a multi-processor archi-
tecture currently under development; to prove the correctness of a leader
election protocol for a point to point network; and to design and analyze a
rendezvous-based scheduler to be used in an embedded software system.

3.6 Programming Languages

The methods of structured operational semantics, which derived input both
from the lambda calculus and its model theory, reached a point in the 1980’s
where full-scale languages could be defined in such a way that properties of
the language (e.g., determinacy of evaluation and the lack of dangling point-
ers) could be rigorously proven. Simultaneously, semantic and syntactic the-



ories of types have been deployed to yield language designs that are provably
“type-sound,” leading both to a significant increase in the reliability of a
language and to greater efficiency in implementation (since type-information
need not be present at run-time in a type-sound language). Standard ML
[Meta Language] is an industrial-strength language whose formal definition
(in 1990) exploited these advances.

Standard ML serves as a vehicle for many research projects, particularly
those concerned with mechanized reasoning, program analysis, and compiler
construction. Standard ML also serves as the subject of study for many
investigations in programming language design.

Monads were introduced in the late 1980’s to computing science as a way
of structuring denotational semantics. semantics, increasing our understand-
ing of programming languages. Many different language features, including
non-termination, state, exceptions, continuations, and interaction, can be
viewed as monads. More recently, they have been widely used as a program-
ming technique in pure functional programming languages such as Haskell.
Monads are used externally to extend the capabilities provided by the Glas-
gow Haskell compiler. They are used to provide input-output and interaction
with C and updateable arrays and references.

3.7 VLSI design

The theory of VLSI algorithms and architecture has guided the development
of VLSI design. Theory has confirmed the quality of designs for special
problems such as matrix multiplication and convolution and has influenced
the development of layout algorithms for unstructured problems.

Computer-aided design of digital systems (including VLSI design) de-
pends heavily upon the results and techniques of the theoretical algorithms
community. One example of this is in the layout of VLSI circuits. Automated
layout uses both fundamental results in graph algorithms and specialized ap-
plication of methods developed in the theoretical community. Many layout
algorithms rely on minimum spanning tree and shortest-path algorithms; im-
provements in these algorithms and related data structures are directly usable
by layout applications. The models and algorithms developed for single-layer
routing are a successful application of theoretical techniques. Heuristics for
NP-complete layout problems draw heavily on foundations for more basic
problems such as graph partitioning and graph coloring.



3.8 Learning Theory

Algorithms have been developed within the computational learning theory
community that learn subclasses of finite probabilistic automata. They have
already been successfully applied in systems that perform handwriting recog-
nition, speech recognition, part-of-speech-tagging, DNA sequence modelling,
and text correction. Experimental evidence comparing these new systems
with previously existing systems has been favorable. Learning algorithms
and techniques for deterministic automata have been applied to reinforce-
ment learning, which is a promising new paradigm for machine learning.
Finally, learning algorithms for automata have also been applied to robot
motion planning. Finding algorithms with better performance for these and
other applications motivates the search for new, more general subclasses of
automata that have efficient learning algorithms.

4 Contributions to Other Disciplines

In this section we give examples of contributions that theoretical computer
scientists have made to various science and engineering disciplines.

4.1 Biology

A central algorithmic operation in computational biology is the comparison
of two very long DNA sequences to establish a relationship between them.
Most sequence comparison programs use dynamic programming techniques.
As the lengths of the sequences grow, however, such programs become very
slow. To speed them up, heuristics were proposed in 1980’s. In 1990, those
heuristics were cast into an algorithmic framework, called sparse dynamic
programming. That framework, its techniques, and other new ideas from the
algorithms community are a foundation for new sequence alignment software.

4.2 Mathematics

Theoretical computer science has also found applications in mathematics. In
particular, domain theory has developed in the past 25 years as a mathe-
matical foundation for the semantics of programming languages. Recently,
domain theory has been applied in several branches of mathematics, including
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dynamical systems, measure and integration theory, and fractals. Domain
theory has been used in finite-state discrete stochastic processes, iterated
function systems, fractal image compression, neural nets, and the Ising model
in statistical physics. A new, fast algorithm for polynomial decomposition is
included in AXIOM, the symbolic computation language developed by IBM.

4.3 Manufacturing

A program ghull for computing convex hulls has been used in the implemen-
tation of an algorithm to compute support structures for objects produced
through layered manufacturing, a process in which material is deposited and
later removed by a laser. During the construction of an object in this fashion,
it might be necessary to build external supports either to prevent the object
from toppling, or to support floating components and overhanging material.
The support structures, if necessary, must be built simultaneously with the
object, and hence must be accounted for in the path planning of the laser
beam or the deposition nozzle. The use of ghull reduced run times from
minutes to seconds to compute possible bases for the object to rest on, and
to test if the center of mass of the object is directly above the convex hull of
the object’s base.

4.4 Astronomy

Network flow techniques have been used to determine telescope settings as
part of the Sloan Digital Sky Survey, an astrophysics Grand Challenge prob-
lem. The goal of the survey is to determine the relative locations and ve-
locities of approximately five million of the visible galaxies. The desired
information can be computed from spectral (light frequency) data for each
galaxy. A rough estimate of the time and money needed for data collection
is around five years and five million dollars. The cost of data collection is
proportional to the number of times the telescope must be retargeted. A
heuristic based on the network flow theory is currently used to target the
telescope.
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5 Foundational Research

Recent successes strongly indicate that we can expect a continued flow of im-
portant results from theoretical work for the foreseeable future—results that
can transform the course of computer science research and, ultimately, the
way technology is used. In many cases, these results emerge in unpredictable
ways from apparently unrelated investigations of fundamental problems.

While many of the deep theoretical problems that are attracting the best
minds in our field are rooted in, or inspired by, overarching challenges, it is
often difficult for researchers to properly tackle such problems in the context
of an application-driven research environment. One reason for this is the long
time period needed for work on fundamental problems to come to full fruition.
In addition, solutions to such problems draw on diverse mathematical and
computational methods, and so the interaction of a broad community of
theoretical researchers is essential.

Moreover, the best theoretical results typically influence the course of
research in application areas, so it is extremely useful to maintain an iden-
tifiable corpus of theoretical knowledge that is accessible to the Computer
Science community and to the scientific research community at large.

A third reason for the importance of foundational research that it targets
high-risk and speculative problems whose solutions often have surprising or
unpredictable consequences. Such research often provides the seed corn for
major innovations.

For all of these reasons, unfettered research in foundational theoretical
areas is vital; it provides a better understanding of the capabilities and limita-
tions of computers and ensures future innovations in science and technology.

5.1 Computational Complexity

Fundamental questions remain on the relationships among models of compu-
tation, information representation and manipulation, and on good ways to
express algorithms. The P versus NP question is perhaps the most famous
of these, the refinement of which has led to many other important questions
in complexity theory. P is the collection of all problems that can be solved in
polynomial time and includes all the problems that can be solved efficiently
by computers. The class NP (nondetermistic polynomial time) includes liter-
ally thousands of problems from operations research that crop up routinely in
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manufacturing and networking applications. The fastest known algorithms
for problems in this class can only handle very small data sets. Unless P
equals NP, we will never be able to obtain exact solutions for realistically sized
versions of these problems. Progress on complexity-theoretic problems, even
when of the “negative” type (such as providing evidence for the intractability
of certain problems) can completely change computer scientists’ approaches
to practical problems in surprising ways. For one thing, researchers no longer
waste time seeking efficient solutions to intractable problems. Instead, they
invent and learn techniques for coping with intractability. The computational
hardness of certain problems has been exploited for cryptography. Currently,
computational hardness of certain problems is being harnessed to obtain ef-
ficient deterministic (error-free) algorithms for problems where randomness
(and thus error-prone) algorithms previously seemed necessary.

The theory of computing community continues to produce wonderful fun-
damental ideas, and, over time, these influence practice in important ways.
The interplay among concepts such as pseudorandom number generation,
interactive proofs, and secure cryptographic protocols is beautiful and deep,
and has significant potential to impact the practice of cryptography. The in-
troduction of interactive proof systems and probabilistically checkable proofs
has broadened and enriched our understanding of the concept of proof. Prob-
abilistically checkable proofs have turned out to be a fundamental tool for
studying the limits of polynomial-time approximation algorithms.

Foundational questions will require a concerted effort in the areas of classi-
cal Turing machine-like models and variants (such as randomized or quantum
models), models of learning, formal methods and program inference, mod-
els of nonsymbolic reasoning, logical characterization of complexity classes,
lower bounds, models of on-line computation, models for communication of
information, models for inferring information from incomplete data, models
for data storage and retrieval in a multimedia context, and parallel and dis-
tributed models. Study of connections between models and results in more
than one of these areas can be particularly fruitful. For example, on-line
algorithms, common in key frameworks such as operating systems, financial
control, and real-time systems, have generated fundamental concepts that
are important for distributed systems design, in particular where informa-
tion flow is more complex than traditional input/output.
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5.2 Design and Analysis of Algorithms

Foundational work on algorithms design has the goal of breaking long-standing
barriers in performance. There are many situations where complicated al-
gorithms, such as Strassen and Schonhage’s multiplication algorithm, were
deemed inferior for years. With steady increases in problem sizes such algo-
rithms now are preferred on appropriate high-performance computing plat-
forms.

In other cases, (such as linear programming) initial breakthroughs in re-
ducing asymptotic running time, while not practical in and of themselves,
serve to stimulate new research that eventually leads to practical algorithms.
What tends to happen is that once a barrier, such as the existence of a
polynomial-time algorithm for a problem, is broken, there is strong justifica-
tion and real motivation for researchers to revisit a problem that previously
appeared impenetrable. Very often, painstaking refinement of the seminal
breakthrough technique leads to a truly practical algorithm. Ultimately,
this type of research has long-lasting impact on the practice of computing.
Tantalizing open questions remain, such as whether there is a polynomial
time algorithm for graph isomorphism, or whether one can efficiently learn
Boolean formulas that are in disjunctive normal form from random examples.

5.3 New Theories of Algorithms and Heuristics

While theoretical work on models of computation and methods for analyzing
algorithms has had enormous payoffs, we are not done. In many situations,
simple algorithms do well. Take for example the Simplex algorithm for linear
programming, or the success of simulated annealing on certain supposedly
“intractable” problems. We don’t understand why! It is apparent that worst-
case analysis does not provide useful insights on the performance of many
algorithms on real data. Our methods for measuring the performance of
algorithms and heuristics and our models of computation need to be further
developed and refined. Theoreticians are investing increasingly in careful
experimental work leading to identification of important new questions in
the algorithms area. Developing means for predicting the performance of
algorithms and heuristics on real data and on real computers is a grand
challenge in algorithms.

On numerous occasions, theory of computing research has provided the
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insights that explain why popular, important heuristic algorithms work. Sig-
nificantly, these insights have suggested major improvements to the heuris-
tics. One example of this scenario was the study by Turner in the 1980s that
explained why the decades-old Cuthill-McKee heuristic for minimizing the
bandwidth of sparse linear systems works well in practice; this understanding
allowed Turner to devise an improved heuristic. A second example, also from
the 1980s, explained why the Kernighan-Lin graph bisection heuristic, which
is important in the field of circuit layout, works well in practice.

6 Summary

Results from theoretical computer science have been regularly applied to the
field of computer science and to other disciplines. In this paper we have high-
lighted recent contributions to communication networks, parallel computer
architecture, software systems, VLSI design, learning theory, biology, mathe-
matics, manufacturing, and astronomy. We can expect similar contributions
in the future.
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