Techniques for
Private Data Analysis

Sofya Raskhodnikova
Penn State University

Based on joint work with Shiva Kasiviswanathan, Homin Lee, Kobbi Nissim and Adam Smith
Private data analysis

Collections of personal and sensitive data

- census
- medical and public health data
- social networks
- recommendation systems
- trace data: search records, click data
- intrusion-detection
Meta Question

What information can be released?

- Two conflicting goals
 - utility: users can extract ”global” statistics
 - privacy: individual information stays hidden
Related work

Other fields: huge amount of work

• in statistics (statistical disclosure limitation)
• in data mining (privacy-preserving data mining)
• largely: no precise privacy definition
 (only security against specific attacks)

In cryptography (private data analysis)

• [Dinur Nissim 03, Dwork Nissim 04,
 Chawla Dwork McSherry Smith Wee 05,
 Blum Dwork McSherry Nissim 05,
 Chawla Dwork McSherry Talwar 05,
 Dwork McSherry Nissim Smith 06, ...]

• rigorous privacy guarantees
Differential privacy [DMNS06]

Intuition: Users learn the same thing about me whether or not I participate in the census.

Two databases are *neighbors* if they differ in one row (arbitrarily complex information supplied by one person).

\[
x = \begin{array}{c}
 x_1 \\
 x_2 \\
 \vdots \\
 x_n \\
\end{array}
\]

\[
x' = \begin{array}{c}
 x_1' \\
 x_2' \\
 \vdots \\
 x_n' \\
\end{array}
\]

Privacy definition

Algorithm A is ε-differentially private if

- for all neighbor databases x, x'
- for all sets of answers S

\[
\Pr[A(x) \in S] \leq (1 + \varepsilon) \cdot \Pr[A(x') \in S]
\]
Properties of differential privacy

- ε is non-negligible (at least $\frac{1}{n}$).

- **Composition:** If A_1 and A_2 are ε-differentially private, then (A_1, A_2) is 2ε-differentially private.

- robust in the presence of arbitrary side information.
What can we compute privately?

Research so far:

- **Definitions** [DiNi,DwNi,EGS,DMNS,DwNa,DKMMN,GKS]

- **Function approximation**
 - Protocols [DiNi,DwNi,BDMN,DMNS,NRS,BCDKMT]
 - Impossibility results [DiNi,DMNS,DwNa,DwMT,DwY]
 - Distributed protocols [DKMMN,BNiO]

- **Mechanism design** [McSherry Talwar 07]

- **Learning** [Blum Dwork McSherry Nissim 05, KLNRS08]

- **Releasing classes of functions** [Blum Ligett Roth 08]

- **Synthetic data** [Machanavajjhala Kifer Abowd Gehrke Vilhuber 08]
Road map

I. Function approximation

- Global sensitivity framework [DMNS06]
- Smooth sensitivity framework [NRS07]
- Sample-and-aggregate [NRS07]

II. Learning

- Exponential mechanism [MT07,KLNRS08]
For which functions f can we have:

- **privacy**: differential privacy [DMNS06]
- **utility**: output $A(x)$ is close to $f(x)$
Global sensitivity framework [DMNS06]

Intuition: f can be released accurately when it is insensitive to individual entries x_1, \ldots, x_n.

Global sensitivity $\text{GS}_f = \max_{\text{neighbors } x, x'} \| f(x) - f(x') \|_1$.

Example: $\text{GS}_{\text{average}} = \frac{1}{n}$ if $x \in [0, 1]^n$.

Theorem

If $A(x) = f(x) + \text{Lap}\left(\frac{\text{GS}_f}{\varepsilon} \right)$ then A is ε-diff. private.
Global sensitivity framework \[\text{[DMNS06]}\]

Intuition: f can be released accurately when it is insensitive to individual entries x_1, \ldots, x_n.

Global sensitivity $\text{GS}_f = \max_{\text{neighbors } x, x'} \| f(x) - f(x') \|_1$.

Example: $\text{GS}_{\text{average}} = \frac{1}{n}$ if $x \in [0, 1]^n$. Noise $= \text{Lap}\left(\frac{1}{\varepsilon n}\right)$.

Compare to: Estimating frequencies (e.g., proportion of people with blue eyes) from n samples: sampling error $\frac{1}{\sqrt{n}}$.

Theorem

If $A(x) = f(x) + \text{Lap}\left(\frac{\text{GS}_f}{\varepsilon}\right)$ then A is ε-diff. private.
Global sensitivity framework [DMNS06]

Intuition: f can be released accurately when it is insensitive to individual entries x_1, \ldots, x_n.

Global sensitivity $\text{GS}_f = \max_{\text{neighbors } x, x'} \| f(x) - f(x') \|_1$.

Example: $\text{GS}_{\text{average}} = \frac{1}{n}$ if $x \in [0, 1]^n$. Noise = $\text{Lap}\left(\frac{1}{\varepsilon n}\right)$.

Compare to: Estimating frequencies (e.g., proportion of people with blue eyes) from n samples: sampling error $\frac{1}{\sqrt{n}}$.

Theorem

If $A(x) = f(x) + \text{Lap}\left(\frac{\text{GS}_f}{\varepsilon}\right)$ then A is ε-diff. private.

Functions with low global sensitivity

- Means, variances for data in a bounded interval
- Histograms, contingency tables
- Singular value decomposition
Instance-Based Noise

Big picture for global sensitivity framework:

- add enough noise to cover the worst case for f
- noise distribution depends only on f, not database x

Problem: for some functions that’s too much noise

Smooth sensitivity framework [Nissim Smith Raskhodnikova 07]:

noise tuned to database x
Local sensitivity

Local sensitivity $\text{LS}_f(x) = \max_{x': \text{neighbor of } x} \| f(x) - f(x') \|$

Reminder: $\text{GS}_f = \max_x \text{LS}_f(x)$

Example: median for $0 \leq x_1 \leq \cdots \leq x_n \leq 1$, odd n

$$\text{median} = \max(x_{m-1}, x_{m+1})$$

Goal: Release $f(x)$ with less noise when $\text{LS}_f(x)$ is lower.
Local sensitivity

Local sensitivity $\text{LS}_f(x) = \max_{x': \text{neighbor of } x} \|f(x) - f(x')\|

Reminder: $\text{GS}_f = \max_x \text{LS}_f(x)$

Example: median for $0 \leq x_1 \leq \cdots \leq x_n \leq 1$, odd n

Goal: Release $f(x)$ with less noise when $\text{LS}_f(x)$ is lower.
Local sensitivity

Local sensitivity $\text{LS}_f(x) = \max_{x': \text{neighbor of } x} \| f(x) - f(x') \|

Reminder: $\text{GS}_f = \max_x \text{LS}_f(x)$

Example: median for $0 \leq x_1 \leq \cdots \leq x_n \leq 1$, odd n

\[\text{LS}_{\text{median}}(x) = \max(x_m - x_{m-1}, x_{m+1} - x_m) \]

Goal: Release $f(x)$ with less noise when $\text{LS}_f(x)$ is lower.
Instance-based noise: first attempt

Noise magnitude proportional to $LS_f(x)$ instead of GS_f?

No! Noise magnitude reveals information.

Lesson: Noise magnitude must be an insensitive function.
Smooth bounds on local sensitivity

Design sensitivity function \(S(x) \)

- \(S(x) \) is an \(\varepsilon \)-smooth upper bound on \(\text{LS}_f(x) \) if:
 - for all \(x \): \(S(x) \geq \text{LS}_f(x) \)
 - for all neighbors \(x, x' \): \(S(x) \leq e^\varepsilon S(x') \)

Theorem

If \(A(x) = f(x) + \text{noise} \left(\frac{S(x)}{\varepsilon} \right) \) then \(A \) is \(\varepsilon' \)-differentially private.

Example: \(\text{GS}_f \) is always a smooth bound on \(\text{LS}_f(x) \)
Smooth bounds on local sensitivity

Design sensitivity function $S(x)$

- $S(x)$ is an ε-smooth upper bound on $\text{LS}_f(x)$ if:
 - for all x: \(S(x) \geq \text{LS}_f(x) \)
 - for all neighbors x, x': \(S(x) \leq e^\varepsilon S(x') \)

\[S(x) \]
\[\text{LS}_f(x) \]

Theorem

If $A(x) = f(x) + \text{noise} \left(\frac{S(x)}{\varepsilon} \right)$ then A is ε'-differentially private.

Example: GS_f is always a smooth bound on $\text{LS}_f(x)$
Smooth Sensitivity

Smooth sensitivity $S^*_f(x) = \max_y (LS_f(y)e^{-\varepsilon \cdot \text{dist}(x,y)})$

Lemma

For every ε-smooth bound S: $S^*_f(x) \leq S(x)$ for all x.

Intuition: little noise when far from sensitive instances
Smooth Sensitivity

Smooth sensitivity $S^*_f(x) = \max_y (\text{LS}_f(y)e^{-\varepsilon \cdot \text{dist}(x,y)})$

Lemma

For every ε-smooth bound S: $S^*_f(x) \leq S(x)$ for all x.

Intuition: little noise when far from sensitive instances
Computing smooth sensitivity

Example functions with computable smooth sensitivity

- Median & minimum of numbers in a bounded interval
- MST cost when weights are bounded
- Number of triangles in a graph

Approximating smooth sensitivity

- only smooth upper bounds on LS are meaningful
- simple generic methods for smooth approximations
 - work for median and 1-median in L_1^d
Road map

I. Function approximation
 • Global sensitivity framework [DMNS06]
 • Smooth sensitivity framework [NRS07]
 • Sample-and-aggregate [NRS07]

II. Learning
 • Exponential mechanism [MT07, KLNRS08]
New goal

• Smooth sensitivity framework requires understanding combinatorial structure of f
 – hard in general

• **Goal**: an automatable transformation from an arbitrary f into an ε-diff. private A
 – $A(x) \approx f(x)$ for ”good” instances x
Example: cluster centers

Database entries: points in a metric space.

- Comparing sets of centers: Earthmover-like metric
- Global sensitivity of cluster centers is roughly the diameter of the space. But intuitively, if clustering is "good", cluster centers should be insensitive.
- No efficient approximation for smooth sensitivity
Example: cluster centers

Database entries: points in a metric space.

- Comparing sets of centers: *Earthmover-like* metric
- Global sensitivity of cluster centers is roughly the diameter of the space. But intuitively, if clustering is ”good”, cluster centers should be insensitive.
- No efficient approximation for smooth sensitivity
Example: cluster centers

Database entries: points in a metric space.

- Comparing sets of centers: Earthmover-like metric
- Global sensitivity of cluster centers is roughly the diameter of the space. But intuitively, if clustering is "good", cluster centers should be insensitive.
- No efficient approximation for smooth sensitivity
Sample-and-aggregate framework

Intuition: Replace f with a less sensitive function \tilde{f}.

$$\tilde{f}(x) = g(f(sample_1), f(sample_2), \ldots, f(sample_s))$$
Sample-and-aggregate framework

Intuition: Replace f with a less sensitive function \tilde{f}.

\[
\tilde{f}(x) = g(f(sample_1), f(sample_2), \ldots, f(sample_s))
\]
Good aggregation functions

- **average**
 - works for L_1 and L_2

- **center of attention**
 - the center of a smallest ball containing a strict majority of input points
 - works for arbitrary metrics
 (in particular, for Earthmover)
 - gives lower noise for L_1 and L_2
Sample-and-aggregate method

Theorem

If f can be approximated *on* x

from small samples

then f can be released with little noise
Sample-and-aggregate method

Theorem

If f can be approximated on x within distance r

from small samples of size $n^{1-\delta}$

then f can be released with little noise $\approx \frac{r}{\varepsilon} + \text{negl}(n)$
Sample-and-aggregate method

Theorem

If f can be approximated on x within distance r from small samples of size $n^{1-\delta}$ then f can be released with little noise $\approx \frac{r}{\varepsilon} + \text{negl}(n)$

- Works in all ”interesting” metric spaces
- Example applications
 - k-means cluster centers (if data is separated a.k.a. [Ostrovsky Rabani Schulman Swamy 06])
 - fitting mixtures of Gaussians (if data is i.i.d., using [Achlioptas McSherry 05])
 - PAC concepts (if uniquely learnable, i.e., if learning algorithm always outputs the same hypothesis or something close to it)
Road map

I. Function approximation
 • Global sensitivity framework [DMNS06]
 • Smooth sensitivity framework [NRS07]
 • Sample-and-aggregate [NRS07]

II. Learning
 • Exponential mechanism [McSherry Talwar 07,
 Kasiviswanathan Lee Nissim Raskhodnikova Smith 08]
Learning: the setting

Bank needs to decide which applicants are bad credit risks*

Goal: given sample of labeled data (past customers), produce good prediction rule (hypothesis) for future loan applicants

*Example taken from Blum, FOCS03 tutorial
Learning: the setting

Bank needs to decide which applicants are bad credit risks*

Goal: given sample of labeled data (past customers), produce good prediction rule (hypothesis) for future loan applicants

<table>
<thead>
<tr>
<th>% down</th>
<th>high debt</th>
<th>other accts</th>
<th>mmp/ inc</th>
<th>good risk?</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>No</td>
<td>Yes</td>
<td>0.32</td>
<td>Yes</td>
</tr>
<tr>
<td>10</td>
<td>No</td>
<td>No</td>
<td>0.25</td>
<td>Yes</td>
</tr>
<tr>
<td>5</td>
<td>Yes</td>
<td>No</td>
<td>0.30</td>
<td>No</td>
</tr>
<tr>
<td>20</td>
<td>No</td>
<td>Yes</td>
<td>0.31</td>
<td>Yes</td>
</tr>
<tr>
<td>10</td>
<td>No</td>
<td>No</td>
<td>0.25</td>
<td>Yes</td>
</tr>
</tbody>
</table>

*Example taken from Blum, FOCS03 tutorial
Learning: the setting

Bank needs to decide which applicants are bad credit risks*

Goal: given sample of labeled data (past customers), produce good prediction rule (hypothesis) for future loan applicants

<table>
<thead>
<tr>
<th>% down</th>
<th>high debt</th>
<th>other accts</th>
<th>mmp/inc</th>
<th>good risk?</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>No</td>
<td>Yes</td>
<td>0.32</td>
<td>Yes</td>
</tr>
<tr>
<td>10</td>
<td>No</td>
<td>No</td>
<td>0.25</td>
<td>Yes</td>
</tr>
<tr>
<td>5</td>
<td>Yes</td>
<td>No</td>
<td>0.30</td>
<td>No</td>
</tr>
<tr>
<td>20</td>
<td>No</td>
<td>Yes</td>
<td>0.31</td>
<td>Yes</td>
</tr>
<tr>
<td>10</td>
<td>No</td>
<td>No</td>
<td>0.25</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Example taken from Blum, FOCS03 tutorial
Bank needs to decide which applicants are bad credit risks.*

Goal: given sample of labeled data (past customers), produce good prediction rule (hypothesis) for future loan applicants

<table>
<thead>
<tr>
<th>% down</th>
<th>high debt</th>
<th>other accts</th>
<th>mmp/ inc</th>
<th>good risk?</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>No</td>
<td>Yes</td>
<td>0.32</td>
<td>Yes</td>
</tr>
<tr>
<td>10</td>
<td>No</td>
<td>No</td>
<td>0.25</td>
<td>Yes</td>
</tr>
<tr>
<td>5</td>
<td>Yes</td>
<td>No</td>
<td>0.30</td>
<td>No</td>
</tr>
<tr>
<td>20</td>
<td>No</td>
<td>Yes</td>
<td>0.31</td>
<td>Yes</td>
</tr>
<tr>
<td>10</td>
<td>No</td>
<td>No</td>
<td>0.25</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Example taken from Blum, FOCS03 tutorial
Learning: the setting

Bank needs to decide which applicants are bad credit risks*

Goal: given sample of labeled data (past customers), produce good prediction rule (hypothesis) for future loan applicants

<table>
<thead>
<tr>
<th>% down</th>
<th>high debt</th>
<th>other accts</th>
<th>mmp/inc</th>
<th>good risk?</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>No</td>
<td>Yes</td>
<td>0.32</td>
<td>Yes</td>
</tr>
<tr>
<td>10</td>
<td>No</td>
<td>No</td>
<td>0.25</td>
<td>Yes</td>
</tr>
<tr>
<td>5</td>
<td>Yes</td>
<td>No</td>
<td>0.30</td>
<td>No</td>
</tr>
<tr>
<td>20</td>
<td>No</td>
<td>Yes</td>
<td>0.31</td>
<td>Yes</td>
</tr>
<tr>
<td>10</td>
<td>No</td>
<td>No</td>
<td>0.25</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Example y_i: % down = 10, high debt = No, other accts = Yes, mmp/inc = 0.32, good risk? = Yes

Label z_i: % down = 10, high debt = No, other accts = No, mmp/inc = 0.25, good risk? = Yes

Reasonable rules given this data:

- Predict YES iff $100 \times \frac{\text{mmp}}{\text{inc}} - (\% \text{ down}) < 25$
- Predict YES iff (!high debt) AND (\% down > 5)

*Example taken from Blum, FOCS03 tutorial
Learning: the setting
Learning: the setting

- Examples drawn according to distribution \mathcal{D}
• Examples drawn according to distribution \mathcal{D}
Learning: the setting

- Examples drawn according to distribution \mathcal{D}
- A point drawn according to \mathcal{D} has to be classified correctly w.h.p. (over learner randomness and \mathcal{D})
PAC learning [Valiant 84]

Given distribution \mathcal{D} over examples, labeled by function c, hypothesis h is good if it mostly agrees with c:

$$\Pr_{y \sim \mathcal{D}}[h(y) = c(y)] \text{ is close to } 1.$$
PAC learning [Valiant 84]

Given distribution \mathcal{D} over examples, labeled by function c, hypothesis h is *good* if it mostly agrees with c:

$$\Pr_{y \sim \mathcal{D}}[h(y) = c(y)]$$ is close to 1.

Definition of PAC learning

Algorithm A PAC learns a concept class C if

- given polynomially many examples, drawn from \mathcal{D}, labeled by some $c \in C$
- A outputs a *good* hypothesis with high probability in polynomial time
PAC learning [Valiant 84]

Given distribution \mathcal{D} over examples, labeled by function c, hypothesis h is *good* if it mostly agrees with c:

$$\Pr_{y \sim \mathcal{D}} [h(y) = c(y)]$$

is close to 1.

Definition of PAC* learning

Algorithm A PAC learns a concept class C if

- given polynomially many examples, drawn from \mathcal{D}, labeled by some $c \in C$

- A outputs a *good* hypothesis of polynomial length with high probability in polynomial time
Private learning

Input: database \(x = (x_1, \ldots, x_n) \)

\(x_i = (y_i, z_i) \), where \(y_i \sim D \) and \(z_i = c(y_i) \) is the label of example \(y_i \)

<table>
<thead>
<tr>
<th>% down</th>
<th>high debt</th>
<th>other accts</th>
<th>mmp/ inc</th>
<th>good risk?</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>No</td>
<td>Yes</td>
<td>0.32</td>
<td>Yes</td>
</tr>
<tr>
<td>10</td>
<td>No</td>
<td>No</td>
<td>0.25</td>
<td>Yes</td>
</tr>
<tr>
<td>5</td>
<td>Yes</td>
<td>No</td>
<td>0.30</td>
<td>No</td>
</tr>
<tr>
<td>20</td>
<td>No</td>
<td>Yes</td>
<td>0.31</td>
<td>Yes</td>
</tr>
<tr>
<td>10</td>
<td>No</td>
<td>No</td>
<td>0.25</td>
<td>Yes</td>
</tr>
</tbody>
</table>
Private learning

Input: database $x = (x_1, ..., x_n)$

$x_i = (y_i, z_i)$, where $y_i \sim \mathcal{D}$ and $z_i = c(y_i)$ is the label of example y_i

<table>
<thead>
<tr>
<th>% down</th>
<th>high debt</th>
<th>other accts</th>
<th>mmp/inc</th>
<th>good risk?</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>No</td>
<td>Yes</td>
<td>0.32</td>
<td>Yes</td>
</tr>
<tr>
<td>10</td>
<td>No</td>
<td>No</td>
<td>0.25</td>
<td>Yes</td>
</tr>
<tr>
<td>5</td>
<td>Yes</td>
<td>No</td>
<td>0.30</td>
<td>No</td>
</tr>
<tr>
<td>20</td>
<td>No</td>
<td>Yes</td>
<td>0.31</td>
<td>Yes</td>
</tr>
<tr>
<td>10</td>
<td>No</td>
<td>No</td>
<td>0.25</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Output: hypothesis

e.g.

“Predict Yes if $100 \times \frac{\text{mmp}}{\text{inc}} - \text{(\% down)} < 25$”
Private learning

Input: database $x = (x_1, ..., x_n)$

$x_i = (y_i, z_i)$, where $y_i \sim D$ and $z_i = c(y_i)$ is the label of example y_i

<table>
<thead>
<tr>
<th>% down</th>
<th>high debt</th>
<th>other accts</th>
<th>mmp/inc</th>
<th>good risk?</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>No</td>
<td>Yes</td>
<td>0.32</td>
<td>Yes</td>
</tr>
<tr>
<td>10</td>
<td>No</td>
<td>No</td>
<td>0.25</td>
<td>Yes</td>
</tr>
<tr>
<td>5</td>
<td>Yes</td>
<td>No</td>
<td>0.30</td>
<td>No</td>
</tr>
<tr>
<td>20</td>
<td>No</td>
<td>Yes</td>
<td>0.31</td>
<td>Yes</td>
</tr>
<tr>
<td>10</td>
<td>No</td>
<td>No</td>
<td>0.25</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Output: hypothesis

e.g.

“Predict **Yes** if

$$100 \times \frac{\text{mmp}}{\text{inc}} - \frac{\% \text{ down}}{25}$$

Definition

Algorithm A privately learns *concept class C* if

- **Utility**: *Algorithm A* PAC learns class *C*
- **Privacy**: *Algorithm A* is differentially private
Private learning

Input: database \(x = (x_1, \ldots, x_n) \)
\(x_i = (y_i, z_i) \), where \(y_i \sim D \) and \(z_i = c(y_i) \) is the label of example \(y_i \)

\[
\begin{array}{|c|c|c|c|c|}
\hline
\text{% down} & \text{high debt} & \text{other accts} & \text{mmp/ inc} & \text{good risk?} \\
\hline
10 & No & Yes & 0.32 & Yes \\
10 & No & No & 0.25 & Yes \\
5 & Yes & No & 0.30 & No \\
20 & No & Yes & 0.31 & Yes \\
10 & No & No & 0.25 & Yes \\
\hline
\end{array}
\]

Output: hypothesis

"Predict Yes if \(100 \times \frac{\text{mmp}}{\text{inc}} - \text{% down} < 25 \)"

Definition

Algorithm A privately learns concept class \(C \) if

- **Utility:** Algorithm A PAC learns class \(C \) (average-case)
- **Privacy:** Algorithm A is differentially private (worst-case)
Designing private learners: baby steps

View non-private learner as function to be approximated

- **First attempt**: add noise
 - **Problem**: Close hypothesis may mislabel many points
Designing private learners: baby steps

View non-private learner as function to be approximated

- **First attempt**: add noise
 - **Problem**: Close hypothesis may mislabel many points

- **Second attempt**:
 apply sample-and-aggregate to non-private learning algorithm
 - Works when good hypothesis is essentially unique
 - **Problem**: there may be many good hypotheses – different samples may produce different-looking hypotheses
\[\text{PAC}^* = \text{Private PAC}^* \]

<table>
<thead>
<tr>
<th>Theorem (Private analogue of “Occam’s razor”)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Each PAC* learnable concept class can be learned privately, using polynomially many samples.</td>
</tr>
</tbody>
</table>
\[\text{PAC}^* = \text{Private PAC}^* \]

Theorem (Private analogue of “Occam’s razor”)

Each \(\text{PAC}^*\) learnable concept class can be learned privately, using polynomially many samples.

Proof: Adapt the exponential mechanism of [MT07]:

\[\text{score}(x, h) = \# \text{ of examples in } x \text{ correctly classified by } h \]
\(\text{PAC}^* = \text{Private PAC}^* \)

<table>
<thead>
<tr>
<th>Theorem (Private analogue of “Occam’s razor”)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Each PAC(^*) learnable concept class can be learned privately, using polynomially many samples.</td>
</tr>
</tbody>
</table>

Proof: Adapt the exponential mechanism of [MT07]:

\[
\text{score}(x, h) = \# \text{ of examples in } x \text{ correctly classified by } h
\]
\(\text{PAC}^* = \text{Private PAC}^* \)

Theorem (Private analogue of “Occam’s razor”)

Each PAC\(^*\) learnable concept class can be learned privately, using polynomially many samples.

Proof: Adapt the exponential mechanism of [MT07]:

\[
\text{score}(x, h) = \# \text{ of examples in } x \text{ correctly classified by } h
\]
\textit{Theorem} (Private analogue of “Occam’s razor”)

Each PAC\(^*\) learnable concept class can be learned privately, using polynomially many samples.

\textit{Proof:} Adapt the exponential mechanism of [MT07]:
\[\text{score}(x, h) = \# \text{ of examples in } x \text{ correctly classified by } h \]
\[\text{PAC}^* = \text{Private PAC}^* \]

Theorem (Private analogue of “Occam’s razor”)

Each PAC\(^*\) learnable concept class can be learned privately, using polynomially many samples.

Proof: Adapt the exponential mechanism of [MT07]:

\[
\text{score}(x, h) = \# \text{ of examples in } x \text{ correctly classified by } h
\]

- Output \(h \) from \(C \) with probability \(\sim e^{\epsilon \cdot \text{score}(x, h)} \)
 - may take exponential time

\[
\text{score} = 4
\]

\[
\text{red dot, blue dot, blue dot}
\]
\[\text{PAC}^* = \text{Private PAC}^* \]

Theorem (Private analogue of “Occam’s razor”)

Each PAC* learnable concept class can be learned privately, using polynomially many samples.

Proof: Adapt the exponential mechanism of [MT07]:

\[\text{score}(x, h) = \# \text{ of examples in } x \text{ correctly classified by } h \]

- Output \(h \) from \(C \) with probability \(\sim e^{\epsilon \cdot \text{score}(x,h)} \)
 - may take exponential time

Privacy: for any hypothesis \(h \):

\[
\frac{\Pr[h \text{ is output on input } x]}{\Pr[h \text{ is output on input } x']} = \frac{e^{\epsilon \cdot \text{score}(x,h)}}{e^{\epsilon \cdot \text{score}(x',h)}} \leq e^{\epsilon}
\]
PAC* = Private PAC*

Theorem (Private analogue of “Occam’s razor”)

Each PAC* learnable concept class can be learned privately, using polynomially many samples.

Proof: \(\text{score}(x, h) = \# \text{ of examples in } x \text{ correctly classified by } h \)

- Output \(h \) from \(C \) with probability \(\sim e^{\varepsilon \cdot \text{score}(x, h)} \)

Utility (learning):
Theorem \text{(Private analogue of “Occam’s razor”)}

Each PAC* learnable concept class can be learned privately, using polynomially many samples.

\textbf{Proof:} \quad \text{score}(x, h) = \# \text{ of examples in } x \text{ correctly classified by } h \\
\quad \quad \quad \quad \bullet \text{ Output } h \text{ from } C \text{ with probability } \sim e^{\varepsilon \cdot \text{score}(x, h)}

\textbf{Utility (learning):} \\
\textbf{Good} \quad h \text{ correctly label all examples: } \Pr[h] \sim e^{\varepsilon \cdot n} \\
\textbf{Bad} \quad h \text{ mislabel } \geq 10\% \text{ of examples: } \Pr[h] \sim e^{\varepsilon \cdot 0.9n}
PAC\(^{*}\) = Private PAC\(^{*}\)

Theorem (Private analogue of “Occam’s razor”)

Each PAC\(^{*}\) learnable concept class can be learned privately, using polynomially many samples.

Proof:

- \(\text{score}(x, h) = \# \text{ of examples in } x \text{ correctly classified by } h \)
- Output \(h \) from \(C \) with probability \(\sim e^{\varepsilon \cdot \text{score}(x, h)} \)

Utility (learning):

- **Good** \(h \) correctly label all examples: \(\Pr[h] \sim e^{\varepsilon \cdot n} \)
- **Bad** \(h \) mislabel \(\geq 10\% \) of examples: \(\Pr[h] \sim e^{\varepsilon \cdot 0.9n} \)

Sufficient to ensure \(n \gg \log(\# \text{ bad hypotheses}) = \text{ polynomial} \)

Then w.h.p. output \(h \) labels 90\% of examples correctly.
PAC = **Private PAC**

<table>
<thead>
<tr>
<th>Theorem (Private analogue of “Occam’s razor”)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Each PAC learnable concept class can be learned privately, using polynomially many samples.</td>
</tr>
</tbody>
</table>

Proof: \(\text{score}(x, h) = \# \) of examples in \(x \) correctly classified by \(h \)

- Output \(h \) from \(C \) with probability \(\sim e^{\varepsilon \cdot \text{score}(x,h)} \)

Utility (learning):

Good \(h \) correctly label all examples: \(\text{Pr}[h] \sim e^{\varepsilon \cdot n} \)

Bad \(h \) mislabel \(\geq 10\% \) of examples: \(\text{Pr}[h] \sim e^{\varepsilon \cdot 0.9n} \)

Sufficient to ensure \(n \gg \log(\# \text{ bad hypotheses}) = \text{polynomial} \)

Then w.h.p. output \(h \) labels 90% of examples correctly.

By ”Occam’s razor”, if \(n \gg \log(\# \text{ hypotheses}) \), then \(h \) does well on examples \(\implies h \) does well on distrib. \(\mathcal{D} \)

Road map

I. Function approximation

• Global sensitivity framework [DMNS06]
• Smooth sensitivity framework [NRS07]
• Sample-and-aggregate [NRS07]

II. Learning

• Exponential mechanism [MT07, KLNRS08]
Conclusions

This talk: partial picture of techniques

• current techniques best for
 – function approximation
 – learning

• New ideas needed for
 – combinatorial search problems
 – text processing
 – graph data (definitions?)
 – high-dimensional outputs