Leakage Resilient Computation

Yevgeniy Vahlis
joint work with Ali Juma, Charles Rackoff
Crypto

Encryption Box
Crypto

Encryption Box

Message M_0
Message M_1
Crypto

\[b \in_r \{0, 1\} \]

Encryption Box

Message \(M_0 \)

Message \(M_1 \)
Crypto

\[b \in_r \{0, 1\} \rightarrow \text{Encryption Box} \]

Encryption of \(M_b \)
Crypto

\[b \in_r \{0, 1\} \]

Encryption Box

Encryption of \(M_b \)

\[b=? \]
Crypto in Real Life

RSA

\(N = pq \)
Crypto in Real Life

RSA
N = pq

Message \(M_0 \)
Message \(M_1 \)
Crypto in Real Life

\[b \in_r \{0, 1\} \rightarrow \text{RSA} \]

\[N = pq \]

Message \(M_0 \)
Message \(M_1 \)
Crypto in Real Life

\[b \in_r \{0, 1\} \]

RSA
\[N=pq \]

Encryption of \(M_b \)
Crypto in Real Life

\[b \in_r \{0, 1\} \rightarrow \text{RSA} \]
\[N = pq \]

Encryption of \(M_b \)
Crypto in Real Life

$b \in_r \{0,1\} \rightarrow \text{RSA} \quad N=pq$

Encryption of M_b
Crypto in Real Life

$b \in_r \{0, 1\}$

RSA

$N = pq$

Encryption of M_b
Crypto in Real Life

\[b \in_r \{0, 1\} \]

RSA
\[N = pq \]

Encryption of \(M_b \)
Crypto in Real Life

\[b \in_r \{0, 1\} \]

Encryption of \(M_b \)
Crypto in Real Life

\[b \in_r \{0, 1\} \]

Encryption of \(M_b \)

\[b! \]
Crypto in Real Life

N = pq
Crypto in Real Life

Solutions:
Crypto in Real Life

Solutions:
• Heat isolation
Crypto in Real Life

Solutions:
• Heat isolation
• Uniform cooling and quite fans
Crypto in Real Life

Solutions:
- Heat isolation
- Uniform cooling and quite fans
- Electromagnetic isolation
Crypto in Real Life

Solutions:
- Heat isolation
- Uniform cooling and quite fans
- Electromagnetic isolation
- ???
Algorithmic Protection

N = pq

RSA
Algorithmic Protection

In recent years:
In recent years:
• Reduce assumptions about hardware
In recent years:
- Reduce assumptions about hardware
- Design algorithms that are secure under leakage
Previous Work

• [Goldreich & Ostrovsky 96] protect against complete leakage of memory when CPU is secure.
• [Ishai & Sahai & Wagner 2003] assume adversary leaks value of a fixed number of wires
• [Micali & Reyzin 04] introduce axioms and framework
• [Goldwasser & Kalai & Rothblum 2008] one-time programs
• [Dziembowski & Pietrzak 2008] Leakage resilient stream cipher in the split state model
• [Faust & Reyzin & Tromer 2009] protect against AC0 leakage functions (needs secure component)
Our Results
Our Results

- A compiler that transforms any keyed primitive H_K into a stateful algorithm G_{state}
- G_{state} is resilient against length bounded leakage in each invocation
- Need a fixed size, memory-less secure component
Our Results

- A compiler that transforms any keyed primitive H_K into a stateful algorithm G_{state}
- G_{state} is resilient against length bounded leakage in each invocation
- Need a fixed size, memory-less secure component

Achieve leak-resilience for arbitrary complexity from leak-resilience for fixed complexity
Model

Want to protect $H_K(x)$

Two computers that communicate over a public channel. Initialization is secure.
Model

Want to protect $H_K(x)$

Two computers that communicate over a public channel. Initialization is secure.
Model

Want to protect $H_K(x)$

Two computers that communicate over a public channel. Initialization is secure.
Evaluating $H_K(x)$
Model

Evaluating $H_K(x)$

- CPU A
 - MemA_i

- CPU B
 - MemB_i
Model

Evaluating $H_K(x)$

CPU A

MemA$_i$

CPU B

MemB$_i$

x
Model

Evaluating $H_K(x)$

CPU A

MemA$_i$

MemA$_{i+1}$

CPU B

MemB$_i$

MemB$_{i+1}$

$H_K(x)$

x
Leakage

R_A \downarrow

\begin{array}{|c|}
\hline
CPU A \\
\hline
MemA_1 \\
\hline
\end{array}

R_B \downarrow

\begin{array}{|c|}
\hline
CPU B \\
\hline
MemB_1 \\
\hline
\end{array}
Leakage

CPU A

MemA₁

CPU B

MemB₁

Rₐ

Rₜ

f₁

x₁
Leakage

CPU A

MemA₁
Computing...

CPU B

MemB₁

R_A

R_B

f_1

x_1
Leakage

Computing... $f_1(MemA_1, R_A) = L_1$
Leakage

R_A
\[\text{CPU A} \\ \text{Mem}_{A_1} \]

R_B
\[\text{CPU B} \\ \text{Mem}_{B_1} \]

x, L_1
Leakage

CPU A
MemA₁

CPU B
MemB₁

RA

RB

x, L₁
Leakage

CPU A
MemA₁

CPU B
MemB₁

Rₐ

x, L₁

Rₜ

f₂
Leakage

CPU A

MemA₁

CPU B

MemB₁

Computing...

\(f_2 \)

\(x, L_1 \)

\(R_A \)

\(R_B \)
Leakage

CPU A

MemA₁

CPU B

MemB₁

Computing...

Rₐ

Rₜ

x, L₁

f₂

z
Leakage

CPU A

MemA₁

CPU B

MemB₁

Computing...

\[L₂ = f₂(\text{MemB}_₁, R_B, z) \]

\[f₂ \]

\[x, L₁ \]

\[z \]
Leakage

CPU A

MemA₁

CPU B

MemB₁

RA

RB

x, L₁
Leakage

CPU A

MemA₁

CPU B

MemB₁

help
Leakage

CPU A

MemA₁

CPU B

MemB₁

x, L₁, L₂, L₃...
Leakage

$H_K(x)$

x, L_1, L_2, L_3, \ldots
Leakage

Our construction needs 2 flows

$h(x)$

x, L_1, L_2, L_3, \ldots
Definition of Security
Definition of Security

Real World
Definition of Security

Real World

\[x, \text{leakage}(\text{ }) \]
Definition of Security

$x, \text{leakage}(\cdot)$

$H_K(x), \text{leakage}(\text{state})$

Real World
Definition of Security

Real World

Ideal World

\[x, \text{leakage}(\) \]

\[H_K(x), \text{leakage(state)} \]

Simulator

\[H_K \]
Definition of Security

Real World

\[x, \text{leakage}(\cdot) \]
\[H_K(x), \text{leakage}(\text{state}) \]

Ideal World

\[H_K \]

Simulator

Definition of Security
Definition of Security

Real World

$x, \text{leakage}(\)$

$H_K(x), \text{leakage}(\text{state})$

Ideal World

x

$H_K(x)$

Fake Leakage

Simulator

H_K
Main Tool

Fully Homomorphic Encryption (FHE)

First construction by Gentry at STOC 09
Based on Ideal Lattices

Other restricted constructions are known
[Boneh Goh Nissim 2005]
[Melchor Gaborit Herranz 2008]
Homomorphic Encryption

Regular Public Key Encryption

Generate Keys → pub → Encrypt → C(M) → Decrypt → M

Generate Keys

Encrypt

Decrypt

pub

C(M)

M

pri
Homomorphic Encryption

Regular Public Key Encryption

Generate Keys $\xrightarrow{\text{pub}}$ Encrypt $\xrightarrow{C(M)}$ Decrypt \xrightarrow{M}

Homomorphic Encryption
Homomorphic Encryption

Regular Public Key Encryption

Generate Keys → \textit{pub} → Encrypt → \textit{C(M)} → Decrypt → M

Homomorphic Encryption

Evaluate → \textit{C_f(f(M))} → \textit{f()}
Homomorphic Encryption

Regular Public Key Encryption

Generate Keys → pub → Encrypt → C(M) → Decrypt → M

Homomorphic Encryption

Randomize → C_{f}(f(M)) → Evaluate → C(f(M)) → f()
Our Construction

Initialization(K):
Generate keys pri,pub
$C(K) = Enc_{pub}(K)$

CPU A

CPU B
Our Construction

Initialization(K):
- Generate keys pri, pub
- $C(K) = Enc_{pub}(K)$

Mem$A_1 = pri$

Mem$B_1 = C(K)$

CPU A

CPU B
First Attempt

Step 1: CPU A

\[\text{MemA}_i = \text{pri}_i \]

Generate Keys

Encrypt

\[R_{\text{gen}} \]

\[R_{\text{enc}} \]
First Attempt

Step 1: CPU A

\[MemA_i = pri_i \]

Generate Keys

\[pub_{i+1} \]

Encrypt

\[R_{enc} \]

\[R_{gen} \]
First Attempt

Step 1: CPU A

$\text{MemA}_i = \text{pri}_i$

R_{enc}

Generate Keys

R_{gen}

Encrypt

$C(\text{pri}_i)$

pub_{i+1}
First Attempt

Step 1: CPU A

MemA_i = pri_i

Generate Keys

Encrypt

C(pri_i)

Send to CPU B
First Attempt

Step 1: CPU A

MemA

= \text{pri}_{i+1}

\text{Generate Keys}

\text{Encrypt}

C(\text{pri}_i)

Send to CPU B
First Attempt

Step 1: CPU A

Mem\textsubscript{A\textsubscript{i}} = \textit{pri}_{i+1}

\begin{align*}
\text{Generate Keys} & \quad \text{Generate Keys} \\
\text{Encrypt} & \quad \text{Encrypt} \\
\text{Send to CPU B} & \quad \text{Send to CPU B}
\end{align*}
First Attempt

Step 2: CPU B

Input: \(x \)

\[C_{i+1}(pri_i) \]

Evaluate relative to \(pub_{i+1} \)

\[\text{Decrypt} \]

\[H \]

\[\text{MemB}_i = C_i(K) \]
First Attempt

Step 2: CPU B

Input: x

$C_{i+1}(pri_i)$

$Mem_{B_i} = C_i(K)$

Evaluate relative to pub_{i+1}
First Attempt

Step 2: CPU B

Input: x

$C_{i+1}(pri_i)$

$\text{Mem}_{B_i} = C_i(K)$

Evaluate relative to pub_{i+1}

Decrypt

H
First Attempt

Step 2: CPU B

Input: x

$C_{i+1}(pri_i)$

Evaluate relative to pub_{i+1}

$Mem_{B_i} = C_i(K)$

Decrypt

K

H
First Attempt

Step 2: CPU B

Input: x

Evaluate relative to pub_{i+1}

$C_{i+1}(pri_i)$

pri_i → Decrypt → K → H → $C_{i+1}(H_K(x))$

$MemB_i = C_i(K)$

$C_{i+1}(K)$
First Attempt

Step 2: CPU B

Input: x

$C_{i+1}(pri_i)$

Evaluate relative to pub_{i+1}

$C_{i+1}(H_{K}(x))$

$Mem_{B_{i+1}} = C_{i+1}(K)$

$C_{i+1}(K)$

K

Decrypt

H
First Attempt

Step 3: CPU A

$\text{MemA}_i = \text{pri}_{i+1}$

$C_{i+1}(H_K(x))$ → Decrypt
First Attempt

Step 3: CPU A

\[\text{MemA}_i = \text{pri}_{i+1} \]

\[C_{i+1}(H_K(x)) \]

\[H_K(x) \]
First Attempt

Step 3: CPU A

$\text{Mem}A_i = pri_{i+1}$

$C_{i+1}(H_K(x))$ → Decrypt → $H_K(x)$

Looks great! What goes wrong?
First Attempt

Step 3: CPU A

$\text{MemA}_i = \text{pri}_{i+1}$

$C_{i+1}(H_K(x))$ carries history
May contain K

$H_K(x)$

Looks great!
What goes wrong?
First Attempt

Step 3: CPU A

$\text{MemA}_i = \textbf{pri}_{i+1}$

Looks great!
What goes wrong?

$C_{i+1}(H_K(x))$ carries history
May contain K

$C_{i+1}(H_K(x))$ flows into Decrypt'

$H_K(x)$ flows into Decrypt'

K flows out of Decrypt'
Second Attempt

Step 2’: CPU B

Input: x

$C_{i+1}(pri_i)$

Evaluate relative to pub_{i+1}

Decrypt

pri_i

K

H

$M_{ma}B_{mi}=C_i(KK)$

$C_{i+1}(K)$
Second Attempt

Step 2’: CPU B

Evaluate relative to \(pub_{i+1} \)

Input: \(x \)

\(C_{i+1}(pri_i) \)

\(pri_i \)

Decrypt

\(K \)

\(H \)

Randomize

\(C_{i+1}(H_K(x)) \)

\(MemB_{i+1} = C_{i+1}(K)(K) \)

\(C_{i+1}(K) \)
Second Attempt

Step 2': CPU B

Evaluate relative to pub_{i+1}

Input: x

$C_{i+1}(pri_i)$

$C_{i+1}(H_K(x))$

$M_i \oplus B_{i+1} = C_i(K)K$

$C_{i+1}(K)$

Randomize

Decrypt

K

H

pri_i
Second Attempt

Step 3: CPU A

\[\text{MemA}_i = \text{pri}_{i+1} \]

This time \(C_{i+1}(H_K(x)) \) only contains \(H_K(x) \)

\[C_{i+1}(H_K(x)) \]

\[H_K(x) \]
Second Attempt

Step 3: CPU A

\[\text{MemA}_i = \text{pri}_{i+1} \]

This time \(C_{i+1}(H_K(x)) \) only contains \(H_K(x) \)
Step 3: CPU A

$\text{MemA}_i = \text{pri}_{i+1}$

This time $C_{i+1}(H_K(x))$ only contains $H_K(x)$

Are we done?
Not quite...

$C_{i+1}(H_K(x))$
Second Attempt

Step 2': CPU B

Input: x

Evaluate relative to pub_{i+1}

$C_{i+1}(pri_{i})$

pri_{i}

K

H

Randomize

$C_{i+1}(HK(x))$

$Mem_{B_{i+1}} = C_{i+1}(K)$

$C_{i+1}(K)$
Second Attempt

Step 2': CPU B

Evaluate relative to pub_{i+1}

Input: x

$C_{i+1}(pri_i)$

$C_{i+1}(pri_i)$

Decrypt

K

H

Randomize

$\text{Mem}_{B_{i+1}} = C_{i+1}(K)$

$C_{i+1}(H_K(x))$
Second Attempt

Step 2': CPU B

Input: x

Evaluate relative to pub_{i+1}

C_{i+1}(pri_i)

Decrypt

H

Mem_{B_{i+1}} = C_{i+1}(K)

C_{i+1}(K)
Second Attempt

Step 2’: CPU B

Input: x

$C_{i+1}(pri_i)$

Evaluate relative to pub_{i+1}

K

H

What did we forget?

$Mem_{B_{i+1}} = C_{i+1}(K)$
Second Attempt

Step 2’: CPU B

Evaluate relative to pub_{i+1}

Input: x

$C_{i+1}(pri_i)$

$C_{i+1}(K)$ also carries history*

$Mem_{B_{i+1}} = C_{i+1}(K)$

What did we forget?
Third Attempt

Step 2': CPU B

Input: x

$C_{i+1}(pri_i)$

Evaluate relative to pub_{i+1}

pri_i → Decrypt → K → H

$Mem_{B_{i+1}} = C_{i+1}(K)$

$C_{i+1}(K)$
Third Attempt

Step 2”': CPU B

Input: x

$C_{i+1}(pri_i)$

Evaluate relative to pub_{i+1}

$MemB_{i+1} = C_{i+1}(K)$

Decrypt

H

Randomize

K
Third Attempt

Step 2”": CPU B

Evaluate relative to pub_{i+1}

Input: x

$C_{i+1}(pri_i)$

$Mem_{B_{i+1}} = C_{i+1}(K)$

$C_{i+1}(K)$

$C_{i+1}(pri_i)$

Decrypt

K

H

Randomize
Third Attempt

Step 2”: CPU B

Evaluate relative to pub_{i+1}

Input: x

$C_{i+1}(pri_i)$

$Mem_{B_{i+1}} = C_{i+1}(K)$

Now it works!
Complete Construction

Memory A: \(pri_i \)
Randomness: \(r_{gen} \)

\[pub_{i+1}, pri_{i+1} = \text{KeyGen}(r_{gen}) \]
\[C_{pri} = \text{Enc}(pri_i, pub_{i+1}) \]
Set Memory A = \(pri_{i+1} \)

\[Y = \text{Dec}(C'_{reply}; pri_{i+1}) \]
Output \(Y \)

Memory B: \(C_K \)
Randomness: \(r, r' \)

\[C_{reply} = \text{Evaluate}(C_{pri}, C_K, x, H_K(x); r) \]
\[C'_K = \text{Evaluate}(C_{pri}, C_K, x, K; r') \]

\[C'_{reply} = \text{Randomize}(C_{reply}; r) \]
set Memory B = \(\text{Randomize}(C'_K; r') \)
Complete Construction

Memory A: pri_i
Randomness: r_{gen}

$pub_{i+1}, pri_{i+1} = \text{KeyGen}(r_{gen})$
$C_{pri} = \text{Enc}(pri_i, pub_{i+1})$
Set Memory A = pri_{i+1}

$Y = \text{Dec}(C'_{\text{reply}}; pri_{i+1})$
Output Y

Memory B: C_K
Randomness: r, r'

$C_{\text{reply}} = \text{Evaluate}(C_{pri}, C_K, x, H_K(x); r)$
$C'_{K} = \text{Evaluate}(C_{pri}, C_K, x, K; r')$

$C'_{\text{reply}} = \text{Randomize}(C_{\text{reply}}; r)$
set Memory B = $\text{Randomize}(C'_{K}; r')$
Proof
Hybrid 1

Memory A: pri_i
Randomness: r_{gen}

$\text{pub}_{i+1}, \text{pri}_{i+1} = \text{KeyGen}(r_{\text{gen}})$

$C_{\text{pri}} = \text{Enc}(\text{pri}_i, \text{pub}_{i+1})$
Set Memory A = pri_{i+1}

$Y = \text{Dec}(C'_{\text{reply}}; \text{pri}_{i+1})$
Output Y

Memory B: C_K
Randomness: r, r'

$C_{\text{reply}} = \text{Evaluate}(C_{\text{pri}}, C_K, x, H_K(x); r)$

$C'_{K} = \text{Evaluate}(C_{\text{pri}}, C_K, x, K; r')$

$C'_{\text{reply}} = \text{Randomize}(C_{\text{reply}}; r)$
set Memory B = Randomize($C'_{K}; r'$)
Hybrid 1

Memory A: pri_i
Randomness: r_{gen}

$pub_{i+1}, pri_{i+1} = \text{KeyGen}(r_{gen})$

$C_{pri} = \text{Enc}(pri_i, pub_{i+1})$

Set Memory A = pri_{i+1}

$Y = \text{Dec}(C'_{\text{reply}}; pri_{i+1})$

Output Y

Memory B: C_K
Randomness: r, r'

$C_{\text{reply}} = \text{Evaluate}(C_{pri}, C_K, x, H_K(x); r)$

$C'_K = \text{Evaluate}(C_{pri}, C_K, x, K; r')$

$C'_{\text{reply}} = \text{Randomize}(C_{\text{reply}}; r)$

set Memory B = $\text{Randomize}(C'_K; r')$

$C''_{\text{reply}} = \text{Enc}(H_K(x), pub_{i+1})$
Hybrid 1

Memory A: \(pri_i \)
Randomness: \(r_{\text{gen}} \)

\[\text{pub}_{i+1}, \text{pri}_{i+1} = \text{KeyGen}(r_{\text{gen}}) \]
\[C_{\text{pri}} = \text{Enc}(\text{pri}_i, \text{pub}_{i+1}) \]
Set Memory A = \(\text{pri}_{i+1} \)

Y = Dec(\(C'_{\text{reply}} \); \(pri_{i+1} \))
Output Y

Memory B: \(C_K \)
Randomness: \(r, r' \)

\[C_{\text{reply}} = \text{Evaluate}(C_{\text{pri}}, C_K, x, H_K(x); r) \]
\[C'_K = \text{Evaluate}(C_{\text{pri}}, C_K, x, K; r') \]
\[C'_{\text{reply}} = \text{Randomize}(C_{\text{reply}}; r) \]
set Memory B = \(\text{Randomize}(C'_K; r') \)

\[C''_{\text{reply}} = \text{Enc}(H_K(x), \text{pub}_{i+1}) \]

Doesn’t change the distribution
Hybrid 2

Memory A: pri_i
Randomness: r_{gen}

$pub_{i+1}, pri_{i+1} = \text{KeyGen}(r_{gen})$
$C_{pri} = \text{Enc}(pri_i, pub_{i+1})$
Set Memory A = pri_{i+1}

$C_{reply} = \text{Evaluate}(C_{pri}, C_K, x, H_K(x); r)$

$C_{reply} = \text{Randomize}(C_{reply}; r)$
set Memory B = $\text{Randomize}(C_K; r')$

$Y = \text{Dec}(C_{reply}; pri_{i+1})$
Output Y

$C''_{reply} =$ $\text{Enc}(H_K(x), pub_{i+1})$
Hybrid 2

Memory A: \(pri_i \)
Randomness: \(r_{gen} \)

\[\text{pub}_{i+1}, pri_{i+1} = \text{KeyGen}(r_{gen}) \]
\[C_{pri} = \text{Enc}(pri_i, pub_{i+1}) \]
Set Memory A = \(pri_{i+1} \)

\[Y = \text{Dec}(C'_{\text{reply}}; pri_{i+1}) \]
Output \(Y \)

Memory B: \(C_K \)
Randomness: \(r, r' \)

\[C_{\text{reply}} = \text{Evaluate}(C_{pri}, C_K, x, H_K(x); r) \]
\[C'_K = \text{Evaluate}(C_{pri}, C_K, x, K; r') \]
\[C'_{\text{reply}} = \text{Randomize}(C_{\text{reply}}; r) \]
set Memory B = \(C''_K \)

\[C''_{\text{reply}} = \text{Enc}(H_K(x), pub_{i+1}) \]
\[C''_K = \text{Enc}(0...0, pub_{i+1}) \]
Hybrid 2

Memory A: pri_i
Randomness: r_{gen}

$pub_{i+1}, pri_{i+1} = KeyGen(r_{gen})$
$C_{pri} = Enc(pri_i, pub_{i+1})$
Set Memory A = pri_{i+1}

$Y = Dec(C_{reply} ; pri_{i+1})$
Output Y

Memory B: C_K
Randomness: r, r'

$C_{reply} = Evaluate(C_{pri}, C_K, x, H_K(x) ; r)$
$C'_K = Evaluate(C_{pri}, C_K, x, K ; r')$
$C'_{reply} = Randomize(C_{reply} ; r)$
set Memory B = C''_K

Changes the distribution completely

$C''_{reply} = Enc(H_K(x), pub_{i+1})$
$C''_K = Enc(0...0, pub_{i+1})$
Why Should This Work?

• Very informally: Ciphertexts are incompressible.

• This means that leakage on B can help only if Adv knows enough about pri

• But Adv sees only leakage on pri which is insufficient to break semantic security
Open Questions

• Can we get rid of the leak-free component?
• Granularity of leakage.
Thank you!